Mass Accommodation and Chemical Reaction at Gas-Liquid Interfaces
NASA Astrophysics Data System (ADS)
Kolb, C. E.; Williams, L. R.; Jayne, J. T.; Worsnop, D. R.; Davidovits, P.
2006-12-01
The uptake of trace gases by liquid surfaces is an important process that initiates the heterogeneous chemistry of liquid aerosol particles and cloud droplets. We have recently reviewed the available experimental data for liquid aqueous and aqueous/organic surfaces (1). The review highlights some inconsistencies among experimental results and between experimental results and molecular dynamics simulations. Some of these inconsistencies will be evaluated and discussed in terms of the physics of liquid interfaces, the limitations of various experimental techniques and the disparate scales of laboratory experiments and current molecular simulations (1, 2). 1. Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., Worsnop, D. R., 2006, Mass Accommodation and Chemical Reactions at Gas Liquid Interfaces, Chem. Rev. 106, 1323-1354. 2. Garrett, B. C., Schenter, G. K., Morita, A., 2006, Molecular Simulations of Molecules across the Liquid/Vapor Interface of Water, Chem. Rev. 106, 1355-1374.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.
This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less
Hollenstein, Jérôme; Terrier, Alexandre; Cory, Esther; Chen, Albert C.; Sah, Robert L.; Pioletti, Dominique P.
2016-01-01
The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone–hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone–hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone–hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone–hydrogel interface and second, it reduces the stress at this interface. PMID:23706035
Helgason, Benedikt; Viceconti, Marco; Rúnarsson, Tómas P; Brynjólfsson, Sigurour
2008-01-01
Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.
Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael
2016-09-08
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; University of Toledo Medical Center, Toledo, OH; Shvydka, D
Purpose: Presence of interfaces between high and low atomic number materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. This phenomenon is characterized by a very narrow region of sharp dose enhancement at the interface. The rapid fall-off of the dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Methods: Three micron thick CdTe photodetectors were fabricated in our lab. One,more » ten or one hundred micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high dose rate source and current measured with a CdTe detector in each case was compared against the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. Results: The experiment based PSEs due to 1, 10, and 100 micron thick gold foils at the closest measured distance of measurement (12.5 micron) from the interface were 42.6 ± 10.8, 137.0 ± 11.9 and 203.0 ± 15.4 respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1 and 249 ± 1 respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. Conclusion: The dose enhancement near the gold-tissue interface was measured using an in-house-built high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement of the experimental results with the corresponding MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation.« less
Experimental setup for evaluating an adaptive user interface for teleoperation control
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.
2017-05-01
A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.
NASA Astrophysics Data System (ADS)
Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi
This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.
NASA Astrophysics Data System (ADS)
Shan, Hangying; Xiao, Jun; Chu, Qiyi
2018-05-01
The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.
Adhesive joint evaluation by ultrasonic interface and lamb waves
NASA Technical Reports Server (NTRS)
Rokhlin, S. I.
1986-01-01
Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.
Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico
2009-01-01
The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690
Paudel, Nava Raj; Shvydka, Diana
2016-01-01
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in‐house‐built inexpensive thin‐film Cadmium Telluride (CdTe) photodetector to study this effect at the gold‐tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three‐micron thick thin‐film CdTe photodetectors were fabricated in our lab. One‐, ten‐ or one hundred‐micron thick gold foils placed in a tissue‐equivalent‐phantom were irradiated with a clinical Ir‐192 high‐dose‐rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue‐equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5 μm from the interface were 42.6±10.8, 137.0±11.9, and 203.0±15.4, respectively. The corresponding MC modeled PDEs were 38.1±1., 164±1, and 249±1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold‐tissue interface was successfully measured using an in‐house‐built, high‐resolution CdTe‐based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. PACS number(s): 29.40.Wk, 73.50.Pz, 87.53.Jw, 87.55.K‐ PMID:27685139
Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.
1988-01-01
Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, F. S.
1974-01-01
Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated.
DLSanalysis.org: a web interface for analysis of dynamic light scattering data.
Hansen, Steen
2018-03-01
A web interface ( www.DLSanalysis.org ) for indirect Laplace transformation of dynamic light scattering data is presented. When experimental data are uploaded to the server they are processed in a few seconds, and the result is displayed on the screen in the form of a size distribution together with the experimental data and the fit to the data. No other user input than the experimental data is necessary, but various options for the analysis may be selected. No local installation of software or registration is necessary. The result of the analysis can be downloaded.
Team Oriented Robotic Exploration Task on Scorpion and K9 Platforms
NASA Technical Reports Server (NTRS)
Kirchner, Frank
2003-01-01
This final report describes the achievements that have been made in the project over the complete period of performance. The technical progress highlights the different areas of work in terms of Progress in Mechatronics, Sensor integration, Software Development. User Interfaces, Behavior Development and Experimental Results and System Testing. The different areas are: Mechatronics, Sensor integration, Software development, Experimental results and Basic System Testing, Behaviors Development and Advanced System Testing, User Interface and Wireless Communication.
Omena, Thaís Pionório; Fontes-Pereira, Aldo José; Costa, Rejane Medeiros; Simões, Ricardo Jorge; von Krüger, Marco Antônio; Pereira, Wagner Coelho de Albuquerque
2017-01-01
One goal of therapeutic ultrasound is enabling heat generation in tissue. Ultrasound application protocols typically neglect these processes of absorption and backscatter/reflection at the skin/fat, fat/muscle, and muscle/bone interfaces. The aim of this study was to investigate the heating process at interfaces close to the transducer and the bone with the aid of computer simulation and tissue-mimicking materials (phantoms). The experimental setup consists of physiotherapeutic ultrasound equipment for irradiation, two layers of soft tissue-mimicking material, and one with and one without an additional layer of bone-mimicking material. Thermocouple monitoring is used in both cases. A computational model is used with the experimental parameters in a COMSOL® software platform. The experimental results show significant temperature rise (42 °C) at 10 mm depth, regardless of bone layer presence, diverging 3 °C from the simulated values. The probable causes are thermocouple and transducer heating and interface reverberations. There was no statistical difference in the experimental results with and without the cortical bone for the central thermocouple of the first interface [ t (38) = -1.52; 95% CI = -0.85, 0.12; p = 14]. Temperature rise (>6 °C) close to the bone layer was lower than predicted (>21 °C), possibly because without the bone layer, thermocouples at 30 mm make contact with the water bath and convection intensifies heat loss; this factor was omitted in the simulation model. This work suggests that more attention should be given to soft tissue layer interfaces in ultrasound therapeutic procedures even in the absence of a close bone layer.
NASA Astrophysics Data System (ADS)
Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem
2018-02-01
The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.
Chong, Leebyn; Lai, Yungchieh; Gray, McMahan; ...
2017-03-15
For water treatment purposes, the separation processes involving surfactants and crude oil at seawater-air interfaces are of importance for chemical and energy industries. Little progress has been made in understanding the nanoscale phenomena of surfactants on oily saltwater-air interfaces. This work focuses on using molecular dynamics with a united-atom force field to simulate the interface of linear alkane oil, saltwater, and air with three surfactant frothers: methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE). For each frother, although the calculated diffusivities and viscosities are lower than the expected experimental values, our results showed that diffusivity trends betweenmore » each frother agree with experiments but was not suitable for viscosity. Binary combinations of liquid (frother or saltwater)-air and liquid-liquid interfaces are equilibrated to study the density profiles and interfacial tensions. The calculated surface tensions of the frothers-air interfaces are like that of oil-air, but lower than that of saltwater-air. Only MIBC-air and terpineol-air interfaces agreed with our experimental measurements. For frother-saltwater interfaces, the calculated results showed that terpineol has interfacial tensions higher than those of the MIBC-saltwater. Here, the simulated results indicated that the frother-oil systems underwent mixing such that the density profiles depicted large interfacial thicknesses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Leebyn; Lai, Yungchieh; Gray, McMahan
For water treatment purposes, the separation processes involving surfactants and crude oil at seawater-air interfaces are of importance for chemical and energy industries. Little progress has been made in understanding the nanoscale phenomena of surfactants on oily saltwater-air interfaces. This work focuses on using molecular dynamics with a united-atom force field to simulate the interface of linear alkane oil, saltwater, and air with three surfactant frothers: methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE). For each frother, although the calculated diffusivities and viscosities are lower than the expected experimental values, our results showed that diffusivity trends betweenmore » each frother agree with experiments but was not suitable for viscosity. Binary combinations of liquid (frother or saltwater)-air and liquid-liquid interfaces are equilibrated to study the density profiles and interfacial tensions. The calculated surface tensions of the frothers-air interfaces are like that of oil-air, but lower than that of saltwater-air. Only MIBC-air and terpineol-air interfaces agreed with our experimental measurements. For frother-saltwater interfaces, the calculated results showed that terpineol has interfacial tensions higher than those of the MIBC-saltwater. Here, the simulated results indicated that the frother-oil systems underwent mixing such that the density profiles depicted large interfacial thicknesses.« less
Broadband multiresonator quantum memory-interface.
Moiseev, S A; Gerasimov, K I; Latypov, R R; Perminov, N S; Petrovnin, K V; Sherstyukov, O N
2018-03-05
In this paper we experimentally demonstrated a broadband scheme of the multiresonator quantum memory-interface. The microwave photonic scheme consists of the system of mini-resonators strongly interacting with a common broadband resonator coupled with the external waveguide. We have implemented the impedance matched quantum storage in this scheme via controllable tuning of the mini-resonator frequencies and coupling of the common resonator with the external waveguide. Proof-of-principal experiment has been demonstrated for broadband microwave pulses when the quantum efficiency of 16.3% was achieved at room temperature. By using the obtained experimental spectroscopic data, the dynamics of the signal retrieval has been simulated and promising results were found for high-Q mini-resonators in microwave and optical frequency ranges. The results pave the way for the experimental implementation of broadband quantum memory-interface with quite high efficiency η > 0.99 on the basis of modern technologies, including optical quantum memory at room temperature.
Process dependent morphology of the Si/SiO2 interface measured with scanning tunneling microscopy
NASA Technical Reports Server (NTRS)
Hecht, Michael H.; Bell, L. D.; Grunthaner, F. J.; Kaiser, W. J.
1988-01-01
A new experimental technique to determine Si/SiO2 interface morphology is described. Thermal oxides of silicon are chemically removed, and the resulting surface topography is measured with scanning tunneling microscopy. Interfaces prepared by oxidation of Si (100) and (111) surfaces, followed by postoxidation anneal (POA) at different temperatures, have been characterized. Correlations between interface structure, chemistry, and electrical characteristics are described.
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
A comparison study of visually stimulated brain-computer and eye-tracking interfaces
NASA Astrophysics Data System (ADS)
Suefusa, Kaori; Tanaka, Toshihisa
2017-06-01
Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.
NASA Astrophysics Data System (ADS)
Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.
2017-01-01
In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.
Experimental study of an isochorically heated heterogeneous interface. A progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Juan Carlos
2015-08-20
Outline of the presentation: Studying possible mix / interface motion between heterogeneous low/high Z interfaces driven by 2-fluid or kinetic plasma effects (Heated to few eV, Sharp (sub µm) interface); Isochoric heating to initialize interface done with Al quasimonoenergetic ion beams on Trident; Have measured isochoric heating in individual materials intended for compound targets; Fielded experiments on Trident to measure interface motion (Gold-diamond, tin-aluminium); Measured heated-sample temperature with streaked optical pyrometry (SOP) (UT Austin led (research contract), SOP tests → heating uniformity Vs thickness on Al foils. Results are being analyzed.
Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing
Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...
2017-06-12
The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less
Interface waves in multilayered plates.
Li, Bing; Li, Ming-Hang; Lu, Tong
2018-04-01
In this paper, the characteristic equation of interface waves in multilayered plates is derived. With a reasonable assumption undertaken for the potential functions of longitudinal and shear waves in the nth layer medium, the characteristic equation of interface waves in the N-layered plate is derived and presented in a determinant form. The particle displacement and stress components are further presented in explicit forms. The dispersion curves and wave structures of interface waves in both a three-layered Al-Steel-Ti and a four-layered Steel-Al-Steel-Ti plate are displayed subsequently. It is observed in dispersion curves that obvious dispersion occurs on the low frequency band, whereas the phase velocities converge to the corresponding true Stoneley wave mode velocities at high frequency, and the number of interface wave modes equals the number of interfaces in multilayered plates (if all individual interfaces satisfy the existence condition of Stoneley waves). The wave structures reveal that the displacement components of interface waves are relatively high at interfaces, and the amplitude distribution varies from frequency to frequency. In the end, a similarly structured three-layered Al-Steel-Ti plate is tested. In this experiment, theoretical group velocity and experimental group velocity are compared. According to the discussion and comparison, the predicted group velocities are in good agreement with the experimental results. Thus, the theory of interface wave in multilayered plates is proved. As a result, the proposed theoretical approach represents a leap forward in the understanding of how to promote the characteristic study and practical applications of interface waves in multilayered structures.
Protein hydration in solution: Experimental observation by x-ray and neutron scattering
Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G.
1998-01-01
The structure of the protein–solvent interface is the subject of controversy in theoretical studies and requires direct experimental characterization. Three proteins with known atomic resolution crystal structure (lysozyme, Escherichia coli thioredoxin reductase, and protein R1 of E. coli ribonucleotide reductase) were investigated in parallel by x-ray and neutron scattering in H2O and D2O solutions. The analysis of the protein–solvent interface is based on the significantly different contrasts for the protein and for the hydration shell. The results point to the existence of a first hydration shell with an average density ≈10% larger than that of the bulk solvent in the conditions studied. Comparisons with the results of other studies suggest that this may be a general property of aqueous interfaces. PMID:9482874
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
NASA Astrophysics Data System (ADS)
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-06-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.
Zak phase induced multiband waveguide by two-dimensional photonic crystals.
Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong
2017-08-15
Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.
Unraveling the Semiconducting/Metallic Discrepancy in Ni 3(HITP) 2
Foster, Michael E.; Sohlberg, Karl; Allendorf, Mark D.; ...
2018-01-10
Here, Ni 3(2,3,6,7,10,11-hexaiminotriphenylene) 2 is a π-stacked layered metal–organic framework material with extended π-conjugation that is analogous to graphene. Published experimental results indicate that the material is semiconducting, but all theoretical studies to date predict the bulk material to be metallic. Given that previous experimental work was carried out on specimens containing complex nanocrystalline microstructures and the tendency for internal interfaces to introduce transport barriers, we apply DFT to investigate the influence of internal interface defects on the electronic structure of Ni 3(HITP) 2. The results show that interface defects can introduce a transport barrier by breaking the π-conjugation and/ormore » decreasing the dispersion of the electronic bands near the Fermi level. We demonstrate that the presence of defects can open a small gap, in the range of 15–200 meV, which is consistent with the experimentally inferred hopping barrier.« less
NASA Astrophysics Data System (ADS)
Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang
2016-12-01
The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research.
Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang
2016-01-01
The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research. PMID:27958347
Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification
NASA Technical Reports Server (NTRS)
Trivedi, R.; Tewari, S. N.; Kurtze, D.
1999-01-01
The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
NASA Astrophysics Data System (ADS)
Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.
2015-12-01
Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.
Evidence of negative-index refraction in nonlinear chemical waves.
Yuan, Xujin; Wang, Hongli; Ouyang, Qi
2011-05-06
The negative index of refraction of nonlinear chemical waves has become a recent focus in nonlinear dynamics researches. Theoretical analysis and computer simulations have predicted that the negative index of refraction can occur on the interface between antiwaves and normal waves in a reaction-diffusion (RD) system. However, no experimental evidence has been found so far. In this Letter, we report our experimental design in searching for such a phenomenon in a chlorite-iodide-malonic acid (CIMA) reaction. Our experimental results demonstrate that competition between waves and antiwaves at their interface determines the fate of the wave interaction. The negative index of refraction was only observed when the oscillation frequency of a normal wave is significantly smaller than that of the antiwave. All experimental results were supported by simulations using the Lengyel-Epstein RD model which describes the CIMA reaction-diffusion system.
Deformation of a free interface pierced by a tilted cylinder
NASA Astrophysics Data System (ADS)
Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.
2012-07-01
We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.
Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces
NASA Astrophysics Data System (ADS)
Hyunjo, Jeong; Dan, Barnard
2011-08-01
Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-03-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javaid, Saqib; National Centre of Physics, Islamabad 45320; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com
Recently, experimental results have shown that photovoltaic properties of Fullerene (C60)/Phthalocyanine based devices improve considerably as molecular orientation is changed from edge-on to face-on. In this work, we have studied the impact of molecular orientation on C60/ZnPc interfacial properties, particularly focusing on experimentally observed face-on and edge-on configuration, using density functional theory based simulations. The results show that the interfacial electronic properties are strongly anisotropic: direction of charge transfer and interface dipole fluctuates as molecular orientation is switched. As a result of orientation dependant interface dipole, difference between acceptor LUMO and donor HOMO increases as the orientation is changed frommore » edge-on to face-on, suggesting a consequent increase in open circuit voltage (V{sub OC}). Moreover, adsorption and electronic properties indicate that the interfacial interactions are much stronger in the face-on configuration which should further facilitate the charge-separation process. These findings elucidate the energy level alignment at C60/ZnPc interface and help to identify interface dipole as the origin of the orientation dependence of V{sub OC}.« less
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-05-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Santosh, K. C.; Longo, Roberto; Addou, Rafik; ...
2016-09-26
In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), finding a low resistance metal contact is critical in order to achieve the desired performance. However, due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (MoS 2/MoO 3) using density functional theory (DFT). Our results demonstrate that, due to the large work function of MoO 3 and the relative band alignment with MoS 2, together with small energy gap, the MoS 2/MoO 3 interface is a goodmore » candidate for a tunnel field effect (TFET)-type device. Moreover, if the interface is not stoichiometric because of the presence of oxygen vacancies in MoO 3, the heterostructure is more suitable for p-type (hole) contacts, exhibiting an Ohmic electrical behavior as experimentally demonstrated for different TMO/TMD interfaces. Our results reveal that the defect state induced by an oxygen vacancy in the MoO3 aligns with the valance band of MoS 2, showing an insignificant impact on the band gap of the TMD. This result highlights the role of oxygen vacancies in oxides on facilitating appropriate contacts at the MoS 2 and MoO x (x < 3) interface, which consistently explains the available experimental observations.« less
K. C., Santosh; Longo, Roberto C.; Addou, Rafik; Wallace, Robert M.; Cho, Kyeongjae
2016-01-01
In an electronic device based on two dimensional (2D) transitional metal dichalcogenides (TMDs), finding a low resistance metal contact is critical in order to achieve the desired performance. However, due to the unusual Fermi level pinning in metal/2D TMD interface, the performance is limited. Here, we investigate the electronic properties of TMDs and transition metal oxide (TMO) interfaces (MoS2/MoO3) using density functional theory (DFT). Our results demonstrate that, due to the large work function of MoO3 and the relative band alignment with MoS2, together with small energy gap, the MoS2/MoO3 interface is a good candidate for a tunnel field effect (TFET)-type device. Moreover, if the interface is not stoichiometric because of the presence of oxygen vacancies in MoO3, the heterostructure is more suitable for p-type (hole) contacts, exhibiting an Ohmic electrical behavior as experimentally demonstrated for different TMO/TMD interfaces. Our results reveal that the defect state induced by an oxygen vacancy in the MoO3 aligns with the valance band of MoS2, showing an insignificant impact on the band gap of the TMD. This result highlights the role of oxygen vacancies in oxides on facilitating appropriate contacts at the MoS2 and MoOx (x < 3) interface, which consistently explains the available experimental observations. PMID:27666523
Numerical and Experimental Studies on the Explosive Welding of Tungsten Foil to Copper
Zhou, Qiang; Feng, Jianrui; Chen, Pengwan
2017-01-01
This work verifies that the W foil could be successfully welded on Cu through conventional explosive welding, without any cracks. The microstructure was observed through scanning electron microscopy (SEM), optical microscopy and energy-dispersive X-ray spectrometry (EDS). The W/Cu interface exhibited a wavy morphology, and no intermetallic or transition layer was observed. The wavy interface formation, as well as the distributions of temperature, pressure and plastic strain at the interface were studied through numerical simulation with Smoothed Particle Hydrodynamics (SPH). The welding mechanism of W/Cu was analyzed according to the numerical results and experimental observation, which was in accordance with the indentation mechanism proposed by Bahrani. PMID:28832527
Experimental study of hybrid interface cooling system using air ventilation and nanofluid
NASA Astrophysics Data System (ADS)
Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.
2017-09-01
The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.
Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food
NASA Astrophysics Data System (ADS)
Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.
2005-02-01
A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.
Damron, Leatha A.; Kim, Do-Gyoon; Mann, Kenneth A.
2007-01-01
The aim of this study was to determine the effects of cyclic loading on the debond process of a roughened stem– cement interface used in total hip arthroplasty. The specific goals were to assess the effects of two surgeon-controlled variables (stem heating and degree of stem surface roughness) and to determine if an independent finite element-based fracture mechanics model could be used to predict the debond response. A clamped cantilever beam geometry was used to determine the fatigue debond response of the stem– cement interface and was created using an experimental mold that simulated in vivo cementing conditions. A second experiment was performed using a torsion-loading model representative of the stem– cement–bone composite. For both experiments, two stem heating (room temperature and 50°C) and surface roughness conditions (grit blasted: Ra = 2.3 and 5.1 μm) were used. Finally, a finite element model of the torsion experiment with provision for crack growth was developed and compared with the experimental results. Results from both experiments revealed that neither stem preheating nor use of a stem with a greater surface roughness had a marked effect on the fatigue debond response. There was substantial variability in the debond response for all cases; this may be due to microscopic gaps at the interface for all interface conditions. The debond rate from the finite element simulation (10−7.31 m/cycle) had a magnitude similar to the experimental torsion model (10− (6.77 ± 1.25) m/cycle). This suggests that within the context of the experimental conditions studied here that the debond response could be assessed using a linear elastic fracture mechanics-type approach. PMID:16292769
Performance and Reliability of Bonded Interfaces for High-Temperature Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas
2016-06-08
This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.
Efficient Data Transfer Rate and Speed of Secured Ethernet Interface System.
Ghanti, Shaila; Naik, G M
2016-01-01
Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack.
Efficient Data Transfer Rate and Speed of Secured Ethernet Interface System
Ghanti, Shaila
2016-01-01
Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack. PMID:28116350
Direct Imaging and First Principles Studies of Si3N4/SiO2 Interface
NASA Astrophysics Data System (ADS)
Walkosz, Weronika; Klie, Robert; Ogut, Serdar; Mikijelj, Bilijana; Pennycook, Stephen; Idrobo, Juan C.
2010-03-01
It is well known that the composition of the integranular films (IGFs) in sintered polycrystalline silicon nitride (Si3N4) ceramics controls many of their physical and mechanical properties. A considerable effort has been made to characterize these films on the atomic scale using both experimental and theoretical methods. In this talk, we present results from a combined atomic-resolution Z-contrast and annular bright field imaging, electron energy-loss spectroscopy, as well as ab initio studies of the interface between β-Si3N4 (10-10) and SiO2 intergranular film. Our results show that O replaces N at the interface between the two materials in agreement with our theoretical calculations and that N is present in the SiO2 IGF. Moreover, they indicate the presence of atomic columns completing Si3N4 open rings, which have not been observed experimentally at the recently imaged Si3N4/rare-earth oxides interfaces, but have been predicted theoretically on bare Si3N4 surfaces. The structural and electronic variations at the Si3N4/SiO2 interface will be discussed in detail, focusing in particular on bonding characteristics.
Experimental investigation of the displacement dynamics during biphasic flow in porous media
NASA Astrophysics Data System (ADS)
Ayaz, Monem; Toussaint, Renaud; Måløy, Knut-Jørgen; Schafer, Gerhard
2016-04-01
We experimentally study the interface dynamics of an immiscible fluid as it displaces a fully saturated porous medium. The system is confined by a vertically oriented Hele-Shaw cell, with piezoelectric type acoustic sensors mounted along the centerline. During drainage potential surface energy is stored at the interface up to a given threshold in pressure, at which an instability occurs as new pores are invaded and the radius of curvature of the interface increases locally, the energy gets released, and part of this energy is detectable as acoustic emission. By detecting pore-scale events emanating from the interface at various points, we look to develop techniques for localizing the displacement front. To assess the quality, optical monitoring is done using a high speed camera.In our study we also aim to gain further insight into the interface dynamics by varying parameters such as the effective gravity, and the invasion speed and using other methods of probing the system such as active tomography. We here present our preliminary results of this study.
Portable haptic interface with omni-directional movement and force capability.
Avizzano, Carlo Alberto; Satler, Massimo; Ruffaldi, Emanuele
2014-01-01
We describe the design of a new mobile haptic interface that employs wheels for force rendering. The interface, consisting of an omni-directional Killough type platform, provides 2DOF force feedback with different control modalities. The system autonomously performs sensor fusion for localization and force rendering. This paper explains the relevant choices concerning the functional aspects, the control design, the mechanical and electronic solution. Experimental results for force feedback characterization are reported.
NASA Astrophysics Data System (ADS)
Stavropoulou, Eleni; Briffaut, Matthieu; Dufour, Frédéric; Camps, Guillaume; Boulon, Marc
2017-06-01
A new experimental apparatus is presented for testing the time-dependent behaviour of interfaces, including in particular interfaces of geomaterials, under constant loading. This apparatus allows the application of two orthogonal loads normal and tangential to the mean plane of the interface, as well as the measurement of the axial and tangential relative displacements. The sample is moulded inside two half shear boxes and the system is designed in such a way that the shear force is applied along the mean plane of the interface. Some preliminary testing was carried out on a clay rock/concrete interface, under a controlled temperature environment. Preliminary results are presented, showing the evolution of the delayed displacements.
Experimental study of the caprock / cement interface under CO2 geological storage conditions
NASA Astrophysics Data System (ADS)
Jobard, Emmanuel; Sterpenich, Jérôme; Pironon, Jacques; Randi, Aurélien; Caumon, Marie-Camille
2013-04-01
In the framework of CO2 geological storage, one of the critical point leading to possible massive CO2 leakages is the behavior of the interfaces crossed by the injection well. The lack of relevant data on the behavior of these interfaces (rock/well materials) in the presence of CO2 under high pressure and temperature conditions led to the development of a new experimental model called "Sandwich". These batch experiments consisted in putting a caprock (Callovo-Oxfordian claystone of the Paris Basin) in contact with cement (Portland class G) in the presence of supercritical CO2 with or without aqueous solution. The new experimental device was designed in order to follow the evolution of a clayey caprock, a Portland cement and their interface submitted to the acidic attack of carbonic acid through a study of the initial and final states. This model should help to document the behavior of interfaces in the proximal zone at the injection site. After one month of ageing at 80° C under 100 bar of CO2 pressure, the caprock, the cement and the interface between caprock and cement are investigated thanks to SEM, cathodoluminescence and Raman spectrometry. The main results reveal i) the influence of the presence of an aqueous solution since the carbonation mechanisms are quite different under dry and wet atmospheres, ii) the good cohesion of the different interfaces despite the carbonation of the cement, iii) the precipitation of different carbonate phases, which relates the changes in the chemistry of the solution to time, iv) the enrichment of silica in the cement phase submitted to the action of CO2 putting into evidence new mechanisms of in situ silica re-condensation, v) the very good behavior of the caprock despite the alkaline flux from cement and the acidic attack from the dissolved CO2. These experimental results will be compared to those obtained by geochemical simulations performed with PHREEQC. This study was financially supported by the French agency ANR (ANR-08-PCO2-006).
Kushniruk, Andre W; Kan, Min-Yem; McKeown, Kathleen; Klavans, Judith; Jordan, Desmond; LaFlamme, Mark; Patel, Vimia L
2002-01-01
This paper describes the comparative evaluation of an experimental automated text summarization system, Centrifuser and three conventional search engines - Google, Yahoo and About.com. Centrifuser provides information to patients and families relevant to their questions about specific health conditions. It then produces a multidocument summary of articles retrieved by a standard search engine, tailored to the user's question. Subjects, consisting of friends or family of hospitalized patients, were asked to "think aloud" as they interacted with the four systems. The evaluation involved audio- and video recording of subject interactions with the interfaces in situ at a hospital. Results of the evaluation show that subjects found Centrifuser's summarization capability useful and easy to understand. In comparing Centrifuser to the three search engines, subjects' ratings varied; however, specific interface features were deemed useful across interfaces. We conclude with a discussion of the implications for engineering Web-based retrieval systems.
Analysis of polymer/oxide interfaces under ambient conditions - An experimental perspective
NASA Astrophysics Data System (ADS)
González-Orive, A.; Giner, I.; de los Arcos, T.; Keller, A.; Grundmeier, G.
2018-06-01
In many different hybrid materials and materials composites polymers adhere to bulk oxides or oxide covered metal. The formed polymer/oxide interfaces are of crucial importance for the functionality and durability of such complex materials. Especially, under humid and corrosive conditions such interfaces tend to degrade due to permeability of polymers for water, the high adsorption energy of water on oxide surfaces and even corrosion processes of the metal. Different experimental studies considered such interfaces ranging from spectroscopy to electrochemical analysis. However, it is still a challenge to understand the complex interaction especially under non-ideal ambient conditions. The perspective article presents an overview on the existing experimental approaches and considers most recent experimental developments with regard to their potential applications in the area of polymer/oxide interfaces in the future.
Effect of bandage thickness on interface pressure applied by compression bandages.
Al Khaburi, Jawad; Dehghani-Sanij, Abbas A; Nelson, E Andrea; Hutchinson, Jerry
2012-04-01
Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by these bandages using mathematical models. This paper reports on the work carried out to derive the mathematical model used to describe the interface pressure applied by single-layer bandage using two different approaches. The first assumes that the bandage thickness is negligible, whereas the second model includes the bandage thickness. The estimated pressures using the two formulae are then compared, simulated over a 3D representation of a real leg and validated experimentally. Both theoretical and experimental results have shown that taking bandage thickness into consideration while estimating the pressures applied by a medical compression bandage will result in more accurate estimation. However, the additional accuracy is clinically insignificant. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Micro-cooler enhancements by barrier interface analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, A.; Dunn, G. M.; Glover, J.
A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions onmore » the nanometre scale has shown to produce significant changes in cooler performance.« less
Molecular dynamics simulations of amphiphilic graft copolymer molecules at a water/air interface.
Anderson, Philip M; Wilson, Mark R
2004-11-01
Fully atomistic molecular dynamics simulations of amphiphilic graft copolymer molecules have been performed at a range of surface concentrations at a water/air interface. These simulations are compared to experimental results from a corresponding system over a similar range of surface concentrations. Neutron reflectivity data calculated from the simulation trajectories agrees well with experimentally acquired profiles. In particular, excellent agreement in neutron reflectivity is found for lower surface concentration simulations. A simulation of a poly(ethylene oxide) (PEO) chain in aqueous solution has also been performed. This simulation allows the conformational behavior of the free PEO chain and those tethered to the interface in the previous simulations to be compared. (c) 2004 American Institute of Physics.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
NASA Astrophysics Data System (ADS)
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas
2015-06-10
This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Sen, S.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The evolution of cellular solid/liquid interfaces from an initially unstable planar front was studied by means of a two-dimensional computer simulation. The developed numerical model makes use of an interface tracking procedure and has the capability to describe the dynamics of the interface morphology based on local changes of the thermodynamic conditions. The fundamental physics of this formulation was validated against experimental microgravity results and the predictions of the analytical linear stability theory. The performed simulations revealed that in certain conditions, based on a competitive growth mechanism, an interface could become unstable to random perturbations of infinitesimal amplitude even at wavelengths smaller than the neutral wavelength, lambda(sub c), predicted by the linear stability theory. Furthermore, two main stages of spacing selection have been identified. In the first stage, at low perturbations amplitude, the selection mechanism is driven by the maximum growth rate of instabilities while in the second stage the selection is influenced by nonlinear phenomena caused by the interactions between the neighboring cells. Comparison of these predictions with other existing theories of pattern formation and experimental results will be discussed.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.
2015-09-26
An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.
An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less
The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Ye, Ning
Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides-silicon), interfaces with varying levels of disorder (epitaxial and non-epitaxial). The ITC values of silicides-silicon interfaces observed in this study are higher than those of other metallic interfaces to Si found in literature. Most surprisingly, it is experimentally found that ITC values are independent of interfacial quality and substrate orientation. Computationally, it is found that the non-equilibrium atomistic Green's Function technique (NEGF), which is specically designed to simulate coherent elastic phonon transport across interfaces, significantly underpredicts ITC values for CoSi2-Si interfaces, suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. In contrast, the Diffuse Mismatch Model closely mimics the experimentally observed ITC values for CoSi 2-Si, NiSi-Si and TiSi2-Si interfaces, and only slightly overestimating the same for PtSi-Si interfaces. Furthermore, the results also show that ITC is independent of degenerate doping up to doping levels of ≈1 x 1019 cm-3, indicating there is no significant direct electronic transport or transport effects which depend on long-range metal-semiconductor band alignment. Then, I study the effect of phonon band structure on ITC through measurements of epitaxial NiAl1-xGax-GaAs interfaces for varying levels of alloy composition, which independently tunes the mass of the metal's heavy atom without much affect on the lattice structure or interatomic force constants. The ITC values are found to linearly increase with increasing Ga content, consistent with the disappearance of a phonon band gap in NiAl 1-xGax films with increasing Ga content, which enhances the phonon transmission coefficients due to a better density of states overlap between the two (NiAl1-xGax, GaAs) materials. Finally, I study a unique subset of epitaxial rocksalt interfaces between the Group IV metal nitrides (TiN, ZrN, and HfN) to MgO substrates as well as ScN layers. Prior to the currrent study, TiN-MgO was the only measured interface of this type, and maintained the record for the highest reported ITC for a metal-semiconductor interface. By varying the Group IV metal, the mass of the metal's light atom was independently tuned, allowing the ability to tune the acoustic phonon frequencies in the metal without significant effect to optical phonon band structure. We find that the ITC of all the studied interfaces are quite high, significantly exceeding the DMM predictions, and in the case of XN-ScN interfaces even exceed the radiative limit for elastic phonon transport. The results imply that mechanisms such as anharmonic phonon transmission, strong cross-interfacial electron phonon coupling, or direct electric transmission are required to explain the transport. The TiN-ScN interface conductance is the highest room temperature metal-dielectric conductance ever reported.
The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Jy-An John; Wang, Hong
Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less
The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance
Jiang, Hao; Wang, Jy-An John; Wang, Hong
2016-09-26
Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less
Molecular dynamics study of rhodamine 6G diffusion at n-decane-water interfaces.
Popov, Piotr; Steinkerchner, Leo; Mann, Elizabeth K
2015-05-01
Two-dimensional diffusion of a rhodamine 6G fluorescent tracer molecule at the n-decane-water interface was studied with all-atom molecular dynamics simulations. In agreement with experimental data, we find increased mobility of the tracer at the n-decane-water interfaces in comparison to its mobility in bulk water. Orientational ordering of water and n-decane molecules near the interface is observed, and may change the interfacial viscosity as suggested to explain the experimental data. However, the restricted rotational motion of the rhodamine molecule at the interface suggests that the Saffman-Delbrück model may be a more appropriate approximation of rhodamine diffusion at n-decane-water interfaces, and, without any decrease in interfacial viscosity, suggests faster diffusion consistent with both experimental and simulation values.
The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method
Ma, Jie; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...
2016-06-30
We apply a recently developed Wannier-Koopmans method (WKM), based on density functional theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-Au molecular junction. The WKM calculated level alignment agrees well with the experimental measurements where available, as well as previous GW and DFT + Σ results. These results suggest that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only in bulk semiconductors and isolated molecules, but also in hybrid interfaces.
Giannakidou, Anastasia; Etxeberria, Urtzi
2018-01-01
This paper reviews a series of experimental studies that address what we call “interface judgment,” which is the complex judgment involving integration from multiple levels of grammatical representation such as the syntax-semantics and prosody-semantics interface. We first discuss the results from the ERP literature connected to NPI licensing in different languages, paying particular attention to the N400 and the P600 as neural correlates of this specific phenomenon and focusing on the study by Xiang et al. (2016). The results of this study show evidence that there are two distinct NPI licensing mechanisms, i.e., licensing and rescuing, in line with Giannakidou (1998, 2006). Then we discuss an acceptability judgment task on Greek NPIs which supports the negativity as a scale hypothesis (Zwarts, 1995, 1996; Giannakidou, 1998). For the semantics-prosody interface judgment, we discuss two types of findings on two different phenomena and languages: (i) the study by Giannakidou and Yoon (2016) on scalar and non-scalar NPIs in Greek and Korean, which serves as the foundation for Chatzikonstantinou's (2016) study of production data showing distinct prosodic properties in emphatic (scalar) and non-emphatic (non-scalar) Greek NPIs; (ii) a (production and perception) study by Etxeberria and Irurtzun (2015) on the prosodic disambiguation of the scalar/non-scalar readings of sentences containing the focus particle “ere” in Basque. The main conclusion of the paper is that experimental methods of the kind discussed in the paper are useful in establishing physical, quantitative correlates of interface judgment. PMID:29515470
NASA Astrophysics Data System (ADS)
Lu, Wenjuan; Dai, Yuehua; Wang, Feifei; Yang, Fei; Ma, Chengzhi; Zhang, Xu; Jiang, Xianwei
2017-12-01
With the growing application of high-k dielectrics, the interface between HfO2 and Al2O3 play a crucial role in CTM devices. To clearly understand the interaction of the HfO-AlO interface at the atomic and electronic scale, the bonding feature, electronic properties and charge localized character of c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has been investigated by first principle calculations. The c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has adhesive energy about -1.754 J/m2, suggesting that this interface can exist stably. Through analysis of Bader charge and charge density difference, the intrinsic interfacial gap states are mainly originated from the OII and OIII types oxygen atoms at the interface, and only OIII type oxygen atoms can localized electrons effectively and are provided with good reliability during P/E cycles, which theoretically validate the experimental results that HfO2/Al2O3 multi-layered charge trapping layer can generate more effective traps in memory device. Furthermore, the influence of interfacial gap states during P/E cycles in the defective interface system have also been studied, and the results imply that defective system displays the degradation on the reliability during P/E cycles, while, the charge localized ability of interfacial states is stronger than intrinsic oxygen vacancy in the trapping layer. Besides, these charge localized characters are further explained by the analysis of the density of states correspondingly. In sum, our results compare well with similar experimental observations in other literatures, and the study of the interfacial gap states in this work would facilitate further development of interface passivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javaid, Saqib; National Centre of Physics, Islamabad; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com
2015-07-28
We have employed density functional theory to study the C60/ZnPc interface with face-on orientation, which has recently been tailored experimentally. For this purpose, adsorption of ZnPc on C60 has been studied, while taking into account different orientations of C60. Out of various adsorption sites investigated, 6:6 C-C bridge position in apex configuration of C60 has been found energetically the most favourable one with C60-ZnPc adsorption distance of ∼2.77 Å. The adsorption of ZnPc on C60 ensues both charge re-organization and charge transfer at the interface, resulting in the formation of interface dipole. Moreover, by comparing results with that of C60/CuPc interface,more » we show that the direction of interface dipole can be tuned by the change of the central atom of the phthalocyanine molecule. These results highlight the complexity of electronic interactions present at the C60/Phthalocyanine interface.« less
Experimental investigation on IXV TPS interface effects in Plasmatron
NASA Astrophysics Data System (ADS)
Ceglia, Giuseppe; Trifoni, Eduardo; Gouriet, Jean-Baptiste; Chazot, Olivier; Mareschi, Vincenzo; Rufolo, Giuseppe; Tumino, Giorgio
2016-06-01
An experimental investigation related to the thermal protection system (TPS) interfaces of the intermediate experimental vehicle has been carried out in the Plasmatron facility at the von Karman Institute for fluid dynamics. The objective of this test campaign is to qualify the thermal behaviours of two different TPS interfaces under flight representative conditions in terms of heat flux and integral heat load ( 180 kW/m2 for 700 s). Three test samples are tested in off-stagnation configuration installed on an available flat plate holder under the same test conditions. The first junction is composed of an upstream ceramic matrix composite (CMC) plate and an ablative P50 cork composite block separated by a gap of 2 mm. The second one is made of an upstream P50 block and a downstream ablative SV2A silicon elastomer block with silicon-based filler in between. A sample composed of P50 material is tested in order to obtain reference results without TPS interface effect. The overheating at the CMC-P50 interface due to the jump of the catalytic properties of the materials, and the recession/swelling behaviour of the P50-SV2A interface are under investigation. All the test samples withstand relatively well the imposed heat flux for the test duration. As expected, both the ablative materials undergo a thermal degradation. The P50 exhibits the formation of a porous char layer and its recession; on the other hand, the SV2A swells and forms a fragile char layer.
Study of silicon crystal surface formation based on molecular dynamics simulation results
NASA Astrophysics Data System (ADS)
Barinovs, G.; Sabanskis, A.; Muiznieks, A.
2014-04-01
The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.
Optical methods in fault dynamics
NASA Astrophysics Data System (ADS)
Uenishi, K.; Rossmanith, H. P.
2003-10-01
The Rayleigh pulse interaction with a pre-stressed, partially contacting interface between similar and dissimilar materials is investigated experimentally as well as numerically. This study is intended to obtain an improved understanding of the interface (fault) dynamics during the earthquake rupture process. Using dynamic photoelasticity in conjunction with high-speed cinematography, snapshots of time-dependent isochromatic fringe patterns associated with Rayleigh pulse-interface interaction are experimentally recorded. It is shown that interface slip (instability) can be triggered dynamically by a pulse which propagates along the interface at the Rayleigh wave speed. For the numerical investigation, the finite difference wave simulator SWIFD is used for solving the problem under different combinations of contacting materials. The effect of acoustic impedance ratio of the two contacting materials on the wave patterns is discussed. The results indicate that upon interface rupture, Mach (head) waves, which carry a relatively large amount of energy in a concentrated form, can be generated and propagated from the interface contact region (asperity) into the acoustically softer material. Such Mach waves can cause severe damage onto a particular region inside an adjacent acoustically softer area. This type of damage concentration might be a possible reason for the generation of the "damage belt" in Kobe, Japan, on the occasion of the 1995 Hyogo-ken Nanbu (Kobe) Earthquake.
2005-07-13
UHLMANN University of Technology Ilmenau– PO Box 105565 – D-98684 Ilmenau - Germany RESUME : Les circuits numériques supraconducteurs micro-ondes...circuits RSFQ. Ce banc de mesure comporte deux types d’interfaces opto-RSFQ, basées sur des matériaux semiconducteurs et supraconducteurs , respectivement
Smart nanogels at the air/water interface: structural studies by neutron reflectivity
NASA Astrophysics Data System (ADS)
Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina
2016-02-01
The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07538f
Guided wave propagation and spectral element method for debonding damage assessment in RC structures
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping
2009-07-01
A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.
Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...
2018-05-08
Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor
Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less
Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)
NASA Astrophysics Data System (ADS)
Lüpke, Felix; Just, Sven; Bihlmayer, Gustav; Lanius, Martin; Luysberg, Martina; Doležal, Jiří; Neumann, Elmar; Cherepanov, Vasily; Ošt'ádal, Ivan; Mussler, Gregor; Grützmacher, Detlev; Voigtländer, Bert
2017-07-01
We present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1 ×1 ) surface, we find Te to form a Te/Si(111)-(1 ×1 ) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1 ×1 ) interface conductivity of σ2D Te=2.6 (5 ) ×10-7S /□ , which is small compared to the typical conductivity of topological surface states.
Interfacing external sensors with Android smartphones through near field communication
NASA Astrophysics Data System (ADS)
Leikanger, Tore; Häkkinen, Juha; Schuss, Christian
2017-04-01
In this paper, we present and evaluate a new approach to communicate with inter-integrated circuit (I2C) enabled circuits such as sensors over near field communication (NFC). The NFC-to-I2C interface was designed using a non-standard NFC command to control the I2C bus directly from a smartphone, which was controlling both, the read and write operations on the I2C bus. The NFC-to-I2C interface was reporting back the data bytes on the bus to the smartphone when the transaction was completed successfully. The proposed system was tested experimentally, both, with write and read requests to a commercial microcontroller featuring a hardware I2C port, as well as reading a commercial I2C enabled humidity and temperature sensor. We present experimental results of the system which show that our approach enables an easy interface between smartphones and external sensors. Interfacing external sensors is useful and beneficial for smartphone users, especially, if certain types of sensors are not available on smartphones.
NASA Astrophysics Data System (ADS)
Stoltz, Peter; Veitzer, Seth
2008-04-01
We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.
Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.
Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P
2012-01-01
The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.
Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.
Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E
2017-01-31
The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.
NASA Astrophysics Data System (ADS)
Stelian, C.; Duffar, T.; Mitric, A.; Corregidor, V.; Alves, L. C.; Barradas, N. P.
2005-09-01
Crystal growth of concentrated GaInSb alloys during vertical Bridgman method has been numerically and experimentally investigated. The numerical and experimental results show a strong solutal damping effect on the melt convection in the case of concentrated (x=0.1 and 0.2) alloys grown at 1 μm/s pulling rate of the crucible. This leads to a huge increase of chemical heterogeneities and solid-liquid interface curvature. Analytical relations, which describe the solutal effect on the melt convection, show that the damping effect can be avoided by using low growth rates. The experimental results for Bridgman solidification of Ga0.85In0.15Sb at V=0.4 μm/s pulling rate, show that the axial and radial variations of indium concentration in the sample are reduced as compared with crystals grown at high pulling rates. The interface deflection is maintained at lower values during the growth process and the morphological destabilization of the interface occurs only at the end of the solidification. The growth at variable pulling rates is also investigated and from the numerical modeling it is found that the axial chemical homogeneity of the sample can be improved.
Mass transfer in thin films under counter-current gas: experiments and numerical study
NASA Astrophysics Data System (ADS)
Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant
2016-11-01
Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
Investigation of thermocapillary convection in a three-liquid-layer system
NASA Astrophysics Data System (ADS)
Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.
1999-06-01
This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.
Effects of the c-Si/a-SiO2 interfacial atomic structure on its band alignment: an ab initio study.
Zheng, Fan; Pham, Hieu H; Wang, Lin-Wang
2017-12-13
The crystalline-Si/amorphous-SiO 2 (c-Si/a-SiO 2 ) interface is an important system used in many applications, ranging from transistors to solar cells. The transition region of the c-Si/a-SiO 2 interface plays a critical role in determining the band alignment between the two regions. However, the question of how this interface band offset is affected by the transition region thickness and its local atomic arrangement is yet to be fully investigated. Here, by controlling the parameters of the classical Monte Carlo bond switching algorithm, we have generated the atomic structures of the interfaces with various thicknesses, as well as containing Si at different oxidation states. A hybrid functional method, as shown by our calculations to reproduce the GW and experimental results for bulk Si and SiO 2 , was used to calculate the electronic structure of the heterojunction. This allowed us to study the correlation between the interface band characterization and its atomic structures. We found that although the systems with different thicknesses showed quite different atomic structures near the transition region, the calculated band offset tended to be the same, unaffected by the details of the interfacial structure. Our band offset calculation agrees well with the experimental measurements. This robustness of the interfacial electronic structure to its interfacial atomic details could be another reason for the success of the c-Si/a-SiO 2 interface in Si-based electronic applications. Nevertheless, when a reactive force field is used to generate the a-SiO 2 and c-Si/a-SiO 2 interfaces, the band offset significantly deviates from the experimental values by about 1 eV.
Effects of the c-Si/a-SiO 2 interfacial atomic structure on its band alignment: an ab initio study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Fan; Pham, Hieu H.; Wang, Lin-Wang
The crystalline-Si/amorphous-SiO 2 (c-Si/a-SiO 2) interface is an important system used in many applications, ranging from transistors to solar cells. The transition region of the c-Si/a-SiO 2 interface plays a critical role in determining the band alignment between the two regions. However, the question of how this interface band offset is affected by the transition region thickness and its local atomic arrangement is yet to be fully investigated. Here in this study, by controlling the parameters of the classical Monte Carlo bond switching algorithm, we have generated the atomic structures of the interfaces with various thicknesses, as well as containingmore » Si at different oxidation states. A hybrid functional method, as shown by our calculations to reproduce the GW and experimental results for bulk Si and SiO 2, was used to calculate the electronic structure of the heterojunction. This allowed us to study the correlation between the interface band characterization and its atomic structures. We found that although the systems with different thicknesses showed quite different atomic structures near the transition region, the calculated band offset tended to be the same, unaffected by the details of the interfacial structure. Our band offset calculation agrees well with the experimental measurements. This robustness of the interfacial electronic structure to its interfacial atomic details could be another reason for the success of the c-Si/a-SiO 2 interface in Si-based electronic applications. Nevertheless, when a reactive force field is used to generate the a-SiO 2 and c-Si/a-SiO 2 interfaces, the band offset significantly deviates from the experimental values by about 1 eV« less
Effects of the c-Si/a-SiO 2 interfacial atomic structure on its band alignment: an ab initio study
Zheng, Fan; Pham, Hieu H.; Wang, Lin-Wang
2017-11-13
The crystalline-Si/amorphous-SiO 2 (c-Si/a-SiO 2) interface is an important system used in many applications, ranging from transistors to solar cells. The transition region of the c-Si/a-SiO 2 interface plays a critical role in determining the band alignment between the two regions. However, the question of how this interface band offset is affected by the transition region thickness and its local atomic arrangement is yet to be fully investigated. Here in this study, by controlling the parameters of the classical Monte Carlo bond switching algorithm, we have generated the atomic structures of the interfaces with various thicknesses, as well as containingmore » Si at different oxidation states. A hybrid functional method, as shown by our calculations to reproduce the GW and experimental results for bulk Si and SiO 2, was used to calculate the electronic structure of the heterojunction. This allowed us to study the correlation between the interface band characterization and its atomic structures. We found that although the systems with different thicknesses showed quite different atomic structures near the transition region, the calculated band offset tended to be the same, unaffected by the details of the interfacial structure. Our band offset calculation agrees well with the experimental measurements. This robustness of the interfacial electronic structure to its interfacial atomic details could be another reason for the success of the c-Si/a-SiO 2 interface in Si-based electronic applications. Nevertheless, when a reactive force field is used to generate the a-SiO 2 and c-Si/a-SiO 2 interfaces, the band offset significantly deviates from the experimental values by about 1 eV« less
NASA Astrophysics Data System (ADS)
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
Emissivity of Rocket Plume Particulates
1992-09-01
V. EXPERIMENTAL RESULTS ........ ............... 29 VI. CONCLUSIONS AND RECOMMENDATIONS .... ........ 32 APPENDIX A. CATS -E SOFTWARE...interfaced through the CATS E Thermal Analysis software, which is MS-DOS based, and can be run on any 28b or higher CPU. This system allows real-time...body source to establish the parameters required by the CATS program for proper microscope/scanner interface. A complete description of microscope
Interface toughness of a zirconia-veneer system and the effect of a liner application.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-09-01
Chipping of veneering porcelain and delamination of a zirconia-veneer interface are 2 common clinical failure modes for zirconia-based restorations and may be partially due to weak interface bonding. The effect of liner on the bond strength of the interface has not been clearly identified. The purpose of the research was to evaluate the interface toughness between the zirconia core and veneering porcelain by means of a fracture mechanics test and to assess the effect of liner on the bond strength of the interface. Thirty bilayered beam-shape specimens were prepared and divided into 2 groups according to liner application. The specimens in each group were subdivided into 3 subgroups in accordance with 3 different veneer thicknesses. A fracture mechanics test was used on each specimen, and the energy release rate, G, and phase angle, ψ, were calculated according to the experimental results. A video microscope was used to monitor the crack propagation, and a scanning electron microscope was used to identify the fracture mode after testing. Two-way ANOVA and the Tukey honestly significant difference test were performed to analyze the experimental data (α=.05) . At each phase angle, the interfaces without a liner had higher mean G values than the interfaces with a liner. Both of the interfaces showed mixed failure mode with thin layers of a veneer or a liner that remained on the zirconia surfaces. Liner application before veneering reduced the interface toughness between zirconia and veneer. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Simakov, Andrei
2013-10-01
The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.
The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jie; Wang, Lin-Wang, E-mail: lwwang@lbl.gov; Liu, Zhen-Fei
2016-06-27
We apply a recently developed Wannier–Koopmans method (WKM), based on density functional theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-Au molecular junction. The WKM calculated level alignment agrees well with the experimental measurements where available, as well as previous GW and DFT + Σ results. Our results suggest that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only in bulk semiconductors and isolated molecules, but also in hybrid interfaces.
Nanoscale patterning controls inorganic-membrane interface structure
NASA Astrophysics Data System (ADS)
Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.
2011-02-01
The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun
2017-04-01
We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.
Coupled Growth in Hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Coriell, Sam R.
2001-01-01
The overall objective of this project is to obtain a fundamental understanding of the physics controlling solidification processes in immiscible alloy systems. The investigation involves both experimentation and the development of a model describing solidification in monotectic systems. The experimental segment was designed to first demonstrate that it is possible to obtain interface stability and steady state coupled growth in hypermonotectic alloys through microgravity processing. Microgravity results obtained to date have verified this possibility. Future flights will permit experimental determination of the limits of interface stability and the influence of alloy composition and growth rate on microstructure. The objectives of the modeling segment of the investigation include prediction of the limits of interface stability, modeling of convective flow due to residual acceleration, and the influence of surface tension driven flows at the solidification interface. The study of solidification processes in immiscible alloy systems is hindered by the inherent convective flow that occurs on Earth and by the possibility of sedimentation of the higher density immiscible liquid phase. It has been shown that processing using a high thermal gradient and a low growth rate can lead to a stable macroscopically planar growth front even in hypermonotectic alloys. Processing under these growth conditions can avoid constitutional supercooling and prevent the formation of the minor immiscible liquid phase in advance of the solidification front. However, the solute depleted boundary layer that forms in advance of the solidification front is almost always less dense than the liquid away from the solidification front. As a result, convective instability is expected. Ground based testing has indicated that convection is a major problem in these alloy systems and leads to gross compositional variations along the sample and difficulties maintaining interface stability. Sustained low gravity processing conditions are necessary in order to minimize these problems and obtain solidification conditions which approach steady state.
Electro-mechanical probe positioning system for large volume plasma device
NASA Astrophysics Data System (ADS)
Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.
2018-05-01
An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.
NASA Astrophysics Data System (ADS)
Feng, Tuanhui; Yang, Fei; Li, Yunhui; Sun, Yong; Lu, Hai; Jiang, Haitao; Zhang, Yewen; Chen, Hong
2013-06-01
In this letter, light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like (EIT-like) properties is investigated. Both numerical and experimental results show that the Q-factor of tunneling mode can be well enhanced when an atomic-like three-level system with EIT-like properties is introduced at the interface of a pair structure constructed by epsilon-negative and mu-negative metamaterials. Further study reveals that the Q-factor can be tuned conveniently by altering the EIT-like meta-interface. Moreover, these advantages are not at costs of increase of volume and drastic reduction of transmittance.
NASA Astrophysics Data System (ADS)
Sarmiento, Julio; Patino, Edgar J.
2014-03-01
Superconductor/ferromagnet heterostructures are currently a subject of strong research due to novel phenomena resulting from the proximity effect. Among the most investigated ones are the oscillations of the critical temperature as function of the ferromagnet thickness. The oscillatory behavior of Tc is theoretically explained as to be result of the generation of the FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) state of Cooper pairs under the presence of the exchange field of the ferromagnet. With the advancement of experimental techniques for S/F bilayers growth new questions regarding the effect of the interface transparency can to be addressed. For instance the influence of the interface roughness on the proximity effect. For studying this phenomenon Nb/Co and Nb/Cu/Co samples were sputtered on SiO2 substrates with different roughness. Characterization of these samples show a significant variation of Tc with the interface roughness. This results point towards a possible relationship between transparency and roughness of the interface. Proyecto Semilla Facultad de Ciencias Universidad de los Andes.
Ultrasonic transmission at solid-liquid interfaces
NASA Astrophysics Data System (ADS)
Wadley, Haydn N. G.; Queheillalt, Douglas T.; Lu, Yichi
1996-11-01
New non-invasive solid-liquid interface sensing technologies are a key element in the development of improved Bridman growth techniques for synthesizing single crystal semiconductor materials. Laser generated and optically detect ultrasonic techniques have the potential to satisfy this need. Using an anisotropic 3D ray tracing methodology combined with elastic constant data measured near the melting point, ultrasonic propagation in cylindrical single crystal bodies containing either a convex, flat, or concave solid-liquid interface has been simulated. Ray paths, wavefronts and the time-of-flight (TOF) of rays that travel from a source to an arbitrarily positioned receiver have all been calculated. Experimentally measured TOF data have been collected using laser generated, optically detected ultrasound on model systems with independently known interface shapes. Both numerically simulated and experimental data have shown that the solidification region can be easily identified from transmission TOF measurements because the velocity of the liquid is much smaller than that of the solid. Since convex and concave solid-liquid interfaces result in distinctively different TOF data profiles, the interface shape can also be readily determined from the TOF data. When TOF data collected in the diametral plane is used in conjunction with a nonlinear least squares algorithm, the interface geometry has been successfully reconstructed and ultrasonic velocities of both the solid and liquid obtained with reconstruction errors less than 5 percent.
From atomistic interfaces to dendritic patterns
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Alexandrov, D. V.
2018-01-01
Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models-all these themes are highlighted in the present issue. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.
Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina
2016-06-01
NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html. Copyright © 2016 Elsevier Inc. All rights reserved.
1986-01-01
Chapter it Research Methodology This chapter describes the methodology and the experimental design used for this research. Prior to discussing the...50 Experimental Design ............................... 50 Task/Treatm ent ................................... 55 Task Design ...Figure 3.3 Interface Experiment Elements ............... 54 Figure 3.4 Experimental Design ....................... 55 Figure 3.5 Subject Assignment
Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.
Sai, Na; Gearba, Raluca; Dolocan, Andrei; Tritsch, John R; Chan, Wai-Lun; Chelikowsky, James R; Leung, Kevin; Zhu, Xiaoyang
2012-08-16
Interface dipole determines the electronic energy alignment in donor/acceptor interfaces and plays an important role in organic photovoltaics. Here we present a study combining first principles density functional theory (DFT) with ultraviolet photoemission spectroscopy (UPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate the interface dipole, energy level alignment, and structural properties at the interface between CuPc and C60. DFT finds a sizable interface dipole for the face-on orientation, in quantitative agreement with the UPS measurement, and rules out charge transfer as the origin of the interface dipole. Using TOF-SIMS, we show that the interfacial morphology for the bilayer CuPc/C60 film is characterized by molecular intermixing, containing both the face-on and the edge-on orientation. The complementary experimental and theoretical results provide both insight into the origin of the interface dipole and direct evidence for the effect of interfacial morphology on the interface dipole.
Magnetocapacitance and the physics of solid state interfaces
NASA Astrophysics Data System (ADS)
Hebard, Arthur
2008-10-01
When Herbert Kroemer stated in his Nobel address [1] that ``the interface is the device,'' he was implicitly acknowledging the importance of understanding the physics of interfaces. If interfaces are to have character traits, then ``impedance'' (or complex capacitance) would be a commonly used descriptor. In this talk I will discuss the use of magnetic fields to probe the ``character'' of a variety of interfaces including planar capacitor structures with magnetic electrodes, simple metal/semiconductor contacts (Schottky barriers) and the interface-dominated competition on microscopic length scales between ferromagnetic metallic and charge-ordered insulating phases in complex oxides. I will show that seeking experimental answers to surprisingly simple questions often leads to striking results that seriously challenge theoretical understanding. Perhaps Herbert Kroemer should have said, ``the interface is the device with a magnetic personality that continually surprises.'' [3pt] [1] Herbert Kroemer, ``Quasielectric fields and band offsets: teaching electron s new tricks,'' Nobel Lecture, December 8, 2000:
NASA Astrophysics Data System (ADS)
Stelian, C.; Nehari, A.; Lasloudji, I.; Lebbou, K.; Dumortier, M.; Cabane, H.; Duffar, T.
2017-10-01
Single La3Ga5.5Ta0.5O14 (LGT) crystals have been grown by using the Czochralski technique with inductive heating. Some ingots exhibit imperfections such as cracks, dislocations and striations. Numerical modeling is applied to investigate the factors affecting the shape of the crystal-melt interface during the crystallization of ingots having 3 cm in diameter. It was found that the conical shape of the interface depends essentially on the internal radiative exchanges in the semi-transparent LGT crystal. Numerical results are compared to experimental visualization of the growth interface, showing a good agreement. The effect of the forced convection produced by the crystal and crucible rotation is numerically investigated at various rotation rates. Increasing the crystal rotation rate up to 50 rpm has a significant flattening effect on the interface shape. Applying only crucible rotation enhances the downward flow underneath the crystal, leading to an increased interface curvature. Counter rotation between the crystal and the crucible results in a distorted shape of the interface.
Instability and turbulent mixing of shocked `V' shaped interface
NASA Astrophysics Data System (ADS)
Li, Long; Sun, Yutao
Based on the mass fraction model of multicomponent mixture, the interaction between weak shock wave and `V' shaped air/ interface with different vertex angles are numerical simulated using high resolution finite volume method with minimized dispersion and controllable dissipation (MDCD) scheme. It is observed that the baroclinic vorticity is deposited near the interface due to the misalignment of the density and pressure gradient, leading to the formation of vortical structures along the interface. The predicted leftmost interface displacement and interface width growth rate in the early stage of interface evolution agree well with experimental results. The numerical results indicate that with the evolution of the interfacial vortical structures, the array of vortices begins to merge. As the result, the vortices accumulate at several distinct regions. It is in these regions, the multi-scale structures are generated because of the interaction between vortices. It is observed that due to the different scaling with Reynolds number of upper bound and lower bound, an uncoupled inertial range appears, and the mixing transition occurs with the appearance of an inertial range of scales. The classical Kolmogorov -5/3 power laws are shown in the energy fluctuation spectrum, which means the inertial range is just beginning to form and the flow field near the material interface will develop to turbulence.
Plasma interpenetration study on the Omega laser facility
NASA Astrophysics Data System (ADS)
Le Pape, Sebastien; Divol, Laurent; Ross, Steven; Wilks, Scott; Amendt, Peter; Berzak Hopkins, Laura; Huser, Gael; Moody, John; MacKinnon, Andy; Meezan, Nathan
2016-10-01
The Near Vacuum Campaign on the National Ignition Facility has sparked an interest on the nature of the gold/carbon interface at high velocity, high electron temperature, low-electron density. Indeed radiation-hydrodynamic simulations have been unable to accurately reproduce the experimental shape of the hot spot resulting from implosion driven in Near Vacuum Holhraum. The experimental data are suggesting that the inner beams are freely propagating to the waist of the hohlraum when simulations predict that a density ridge at the gold/carbon interface blocks the inner beams. The discrepancy between experimental data and simulation might be explained by the fluid description of the plasma interface in a rad-hydro code which is probably not valid in when two plasma at high velocity, high temperature are meeting. To test our assumption, we went to the Omega laser facility to study gold/carbon interface in the relevant regime. Time resolved images of the self-emission as well as Thomson scattering data will be presented. For the first time, a transition from a multifluid to a single fluid is observed as plasmas are interacting. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Zeng, Y. D.; Wang, F.
2018-02-01
In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.
NASA Astrophysics Data System (ADS)
Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.
2017-02-01
Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.
Perspective: Surface freezing in water: A nexus of experiments and simulations
NASA Astrophysics Data System (ADS)
Haji-Akbari, Amir; Debenedetti, Pablo G.
2017-08-01
Surface freezing is a phenomenon in which crystallization is enhanced at a vapor-liquid interface. In some systems, such as n-alkanes, this enhancement is dramatic and results in the formation of a crystalline layer at the free interface even at temperatures slightly above the equilibrium bulk freezing temperature. There are, however, systems in which the enhancement is purely kinetic and only involves faster nucleation at or near the interface. The first, thermodynamic, type of surface freezing is easier to confirm in experiments, requiring only the verification of the existence of crystalline order at the interface. The second, kinetic, type of surface freezing is far more difficult to prove experimentally. One material that is suspected of undergoing the second type of surface freezing is liquid water. Despite strong indications that the freezing of liquid water is kinetically enhanced at vapor-liquid interfaces, the findings are far from conclusive, and the topic remains controversial. In this perspective, we present a simple thermodynamic framework to understand conceptually and distinguish these two types of surface freezing. We then briefly survey fifteen years of experimental and computational work aimed at elucidating the surface freezing conundrum in water.
Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.
2013-04-01
Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advancesmore » in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less
Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification.
Hamed, Hamed A; Marzook, Hamdy A; Ghoneem, Nahed E; El-Anwar, Mohamed I
2018-02-15
This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models' components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one.
NASA Astrophysics Data System (ADS)
Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Skvortsova, I. V.
2011-05-01
A procedure was proposed for the calculation of the acid-base equilibrium constants at an alumina/electrolyte interface from experimental data on the adsorption of singly charged ions (Na+, Cl-) at various pH values. The calculated constants (p K {1/0}= 4.1, p K {2/0}= 11.9, p K {3/0}= 8.3, and p K {4/0}= 7.7) are shown to agree with the values obtained from an experimental pH dependence of the electrokinetic potential and the results of potentiometric titration of Al2O3 suspensions.
NASA Astrophysics Data System (ADS)
Künneth, Christopher; Materlik, Robin; Kersch, Alfred
2017-05-01
Size effects from surface or interface energy play a pivotal role in stabilizing the ferroelectric phase in recently discovered thin film Zirconia-Hafnia. However, sufficient quantitative understanding has been lacking due to the interference with the stabilizing effect from dopants. For the important class of undoped Hf1-xZrxO2, a phase stability model based on free energy from Density functional theory (DFT) and surface energy values adapted to the sparse experimental and theoretical data has been successful to describe key properties of the available thin film data. Since surfaces and interfaces are prone to interference, the predictive capability of the model is surprising and directs to a hitherto undetected, underlying reason. New experimental data hint on the existence of an interlayer on the grain surface fixed in the tetragonal phase possibly shielding from external influence. To explore the consequences of such a mechanism, we develop an interface free energy model to include the fixed interlayer, generalize the grain model to include a grain radius distribution, calculate average polarization and permittivity, and compare the model with available experimental data. Since values for interface energies are sparse or uncertain, we obtain its values from minimizing the least square difference between predicted key parameters to experimental data in a global optimization. Since the detailed values for DFT energies depend on the chosen method, we repeat the search for different computed data sets and come out with quantitatively different but qualitatively consistent values for interface energies. The resulting values are physically very reasonable and the model is able to give qualitative prediction. On the other hand, the optimization reveals that the model is not able to fully capture the experimental data. We discuss possible physical effects and directions of research to possibly close this gap.
NASA Technical Reports Server (NTRS)
Zhang, Meng; Maxworthy, Tony
1999-01-01
It has long been recognized that flow in the melt can have a profound influence on the dynamics of a solidifying interface and hence the quality of the solid material. In particular, flow affects the heat and mass transfer, and causes spatial and temporal variations in the flow and melt composition. This results in a crystal with nonuniform physical properties. Flow can be generated by buoyancy, expansion or contraction upon phase change, and thermo-soluto capillary effects. In general, these flows can not be avoided and can have an adverse effect on the stability of the crystal structures. This motivates crystal growth experiments in a microgravity environment, where buoyancy-driven convection is significantly suppressed. However, transient accelerations (g-jitter) caused by the acceleration of the spacecraft can affect the melt, while convection generated from the effects other than buoyancy remain important. Rather than bemoan the presence of convection as a source of interfacial instability, Hurle in the 1960s suggested that flow in the melt, either forced or natural convection, might be used to stabilize the interface. Delves considered the imposition of both a parabolic velocity profile and a Blasius boundary layer flow over the interface. He concluded that fast stirring could stabilize the interface to perturbations whose wave vector is in the direction of the fluid velocity. Forth and Wheeler considered the effect of the asymptotic suction boundary layer profile. They showed that the effect of the shear flow was to generate travelling waves parallel to the flow with a speed proportional to the Reynolds number. There have been few quantitative, experimental works reporting on the coupling effect of fluid flow and morphological instabilities. Huang studied plane Couette flow over cells and dendrites. It was found that this flow could greatly enhance the planar stability and even induce the cell-planar transition. A rotating impeller was buried inside the sample cell, driven by an outside rotating magnet, in order to generate the flow. However, it appears that this was not a well-controlled flow and may also have been unsteady. In the present experimental study, we want to study how a forced parallel shear flow in a Hele-Shaw cell interacts with the directionally solidifying crystal interface. The comparison of experimental data show that the parallel shear flow in a Hele-Shaw cell has a strong stabilizing effect on the planar interface by damping the existing initial perturbations. The flow also shows a stabilizing effect on the cellular interface by slightly reducing the exponential growth rate of cells. The left-right symmetry of cells is broken by the flow with cells tilting toward the incoming flow direction. The tilting angle increases with the velocity ratio. The experimental results are explained through the parallel flow effect on lateral solute transport. The phenomenon of cells tilting against the flow is consistent with the numerical result of Dantzig and Chao.
Liyana-Arachchi, Thilanga P; Zhang, Zenghui; Ehrenhauser, Franz S; Avij, Paria; Valsaraj, Kalliat T; Hung, Francisco R
2014-01-01
Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water interface at increasing concentrations of surfactant species.
NASA Astrophysics Data System (ADS)
Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.
2014-12-01
Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.
Theory of Interface States at Silicon / Transition - - Silicide Interfaces.
NASA Astrophysics Data System (ADS)
Lim, Hunhwa
The Si/NiSi(,2)(111) interface is of both fundamental and techno- logical interest: From the fundamental point of view, it is the best characterized of all semiconductor/metal interfaces, with two well-determined geometries (A and B) involving nearly perfect bonding. (This is because Si and NiSi(,2) have nearly the same lattice spacing.) Consequently, a theoretical treatment of this system makes sense--as it would not for messier systems--and one can have some confidence that the theoretical predictions are relevant to experimental observa- tions. From the technological point of view, Si/NiSi(,2) is representative of the class of semiconductor/metal interfaces that are currently of greatest interest in regard to electronic devices--Si/transition -metal-silicide interfaces. The calculations of this dissertation are for the intrinsic interface states of Si/NiSi(,2)-A geometry. These calculations also provide a foundation for later studies of defects at this interface, and for studies of other related systems, such as CoSi(,2). The calculations employ empirical tight-binding Hamiltonians for both Si and NiSi(,2) (with the parameters fitted to prior calculations of the bulk band structures, which appear to be in agreement with the available experimental data on bulk Si and NiSi(,2)). They also employ Green's function techniques--in particular, the subspace Hamiltonian technique. Our principal results are the following: (1) Interface state disper- sion curves are predicted along the symmetry lines (')(GAMMA)(')M, (')M(')K and (')K(')(GAMMA) of the surface Brillouin zone. (2) A prominent band of interface states is found which disperses downward from an energy within the Si band gap to an energy below the Si valence band edge E(,(upsilon)) as the planar wavevector (')k increases from (')(GAMMA) ((')k = 0) to (')M or (')K (symmetry points at boundary of the surface Brillouin zone). This band of inter- face states should be observable. It produces a peak in the surface density of states well below the valence band edge ((TURN)1 - 2eV below). Experimental studies to confirm these predictions would be of con- siderable interest. (3) These results may help to explain the intrinsic interface states already observed for another Si/transition -metal-silicide interface--Si/Pd(,2)Si. (4) Although observable in photo- emission experiments, these intrinsic interface states probably do not explain the observed Schottky barrier for Si/NiSi(,2), since they are primarily associated with the metal (NiSi(,2)) rather than the semi- conductor (Si). This appears to indicate that defect states are the best candidate to explain the Schottky barrier. For this conclusion to be definitive, further studies of the proper- ties of the intrinsic states are required. Perhaps more importantly, the defect states themselves need to be calculated. Such calculations are planned for the future. The present theory can also be applied to other Si/transition-metal-silicide interfaces, such as CoSi(,2).
New method for measuring the laser-induced damage threshold of optical thin film
NASA Astrophysics Data System (ADS)
Su, Jun-hong; Wang, Hong; Xi, Ying-xue
2012-10-01
The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.
Slippage on a particle-laden liquid-gas interface in textured microchannels
NASA Astrophysics Data System (ADS)
Gaddam, Anvesh; Agrawal, Amit; Joshi, Suhas S.; Thompson, Mark C.
2018-03-01
Despite numerous investigations in the literature on slip flows in textured microchannels, experimental results were seldom in agreement with the theory. It is conjectured that contamination of the liquid-gas interface by impurities might be one of the sources of this discrepancy. However, the effect of impurities on slippage at the liquid-gas interface is neither understood nor previously reported. To this end, this work presents numerical investigation on the flow past a liquid-gas interface embedded with solid particles in textured microchannels. Initially, we present numerical simulations past transverse ribs with cylindrical particles on the liquid-gas interface. A reduction in effective slip length (or slip loss) with respect to the particle-free interface as a function of gas fraction, constriction ratio, and particle position was quantified. A significant slip loss (˜20-80%) was induced, owing to acceleration-deceleration cycles experienced by the liquid advecting across the particle-laden liquid-gas interface. Even a small number of solid particles adsorbed on a liquid-gas interface were shown to reduce the effective slip length considerably. This renders a textured microchannel with the particle-laden interface to be ineffective as compared to a completely wetted textured microchannel under certain conditions. Furthermore, a flow past two bi-dimensional textures, viz. posts and holes, with their interfaces embedded with spherical particles was also simulated. Our results show that texture configurations with an unbounded liquid-gas interface can mitigate the detrimental effects of particles adsorbed at the interface. The results presented here will help guide in designing efficient textured surfaces in future.
Raman analysis of phonon modes in a short period AlN/GaN superlattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.
AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shiftedmore » from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibrationwas done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.« less
Raman analysis of phonon modes in a short period AlN/GaN superlattice
NASA Astrophysics Data System (ADS)
Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.; Shi, Fengyuan; Nicholls, Alan; Stroscio, Michael A.; Dutta, Mitra
2018-03-01
AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shifted from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibration was done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.
Mechanics of fiber reinforced materials
NASA Astrophysics Data System (ADS)
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
Active oil-water interfaces: buckling and deformation of oil drops by bacteria
NASA Astrophysics Data System (ADS)
Juarez, Gabriel; Stocker, Roman
2014-11-01
Bacteria are unicellular organisms that seek nutrients and energy for growth, division, and self-propulsion. Bacteria are also natural colloidal particles that attach and self-assemble at liquid-liquid interfaces. Here, we present experimental results on active oil-water interfaces that spontaneously form when bacteria accumulate or grow on the interface. Using phase-contrast and fluorescence microscopy, we simultaneously observed the dynamics of adsorbed Alcanivorax bacteria and the oil-water interface within microfluidic devices. We find that, by growing and dividing, adsorbed bacteria form a jammed monolayer of cells that encapsulates the entire oil drop. As bacteria continue to grow at the interface, the drop buckles and the interface undergoes strong deformations. The bacteria act to stabilize non-equilibrium shapes of the oil-phase such wrinkling and tubulation. In addition to presenting a natural example of a living interface, these findings shape our understanding of microbial degradation of oil and may have important repercussions on engineering interventions for oil bioremediation.
Electron confinement at diffuse ZnMgO/ZnO interfaces
NASA Astrophysics Data System (ADS)
Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.
2017-01-01
Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.
Gas-liquid interface of room-temperature ionic liquids.
Santos, Cherry S; Baldelli, Steven
2010-06-01
The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.
2014-09-30
It is well known that the achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. In this report we systematically study the ion transmission and ionization efficiencies in different ESI-MS interface configurations. The configurations under investigation include a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interfaces with a single emitter and an emitter array, respectively. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuringmore » the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Our experimental results suggest that the overall ion utilization efficiency in the SPIN-MS interface configurations is better than that in the inlet capillary based ESI-MS interface configurations.« less
Anomalously deep polarization in SrTiO3 (001) interfaced with an epitaxial ultrathin manganite film
Wang, Zhen; Tao, Jing; Yu, Liping; ...
2016-10-17
Using atomically-resolved imaging and spectroscopy, we reveal a remarkably deep polarization in non-ferroelectric SrTiO 3 near its interface with an ultrathin nonmetallic film of La 2/3Sr 1/3MnO 3. Electron holography shows an electric field near the interface in SrTiO 3, yielding a surprising spontaneous polarization density of ~ 21 μC/cm 2. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by the electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties ofmore » transition metal oxides.« less
Customization of user interfaces to reduce errors and enhance user acceptance.
Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram
2014-03-01
Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Current-voltage characteristics in organic field-effect transistors. Effect of interface dipoles
NASA Astrophysics Data System (ADS)
Sworakowski, Juliusz
2015-07-01
The role of polar molecules present at dielectric/semiconductor interfaces of organic field-effect transistors (OFETs) has been assessed employing the electrostatic model put forward in a recently published paper (Sworakowski et al., 2014). The interface dipoles create dipolar traps in the surface region of the semiconductor, their depths decreasing with the distance from the interface. This feature results in appearance of mobility gradients in the direction perpendicular to the dielectric/semiconductor interface, manifesting themselves in modification of the shapes of current-voltage characteristics. The effect may account for differences in carrier mobilities determined from the same experimental data using methods scanning different ranges of channel thicknesses (e.g., transconductances vs. transfer characteristics), differences between turn-on voltages and threshold voltages, and gate voltage dependence of mobility.
NASA Astrophysics Data System (ADS)
Su, Xiaotao; Garofalini, Stephen H.
2005-06-01
Molecular-dynamics simulations of intergranular films (IGF) containing Si, O, N, and Ca in contact with Si3N4 surfaces containing different levels of interface mixing of the species from the IGF with the crystal surfaces were performed using a multibody interatomic potential. This mixing is equivalent to the formation of a roughened silicon oxynitride crystal surface. With significant interphase mixing at the crystal surfaces, less ordering into the IGF caused by the compositionally modified oxynitride interfaces is observed. Such results are in contrast to our earlier data that showed significant ordering into the IGF induced by the ideally terminated crystal surfaces with no interphase mixing. In all cases, the central position of the first peak in the Si-O pair distribution function (PDF) at the interface ranges from 1.62 to 1.64 Å, consistent with recent experimental findings. The central position of the first peak in the Si-N PDF ranges from 1.72 to 1.73 Å, consistent with experimental results. With increased interphase mixing, the intensity as well as the area of the first peak of the Si-O and Si-N PDFs for Si attached to the crystal decreases, indicating the decrease of coordination number of O or N with these silicon. Such combined decrease in coordination indicates a significant remnant of vacancies in the crystal surfaces due to the exchange process used here. The results imply a significant effect of interface roughness on the extent of ordering in the amorphous IGF induced by the crystal surface.
Photonic surface waves on metamaterial interfaces
NASA Astrophysics Data System (ADS)
Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.
2017-11-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.
Enhanced interfacial deformation in a Marangoni flow: A measure of the dynamical surface tension
NASA Astrophysics Data System (ADS)
Leite Pinto, Rodrigo; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud
2018-02-01
We investigate the flows and deformations resulting from the deposition of a water soluble surfactant at a bare oil-water interface. Once the surfactant is deposited, we show that the oil-water interface is deformed with a water bump rising upward into the oil. For a given oil, the maximal deformation—located at the surfactant deposition point—decreases with the oil-layer thickness. We also observe a critical oil-layer thickness below which the deformation becomes as large as the oil layer, leading to the rupture of this layer and an oil-water dewetting. Experimentally, it is found that this critical thickness depends on the oil density and viscosity. We then provide an analytical modelization that explains quantitatively all these experimental features. In particular, our analysis allows us to derive an analytical relationship between the vertical profile of the oil-water interface and the in-plane surface tension profile. Therefore, we propose that the monitoring of the interface vertical shape can be used as a new spatially resolved tensiometry technique.
Development of a User Interface for a Regression Analysis Software Tool
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.
Experimental entanglement of 25 individually accessible atomic quantum interfaces.
Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming
2018-04-01
A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
A genetic algorithm approach in interface and surface structure optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less
NASA Astrophysics Data System (ADS)
Ye, Ning; Feser, Joseph P.; Sadasivam, Sridhar; Fisher, Timothy S.; Wang, Tianshi; Ni, Chaoying; Janotti, Anderson
2017-02-01
Silicides are used extensively in nano- and microdevices due to their low electrical resistivity, low contact resistance to silicon, and their process compatibility. In this work, the thermal interface conductance of TiSi2, CoSi2, NiSi, and PtSi are studied using time-domain thermoreflectance. Exploiting the fact that most silicides formed on Si(111) substrates grow epitaxially, while most silicides on Si(100) do not, we study the effect of epitaxy, and show that for a wide variety of interfaces there is no dependence of interface conductance on the detailed structure of the interface. In particular, there is no difference in the thermal interface conductance between epitaxial and nonepitaxial silicide/silicon interfaces, nor between epitaxial interfaces with different interface orientations. While these silicide-based interfaces yield the highest reported interface conductances of any known interface with silicon, none of the interfaces studied are found to operate close to the phonon radiation limit, indicating that phonon transmission coefficients are nonunity in all cases and yet remain insensitive to interfacial structure. In the case of CoSi2, a comparison is made with detailed computational models using (1) full-dispersion diffuse mismatch modeling (DMM) including the effect of near-interfacial strain, and (2) an atomistic Green' function (AGF) approach that integrates near-interface changes in the interatomic force constants obtained through density functional perturbation theory. Above 100 K, the AGF approach significantly underpredicts interface conductance suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. The full-dispersion DMM closely predicts the experimentally observed interface conductances for CoSi2, NiSi, and TiSi2 interfaces, while it remains an open question whether inelastic scattering, cross-interfacial electron-phonon coupling, or other mechanisms could also account for the high-temperature behavior. The effect of degenerate semiconductor dopant concentration on metal-semiconductor thermal interface conductance was also investigated with the result that we have found no dependencies of the thermal interface conductances up to (n or p type) ≈1 ×1019 cm-3, indicating that there is no significant direct electronic transport and no transport effects that depend on long-range metal-semiconductor band alignment.
The role of charge transfer in the energy level alignment at the pentacene/C60 interface.
Beltrán, J; Flores, F; Ortega, J
2014-03-07
Understanding the mechanism of energy level alignment at organic-organic interfaces is a crucial line of research to optimize applications in organic electronics. We address this problem for the C60-pentacene interface by performing local-orbital Density Functional Theory (DFT) calculations, including the effect of the charging energies on the energy gap of both organic materials. The results are analyzed within the induced density of interface states (IDIS) model. We find that the induced interface potential is in the range of 0.06-0.10 eV, in good agreement with the experimental evidence, and that such potential is mainly induced by the small, but non-negligible, charge transfer between the two compounds and the multipolar contribution associated with pentacene. We also suggest that an appropriate external intercompound potential could create an insulator-metal transition at the interface.
Phase transition kinetics in DIET of vanadium pentoxide. I. Experimental results
NASA Astrophysics Data System (ADS)
Ai, R.; Fan, H.-J.; Marks, L. D.
1993-01-01
Experimental results of the kinetics of phase transformation in vanadium pentoxide during surface loss of oxygen from electron irradiation are described. Phase transformations under three different regimes were examined: (a) low flux; (b) intermediate flux and (c) high flux. Different phase transformation routes were observed under different fluxes. In a companion paper, numerical calculations are presented demonstrating that these results are due to a mixed interface/diffusion controlled phase transition pumped by surface oxygen loss.
Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification
Hamed, Hamed A.; Marzook, Hamdy A.; Ghoneem, Nahed E.; El–Anwar, Mohamed I.
2018-01-01
AIM: This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. METHODS: Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models’ components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). RESULTS: Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. CONCLUSION: It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one. PMID:29531612
Experimental study of the minority-carrier transport at the polysilicon-monosilicon interface
NASA Astrophysics Data System (ADS)
Neugroschel, A.; Arienzo, M.; Isaac, R. D.; Komem, Y.
1985-04-01
This paper presents the results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contacts. Polysilicon contacts were deposited and heat treated at different conditions. The electrical properties were measured using p-n junction test structures that are much more sensitive to the contact properties than are bipolar transistors. A simple phenomenological model was used to correlate the structural properties with electrical measurements. Possible transport mechanisms are examined and estimates are made about upper bounds on transport parameters in the principal regions of the devices. The main conclusion of this study is that the minority-carrier transport in the polycrystalline silicon is dominated by a highly disordered layer at the polysilicon-monosilicon interface characterized by very low minority-carrier mobility. The effective recombination velocity at the n(+) polysilicon-n(+) monosilicon interface was found to be a strong function of fabrication conditions. The results indicate that the recombination velocity can be much smaller than 10,000 cm/s.
Cavitating flow during water hammer using a generalized interface vaporous cavitation model
NASA Astrophysics Data System (ADS)
Sadafi, Mohamadhosein; Riasi, Alireza; Nourbakhsh, Seyed Ahmad
2012-10-01
In a transient flow simulation, column separation may occur when the calculated pressure head decreases to the saturated vapor pressure head in a computational grid. Abrupt valve closure or pump failure can result in a fast transient flow with column separation, potentially causing problems such as pipe failure, hydraulic equipment damage, cavitation or corrosion. This paper reports a numerical study of water hammer with column separation in a simple reservoir-pipeline-valve system and pumping station. The governing equations for two-phase transient flow in pipes are solved based on the method of characteristics (MOC) using a generalized interface vaporous cavitating model (GIVCM). The numerical results were compared with the experimental data for validation purposes, and the comparison indicated that the GIVCM describes the experimental results more accurately than the discrete vapor cavity model (DVCM). In particular, the GIVCM correlated better with the experimental data than the DVCM in terms of timing and pressure magnitude. The effects of geometric and hydraulic parameters on flow behavior in a pumping station with column separation were also investigated in this study.
NASA Astrophysics Data System (ADS)
Belov, G. V.; Dyachkov, S. A.; Levashov, P. R.; Lomonosov, I. V.; Minakov, D. V.; Morozov, I. V.; Sineva, M. A.; Smirnov, V. N.
2018-01-01
The database structure, main features and user interface of an IVTANTHERMO-Online system are reviewed. This system continues the series of the IVTANTHERMO packages developed in JIHT RAS. It includes the database for thermodynamic properties of individual substances and related software for analysis of experimental results, data fitting, calculation and estimation of thermodynamical functions and thermochemistry quantities. In contrast to the previous IVTANTHERMO versions it has a new extensible database design, the client-server architecture, a user-friendly web interface with a number of new features for online and offline data processing.
Expansion tube test time predictions
NASA Technical Reports Server (NTRS)
Gourlay, Christopher M.
1988-01-01
The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.
Transverse ductility of metal matrix composites
NASA Technical Reports Server (NTRS)
Gunawardena, S. R.; Jansson, S.; Leckie, F. A.
1991-01-01
The role of the fiber matrix interface bond on the transverse ductility of continuous fiber reinforced composites has been investigated. Two specific systems have been considered: an Aluminum alloy matrix reinforced by Alumina fibers, characterized by a strong interface and a Titanium alloy reinforced by coated Silicon Carbide fibers, characterized by a weak interface. A micro-mechanical study indicates that the bond condition has a significant effect on the state of stress in the matrix which in turn dictates the available matrix ductility. The micro-mechanical predictions are in good agreement with the experimental results for the two systems.
Crack growth in bonded elastic half planes
NASA Technical Reports Server (NTRS)
Goree, J. G.
1975-01-01
Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.
Bang, Magnus; Timpka, Toomas
2007-06-01
Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.
Nanoscale deformation measurements for reliability assessment of material interfaces
NASA Astrophysics Data System (ADS)
Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd
2006-03-01
With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.
Thakore, Vaibhav; Molnar, Peter; Hickman, James J.
2014-01-01
Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342
Adsorption of Small Molecules at Water--Hexane and Water--Membrane Interfaces
NASA Astrophysics Data System (ADS)
Wilson, Michael A.
1996-03-01
The interaction of solutes with aqueous interfaces plays a significant role in a variety of physical processes, including general anesthesia and atmospheric chemistry. We present molecular dynamics results for the transfer of several small solutes across water liquid--vapor, water--hexane and water--GMO bilayer membrane interfaces. (A. Pohorille and M. A. Wilson, J. Chem. Phys. (in press, 1995).)^, (A. Pohorille, P. CIeplak, and M. A. Wilson, Chem. Phys. (in press, 1995).) The free energies of transferring small polar molecules across the interface exhibit fairly deep minima while those of nonpolar molecules do not. This is due to a balance between nonelectrostatic contributions --- primarily the work required to create a cavity large enough to accommodate the solute --- and the solute--solvent electrostatic interactions.^1 The surface excess of solute is calculated and compared with experimental results from the Gibbs adsorption isotherm. The interfacial solubilities correlate with measured anesthetic potencies of these compounds, implying that the binding sites for anesthetics are located near the water--membrane interface.
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping
NASA Astrophysics Data System (ADS)
Paulsen, Ronald Eugene
1995-01-01
Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.
Gips, James
2015-01-01
Abstract As the rise of tablets and smartphones move the dominant interface for digital content from mouse or trackpad to direct touchscreen interaction, work is needed to explore the role of interfaces in shaping psychological reactions to online content. This research explores the role of direct-touch interfaces in product search and choice, and isolates the touch element from other form factor changes such as screen size. Results from an experimental study using a travel recommendation Web site show that a direct-touch interface (vs. a more traditional mouse interface) increases the number of alternatives searched, and biases evaluations toward tangible attributes such as décor and furniture over intangible attributes such as WiFi and employee demeanor. Direct-touch interfaces also elevate the importance of internal and subjective satisfaction metrics such as instinct over external and objective metrics such as reviews, which in turn increases anticipated satisfaction metrics. Findings suggest that interfaces can strongly affect how online content is explored, perceived, remembered, and acted on, and further work in interface psychology could be as fruitful as research exploring the content itself. PMID:26348814
Brasel, S Adam; Gips, James
2015-09-01
As the rise of tablets and smartphones move the dominant interface for digital content from mouse or trackpad to direct touchscreen interaction, work is needed to explore the role of interfaces in shaping psychological reactions to online content. This research explores the role of direct-touch interfaces in product search and choice, and isolates the touch element from other form factor changes such as screen size. Results from an experimental study using a travel recommendation Web site show that a direct-touch interface (vs. a more traditional mouse interface) increases the number of alternatives searched, and biases evaluations toward tangible attributes such as décor and furniture over intangible attributes such as WiFi and employee demeanor. Direct-touch interfaces also elevate the importance of internal and subjective satisfaction metrics such as instinct over external and objective metrics such as reviews, which in turn increases anticipated satisfaction metrics. Findings suggest that interfaces can strongly affect how online content is explored, perceived, remembered, and acted on, and further work in interface psychology could be as fruitful as research exploring the content itself.
Intermetallic Compound Growth and Stress Development in Al-Cu Diffusion Couple
NASA Astrophysics Data System (ADS)
Mishler, M.; Ouvarov-Bancalero, V.; Chae, Seung H.; Nguyen, Luu; Kim, Choong-Un
2018-01-01
This paper reports experimental observations evidencing that the intermetallic compound phase interfaced with Cu in the Al-Cu diffusion couple is most likely α2-Cu3Al phase, not γ-Cu9Al4 phase as previously assumed, and that its growth to a critical thickness may result in interface failure by stress-driven fracture. These conclusions are made based on an interdiffusion study of a diffusion couple made of a thick Cu plate coated with ˜ 2- μm-thick Al thin film. The interface microstructure and lattice parameter were characterized using scanning electron microscopy and x-ray diffraction analysis. Specimens aged at temperature between 623 K (350°C) and 723 K (450°C) for various hours produced consistent results supporting the main conclusions. It is found that disordered α2-Cu3Al phase grows in a similar manner to solid-state epitaxy, probably owing to its structural similarity to the Cu lattice. The increase in the interface strain that accompanies the α2-Cu3Al phase growth ultimately leads to interface fracture proceeding from crack initiation and growth along the interface. This mechanism provides the most consistent explanation for interface failures observed in other studies.
Investigation of piezoelectric impedance-based health monitoring of structure interface debonding
NASA Astrophysics Data System (ADS)
Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong
2016-04-01
Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.
Salt-water-freshwater transient upconing - An implicit boundary-element solution
Kemblowski, M.
1985-01-01
The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.
Healy, Thomas W; Fuerstenau, Douglas W
2007-05-01
From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0-3.0, dependent on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain (>C8) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material-water interfaces.
NASA Astrophysics Data System (ADS)
Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu
2018-01-01
The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.
Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; ...
2014-09-24
Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid–fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. Moreover, the application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air–water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured propertiesmore » is quantified and compared to other scaling relationships in the literature. Our results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.« less
Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface.
Griffith, Elizabeth C; Perkins, Russell J; Telesford, Dana-Marie; Adams, Ellen M; Cwiklik, Lukasz; Allen, Heather C; Roeselová, Martina; Vaida, Veronica
2015-07-23
The interaction of L-phenylalanine with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-water interface was explored using a combination of experimental techniques and molecular dynamics (MD) simulations. By means of Langmuir trough methods and Brewster angle microscopy, L-phenylalanine was shown to significantly alter the interfacial tension and the surface domain morphology of the DPPC film. In addition, confocal microscopy was used to explore the aggregation state of L-phenylalanine in the bulk aqueous phase. Finally, MD simulations were performed to gain molecular-level information on the interactions of L-phenylalanine and DPPC at the interface. Taken together, these results show that L-phenylalanine intercalates into a DPPC film at the air-water interface, thereby affecting the surface tension, phase morphology, and ordering of the DPPC film. The results are discussed in the context of biological systems and the mechanism of diseases such as phenylketonuria.
Temperature Coefficient of Resistance.
ERIC Educational Resources Information Center
Fox, John N.
1990-01-01
Described are the apparatus and procedures needed for a demonstration of the measurement of the electrical resistance of metals as a function of temperature using a microcomputer interface. Discussed are materials, apparatus construction, and experimental results. (CW)
Experimental entanglement of 25 individually accessible atomic quantum interfaces
Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng
2018-01-01
A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing. PMID:29725621
Further Experimental Investigations of the Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Miller, P. L.; Peyser, T. A.; Stry, P. E.; Logory, L. M.; Farley, D. R.
1996-11-01
We report on further experimental investigations of the Richtmyer-Meshkov instability from an initially nonlinear perturbation, conducted on the Nova laser. The experiments use a Nova hohlraum as a driver source for a strong shock in a miniature shock tube attached to the hohlraum. The shock tube contains brominated plastic and low-density carbon foam as the two working fluids, with a micro-machined sawtooth interface between them serving as the perturbation. The shock, upon crossing the interface, instigates the Richtmyer-Meshkov instability from the perturbation. The resulting growth of the mixing layer is diagnosed radiographically. We have previously reported upon a results from a single wavelength and amplitude of perturbation (T. A. Peyser et al., Phys. Rev. Lett.) 75, 2332 (1996).. A study of the effect of variations in amplitude and wavelength on the nonlinear growth of the instability will be discussed.
Particle Engulfment and Pushing Micro-Gravity Experiments and Mathematical Modeling
NASA Technical Reports Server (NTRS)
Stefanescu, Doru M.; Catalina, A. V.; Juretzko, F.; Mukherjee, S.; Sen, S.
2000-01-01
The phenomenon of interaction of particles with solid-liquid interfaces that results in particle engulfment or pushing (PEP) has been Studied since mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), it was recognized early that understanding particle behavior at solidifying interfaces mi ht yield 9 practical benefits in other fields. In metallurgical applications the issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable amount of experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting; or spray forming techniques. Another application of PEP is in the growing of Y1Ba2CU3O7-delta(123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1CU1O5 (211) precipitates, which act as flux pinning sites. The paper presents results of PEP micro-gravity research performed by the authors on two shuttle missions using metallic and polymeric materials. In addition. a discussion on the theoretical aspects of the physics of PEP is offered. Analytical and numerical models for planar solidification interfaces developed by the authors are used to explain the experimental results. Shortcomings of steady-state models are emphasized. A numerical model that includes the effect of the solutal field and of natural convection is introduced. A discussion of phenomena associated with dendritic solidification based on experimental observations is also offered. A mechanism of engulfment is proposed.
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-01-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces. PMID:23250787
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-06-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces.
Yamamoto, Susumu; Ghosh, Avishek; Nienhuys, Han-Kwang; Bonn, Mischa
2010-10-28
We present experimental results on femtosecond time-resolved surface vibrational spectroscopy aimed at elucidating the sub-picosecond reorientational dynamics of surface molecules. The approach, which relies on polarization- and time-resolved surface sum frequency generation (SFG), provides a general means to monitor interfacial reorientational dynamics through vibrations inherent in surface molecules in their electronic ground state. The technique requires an anisotropic vibrational excitation of surface molecules using orthogonally polarized infrared excitation light. The decay of the resulting anisotropy is followed in real-time. We employ the technique to reveal the reorientational dynamics of vibrational transition dipoles of long-chain primary alcohols on the water surface, and of water molecules at the water-air interface. The results demonstrate that, in addition to reorientational motion of specific molecules or molecular groups at the interface, inter- and intramolecular energy transfer processes can serve to scramble the initial anisotropy very efficiently. In the two exemplary cases demonstrated here, energy transfer occurs much faster than reorientational motion of interfacial molecules. This has important implications for the interpretation of static SFG spectra. Finally, we suggest experimental schemes and strategies to decouple effects resulting from energy transfer from those associated with surface molecular motion.
Song, Jinsuk; Kim, Mahn Won
2010-03-11
Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.
Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels
NASA Astrophysics Data System (ADS)
Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.
2014-06-01
Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].
NASA Astrophysics Data System (ADS)
Kajiwara, Yusuke; Murata, Hiroaki; Kimura, Haruhiko; Abe, Koji
As a communication support tool for cases of amyotrophic lateral sclerosis (ALS), researches on eye gaze human-computer interfaces have been active. However, since voluntary and involuntary eye movements cannot be distinguished in the interfaces, their performance is still not sufficient for practical use. This paper presents a high performance human-computer interface system which unites high quality recognitions of horizontal directional eye movements and voluntary blinks. The experimental results have shown that the number of incorrect inputs is decreased by 35.1% in an existing system which equips recognitions of horizontal and vertical directional eye movements in addition to voluntary blinks and character inputs are speeded up by 17.4% from the existing system.
A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10 M martensite
NASA Astrophysics Data System (ADS)
Seiner, Hanuš; Straka, Ladislav; Heczko, Oleg
2014-03-01
We present a continuum-based model of microstructures forming at the macro-twin interfaces in thermoelastic martensites and apply this model to highly mobile interfaces in 10 M modulated Ni-Mn-Ga martensite. The model is applied at three distinct spatial scales observed in the experiment: meso-scale (modulation twinning), micro-scale (compound a-b lamination), and nano-scale (nanotwining in the concept of adaptive martensite). We show that two mobile interfaces (Type I and Type II macro-twins) have different micromorphologies at all considered spatial scales, which can directly explain their different twinning stress observed in experiments. The results of the model are discussed with respect to various experimental observations at all three considered spatial scales.
Thermodynamics of surface defects at the aspirin/water interface
NASA Astrophysics Data System (ADS)
Schneider, Julian; Zheng, Chen; Reuter, Karsten
2014-09-01
We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.
Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces
NASA Astrophysics Data System (ADS)
Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; Minnich, Austin J.
2017-05-01
Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. However, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electron microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. Our work provides a useful perspective on the microscopic processes governing interfacial heat conduction.
Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces
Hua, Chengyun; Chen, Xiangwen; Ravichandran, Navaneetha K.; ...
2017-05-17
Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From the microscopic perspective, interfacial phonon transport is described by transmission coefficients that link vibrational modes in the materials composing the interface. But, direct experimental determination of these coefficients is challenging because most experiments provide a mode-averaged interface conductance that obscures the microscopic detail. Here, we report a metrology to extract thermal phonon transmission coefficients at solid interfaces using ab initio phonon transport modeling and a thermal characterization technique, time-domain thermoreflectance. In combination with transmission electronmore » microscopy characterization of the interface, our approach allows us to link the atomic structure of an interface to the spectral content of the heat crossing it. This work provides a useful perspective on the microscopic processes governing interfacial heat conduction.« less
Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers
NASA Astrophysics Data System (ADS)
Redondo, J. M.; Castilla, R.
2009-04-01
Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.
Organic/inorganic-doped aromatic derivative crystals: Growth and properties
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Ionita, I.; Stanculescu, A.
2014-09-01
Results of a comparative study on the growth from melt by the Bridgman-Stockbarger method of meta-dinitrobenzene (m-DNB) and benzil (Bz) crystals in the same experimental set-up and the same experimental conditions are presented. The incorporation of an inorganic (iodine) dopant in m-DNB was analyzed in the given experimental conditions from the point of view of the solid-liquid interface stability. The limits for a stable growth and the conditions that favor the generation of morphological instability are emphasized. These limits for m-DNB are compatible with those previously determined for Bz, and therefore, even for a high gradient concentration at the growth interface, it is possible to grow m-DNB and Bz crystals in the same experimental conditions characterized by a high ΔT and v. The optical properties were investigated in relation with the dopant incorporation in the crystal in the mentioned experimental conditions. Effects of the dopant (m-DNB/iodine in Bz and iodine in m-DNB) on the optical band gap and optical non-linear properties of the crystals are discussed.
NASA Astrophysics Data System (ADS)
Chen, H.
2018-06-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/ β interface, and the Al concentration at γ/ γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
NASA Astrophysics Data System (ADS)
Chen, H.
2018-03-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/β interface, and the Al concentration at γ/γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
NASA Astrophysics Data System (ADS)
Margaritondo, G.
1994-07-01
Experimental breakthroughs are having a big impact on surface and interface science. We review two series of results: first, photoemission experiments performed with high (0.1 micron) lateral resolution on the scanning instrument MAXIMUM at Wisconsin. These experiments revealed, in particular, core-level shifts from place to place on cleaved semiconductor surfaces, raising serious questions about a whole class of interface formation experiments. The second series of results applied for the first time a free-electron laser (the world's brightest Vanderbilt University infrared facility) to surface and interface physics. Using the FELIPE (FEL Internal PhotoEmission) technique, we measured heterojunction band discontinuities with a few meV accuracy. Much of the progress in surface and interface research has been both stimulated and made possible by parallel progress in instrumentation. From this point of view, I believe that we are witnessing a truly extraordinary period. Many of the experimental techniques in this field are based on synchrotron radiation: and we are seeing an increase in brightness of 4-5 orders of magnitude in this kind of sources, over a period of a few years! In a different spectral range, the free-electron laser is finally finding its way to applications, and with its unmprecedented infrared intensity opens up new research oppurtunities, complementary to those of synchrotron radiation. These developments have been analyzed by several recent reviews as far as instrumentation and potential applications are concerned.[1-3] It is now time to show that one can go beyond promises; my short review concentrates on real results, to show that the promises of the past are fast becoming reality. This is important, in particular, in light of the recent initial commissioning of the Advanced Light Source (ALS) in Berkeley, and of the forthcoming commissioning of ELETTRA in Trieste.
Characterization of AFB sapphire single crystal composites for infrared window application
NASA Astrophysics Data System (ADS)
Lee, H.-C.; Meissner, H. E.
2007-04-01
Next generation weapons platforms may require 30" x 30" sapphire windows. Since these sizes exceed what can be manufactured directly, a concept is proposed and experimental data are furnished in this report on the viability of increasing the window dimensions by Adhesive-Free-Bonding (AFB®) of smaller starting components by their edges. The bonding scheme has been evaluated for single crystal sapphire but is expected to also work equally well for other IR window materials. The bonding mechanism is explained with Van der Waals theory of attractive forces and confirmed experimentally by applying the bending plate theory. The gap at the interface between two components is deduced from the measured roughness of the polished surfaces that are brought into optical contact and subsequently heat-treated, and is estimated to be about 2 Å rms. Stress relief at AFB® interfaces has been established. Experimental data of flexural strength determined by four-point bending at room temperature is reported. The data indicates that AFB® composite specimens and equivalently prepared blank samples fracture at statistically same loads under standardized testing conditions. Failure of composites has not been observed at the interface and only at random flaws that are a result of sample preparation.
Subcritical Kelvin-Helmholtz instability in a Hele-Shaw cell.
Meignin, L; Gondret, P; Ruyer-Quil, C; Rabaud, M
2003-06-13
We investigate experimentally the subcritical behavior of the Kelvin-Helmholtz instability for a gas-liquid shearing flow in a Hele-Shaw cell. The subcritical curve separating the solutions of a stable plane interface and a fully saturated nonlinear wave train is determined. Experimental results are fitted by a fifth order complex Ginzburg-Landau equation whose linear coefficients are compared to theoretical ones.
Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy
Chen, Zhan
2010-01-01
This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334
Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan
2015-12-01
The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep; ...
2017-04-24
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
On the Ionization and Ion Transmission Efficiencies of Different ESI-MS Interfaces
Cox, Jonathan T.; Marginean, Ioan; Smith, Richard D.; Tang, Keqi
2014-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations. PMID:25267087
On the ionization and ion transmission efficiencies of different ESI-MS interfaces.
Cox, Jonathan T; Marginean, Ioan; Smith, Richard D; Tang, Keqi
2015-01-01
The achievable sensitivity of electrospray ionization mass spectrometry (ESI-MS) is largely determined by the ionization efficiency in the ESI source and ion transmission efficiency through the ESI-MS interface. These performance characteristics are difficult to evaluate and compare across multiple platforms as it is difficult to correlate electrical current measurements to actual analyte ions reaching the detector of a mass spectrometer. We present an effective method to evaluate the overall ion utilization efficiency of an ESI-MS interface by measuring the total gas-phase ion current transmitted through the interface and correlating it to the observed ion abundance measured in the corresponding mass spectrum. Using this method, we systematically studied the ion transmission and ionization efficiencies of different ESI-MS interface configurations, including a single emitter/single inlet capillary, single emitter/multi-inlet capillary, and a subambient pressure ionization with nanoelectrospray (SPIN) MS interface with a single emitter and an emitter array, respectively. Our experimental results indicate that the overall ion utilization efficiency of SPIN-MS interface configurations exceeds that of the inlet capillary-based ESI-MS interface configurations.
2014-01-01
Background Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes. PMID:25077693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less
Interface fluid syndrome in human eye bank corneas after LASIK: causes and pathogenesis.
Dawson, Daniel G; Schmack, Ingo; Holley, Glenn P; Waring, George O; Grossniklaus, Hans E; Edelhauser, Henry F
2007-10-01
To evaluate the effects of corneal edema on human donor corneas that had previous LASIK using a laboratory model with histologic and ultrastructural correlations. Experimental study. Thirty human eye bank corneas from 15 donors (mean age +/- standard deviation, 49.9+/-8.9 years) who had had previous LASIK surgery (2-8 years before death). The corneas were mounted in an artificial anterior chamber and the corneal endothelium was perfused for up to 5.0 hours with 0.9% saline solution (endothelial cell damage group) or BSS Plus at a pressure of 15 mmHg (control group), or BSS Plus at a pressure of 55 mmHg (high-pressure group). The corneas were evaluated by confocal and specular microscopy before, during, and at the end of the experimental period. Subsequently, the specimens were evaluated by light and electron microscopy. Corneal thickness, reflectivity, histology, and ultrastructure. Endothelial cell damage resulted in an increased (141.5+/-38.8 microm) total corneal thickness relative to controls (52.3+/-33.7 microm), whereas high pressure resulted in a decreased thickness (24.8+/-14.1 microm) relative to controls. This ultimately was due to swelling of the LASIK interface in both groups and swelling of the residual stromal bed (RSB) in the endothelial cell damage group or compression of the RSB and, possibly, the flap in the high-pressure group. A significant increase in corneal reflectivity at the LASIK interface occurred in both groups, primarily due to varying degrees of fluid accumulation and associated hydropic keratocyte degeneration, as well as increased corneal reflectivity in the RSB only in the endothelial cell damage group. After LASIK surgery, edematous corneas preferentially hydrate and swell in the paracentral and central interface wound, commonly resulting in a hazy corneal appearance primarily due to keratocyte hydropic degeneration. More severe corneal edema is characterized by the formation of an optically empty space corresponding to an interface fluid pocket. The spectrum of interface fluid syndrome can be described in 3 stages.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.
1992-01-01
The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic field results. Similarly addition of the Soret effect does not explain the flight and magnetic field results.
Vibrational spectroscopy of water at interfaces
Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.
2011-01-01
Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305
An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre
NASA Astrophysics Data System (ADS)
Tang, H.; Barthelat, F.; Espinosa, H. D.
2007-07-01
In order to better understand the strengthening mechanism observed in nacre, we have developed an interface computational model to simulate the behavior of the organic present at the interface between aragonite tablets. In the model, the single polymer-chain behavior is characterized by the worm-like-chain (WLC) model, which is in turn incorporated into the eight-chain cell model developed by Arruda and Boyce [Arruda, E.M., Boyce, M.C., 1993a. A three-dimensional constitutive model for the large stretches, with application to polymeric glasses. Int. J. Solids Struct. 40, 389-412] to achieve a continuum interface constitutive description. The interface model is formulated within a finite-deformation framework. A fully implicit time-integration algorithm is used for solving the discretized governing equations. Finite element simulations were performed on a representative volume element (RVE) to investigate the tensile response of nacre. The staggered arrangement of tablets and interface waviness obtained experimentally by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M., Espinosa, H.D., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55 (2), 306-337] was included in the RVE simulations. The simulations showed that both the rate-dependence of the tensile response and hysteresis loops during loading, unloading and reloading cycles were captured by the model. Through a parametric study, the effect of the polymer constitutive response during tablet-climbing and its relation to interface hardening was investigated. It is shown that stiffening of the organic material is not required to achieve the experimentally observed strain hardening of nacre during tension. In fact, when ratios of contour length/persistent length experimentally identified are employed in the simulations, the predicted stress-strain behavior exhibits a deformation hardening consistent with the one measured experimentally and also captured by the phenomenological cohesive model used in the study carried out by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M., Espinosa, H.D., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55 (2), 306-337]. The simulation results also reveal that the bulk modulus of the polymer controls the rate of hardening, feature not captured by more simple cohesive laws.
Two Growth Modes of Graphitic Carbon Nanofibers with Herring-Bone Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkulov, Igor A; Melechko, Anatoli Vasilievich; Wells, Jack C
2005-01-01
A simple mathematical model of the carbon nanofiber catalytic growth process is presented. Two major types of the fiber-catalyst interface shapes have been identified and described having qualitatively different structure in the center of a nanofiber. Presently, we discuss that the appearance of the irregular structure in the nanofiber central area is a result of curved-interface-growth kinematics. We suggest the method to determine the phenomenological parameters of the developed model from experimental data.
Two growth modes of graphitic carbon nanofibers with herring-bone structure
NASA Astrophysics Data System (ADS)
Merkulov, I. A.; Meleshko, A. V.; Wells, J. C.; Cui, H.; Merkulov, V. I.; Simpson, M. L.; Lowndes, D. H.
2005-07-01
A simple mathematical model of the carbon nanofiber catalytic growth process is presented. Two major types of the fiber-catalyst interface shapes have been identified and described having qualitatively different structure in the center of a nanofiber. Presently, we discuss that the appearance of the irregular structure in the nanofiber central area is a result of curved-interface-growth kinematics. We suggest the method to determine the phenomenological parameters of the developed model from experimental data.
The nature of the Fe–graphene interface at the nanometer level
Cattelan, M.; Peng, G. W.; Cavaliere, E.; ...
2014-12-22
The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Here, calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.
On the generation and evolution of internal gravity waves
NASA Technical Reports Server (NTRS)
Lansing, F. S.; Maxworthy, T.
1984-01-01
The tidal generation and evolution of internal gravity waves is investigated experimentally and theoretically using a two-dimensional two-layer model. Time-dependent flow is created by moving a profile of maximum submerged depth 7.7 cm through a total stroke of 29 cm in water above a freon-kerosene mixture in an 8.6-m-long 30-cm-deep 20-cm-wide transparent channel, and the deformation of the fluid interface is recorded photographically. A theoretical model of the interface as a set of discrete vortices is constructed numerically; the rigid structures are represented by a source distribution; governing equations in Lagrangian form are obtained; and two integrodifferential equations relating baroclinic vorticity generation and source-density generation are derived. The experimental and computed results are shown in photographs and graphs, respectively, and found to be in good agreement at small Froude numbers. The reasons for small discrepancies in the position of the maximum interface displacement at large Froude numbers are examined.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
Liu, Donghuan; Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism
Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651
Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface
NASA Astrophysics Data System (ADS)
Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.
2018-03-01
Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
The UMLS Knowledge Sources: Tools for Building Better User Interfaces
Lindberg, Donald A. B.; Humphreys, Betsy L.
1990-01-01
The current focus of the National Library of Medicine's Unified Medical Language System (UMLS) project is the development, testing, and evaluation of the first versions of three new knowledge sources: the Metathesaurus, the Semantic Network, and the Information Sources Map. These three knowledge sources can be used by interface programs to conduct an intelligent interaction with the user and to make the conceptual link between the user's question and relevant machine-readable information. NLM is providing experimental copies of the initial versions of the UMLS knowledge sources in exchange for feedback on ways they can and should be improved. The hope is that the results of such experimentation will provide both immediate improvements in biomedical information service and useful suggestions for enhancements to the UMLS.
Tang, Muh-Chyun; Liu, Ying-Hsang; Wu, Wan-Ching
2013-09-01
Previous research has shown that information seekers in biomedical domain need more support in formulating their queries. A user study was conducted to evaluate the effectiveness of a metadata based query suggestion interface for PubMed bibliographic search. The study also investigated the impact of search task familiarity on search behaviors and the effectiveness of the interface. A real user, user search request and real system approach was used for the study. Unlike tradition IR evaluation, where assigned tasks were used, the participants were asked to search requests of their own. Forty-four researchers in Health Sciences participated in the evaluation - each conducted two research requests of their own, alternately with the proposed interface and the PubMed baseline. Several performance criteria were measured to assess the potential benefits of the experimental interface, including users' assessment of their original and eventual queries, the perceived usefulness of the interfaces, satisfaction with the search results, and the average relevance score of the saved records. The results show that, when searching for an unfamiliar topic, users were more likely to change their queries, indicating the effect of familiarity on search behaviors. The results also show that the interface scored higher on several of the performance criteria, such as the "goodness" of the queries, perceived usefulness, and user satisfaction. Furthermore, in line with our hypothesis, the proposed interface was relatively more effective when less familiar search requests were attempted. Results indicate that there is a selective compatibility between search familiarity and search interface. One implication of the research for system evaluation is the importance of taking into consideration task familiarity when assessing the effectiveness of interactive IR systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kera, Satoshi; Hosokai, Takuya; Duhm, Steffen
2018-06-01
Understanding the mechanisms of energy-level alignment and charge transfer at the interface is one of the key issues in realizing organic electronics. However, the relation between the interface structure and the electronic structure is still not resolved in sufficient detail. An important character of materials used in organic electronics is the electronic localization of organic molecules at interfaces. To elucidate the impact of the molecular orbital distribution on the electronic structure, detailed structural information is required, particularly the vertical bonding distance at the interface, which is a signature of the interaction strength. We describe the recent progress in experimental studies on the impact of the molecule-metal interaction on the electronic structure of organic-metal interfaces by using various photoelectron spectroscopies, and review the results, focusing on the X-ray standing wave technique, to demonstrate the evaluation of the vertical bonding distance.
Autonomous assistance navigation for robotic wheelchairs in confined spaces.
Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F
2010-01-01
In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.
Computational Modeling of Interfacial Behaviors in Nanocomposite Materials
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2017-01-01
Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123
The stability and half-metallicity of (001) surface and (001) interface based on zinc blende MnAs
NASA Astrophysics Data System (ADS)
Han, Hongpei; Feng, Tuanhui; Zhang, Chunli; Feng, Zhibo; Li, Ming; Yao, K. L.
2018-06-01
Motivated by the growth of MnAs/GaAs thin films in many experimental researches, we investigate the electronic and magnetic properties of bulk, (001) surfaces and (001) interfaces for zinc blende MnAs by means of first-principle calculations. It is confirmed that zinc blende MnAs is a nearly half-metallic ferromagnet with 4.00 μB magnetic moment. The calculated density of states show that the half-metallicity exists in As-terminated (001) surface while it is lost in Mn-terminated (001) surface. For the (001) interfaces of MnAs with semiconductor GaAs, it is found that As-Ga and Mn-As interfaces not only have higher spin polarization but also are more stable among the four considered interfaces. Our results would be helpful to grow stable and high polarized thin films or multilayers for the practical applications of spintronic devices.
Measurements of interfacial thermal contact conductance between pressed alloys at low temperatures
NASA Astrophysics Data System (ADS)
Zheng, Jiang; Li, Yanzhong; Chen, Pengwei; Yin, Geyuan; Luo, Huaihua
2016-12-01
Interfacial thermal contact conductance is the primary factor limiting the heat transfer in many cryogenic engineering applications. This paper presents an experimental apparatus to measure interfacial thermal contact conductance between pressed alloys in a vacuum environment at low temperatures. The measurements of thermal contact conductance between pressed alloys are conducted by using the developed apparatus. The results show that the contact conductance increases with the decrease of surface roughness, the increase of interface temperature and contact pressure. The temperature dependence of thermal conductivity and mechanical properties is analyzed to explain the results. Thermal contact conductance of a pair of stainless steel specimens is obtained in the interface temperature range of 135-245 K and in the contact pressure range of 1-9 MPa. The results are regressed as a power function of temperature and load. Thermal conductance is also obtained between aluminums as well as between stainless steel and aluminum. The load exponents of the regressed relations for different contacts are compared. Existing theoretical models (the Cooper-Mikic-Yovanovich plastic model, the Mikic elastic model and the improved Kimura model) are reviewed and compared with the experimental results. The Cooper-Mikic-Yovanovich model predictions are found to be in good agreement with experimental results, especially with measurements between aluminums.
Quantitative characterization of arc discharge as vacuum interface
Huang, S.; Zhu, K.; Lu, Y. R.; ...
2014-12-19
An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter,more » and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.« less
NASA Astrophysics Data System (ADS)
He, Yuchen; Uehara, Satoshi; Takana, Hidemasa; Nishiyama, Hideya
2018-01-01
Advanced oxidation processes using hydroxyl radicals (ṡOH) generated inside bubbles in water has drawn widely interest for the high oxidation potential of OH radical to decompose persistent organic pollutants such as dioxins and humic acid for water purification. In this study, a two-dimensional diffusion model for a nano-pulse discharged bubble in water is established. Based on the experimental results of streamer propagation inside a bubble, the diffusion processes around the bubble interface and reactions of chemical species in liquids are simulated. The simulation results show that OH radicals can diffuse only several micrometers away from the bubble interface in water. Furthermore, the optimal operating voltage and frequency conditions for OH generation is obtained by comparing the OH concentration in water obtained from numerical simulation with that measured by spectroscopy in experiment.
NASA Astrophysics Data System (ADS)
Dai, Chengda; Hu, Jianbo; Tan, Hua
2009-08-01
LiF single crystal was used as transparent window (anvil) to tamp the shock-induced free surface expansion of Ta specimen, and the Ta/LiF interface temperature was measured under shock compression using optical pyrometry technique. The shock temperatures and/or melting temperatures of Ta up to ˜400 GPa were extracted from the observed interface temperatures based on the Tan-Ahrens' model for one-dimensional heat conduction across metal/window ideal interface in which initial melting and subsequent solidification were considered under shock loading. The obtained data within the experimental uncertainties are consistent with the results from high-pressure sound velocity measurements. The temperature of the partial melting on Ta Hugoniot is estimated to be ˜9700 K at 300 GPa, supported by available results from theoretical calculations.
Deciphering Molecular Mechanisms of Interface Buildup and Stability in Porous Si/Eumelanin Hybrids
Pinna, Elisa; Melis, Claudio; Antidormi, Aleandro; Cardia, Roberto; Sechi, Elisa; Cappellini, Giancarlo; Colombo, Luciano
2017-01-01
Porous Si/eumelanin hybrids are a novel class of organic–inorganic hybrid materials that hold considerable promise for photovoltaic applications. Current progress toward device setup is, however, hindered by photocurrent stability issues, which require a detailed understanding of the mechanisms underlying the buildup and consolidation of the eumelanin–silicon interface. Herein we report an integrated experimental and computational study aimed at probing interface stability via surface modification and eumelanin manipulation, and at modeling the organic–inorganic interface via formation of a 5,6-dihydroxyindole (DHI) tetramer and its adhesion to silicon. The results indicated that mild silicon oxidation increases photocurrent stability via enhancement of the DHI–surface interaction, and that higher oxidation states in DHI oligomers create more favorable conditions for the efficient adhesion of growing eumelanin. PMID:28753933
Partsch, Hugo; Clark, Michael; Bassez, Sophie; Benigni, Jean-Patrick; Becker, Francis; Blazek, Vladimir; Caprini, Joseph; Cornu-Thénard, André; Hafner, Jürg; Flour, Mieke; Jünger, Michael; Moffatt, Christine; Neumann, Martino
2006-02-01
Interface pressure and stiffness characterizing the elastic properties of the material are the parameters determining the dosage of compression treatment and should therefore be measured in future clinical trials. To provide some recommendations regarding the use of suitable methods for this indication. This article was formulated based on the results of an international consensus meeting between a group of medical experts and representatives from the industry held in January 2005 in Vienna, Austria. Proposals are made concerning methods for measuring the interface pressure and for assessing the stiffness of a compression device in an individual patient. In vivo measurement of interface pressure is encouraged when clinical and experimental outcomes of compression treatment are to be evaluated.
Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface
2016-01-01
In this study, we evaluated photosensitized chemistry at the air–sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1–10 mg L–1) as a proxy for dissolved organic matter, and nonanoic acid (0.1–10 mM), a fatty acid proxy which formed an organic film at the air–water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm–3, illustrating the production of unsaturated compounds by chemical reactions at the air–water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air–sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860
Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.
2016-01-01
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615
Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M
2016-07-25
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
Cells on Gels: Cell Behavior at the Air-Gel Interface
NASA Astrophysics Data System (ADS)
O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas
Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.
NASA Astrophysics Data System (ADS)
Muñoz-Reja, Mar; Távara, Luis; Mantič, Vladislav
A recently proposed criterion is used to study the behavior of debonds produced at a fiber-matrix interface. The criterion is based on the Linear Elastic-(Perfectly) Brittle Interface Model (LEBIM) combined with a Finite Fracture Mechanics (FFM) approach, where the stress and energy criteria are suitably coupled. Special attention is given to the discussion about the symmetry of the debond onset and growth in an isolated single fiber specimen under uniaxial transverse tension. A common composite material system, glass fiber-epoxy matrix, is considered. The present methodology uses a two-dimensional (2D) Boundary Element Method (BEM) code to carry out the analysis of interface failure. The present results show that a non-symmetrical interface crack configuration (debonds at one side only) is produced by a lower critical remote load than the symmetrical case (debonds at both sides). Thus, the non-symmetrical solution is the preferred one, which agrees with the experimental evidences found in the literature.
Non-uniform solute segregation at semi-coherent metal/oxide interfaces
Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; ...
2015-08-26
The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure atmore » metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. As a result, fundamental thermodynamic concepts – the Hume-Rothery rules and the Ellingham diagram – qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.« less
Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Ang, L. K.; Zubair, M.
Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.
High temperature microelectrophoresis studies of the solid oxide/water interface
NASA Astrophysics Data System (ADS)
Fedkin, Mark Valentinovich
Metal oxides are abundant components of geo-environmental systems and are widely used materials in industry. Many practical applications of oxide materials require the knowledge of their surface properties at both ambient and elevated temperatures. Due to substantial technical challenges associated with experimental studies of solid/water interfaces at elevated temperatures, consistent data on adsorption, surface charge, and zeta potential for most oxide materials are limited to temperatures less than 100°C. A high temperature microelectrophoresis technique, developed in this study, made it possible to extend the zeta potential measurements at the solid oxide/water interface to 200°C. The design of the high temperature electrophoresis cell allowed for the visual microscopic observation of the electrophoretic movement of suspended particles through pressure-tight sapphire windows. The electrophoretic mobilities of metal oxide particles suspended in aqueous solutions were measured in a DC electric field as a function of pH, ionic strength, and temperature. The experimental procedure and methods for evaluation of the main experimental parameters (electrophoretic mobility, electric field strength, high temperature pH, and cell constant) have been developed. Zeta potentials were calculated from the experimental data using O'Brien and White's (1978) numerical solution for electrophoretic mobility equation. Zeta potentials and isoelectric points (IEP) of the metal oxide/aqueous solution interface were experimentally determined for ZrO2, TiO 2(rutile), and alphaAl2O3 at 25, 120, and 200°C. The background solutions used for the preparation of suspensions were pure H2O, NaCl(aq) (10-4--10-2 mol.kg-1), and SrCl2 (10-4 mol.kg, for TiO2). For all studied materials, the IEPs were found to regularly decrease with increasing temperature, which agrees with available theoretical predictions. Thermodynamic functions, including Gibbs energy, enthalpy, and heat capacity, were estimated for the H +/OH- adsorption from the experimental IEP data using the 1-pK model of the oxide/water interface. The experimental information obtained in this study combined with data from potentiometric titration and other experimental methods form the basis for future theoretical studies of the electrical double layer at the oxide/water interface.
Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
Li, Dayong; Jing, Dalei; Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng
2016-11-01
Surface nanobubbles, which are nanoscopic or microscopic gaseous domains forming at the solid/liquid interface, have a strong impact on the interface by changing the two-phase contact to a three-phase contact. Therefore, they are believed to affect the boundary condition and liquid flow. However, there are still disputes in the theoretical studies as to whether the nanobubbles can increase the slip length effectively. Furthermore, there are still no direct experimental studies to support either side. Therefore, an intensive study on the effective slip length for flows over bare surfaces with nanobubbles is essential for establishing the relation between nanobubbles and slip length. Here, we study the effect of nanobubbles on the slippage experimentally and theoretically. Our experimental results reveal an increase from 8 to 512 nm in slip length by increasing the surface coverage of nanobubbles from 1.7 to 50.8% and by decreasing the contact angle of nanobubbles from 42.8 to 16.6°. This is in good agreement with theoretical results. Our results indicate that nanobubbles could always act as a lubricant and significantly increase the slip length. The surface coverage, height, and contact angle are key factors for nanobubbles to reduce wall friction.
Zakeri, Khalil
2017-01-11
This Topical Review presents an overview of the recent experimental results on the quantitative determination of the magnetic exchange parameters in ultrathin magnetic films and multilayers grown on different substrates. The experimental approaches for probing both the symmetric Heisenberg and the antisymmetric Dzyaloshinskii-Moriya exchange interaction in ultrathin magnetic films and at interfaces are discussed in detail. It is explained how the experimental spectrum of magnetic excitations can be used to quantify the strength of these interactions.
NASA Astrophysics Data System (ADS)
Ohta, Hiromichi; Watanabe, Takanobu; Ohdomari, Iwao
2008-10-01
Potential energy distribution of interstitial O2 molecule in the vicinity of SiO2/Si(001) interface is investigated by means of classical molecular simulation. A 4-nm-thick SiO2 film model is built by oxidizing a Si(001) substrate, and the potential energy of an O2 molecule is calculated at Cartesian grid points with an interval of 0.05 nm in the SiO2 film region. The result shows that the potential energy of the interstitial site gradually rises with approaching the interface. The potential gradient is localized in the region within about 1 nm from the interface, which coincides with the experimental thickness of the interfacial strained layer. The potential energy is increased by about 0.62 eV at the SiO2/Si interface. The result agrees with a recently proposed kinetic model for dry oxidation of silicon [Phys. Rev. Lett. 96, 196102 (2006)], which argues that the oxidation rate is fully limited by the oxidant diffusion.
Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.
2011-03-01
Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim
2014-12-28
Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less
Nonlinear optical studies of aqueous interfaces, polymers, and nanowires
NASA Astrophysics Data System (ADS)
Onorato, Robert Michael
Understanding the structure and composition of aqueous interfaces is one of the most important current problems in modern science. Aqueous interfaces are ubiquitous in Nature, ranging from aerosols to cellular structures. Aerosol chemistry is presently the most significant unknown factor in predicting climate change, and an understanding of the chemistry that occurs at aerosol interfaces would significantly improve climate models. Similarly, the nature of aqueous biological interfaces has a profound effect on the structure and function of proteins and other biological structures. Despite the importance of these problems, aqueous interfaces remain incompletely understood due to the challenges of experimentally probing them. Recent experimental and theoretical results have firmly established the existence of enhanced concentrations of selected ions at the air/water interface. In this dissertation, I use an interface-specific technique, UV second harmonic generation (SHG), to further investigate the adsorption of ions to the air/water interface and to extend the study of ion adsorption towards more biologically relevant systems, alcohol/water interfaces. In Chapter 2, I describe resonant UV-SHG studies of the strongly chaotropic thiocyanate ion adsorbed to the interface formed by water and a monolayer of dodecanol, wherein the Gibbs free energy of adsorption was determined to be -6.7 +/- 1.1 and -6.3 +/- 1.8 kJ/mol for sodium and potassium thiocyanate, respectively, coincident with the value determined for thiocyanate at the air/water interface. Interestingly, at concentrations near and above 4 M, the resonant SHG signal increases discontinuously, indicating a structural change in the interfacial region. Recent experimental and theoretical work has demonstrated that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. In Chapter 3, UV-SHG resonant with the bromide charge-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical properties of KNbO3 nanowires are studied. Using SHG and sum frequency generation, efficient nonlinear optical frequency conversion is demonstrated in single KNbO3 nanowires that act as optical waveguides, yielding a coherent tunable subwavelength light source.
NASA Astrophysics Data System (ADS)
Couallier, E.; Riaublanc, A.; David Briand, E.; Rousseau, B.
2018-05-01
An artificial oil-in-water emulsion analogous to those found in bioresources or food matrices is simulated and studied experimentally. It is composed of one of the major natural free fatty acids (the oleic acid, OA) and the corresponding triacylglyceride (trioleic glyceride, or triolein, GTO). Because of the large time and length scales involved, the molecular simulations are done with the Martini force field, a coarse-grained model. This allowed us to study the water-OA-GTO system at different compositions with more than 20 000 molecules and up to 2 μs. Interfacial tension was measured using the pendant drop method and compared with molecular simulation results. We observe very good agreement at high OA concentrations and deviations up to 15% at low OA concentrations. The water solubility in the lipid phase is in fair agreement with experiments, between 0.03 and 0.32 mol/l, rising with the OA content. The area occupied by OA and GTO at the interface between water and the pure product fitted with experimental data (AOA = 36.6 Å2 and AGTO = 152.1 Å2). The consistency between simulation and experimental results allowed a structural analysis of the interface. A bilayer structure of the lipids at the water/oil interface is proposed, containing preferentially oleic acid but also triolein. Through all these results, the usefulness of coarse-grained simulation for the description of water-oil interfacial organization is demonstrated. This method will be used later to bring local information on the organization of target compounds, necessary in biomass fractionation processes or food additive formulations, for example.
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.
2013-01-01
In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.
Modeling the interaction of biological cells with a solidifying interface
NASA Astrophysics Data System (ADS)
Chang, Anthony; Dantzig, Jonathan A.; Darr, Brian T.; Hubel, Allison
2007-10-01
In this article, we develop a modified level set method for modeling the interaction of particles with a solidifying interface. The dynamic computation of the van der Waals and drag forces between the particles and the solidification front leads to a problem of multiple length scales, which we resolve using adaptive grid techniques. We present a variety of example problems to demonstrate the accuracy and utility of the method. We also use the model to interpret experimental results obtained using directional solidification in a cryomicroscope.
NASA Astrophysics Data System (ADS)
Cherry, Aaron; Knopp, Jeremy; Aldrin, John C.; Sabbagh, Harold A.; Boehnlein, Thomas; Mooers, Ryan
2013-01-01
There is a need to improve the understanding of the role of interface conditions on eddy current inspections for cracks in multilayer aircraft structures. This paper presents initial experimental and simulated results studying the influence of gaps and contact conditions between two plates with a notch in the second layer. Simulations show an amplification of the eddy current signal for a subsurface notch adjacent to an air gap as opposed to a submerged notch in a solid plate.
Speech-Enabled Interfaces for Travel Information Systems with Large Grammars
NASA Astrophysics Data System (ADS)
Zhao, Baoli; Allen, Tony; Bargiela, Andrzej
This paper introduces three grammar-segmentation methods capable of handling the large grammar issues associated with producing a real-time speech-enabled VXML bus travel application for London. Large grammars tend to produce relatively slow recognition interfaces and this work shows how this limitation can be successfully addressed. Comparative experimental results show that the novel last-word recognition based grammar segmentation method described here achieves an optimal balance between recognition rate, speed of processing and naturalness of interaction.
Modeling of liquid and gas flows in the horizontal layer with evaporation
NASA Astrophysics Data System (ADS)
Lyulin, Yuri; Rezanova, Ekaterina
2017-10-01
Mathematical modeling of two-layer flows in the "ethanol-nitrogen" system on the basis of the exact solutions of a special type is carried out. The influence of the gas flow, temperature and Soret effect on the flow patterns and evaporating processes at the interface is investigated. The results of comparison of the experimental and theoretical data are presented; the dependence of the evaporation intensity at interface of the gas flow rate and temperature is studied.
2001-04-02
The op- tical and electronic properties of Gaq3 are very similar to Alq3 while the photoionization cross section of Ga exceeds Al by a factor of 35.7...interaction layer The investigated interface offers the benefit of the high photoionization cross section of the Ga 2p line allowing well-resolved...corresponding UP HBECs.Downloaded 07 Apr 2004 to 132.250.151.63. Redistribution subject tComparison of our experimental results with theoretical calculations
Experimentally quantifying anion polarizability at the air/water interface.
Tong, Yujin; Zhang, Igor Ying; Campen, R Kramer
2018-04-03
The adsorption of large, polarizable anions from aqueous solution on the air/water interface controls important atmospheric chemistry and is thought to resemble anion adsorption at hydrophobic interfaces generally. While the favourability of adsorption of such ions is clear, quantifying adsorption thermodynamics has proven challenging because it requires accurate description of the structure of the anion and its solvation shell at the interface. In principle anion polarizability offers a structural window, but to the best of our knowledge there has so far been no experimental technique that allowed its characterization with interfacial specificity. Here, we meet this challenge using interface-specific vibrational spectroscopy of Cl-O vibrations of the [Formula: see text] anion at the air/water interface and report that the interface breaks the symmetry of the anion, the anisotropy of [Formula: see text]'s polarizability tensor is more than two times larger than in bulk water and concentration dependent, and concentration-dependent polarizability changes are consistent with correlated changes in surface tension.
Nevmerzhitskiy, N V; Sotskov, E A; Sen'kovskiy, E D; Krivonos, O L; Polovnikov, A A; Levkina, E V; Frolov, S V; Abakumov, S A; Marmyshev, V V
2014-09-01
The results of the experimental study of the Reynolds number effect on the process of the Rayleigh-Taylor (R-T) instability transition into the turbulent stage are presented. The experimental liquid layer was accelerated by compressed gas. Solid particles were scattered on the layer free surface to specify the initial perturbations in some experiments. The process was recorded with the use of a high-speed motion picture camera. The following results were obtained in experiments: (1) Long-wave perturbation is developed at the interface at the Reynolds numbers Re < 10 4 . If such perturbation growth is limited by a hard wall, the jet directed in gas is developed. If there is no such limitation, this perturbation is resolved into the short-wave ones with time, and their growth results in gas-liquid mixing. (2) Short-wave perturbations specified at the interface significantly reduce the Reynolds number Re for instability to pass into the turbulent mixing stage.
NASA Technical Reports Server (NTRS)
Gillham, J. K.
1974-01-01
The results are discussed of the on-line interface of the Torsional Braid Analysis experiment to an Hierarchical Computer System for data acquisition, data reduction and control of experimental variables. Some experimental results are demonstrated and the data reduction procedures are outlined. Several modes of presentation of the final computer-reduced data are discussed in an attempt to elucidate possible interrelations between the thermal variation of the rigidity and loss parameters.
Essaid, Hedeff I.
1990-01-01
A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.
Exploiting three kinds of interface propensities to identify protein binding sites.
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2009-08-01
Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.
An induced current method for measuring zeta potential of electrolyte solution-air interface.
Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2014-02-15
This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
NASA Astrophysics Data System (ADS)
Farhat, Hassan
Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed LBM model provides a flexible numerical platform consisting of various modules which could be used separately or in combination for the study of a variety of colloids and biological suspensions flow deformation problems.
Stranges, P Benjamin; Kuhlman, Brian
2013-01-01
The accurate design of new protein–protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high-resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide-protein interactions, one-sided designs (i.e., where only one of the proteins was mutated) and two-sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface-spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. PMID:23139141
Stranges, P Benjamin; Kuhlman, Brian
2013-01-01
The accurate design of new protein-protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high-resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide-protein interactions, one-sided designs (i.e., where only one of the proteins was mutated) and two-sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface-spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. Copyright © 2012 The Protein Society.
Wang, Baohe; Nie, Yan; Ma, Jing
2018-03-01
Combing molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation, the effect of bioadhesive transition layer on the interfacial compatibility of the pervaporation composite membranes, and the pervaporation performance toward penetrant molecules were investigated. In our previous experimental study, the structural stability and permeability selectivity of the composite membranes were considerably enhanced by the introduction of bioadhesive carbopol (CP). In the present study, the interfacial compatibility and the interfacial energies between the chitosan (CS) separation layer, CP transition layer and the support layer were investigated, respectively. The mobility of polymer chains, free volume in bulk and interface regions were evaluated by the mean-square displacement (MSD) and free volume voids (FFV) analysis. The diffusion and sorption behavior of water/ethanol molecules in bulk and interface regions were characterized. The simulation results of membrane structure have good consistency, indicating that the introduction of CP transition layer improved the interfacial compatibility and interaction between the separation layer and the support layer. Comparing the bulk region of the separation layer, the mobility and free volume of the polymer chain in the interface region decreased and thus reduced the swelling of CS active layer, revealing the increased diffusion selectivity toward the permeated water and ethanol molecules. The strong hydrogen bonds interaction between the COOH of the CP transition layer and water molecules increased the adsorption of water molecules in the interface region. The simulation results were quite consistent with the experimental results. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamics of immiscible liquids in a rotating horizontal cylinder
NASA Astrophysics Data System (ADS)
Kozlov, N. V.; Kozlova, A. N.; Shuvalova, D. A.
2016-11-01
The dynamics of an interface between two immiscible liquids of different density is studied experimentally in a horizontal cylinder at rotation in the gravity field. Two liquids entirely fill the cavity volume, and the container is rotated sufficiently fast so that the liquids are centrifuged. The light liquid forms a column extended along the rotation axis, and the heavy liquid forms an annular layer. Under the action of gravity, the light liquid column displaces steadily along the radius, downwards in the laboratory frame. As a result, fluid oscillations in the cavity frame are excited at the interface, which lead to the generation of a steady streaming, and the fluid comes into a slow lagging rotation with respect to the cylinder walls. The dynamics of the studied system is determined by the ratio of the gravity acceleration to the centrifugal one—the dimensionless acceleration. In experiments, the system is controlled by the means of variation of the rotation rate, i.e., of the centrifugal force. At a critical value of the dimensionless acceleration the circular interface looses stability, and an azimuthal wave is excited. This leads to a strong increase in the interface differential velocity. A theoretical analysis is done based on the theory of centrifugal waves and a frequency equation is obtained. Experimental results are in good agreement with the theory at the condition of small wave amplitudes. Mechanism of steady streaming generation is analyzed based on previously published theoretical results obtained for the limiting case when the light phase is a solid cylinder. A qualitative agreement is found.
Bonthuis, Douwe Jan; Netz, Roland R
2013-10-03
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
Particle Engulfment and Pushing By Solidifying Interfaces
NASA Technical Reports Server (NTRS)
Stefanescu, Doru M.; Mukherjee, Sundeep; Juretzko, Frank Robert; Catalina, A.drian V.; Sen, Subhayu; Curreri, P. A.
2001-01-01
The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since the mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites. The experimental evidence on transparent organic materials, as well as the recent in situ observations on steel demonstrates that there exist a critical velocity of the planar SLI below which particles are pushed ahead of the interface, and above which particles are engulfment. The engulfment of a SiC particle in succinonitrile is exemplified. However, in most commercial alloys dendritic interfaces must be considered. Indeed, most data available on metallic alloys are on dendritic structures. The term engulfment is used to describe incorporation of a particle by a planar or cellular interface as a result of local interface perturbation, as opposed to entrapment that implies particle incorporation at cells or dendrites boundaries. During entrapment the particles are pushed in the intercellular or interdendritic regions and then captured when local solidification occurs. The physics of these two phenomena is fundamentally different.
Conversion of spin current into charge current in a topological insulator: Role of the interface
NASA Astrophysics Data System (ADS)
Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.
2018-05-01
Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.
Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu
2004-01-01
The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.
NASA Astrophysics Data System (ADS)
Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi
2017-04-01
The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.
McNabb, Jaimie; Gray, Rob
2016-01-01
Previous research on smart phone use while driving has primarily focused on phone calls and texting. Drivers are now increasingly using their phone for other activities during driving, in particular social media, which have different cognitive demands. The present study compared the effects of four different smart phone tasks on car-following performance in a driving simulator. Phone tasks were chosen that vary across two factors: interaction medium (text vs image) and task pacing (self-paced vs experimenter-paced) and were as follows: Text messaging with the experimenter (text/other-paced), reading Facebook posts (text/self-paced), exchanging photos with the experimenter via Snapchat (image, experimenter -paced), and viewing updates on Instagram (image, experimenter -paced). Drivers also performed a driving only baseline. Brake reaction times (BRTs) were significantly greater in the text-based conditions (Mean = 1.16 s) as compared to both the image-based conditions (Mean = 0.92 s) and the baseline (0.88 s). There was no significant difference between BRTs in the image-based and baseline conditions and there was no significant effect of task-pacing. Similar results were obtained for Time Headway variability. These results are consistent with the picture superiority effect found in memory research and suggest that image-based interfaces could provide safer ways to “stay connected” while driving than text-based interfaces. PMID:26886099
McNabb, Jaimie; Gray, Rob
2016-01-01
Previous research on smart phone use while driving has primarily focused on phone calls and texting. Drivers are now increasingly using their phone for other activities during driving, in particular social media, which have different cognitive demands. The present study compared the effects of four different smart phone tasks on car-following performance in a driving simulator. Phone tasks were chosen that vary across two factors: interaction medium (text vs image) and task pacing (self-paced vs experimenter-paced) and were as follows: Text messaging with the experimenter (text/other-paced), reading Facebook posts (text/self-paced), exchanging photos with the experimenter via Snapchat (image, experimenter-paced), and viewing updates on Instagram (image, experimenter-paced). Drivers also performed a driving only baseline. Brake reaction times (BRTs) were significantly greater in the text-based conditions (Mean = 1.16 s) as compared to both the image-based conditions (Mean = 0.92 s) and the baseline (0.88 s). There was no significant difference between BRTs in the image-based and baseline conditions and there was no significant effect of task-pacing. Similar results were obtained for Time Headway variability. These results are consistent with the picture superiority effect found in memory research and suggest that image-based interfaces could provide safer ways to "stay connected" while driving than text-based interfaces.
van der Sluis, Olaf; Vossen, Bart; Geers, Marc
2018-01-01
Metal-elastomer interfacial systems, often encountered in stretchable electronics, demonstrate remarkably high interface fracture toughness values. Evidently, a large gap exists between the rather small adhesion energy levels at the microscopic scale (‘intrinsic adhesion’) and the large measured macroscopic work-of-separation. This energy gap is closed here by unravelling the underlying dissipative mechanisms through a systematic numerical/experimental multi-scale approach. This self-containing contribution collects and reviews previously published results and addresses the remaining open questions by providing new and independent results obtained from an alternative experimental set-up. In particular, the experimental studies on Cu-PDMS (Poly(dimethylsiloxane)) samples conclusively reveal the essential role of fibrillation mechanisms at the micro-meter scale during the metal-elastomer delamination process. The micro-scale numerical analyses on single and multiple fibrils show that the dynamic release of the stored elastic energy by multiple fibril fracture, including the interaction with the adjacent deforming bulk PDMS and its highly nonlinear behaviour, provide a mechanistic understanding of the high work-of-separation. An experimentally validated quantitative relation between the macroscopic work-of-separation and peel front height is established from the simulation results. Finally, it is shown that a micro-mechanically motivated shape of the traction-separation law in cohesive zone models is essential to describe the delamination process in fibrillating metal-elastomer systems in a physically meaningful way. PMID:29393908
Interface stability in a slowly rotating, low gravity tank Experiments
NASA Technical Reports Server (NTRS)
Leslie, F.; Gans, R. F.
1986-01-01
Analytical models of liquid in partially-filled rotating tanks predict both the shape of the interface between the liquid and its vapor, and the stability of that interface. The models are of necessity incomplete and experimental data are needed to assess the approximations made. Presented are preliminary experimental studies both in the laboratory and in the low-gravity environment of a free-falling aircraft. Emphasis is placed on bubbles which intersect the container boundaries. Measurements of rotating equilibrium bubble shapes are in agreement with theoretical profiles derived from Laplace's formula. The interface shape depends on the contact angle, the radius of intersection with container, and the ratio of centrifugal force to surface tension.
Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed
2018-01-01
A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
Experimental evidence of non-Amontons behaviour at a multi-contact interface
NASA Astrophysics Data System (ADS)
Scheibert, J.; Prevost, A.; Frelat, J.; Rey, P.; Debrégeas, G.
2008-08-01
We report on normal stress field measurements at the multicontact interface between a rough elastomeric film and a smooth glass sphere under normal load, using an original MEMS-based stress-sensing device. These measurements are compared to Finite-Elements Method (FEM) calculations with boundary conditions obeying locally Amontons' rigid-plastic-like friction law with a uniform friction coefficient. In dry contact conditions, significant deviations are observed which decrease with increasing load. In lubricated conditions, the measured profile recovers almost perfectly the predicted profile. These results are interpreted as a consequence of the finite compliance of the multicontact interface, a mechanism which is not taken into account in Amontons' law.
Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface
Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.
2007-01-01
One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128
Quantification of the Mass Transfer at Fluid Interfaces in Microfluidic Channels
NASA Astrophysics Data System (ADS)
Wismeth, Carina; Manhart, Michael; Niessner, Reinhard; Baumann, Thomas
2017-04-01
Mass transfer rates at interfaces in a complex porous media are relevant in many environmental applications and control the functions of natural filter systems in subsurface environments. The mass transfer at fluid interfaces is associated with interface convection caused by local inhomogeneities in interface tension and hydrodynamic instabilities at the interface. If there is a surface tension gradient along the surface a shear stress jump is generated that results in fluid motion along the surface that is called Marangoni effect. These spontaneous convection currents can lead to an increased mass transfer of the transition component at the phase boundary and to an increased mixing of the phases. Therefore compensatory currents at the interface can have a significant influence on the subsurface transport of contaminants in the groundwater area, especially in the vadose zone. Using microfluidic channels and advanced experimental techniques it is possible to measure the fluid flow and mass transfer rates directly and to quantify the effect of the Marangoni convection on the mass transfer at interfaces between a non-aqueous liquid and water with high temporal and spatial resolution. The use of fluorescent particles as well as the recording and analysis of their trajectories is intended to visualize interfacial processes and to quantify the mass transfer at fluid phase boundaries. Concentration gradients at the interface are analysed by spectroscopic methods and allow an assessment of the enrichment and depletion at the phase boundaries. Extensive test series provide the experimental basis for quantifying and analysing the impact of the Marangoni effect on the mass transfer rates at interfaces in porous media in subsurface aquatic environments. Within this research project we concentrate on the effect of Marangoni convection on the mass transfer near an 1-octanol-water interface, which serves as a well defined proxy for non-aqueous phase liquids in porous media. Experiments and a numerical simulation are closely coupled to provide a generic data set with high reproducibility and used to obtain highly resolved three-dimensional data of mass transfer in two- and three-phase systems to foster the understanding of subsurface transport, especially in the vadose zone.
Interaction of rippled shock wave with flat fast-slow interface
NASA Astrophysics Data System (ADS)
Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong
2018-04-01
The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.
Engin, Ozge; Sayar, Mehmet
2012-02-23
Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society
Manipulating Ferroelectrics through Changes in Surface and Interface Properties
Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu
2017-10-23
Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less
NASA Astrophysics Data System (ADS)
Scalise, Emilio; Wippermann, Stefan; Galli, Giulia; Talapin, Dmitri
Colloidal nanocrystals (NCs) are emerging as cost-effective materials offering exciting prospects for solar energy conversion, light emission and electronic applications. Recent experimental advances demonstrate the synthesis of fully inorganic nanocrystal solids from chemical solution processing. The properties of the NC-solids are heavily determined by the NCs surface and their interactions with the host matrix. However, information on the atomistic structure of such composites is hard to obtain, due to the complexity of the synthesis conditions and the unavailability of robust experimental techniques to probe nanointerfaces at the microscopic level. Here we present a systematic theoretical study of the interaction between InAs and InP NCs with Sn2S64- ligands. Employing a grand canonical ab initio thermodynamic approach we investigate the relative stability of a multitude of configurations possibly realized at the NC-ligand interface. Our study highlights the importance of different structural details and their strong impact on the resulting composite's properties. We show that to obtain a detailed understanding of experimental data it is necessary to take into account complex interfacial structures beyond simplified NC-ligand model interfaces. S. W. acknowledges BMBF NanoMatFutur Grant No. 13N12972. G.G. acknowledges DOE-BES for funding part of this work.
Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.
2016-01-01
Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehozky, Sandor L.
1997-01-01
A numerical model of HgCdTe solidification was implemented using finite the element code FIDAP. Model verification was done using both experimental data and numerical test problems. The model was used to evaluate possible effects of double-diffusion convection in molten material, and microgravity level on concentration distribution in the solidified HgCdTe. Particular attention was paid to incorporation of HgCdTe phase diagram. It was found, that below a critical microgravity amplitude, the maximum convective velocity in the melt appears virtually independent on the microgravity vector orientation. Good agreement between predicted interface shape and an interface obtained experimentally by quenching was achieved. The results of numerical modeling are presented in the form of video film.
Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding
NASA Astrophysics Data System (ADS)
Fox, M. R.; Ghosh, A. K.
2001-08-01
Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.
Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation
2013-02-01
compressive stress at the interface between the composite and steel prior to the sheath’s cut-off. Accordingly, the viscoelastic analysis is used...The hoop-stress profile in figure 6 shows the steel region is in compression , resulting from the winding tension of composite overwrap. The stress...mechanical and thermal loads. Experimental validation of the model is conducted using a high- tensioned composite overwrapped on a steel cylinder. The creep
The Impact of User-Input Devices on Virtual Desktop Trainers
2010-09-01
playing the game more enjoyable. Some of these changes include the design of controllers, the controller interface, and ergonomic changes made to...within subjects experimental design to evaluate young active duty Soldier’s ability to move and shoot in a virtual environment using different input...sufficient gaming proficiency, resulting in more time dedicated to training military skills. We employed a within subjects experimental design to
Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy
NASA Technical Reports Server (NTRS)
Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.
Test method research on weakening interface strength of steel - concrete under cyclic loading
NASA Astrophysics Data System (ADS)
Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan
2018-02-01
The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
A hybrid brain-computer interface-based mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.
A Hybrid Brain-Computer Interface-Based Mail Client
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880
Interactions of anesthetics with the water-hexane interface. A molecular dynamics study
NASA Technical Reports Server (NTRS)
Chipot, C.; Wilson, M. A.; Pohorille, A.
1997-01-01
The free energy profiles characterizing the transfer of nine solutes across the liquid-vapor interfaces of water and hexane and across the water-hexane interface were calculated from molecular dynamics simulations. Among the solutes were n-butane and three of its halogenated derivatives, as well as three halogenated cyclobutanes. The two remaining molecules, dichlorodifluoromethane and 1,2-dichloroperfluoroethane, belong to series of halo-substituted methanes and ethanes, described in previous studies (J. Chem. Phys. 1996, 104, 3760; Chem. Phys. 1996, 204, 337). Each series of molecules contains structurally similar compounds that differ greatly in anesthetic potency. The accuracy of the simulations was tested by comparing the calculated and the experimental free energies of solvation of all nine compounds in water and in hexane. In addition. the calculated and the measured surface excess concentrations of n-butane at the water liquid-vapor interface were compared. In all cases, good agreement with experimental results was found. At the water-hexane interface, the free energy profiles for polar molecules exhibited significant interfacial minima, whereas the profiles for nonpolar molecules did not. The existence of these minima was interpreted in terms of a balance between the free energy contribution arising from solute-solvent interactions and the work to form a cavity that accommodates the solute. These two contributions change monotonically, but oppositely, across the interface. The interfacial solubilities of the solutes, obtained from the free energy profiles, correlate very well with their anesthetic potencies. This is the case even when the Meyer-Overton hypothesis, which predicts a correlation between anesthetic potency and solubility in oil, fails.
Differential wide temperature range CMOS interface circuit for capacitive MEMS pressure sensors.
Wang, Yucai; Chodavarapu, Vamsy P
2015-02-12
We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between -55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%.
Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors
Wang, Yucai; Chodavarapu, Vamsy P.
2015-01-01
We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312
Goossens, Spencer; Mehdizadeh Rahimi, Ali
2017-01-01
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.
NASA Astrophysics Data System (ADS)
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.
2017-03-01
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.
Uncertainty in dual permeability model parameters for structured soils.
Arora, B; Mohanty, B P; McGuire, J T
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.
Uncertainty in dual permeability model parameters for structured soils
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
Physics, mathematics and numerics of particle adsorption on fluid interfaces
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim
2012-11-01
We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.
Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces.
Limmer, David T
2015-12-18
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces
NASA Astrophysics Data System (ADS)
Limmer, David T.
2015-12-01
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Bridgman Crystal Growth of an Alloy with Thermosolutal Convection Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Simpson, James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza
2000-01-01
The solidification of a dilute alloy (bismuth-tin) under Bridgman crystal growth conditions is investigated. Computations are performed in two dimensions with a uniform grid. The simulation includes the species concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed, with no simplifying steady state approximations. Results are obtained under microgravity conditions for pure bismuth, and for Bi-0.1 at.%Sn and Bi-1.0 at.%Sn alloys, and compared with experimental results obtained from crystals grown in the microgravity environment of space. For the Bi-1.0 at.%Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. The concentration-dependence of the melting temperature is incorporated in the model for the Bi-1.0 at.%Sn alloy. Satisfactory correspondence is obtained between the predicted and experimental results in terms of solute concentrations in the solidified crystal.
Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering
NASA Astrophysics Data System (ADS)
Renaud, Gilles
Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.
The design and implementation of a windowing interface pinch force measurement system
NASA Astrophysics Data System (ADS)
Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng
2010-02-01
This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio
2014-10-01
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet's mechanism. The results obtained are compared with those provided by the numerical model.
Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate
NASA Astrophysics Data System (ADS)
Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang
2015-10-01
A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.
Phase nucleation and evolution mechanisms in heterogeneous solids
NASA Astrophysics Data System (ADS)
Udupa, Anirudh
Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed nucleation theory. The experimental results are consistent with the developed theory and show that the theory of entropic dissipation is incorrect. A diffuse-interface computational technique was then developed to simulate the problem of electromigration driven void nucleation and growth in arbitrary geometries. Experimentally known results such as Black's law, existence of the Blech length, effect of interface adhesion energy were reproduced. The simulations were also used to infer the numerical value of the nucleation criterion, based on experimental results in the literature. The problem of electromigration is the result of species diffusion due to imparted momentum from the electrons, and the resulting motion of interface is influenced by surface diffusion along the interface, bulk diffusion, and the current density. Similarly, the formation of intermetallic compounds (IMC) and the resulting interface shape in many systems is the result of limiting effects of bulk diffusion, interfacial reaction, surface energy, and surface diffusion. Thus, the dynamics and stability of the interface formed when Cu and Sn react to form the IMC compound Cu6Sn5 is explored next. This system is of significant relevance to modern microelectronic chip assemblies, where solder joints with significant Cu6Sn5 volume fraction are known to be prone to brittle fracture and shorter useful life. Prior experimental observations have shown the interface to possess either a scalloped, flat or needle shaped morphology. The governing mechanism leading to the observed shape of the interface is not clearly known, and is the focus of the present study. In research unrelated to diffusion driven phase evolution, but involving interfaces nevertheless, in the appendix, the problem of interfacial delamination in Through Silicon Vias (TSV) is studied analytically. Three-dimensional (3D) packages utilizing TSVs are seen as enablers of increased performance and "More than Moore" functionality at the present time. However, the use of TSVs introduce a set of reliability concerns, one of which is the thermo-mechanical stress caused by the mismatch in coefficient of thermal expansion (CTE) between the copper via and the surround- ing silicon. The CTE mismatch, causes high stress zones in and around the copper TSVs, which in turn impede the mobility of electrons in the regions surrounding the TSVs. Further, proximal placing of TSVs for improved electrical performance may be restricted by additional stress induced by TSV-TSV interaction. The increased stress of the region surrounding the TSV also increases the risk of interfacial delamination. In order to ensure reliable functioning of 3D chip stacks, design guidelines are necessary on the excluded "keep-out" zone where stress induced by TSVs will impede transistor functionality. Towards this end, we analytically derive, using elasticity theory, the stress field in and around a doubly periodic arrangement of TSVs subjected to a uniform thermal excursion. The model for stress is used to analytically estimate the conditions for interfacial cracks to propagate, as a function of the system geometry and material properties. (Abstract shortened by ProQuest.).
Experimental and Theoretical Probing of Molecular Dynamics at Catalytic and Ionic Liquid Interfaces
2014-04-01
15. SUBJECT TERMS Surface, interface, photocatalysis , fluorescence yield, ionic liquid, reactive force field 16. SECURITY CLASSIFICATION OF: 17...2, 3 which are promising photocatalysts for hydrogen production via photocatalytic water splitting. 1. Experimental The new experimental setup...Wang, G. Liu, G. Q. Lu, H.-M. Cheng, Int. J. of Hydrogen Energ., 2010, 35, 8199- 8205. 3. F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao, K. Jiang, CrystEngComm
Singh, Anjali; Waghmare, Umesh V
2014-10-21
The structure of grain boundaries (GBs) or interfaces between nano-forms of carbon determines their evolution into 3-D forms with nano-scale architecture. Here, we present a general framework for the construction of interfaces in 2-D h-BN and graphene in terms of (a) stacking faults and (b) growth faults, using first-principles density functional theoretical analysis. Such interfaces or GBs involve deviation from their ideal hexagonal lattice structure. We show that a stacking fault involves a linkage of rhombal and octagonal rings (4 : 8), and a growth fault involves a linkage of paired pentagonal and octagonal rings (5 : 5 : 8). While a growth fault is energetically more stable than a stacking fault in graphene, the polarity of B and N leads to the reversal of their relative stability in h-BN. We show that the planar structure of these interfacing grains exhibits instability with respect to buckling (out-of-plane deformation), which results in the formation of a wrinkle at the grain boundary (GB) and rippling of the structure. Our analysis leads to prediction of new types of low-energy GBs of 2-D h-BN and graphene. Our results for electronic and vibrational signatures of these interfaces and an STM image of the most stable interface will facilitate their experimental characterization, particularly of the wrinkles forming spontaneously at these interfaces.
Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface.
Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W
2017-07-18
The coupled heat and mass transfer that occurs in evaporation is of interest in a large number of fields such as evaporative cooling, distillation, drying, coating, printing, crystallization, welding, atmospheric processes, and pool fires. The temperature jump that occurs at an evaporating interface is of central importance to understanding this complex process. Over the past three decades, thermocouples have been widely used to measure the interfacial temperature jumps at a liquid-vapor interface during evaporation. However, the reliability of these measurements has not been investigated so far. In this study, a numerical simulation of a thermocouple when it measures the interfacial temperatures at a liquid-vapor interface is conducted to understand the possible effects of the thermocouple on the measured temperature and features in the temperature profile. The differential equations of heat transfer in the solid and fluids as well as the momentum transfer in the fluids are coupled together and solved numerically subject to appropriate boundary conditions between the solid and fluids. The results of the numerical simulation showed that while thermocouples can measure the interfacial temperatures in the liquid correctly, they fail to read the actual interfacial temperatures in the vapor. As the results of our numerical study suggest, the temperature jumps at a liquid-vapor interface measured experimentally by using a thermocouple are larger than what really exists at the interface. For a typical experimental study of evaporation of water at low pressure, it was found that the temperature jumps measured by a thermocouple are overestimated by almost 50%. However, the revised temperature jumps are still in agreement with the statistical rate theory of interfacial transport. As well as addressing the specific application of the liquid-vapor temperature jump, this paper provides significant insight into the role that heat transfer plays in the operation of thermocouples in general.
Dose Enhancement near Metal Interfaces in Synthetic Diamond Based X-ray Dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, Dalal
Diamond is an attractive material for medical dosimetry due to its radiation hardness, fast response, chemical resilience, small sensitive volume, high spatial resolution, near-tissue equivalence, and energy and dose rate independence. These properties make diamond a promising material for medical dosimetry compared to other semiconductor detector materials and wider radiation detection applications. This study is focused on one of the important factors to consider in the radiation detector; the influence of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond radiation dosimeters with carbon based electrodes as a function of bias voltages. Monte Carlo (MC) simulations with BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigation. MC simulations show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystal (SC) and one polycrystalline (PC) samples with carbon based electrodes were used. The samples were each mounted inside a tissue equivalent encapsulation design in order to minimize fluence perturbations. Copper, Gold and Lead have been investigated experimentally as generators of photoelectrons using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond detector. The variation in the photocurrent ratio measurements depends on the type of diamond samples, their electrode fabrication and the applied bias voltages indicating that the dose enhancement from diamond-metal interface modifies the electronic performance of the detector.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Hongfeng; Shen, Zongbao; Li, Jianwen; Qian, Qing; Liu, Huixia
2016-11-01
A novel laser shock synchronous welding and forming method is introduced, which utilizes laser-induced shock waves to accelerate the flyer plate towards the base plate to achieve the joining of dissimilar metals and forming in a specific shape of mold. The samples were obtained with different laser energies and standoff distances. The surface morphology and roughness of the samples were greatly affected by the laser energy and standoff distances. Fittability was investigated to examine the forming accuracy. The results showed that the samples replicate the mold features well. Straight and wavy interfaces with un-bonded regions in the center were observed through metallographic analysis. Moreover, Energy Disperse Spectroscopy analysis was conducted on the welding interface, and the results indicated that a short-distance elemental diffusion emerged in the welding interface. The nanoindentation hardness of the welding regions was measured to evaluate the welding interface. In addition, the Smoothed Particle Hydrodynamics method was employed to simulate the welding and forming process. It was shown that different standoff distances significantly affected the size of the welding regions and interface waveform characteristics. The numerical analysis results indicated that the opposite shear stress direction and effective plastic strain above a certain threshold are essential to successfully obtain welding and forming workpiece.
Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying
2017-07-19
Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.
Nonlinear fractional waves at elastic interfaces
NASA Astrophysics Data System (ADS)
Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.
2017-11-01
We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.
NASA Astrophysics Data System (ADS)
Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven
2014-10-01
Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.
NASA Astrophysics Data System (ADS)
Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.
2014-05-01
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.
Determination of the frictional coefficient of the implant-antler interface: experimental approach.
Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph
2012-10-01
The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.
Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart
2014-11-01
We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.
Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.
2008-01-01
The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.
NASA Technical Reports Server (NTRS)
Easley, W. C.; Tanguy, J. S.
1986-01-01
An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-01-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932
Properties at the interface of graphene and Ti2C MXene
NASA Astrophysics Data System (ADS)
Paul, Pallavi; Chakraborty, Poulami; Das, Tilak; Nafday, Dhani; Saha-Dasgupta, Tanusri
2017-07-01
Employing ab initio calculations, we characterize the interfaces formed between graphene, a much discussed two-dimensional material, and MXene, another two-dimensional material of recent interest. Our study considering the specific case of Ti2C , a member of the MXene family, shows the formation of chemical bonds between Ti atoms and C atoms of graphene. This results in reconstruction of the electronic structure at the interface, making the interface metallic, though graphene is a zero-gap semiconductor and Ti2C is an antiferromagnetic insulator in their respective native form. The optical and phonon properties of the interfaces are found to be strongly dependent on the stacking arrangement, driven by the nature of chemical-bond formation. Consideration of O-passivated Ti2C is found to weaken the interaction between graphene and Ti2C substantially, making it a physisorption process rather than chemisorption in the unpassivated situation. Our first-principles study is expected to motivate future experimental investigation.
Zhang, Qing-Hang; Tozzi, Gianluca; Tong, Jie
2014-01-01
In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.
Substrate-induced interfacial plasmonics for photovoltaic conversion
Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng
2015-01-01
Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576
NASA Astrophysics Data System (ADS)
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-06-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
Interface traps and quantum size effects on the retention time in nanoscale memory devices
2013-01-01
Based on the analysis of Poisson equation, an analytical surface potential model including interface charge density for nanocrystalline (NC) germanium (Ge) memory devices with p-type silicon substrate has been proposed. Thus, the effects of Pb defects at Si(110)/SiO2, Si(111)/SiO2, and Si(100)/SiO2 interfaces on the retention time have been calculated after quantum size effects have been considered. The results show that the interface trap density has a large effect on the electric field across the tunneling oxide layer and leakage current. This letter demonstrates that the retention time firstly increases with the decrease in diameter of NC Ge and then rapidly decreases with the diameter when it is a few nanometers. This implies that the interface defects, its energy distribution, and the NC size should be seriously considered in the aim to improve the retention time from different technological processes. The experimental data reported in the literature support the theoretical expectation. PMID:23984827
Screening mechanisms at polar oxide heterointerfaces
Hong, Seungbum; Nakhmanson, Serge M.; Fong, Dillon D.
2016-06-16
The interfaces of polar oxide heterostructures can display electronic properties unique from the oxides they border, as they require screening from either internal or external sources of charge. The screening mechanism depends on a variety of factors, including the band structure at the interface, the presence of point defects or adsorbates, whether or not the oxide is ferroelectric, and whether or not an external field is applied. In this review, we discuss both theoretical and experimental aspects of different screening mechanisms, giving special emphasis to ways in which the mechanism can be altered to provide novel or tunable functionalities. Wemore » begin with a theoretical introduction to the problem and highlight recent progress in understanding the impact of point defects on polar interfaces. Different case studies are then discussed, for both the high thickness regime, where interfaces must be screened and each interface can be considered separately, and the low thickness regime, where the degree and nature of screening can be manipulated and the interfaces are close enough to interact. As a result, we end with a brief outlook toward new developments in this rapidly progressing field.« less
Multi-interface level in oil tanks and applications of optical fiber sensors
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José
2018-01-01
On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.
Local mesh adaptation technique for front tracking problems
NASA Astrophysics Data System (ADS)
Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.
1998-09-01
A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.
NASA Astrophysics Data System (ADS)
Milani, G.; Milani, F.
A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI) to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.
High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.
Varanasi, Srinivasa Rao; Subramanian, Yashonath; Bhatia, Suresh K
2018-06-26
Water displays anomalous fast diffusion in narrow carbon nanotubes (CNTs), a behavior that has been reproduced in both experimental and simulation studies. However, little is reported on the effect of bulk water-CNT interfaces, which is critical to exploiting the fast transport of water across narrow carbon nanotubes in actual applications. Using molecular dynamics simulations, we investigate here the effect of such interfaces on the transport of water across arm-chair CNTs of different diameters. Our results demonstrate that diffusion of water is significantly retarded in narrow CNTs due to bulk regions near the pore entrance. The slowdown of dynamics can be attributed to the presence of large energy barriers at bulk water-CNT interfaces. The presence of such intense barriers at the bulk-CNT interface arises due to the entropy contrast between the bulk and confined regions, with water molecules undergoing high translational and rotational entropy gain on entering from the bulk to the CNT interior. The intensity of such energy barriers decreases with increase in CNT diameter. These results are very important for emerging technological applications of CNTs and other nanoscale materials, such as in nanofluidics, water purification, nanofiltration, and desalination, as well as for biological transport processes.
NASA Astrophysics Data System (ADS)
Abu-Alqumsan, Mohammad; Kapeller, Christoph; Hintermüller, Christoph; Guger, Christoph; Peer, Angelika
2017-12-01
Objective. This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the human mental processing required to assess interface actions (2) time (3) subjects. Approach. Three different experiments were designed as to vary primarily with respect to the mental processes that are necessary to assess whether an interface error has occurred or not. The three experiments were carried out with 11 subjects in a repeated-measures experimental design. To study the effect of time, a subset of the recruited subjects additionally performed the same experiments on different days. Main results. The ErrP variability across the different experiments for the same subjects was found largely attributable to the different mental processing required to assess interface actions. Nonetheless, we found that interaction ErrPs are empirically invariant over time (for the same subject and same interface) and to a lesser extent across subjects (for the same interface). Significance. The obtained results may be used to explain across-study variability of ErrPs, as well as to define guidelines for approaches to the ErrP classifier transferability problem.
Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Queen, Steven M.; Sanner, Kurt Gregory
2011-01-01
One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.
Zero-gravity venting of three refrigerants
NASA Technical Reports Server (NTRS)
Labus, T. L.; Aydelott, J. C.; Amling, G. E.
1974-01-01
An experimental investigation of venting cylindrical containers partially filled with initially saturated liquids under zero-gravity conditions was conducted in the NASA Lewis Research Center 5-second zero-gravity facility. The effect of interfacial mass transfer on the ullage pressure response during venting was analytically determined, based on a conduction analysis applied to an infinitely planer (flat) liquid-vapor interface. This pressure response was compared with both the experimental results and an adiabatic decompression computation.
NASA Astrophysics Data System (ADS)
Nunes, Josane C.
1991-02-01
This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared with experimental data. Monte Carlo results compare satisfactory with experimental results for the boundaries considered. The agreement with experimental results for air interfaces is of particular interest because of discrepancies reported previously by another investigator who used data obtained from a different experimental technique. Results from one of the analytical methods differ significantly from the experimental data obtained here. The second analytical method provided data which approximate experimental results to within 30%. This is encouraging but it remains to be determined whether this method performs equally well for other source energies.
2011-01-01
The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. Bilayer polymer/TiO2 cells consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and TiO2, with different thicknesses of the polymer and TiO2 films, were prepared for experimental purposes. The experimental results for the prepared bilayer MEH-PPV/TiO2 cells under different conditions are satisfactorily fitted to the model. Results show that increasing TiO2 or the polymer layer in thickness will reduce the exciton dissociation efficiency in the device and further the photocurrent. It is found that the photocurrent is determined by the competition between the exciton dissociation and charge recombination at the donor/acceptor interface, and the increase in photocurrent under a higher incident light intensity is due to the increased exciton density rather than the increase in the exciton dissociation efficiency. PMID:21711905
Massive radius-dependent flow slippage in carbon nanotubes.
Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric
2016-09-08
Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.
Massive radius-dependent flow slippage in carbon nanotubes
NASA Astrophysics Data System (ADS)
Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric
2016-09-01
Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.
The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, D.; Lohstroh, A.; Albarakaty, H.
2017-11-01
This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.
Zhou, Xiaoyu; Ouyang, Zheng
2016-07-19
Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.
Dispersion relation of a surface wave at a rough metal-air interface
Kotelnikov, Igor; Stupakov, Gennady
2016-11-28
Here, we derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast to previous publications, we assumed that an intrinsic surface impedance due to a finite electric conductivity of the metal can be of the same order as the roughness-induced impedance. We then applied our results to the analysis of a long-standing problem of the discrepancy between the experimental data on the propagation of surface waves in the terahertz range of frequencies and the classical Drude theory.
Three-dimensional video imaging of drainage and imbibition processes in model porous medium
NASA Astrophysics Data System (ADS)
Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, Sabyasachi
2011-03-01
We report experimental results where we have performed three dimensional video imaging of the displacement of an oil phase by an aqueous phase and vice versa in a model porous medium. The stability of the oil water interface was studied as a function of their viscosity ratios, the wettability of the porous medium and the variation in the pore size distribution. Our experiments captures the pore scale information of the displacement process and its role in determining the long time structure of the interface.
A brain-computer interface controlled mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong
2013-01-01
In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.
Pull-out fibers from composite materials at high rate of loading
NASA Technical Reports Server (NTRS)
Amijima, S.; Fujii, T.
1981-01-01
Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.
Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding
NASA Astrophysics Data System (ADS)
Gupta, Vinit; Singh, Arun K.
2018-01-01
In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.
Cosentino, S; Mio, A M; Barbagiovanni, E G; Raciti, R; Bahariqushchi, R; Miritello, M; Nicotra, G; Aydinli, A; Spinella, C; Terrasi, A; Mirabella, S
2015-07-14
Quantum confinement (QC) typically assumes a sharp interface between a nanostructure and its environment, leading to an abrupt change in the potential for confined electrons and holes. When the interface is not ideally sharp and clean, significant deviations from the QC rule appear and other parameters beyond the nanostructure size play a considerable role. In this work we elucidate the role of the interface on QC in Ge quantum dots (QDs) synthesized by rf-magnetron sputtering or plasma enhanced chemical vapor deposition (PECVD). Through a detailed electron energy loss spectroscopy (EELS) analysis we investigated the structural and chemical properties of QD interfaces. PECVD QDs exhibit a sharper interface compared to sputter ones, which also evidences a larger contribution of mixed Ge-oxide states. Such a difference strongly modifies the QC strength, as experimentally verified by light absorption spectroscopy. A large size-tuning of the optical bandgap and an increase in the oscillator strength occur when the interface is sharp. A spatially dependent effective mass (SPDEM) model is employed to account for the interface difference between Ge QDs, pointing out a larger reduction in the exciton effective mass in the sharper interface case. These results add new insights into the role of interfaces on confined systems, and open the route for reliable exploitation of QC effects.
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Catalina, A. V.; Juretzko, Frank R.; Sen, Subhayu; Curreri, P. A.
2003-01-01
The objective of the work on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) include: 1) to obtain fundamental understanding of the physics of particle pushing and engulfment, 2) to develop mathematical models to describe the phenomenon, and 3) to perform critical experiments in the microgravity environment of space to provide benchmark data for model validation. Successful completion of this project will yield vital information relevant to a diverse area of terrestrial applications. With PEP being a long term research effort, this report will focus on advances in the theoretical treatment of the solid/liquid interface interaction with an approaching particle, experimental validation of some aspects of the developed models, and the experimental design aspects of future experiments to be performed on board the International Space Station.
The Mineral–Collagen Interface in Bone
2015-01-01
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581
Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.
1997-01-01
The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.
1988-12-01
coatings based on the Ca(Sr,Y)- Ge-S system can serve as an effective SSEI for Ca anodes in Ca-SOC12 primary cells using 1 M Ca(AlCl4 )2 as the electrolyte...I iy - LFI. CDY 4 EXPERIMENTAL EVALUATION OF THE SYNTHETIC SOLID ELECTROLYTE INTERFACE ( SSEI ) CONCEPT FOR THE PRIMARY Ca-SOC1 2 BA LERY SYSTEM...apply the concept of a synthetic solid electrolyte interface ( SSEI ) to overcome the problem of Ca corro- sion in Ca-SOC 2 primary cells. / To this end
André, Nuno Sequeira; Louchet, Hadrien; Filsinger, Volker; Hansen, Erik; Richter, André
2016-05-30
We compare OFDM and PAM for 400G Ethernet based on a 3-bit high baudrate IM/DD interface at 1550nm. We demonstrate 27Gb/s and 32Gb/s transmission over 10km SSMF using OFDM and PAM respectively. We show that capacity can be improved through adaptation/equalization to achieve 42Gb/s and 64Gb/s for OFDM and PAM respectively. Experimental results are used to create realistic simulations to extrapolate the performance of both modulation formats under varied conditions. For the considered interface we found that PAM has the best performance, OFDM is impaired by quantization noise. When the resolution limitation is relaxed, OFDM shows better performance.
An optical/digital processor - Hardware and applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Sterling, W. M.
1975-01-01
A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.
Numerical study of supersonic combustors by multi-block grids with mismatched interfaces
NASA Technical Reports Server (NTRS)
Moon, Young J.
1990-01-01
A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.
Liquid-vapor interface locations in a spheroidal container under low gravity
NASA Technical Reports Server (NTRS)
Carney, M. J.
1986-01-01
As a part of the general study of liquid behavior in low gravity environments, an experimental investigation was conducted to determine if there are equilibrium liquid-vapor interface configurations that can exist at more than one location in oblate spheroidal containers under reduced gravity conditions. Static contact angles of the test liquids on the spheroid surface were restricted to near 0 deg. The experiments were conducted in a low gravity environment. An oblate spheroidal tank was tested with an eccentricity of 0.68 and a semimajor axis of 2.0 cm. Both quantitative and qualitative data were obtained on the liquid-vapor interface configuration and position inside the container. The results of these data, and their impat on previous work in this area, are discussed. Of particular interest are those equilibrium interface configurations that can exist at multiple locations in the container.
Ribeiro, José A; Silva, F; Pereira, Carlos M
2013-02-05
In this work, the ion transfer mechanism of the anticancer drug daunorubicin (DNR) at a liquid/liquid interface has been studied for the first time. This study was carried out using electrochemical techniques, namely cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The lipophilicity of DNR was investigated at the water/1,6-dichlorohexane (DCH) interface, and the results obtained were presented in the form of an ionic partition diagram. The partition coefficients of both neutral and ionic forms of the drug were determined. The analytical parameter for the detection of DNR was also investigated in this work. An electrochemical DNR sensor is proposed by means of simple ion transfer at the water/DCH interface, using DPV as the quantification technique. Experimental conditions for the analytical determination of DNR were established, and a detection limit of 0.80 μM was obtained.
An adaptive brain actuated system for augmenting rehabilitation
Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.
2014-01-01
For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945
KFC Server: interactive forecasting of protein interaction hot spots.
Darnell, Steven J; LeGault, Laura; Mitchell, Julie C
2008-07-01
The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.
KFC Server: interactive forecasting of protein interaction hot spots
Darnell, Steven J.; LeGault, Laura; Mitchell, Julie C.
2008-01-01
The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611
Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates
NASA Astrophysics Data System (ADS)
Mousavi, S. A. A. Akbari; Zareie, H. R.
2011-01-01
The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.
Origin of the broad three-terminal Hanle signals in Fe/SiO{sub 2}/Si tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shoichi; Tanaka, Masaaki; Nakane, Ryosho
2015-07-20
Lorentzian-shaped broader three-terminal Hanle (B-3TH) signals are observed in Fe/SiO{sub 2}/Si tunnel junction devices at 6–300 K. We propose a spin conducting model, which explains all the characteristics of our experimental results, such as field angle dependence and bias dependence of the B-3TH signals, as well as experimental results reported by other groups. It was found that the shape of the B-3TH signals is determined by the spin depolarization at the Fe/SiO{sub 2} interface caused by local magnetic fields, unlike the conventional understanding. The shape of the B-3TH signals, including narrower and inverted Hanle signals, reflects the magnetic order of anmore » ultrathin paramagnetic layer formed at the Fe/SiO{sub 2} interface. Our model provides a unified explanation of the B-3TH signals observed in three-terminal Hanle measurements.« less
NASA Astrophysics Data System (ADS)
Ferguson, Kevin; Sewell, Everest; Krivets, Vitaliy; Greenough, Jeffrey; Jacobs, Jeffrey
2016-11-01
Initial conditions for the Richtmyer-Meshkov instability (RMI) are measured in three dimensions in the University of Arizona Vertical Shock Tube using a moving magnet galvanometer system. The resulting volumetric data is used as initial conditions for the simulation of the RMI using ARES at Lawrence-Livermore National Laboratory (LLNL). The heavy gas is sulfur hexafluoride (SF6), and the light gas is air. The perturbations are generated by harmonically oscillating the gasses vertically using two loudspeakers mounted to the shock tube which cause Faraday resonance, producing a random short wavelength perturbation on the interface. Planar Mie scattering is used to illuminate the flow field through the addition of propylene glycol particles seeded in the heavy gas. An M=1.2 shock impulsively accelerates the interface, initiating instability growth. Images of the initial condition and instability growth are captured at a rate of 6 kHz using high speed cameras. Comparisons between experimental and simulation results, mixing diagnostics, and mixing zone growth are presented.
CSI Flight Computer System and experimental test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Peri, F., Jr.; Schuler, P.
1993-01-01
This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments.
Fibre-Reinforced Adhesive for Structure Anchoring
NASA Astrophysics Data System (ADS)
Barnat, J.; Bajer, M.
2015-11-01
The topic of this paper is the glue-concrete interface of bonded anchors loaded by tension force. The paper is closely focused on bond strength experiments using high strength concrete up to class C50/60 or higher together with pure epoxy resin and fibre-reinforced resin. The goal of this research is to find the limits of the effective use of such glue types in high performance concrete, and also to verify the most commonly used design methods for bonded anchors. The presented research includes experimental analysis of the glue-concrete interface and the influence of its parameters on anchor behaviour. The presented analysis shows some problems of the 'separated failure modes' approach and also presents experimentally verified bond strength values obtained for the currently most widespread glue types. Results of fibre reinforced epoxy resin are also presented in this paper.
NASA Astrophysics Data System (ADS)
Shiskova, I. N.; Kryukov, A. P.; Levashov, V. Yu
2017-11-01
The paper is devoted to research of the heat and mass transfer processes in liquid and vapor phase on the basis of the uniform approach assuming the through description of liquid, interface and vapor. Multiparticles interactions in liquid will be taken into account. The problem is studied when temperature in the depth of liquid differs from temperature in the vapor region. In this case there are both mass flux and heat flux. The study of influence of the correlations resulting from interactions of molecules set in thin near-surface liquid layers and an interface on intensity of evaporation is made. As a result of calculations the equilibrium line of the liquid-vapor saturation is obtained, which corresponds good enough with experimental data. Distributions of density, temperature, pressure, heat and mass fluxes, both in a liquid and in vapor are also presented.
Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...
2016-03-29
We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less
Frequencies of gravity-capillary waves on highly curved interfaces with edge constraints
NASA Astrophysics Data System (ADS)
Shankar, P. N.
2007-06-01
A recently developed technique to calculate the natural frequencies of gravity-capillary waves in a confined liquid mass with a possibly highly curved free surface is extended to the case where the contact line is pinned. The general technique is worked out in detail for the cases of rectangular and cylindrical containers of circular section, the cases for which experimental data are available. The results of the present method are in excellent agreement with all earlier experimental and theoretical data for the flat static interface case [Benjamin and Scott, 1979. Gravity-capillary waves with edge constraints. J. Fluid Mech. 92, 241-267; Graham-Eagle, 1983. A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. Math. Proc. Camb. Phil. Soc. 94, 553-564; Henderson and Miles, 1994. Surface-wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285-299]. However, the present method is applicable even when the contact angle is not π/2 and the static interface is curved. As a consequence we are able to work out the effects of a curved meniscus on the results of Cocciaro et al. [1993. Experimental investigation of capillary effects on surface gravity waves: non-wetting boundary conditions. J. Fluid Mech. 246, 43-66] where the measured contact angle was 62∘. We find that the meniscus does indeed account, as suggested by Cocciaro et al., for the earlier discrepancy between theory and experiment of about 20 mHz and there is now excellent agreement between the two.
Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik
2016-07-13
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Mechano-Chemical Interactions at Cement-Geomaterial Interfaces in Repository and Borehole Scenarios
NASA Astrophysics Data System (ADS)
Mohagheghi, J. R.; Dewers, T. A.; Matteo, E. N.; Heath, J. E.; Jove Colon, C. F.; Fuller, T.
2017-12-01
A number of factors negatively affect wellbore integrity including interactions at boundaries between cement and surrounding geomaterial. These include mechanical and chemical mechanisms that can lead to wellbore failure. To examine these interactions, potential coupling, and pathways to failure, we discuss progress on an experimental and modeling study involving cement-clay and cement-salt interfaces. A sample shotcrete-bentonite interface from the FEBEX heater test at the Grimsel Test Site in Switzerland is examined using multi-beam scanning electron microscopy (mSEM) at 4 nm resolution over an area 10's of square millimeters. We examine changes in alteration as manifested by pore structural changes as a function of distance from the interface. A parallel effort examines time-dependent changes in interface structure in cement cores in a triaxial coreholder. Cores are exposed to conditions of 70oC, 14 MPa pressure, and small differential loads, with degradation being monitored by effluent pH, pulse-echo ultrasonics, and piston displacement (measuring sample shortening). We will measure the mechanical consequences of interface alteration using nano-indentation. Experimental results are being incorporated as a validation effort in a coupled reactive-transport mechanics model linking the Sandia ALBANY finite element code, the KAYENTA elasto-plastic constitutive model, with the reactive transport code PFLOTRAN. Plans call to apply the model to understanding the evolution of the FEBEX sample, as well as a cement-salt sample from the Waste Isolation Pilot Plant in Carlsbad, New Mexico. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2017-8277 A
NASA Astrophysics Data System (ADS)
Xu, Zhenfeng; Ding, Zhimin; Liang, Bo
2018-03-01
The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/ γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: (\\bar{1}1\\bar{1})_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}1\\bar{1})_{γ } , (\\bar{1}11)_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}11)_{γ } ,[ 1 10]_{{{M}_{ 2 3} {C}_{ 6} }} //[ 1 10]_{γ } . The flat M23C6/ γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/ γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/ γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.
NASA Astrophysics Data System (ADS)
Zhu, JianGuo; Chen, Wei; Xie, HuiMin
2015-03-01
Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abe, T.; Takahashi, T.; Shirai, K.
2017-02-01
In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.
The experimental results of AMTEC and a study of its terrestrial applications in IEE of China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Q.; Tong, J.; Kan, Y.
1997-12-31
The R and D activities in the field of AMTEC research at The Institute of Electrical Engineering, Chinese Academy of Sciences are introduced. The outline of experimental facility with a single tube cell is described. The experimental results so far are reported followed by an analysis of electrical characteristic, in particular, an evaluation of characteristic of BASE/porous electrode interface with the effective sheet resistivity and the electrode efficiency. The approaches for improving device performance are discussed. The terrestrial applications of AMTEC in China are considered as an alternative of conventional diesel-generators. The possibility of AMTEC power supply for some separatemore » sites is predicted.« less
Understanding biomaterial-tissue interface quality: combined in vitro evaluation
NASA Astrophysics Data System (ADS)
Gasik, Michael
2017-12-01
One of the greatest challenges in the development of new medical products and devices remains in providing maximal patient safety, efficacy and suitability for the purpose. A 'good quality' of the tissue-implant interface is one of the most critical factors for the success of the implant integration. In this paper this challenge is being discussed from the point of view of basic stimuli combination to experimental testing. The focus is in particular on bacterial effects on tissue-implant interaction (for different materials). The demonstration of the experimental evaluation of the tissue-implant interface is for dental abutment with mucosal contact. This shows that testing of the interface quality could be the most relevant in controlled conditions, which mimic as possible the clinical applications, but consider variables being under the control of the evaluator.
Interaction between colloidal particles on an oil-water interface in dilute and dense phases.
Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro
2015-05-20
The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.
Midya, Uday Sankar; Bandyopadhyay, Sanjoy
2018-03-29
Ice growth and melting inhibition activities of antifreeze proteins (AFPs) are better explained by the adsorption-inhibition mechanism. Inhibition occurs as a result of the Kelvin effect induced by adsorbed protein molecules onto the surface of seed ice crystal. However, the Kelvin effect has not been explored by the state-of-the-art experimental techniques. In this work, atomistic molecular dynamics simulations have been carried out with Tenebrio molitor antifreeze protein ( TmAFP) placed at ice-water interface to probe the Kelvin effect in the mechanism of AFPs. Simulations show that, below equilibrium melting temperature, ice growth is inhibited through the convex ice-water interface formation toward the water phase and, above equilibrium melting temperature, ice melting is inhibited through the concave ice-water interface formation inward to ice phase. Simulations further reveal that the radius of curvature of the interface formed to stop the ice growth increases with decrease in the degree of supercooling. Our results are in qualitative agreement with the theoretical prediction of the Kelvin effect and thus reveal its operation in the activities of AFPs.
Ion dehydration controls adsorption at the micellar interface: hydrotropic ions.
Lima, Filipe S; Andrade, Marcos F C; Mortara, Laura; Gustavo Dias, Luís; Cuccovia, Iolanda M; Chaimovich, Hernan
2017-11-22
The properties of ionic micelles depend on the nature of the counterion, and these effects become more evident as the ion adsorption at the interface increases. Prediction of the relative extent of ion adsorption is required for rational design of ionic micellar aggregates. Unlike the well understood adsorption of monatomic ions, the adsorption of polyatomic ions is not easily predicted. We combined experimental and computational methods to evaluate the affinity of hydrotropic ions, i.e., ions with polar and apolar regions, to the surface of positively charged micelles. We analyzed cationic micelles of dodecyltrimethylammonium and six hydrotropic counterions: methanesulfonate, trifluoromethanesulfonate, benzenesulfonate, acetate, trifluoroacetate and benzoate. Our results demonstrated that the apolar region of hydrotropic ions had the largest influence on micellar properties. The dehydration of the apolar region of hydrotropic ions upon their adsorption at the micellar interface determined the ion adsorption extension, differently to what was expected based on Collins' law of matching affinities. These results may lead to more general models to describe the adsorption of ions, including polyatomic ions, at the micellar interface.
Bordner, Andrew J.; Gorin, Andrey A.
2008-05-12
Here, protein-protein interactions are ubiquitous and essential for cellular processes. High-resolution X-ray crystallographic structures of protein complexes can elucidate the details of their function and provide a basis for many computational and experimental approaches. Here we demonstrate that existing annotations of protein complexes, including those provided by the Protein Data Bank (PDB) itself, contain a significant fraction of incorrect annotations. Results: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster ismore » relevant based on a diverse set of properties; and (4) finally combining these scores for each entry in order to predict the complex structure. Unlike previous annotation methods, consistent prediction of complexes with identical or almost identical protein content is insured. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions.« less
Time-dependent deformation of titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.
1995-01-01
A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.
Batman-cracks. Observations and numerical simulations
NASA Astrophysics Data System (ADS)
Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.
1991-05-01
To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.
NASA Astrophysics Data System (ADS)
Schoneberg, Johannes; Ohland, Jörg; Eraerds, Patrick; Dalibor, Thomas; Parisi, Jürgen; Richter, Michael
2018-04-01
We present a one-dimensional simulation model for high efficiency Cu(In,Ga)(Se,S)2 solar cells with a novel band alignment at the hetero-junction. The simulation study is based on new findings about the doping concentration of the InxSy:Na buffer and i-ZnO layers as well as comprehensive solar cell characterization by means of capacitance, current voltage, and external quantum efficiency measurements. The simulation results show good agreement with the experimental data over a broad temperature range, suggesting the simulation model with an interface-near region (INR) of approximately 100 nm around the buffer/absorber interface that is of great importance for the solar cell performance. The INR exhibits an inhomogeneous doping and defect density profile as well as interface traps at the i-layer/buffer and buffer/absorber interfaces. These crucial parameters could be accessed via their opposing behavior on the simulative reconstruction of different measurement characteristics. In this work, we emphasize the necessity to reconstruct the results of a set of experimental methods by means of simulation to find the most appropriate model for the solar cell. Lowly doped buffer and intrinsic window layers in combination with a high space charge at the front of the absorber lead to a novel band alignment in the simulated band structure of the solar cell. The presented insights may guide the strategy of further solar cell optimization including (alkali-) post deposition treatments.
NASA Technical Reports Server (NTRS)
Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.
2001-01-01
An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.
Casares, J J Giner; Camacho, L; Romero, M T Martín; Cascales, J J López
2007-12-13
Understanding the structure and dynamics of phospholipid bilayers is of fundamental relevance in biophysics, biochemistry, and chemical physics. Lipid Langmuir monolayers are used as a model of lipid bilayers, because they are much more easily studied experimentally, although some authors question the validity of this model. With the aim of throwing light on this debate, we used molecular dynamics simulations to obtain an atomistic description of a membrane of dimyristoylphosphatidic acid under different surface pressures. Our results show that at low surface pressure the interdigitation between opposite lipids (that is, back-to-back interactions) controls the system structure. In this setting and due to the absence of this effect in the Langmuir monolayers, the behavior between these two systems differs considerably. However, when the surface pressure increases the lipid interdigitation diminishes and so monolayer and bilayer behavior converges. In this work, four computer simulations were carried out, subjecting the phospholipids to lateral pressures ranging from 0.17 to 40 mN/m. The phospholipids were studied in their charged state because this approach is closer to the experimental situation. Special attention was paid to validating our simulation results by comparison with available experimental data, therebeing in general excellent agreement between experimental and simulation data. In addition, the properties of the lipid/solution interface associated with the lipid barometric phase transition were studied.
NASA Astrophysics Data System (ADS)
Mizev, A. I.; Bratsun, D. A.; Shmyrova, A. I.
2017-12-01
The dynamics of the formation of a surface phase in aqueous solutions of surfactants in a tray with the Langmuir barrier system during one compression-expansion cycle of the interface boundary is investigated both experimentally and theoretically. Organic salts of fatty acids such as potassium laurate, caprylate, and acetate, which are members of the same homologous series, were used as surfactants. It is experimentally determined that the dependence of the surface pressure increment measured under the maximum compression of the surface on the volume concentration has a maximum, the position of which is different for all the studied surfactant solutions. It is shown that the position of the maximum corresponds to the concentration value at which a saturated monolayer of surfactant molecules is formed at the interface boundary. A theoretical model that considers the effect of the forced convection arisen in the bulk of the solution upon changing the surface area is proposed for the interpretation of the experimental results. The model allows one to render the main kinetic characteristics of the adsorption/desorption processes involving the compounds under study. A good agreement between the theoretical and experimental results is observed, but there is a discrepancy between them when diffusion is considered to be the only way surfactant molecules are transferred into the bulk phase. Based on the data, a new method for determination of the Langmuir-Shishkovsky constant is proposed.
Interface-induced localization in AlSb/InAs heterostructures
NASA Astrophysics Data System (ADS)
Shaw, M. J.; Briddon, P. R.; Jaros, M.
1995-12-01
The existence of localized states at perfect InSb-like interfaces in AlSb/InAs superlattices is predicted from ab initio pseudopotential calculations. Localized states are predicted in both the valence and conduction bands, the former being identifiable with the interface states proposed by Kroemer, Nguyen, and Brar [J. Vac. Sci. Technol. 10, 1769 (1990)]. The existence of these interface localized states is invoked to explain the reported experimental dependence of the band gap upon interface types in such superlattices.
Structural and electronic properties of the transition layer at the SiO{sub 2}/4H-SiC interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenbo; Wang, Dejun, E-mail: dwang121@dlut.edu.cn; Zhao, Jijun
Using first-principles methods, we generate an amorphous SiO{sub 2}/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiC{sub x}O{sub y} species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC{sub x}O{sub y} structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO{sub 5} configurations, which lead tomore » the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO{sub 5} configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO{sub 2}/SiC interface.« less
Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly.
Tomasini, Michael D; Johnson, Daniel S; Mincer, Joshua S; Simon, Sanford M
2018-01-01
We report a computational model for the assembly of HIV-1 Gag into immature viral particles at the plasma membrane. To reproduce experimental structural and kinetic properties of assembly, a process occurring on the order of minutes, a coarse-grained representation consisting of a single particle per Gag molecule is developed. The model uses information relating the functional interfaces implicated in Gag assembly, results from cryo electron-tomography, and biophysical measurements from fluorescence microscopy, such as the dynamics of Gag assembly at single virions. These experimental constraints eliminated many classes of potential interactions, and narrowed the model to a single interaction scheme with two non-equivalent interfaces acting to form Gags into a hexamer, and a third interface acting to link hexamers together. This model was able to form into a hexameric structure with correct lattice spacing and reproduced biologically relevant growth rates. We explored the effect of genomic RNA seeding punctum growth, finding that RNA may be a factor in locally concentrating Gags to initiate assembly. The simulation results infer that completion of assembly cannot be governed simply by Gag binding kinetics. However the addition of membrane curvature suggests that budding of the virion from the plasma membrane could factor into slowing incorporation of Gag at an assembly site resulting in virions of the same size and number of Gag molecules independent of Gag concentration or the time taken to complete assembly. To corroborate the results of our simulation model, we developed an analytic model for Gag assembly finding good agreement with the simulation results.
Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly
Tomasini, Michael D.; Johnson, Daniel S.; Mincer, Joshua S.
2018-01-01
We report a computational model for the assembly of HIV-1 Gag into immature viral particles at the plasma membrane. To reproduce experimental structural and kinetic properties of assembly, a process occurring on the order of minutes, a coarse-grained representation consisting of a single particle per Gag molecule is developed. The model uses information relating the functional interfaces implicated in Gag assembly, results from cryo electron-tomography, and biophysical measurements from fluorescence microscopy, such as the dynamics of Gag assembly at single virions. These experimental constraints eliminated many classes of potential interactions, and narrowed the model to a single interaction scheme with two non-equivalent interfaces acting to form Gags into a hexamer, and a third interface acting to link hexamers together. This model was able to form into a hexameric structure with correct lattice spacing and reproduced biologically relevant growth rates. We explored the effect of genomic RNA seeding punctum growth, finding that RNA may be a factor in locally concentrating Gags to initiate assembly. The simulation results infer that completion of assembly cannot be governed simply by Gag binding kinetics. However the addition of membrane curvature suggests that budding of the virion from the plasma membrane could factor into slowing incorporation of Gag at an assembly site resulting in virions of the same size and number of Gag molecules independent of Gag concentration or the time taken to complete assembly. To corroborate the results of our simulation model, we developed an analytic model for Gag assembly finding good agreement with the simulation results. PMID:29677208
Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.
Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V
2013-12-23
Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the comprehensive model developed here.
Adaptive Phase Delay Generator
NASA Technical Reports Server (NTRS)
Greer, Lawrence
2013-01-01
There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.
Photovoltaics module interface: General purpose primers
NASA Technical Reports Server (NTRS)
Boerio, J.
1985-01-01
The interfacial chemistry established between ethylene vinyl acetate (EVA) and the aluminized back surface of commercial solar cells was observed experimentally. The technique employed is called Fourier Transform Infrared (FTIR) spectroscopy, with the infrared signal being reflected back from the aluminum surface through the EVA film. Reflection infrared (IR) spectra are given and attention is drawn to the specific IR peak at 1080/cm which forms on hydrolytic aging of the EVA/aluminum system. With this fundamental finding, and the workable experimental techniques, candidate silane coupling agents are employed at the interface, and their effects on eliminating or slowing hydrolytic aging of the EVA/aluminum interface are monitored.
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors
2017-01-01
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.
Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton
2017-08-16
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.
Role of surface defects on the formation of the 2-dimensional electron gas at polar interfaces
NASA Astrophysics Data System (ADS)
Artacho, Emilio; Aguado-Puente, Pablo
2014-03-01
The discovery of a 2-dimensional electron gas (2DEG) at the interface between two insulators, LaAlO3 and SrTiO3, has fuelled a great research activity on this and similar systems in the last years. The electronic reconstruction model, typically invoked to explain the formation of the 2DEG, while being intuitive and successful on predicting fundamental aspects of this phenomenon like the critical thickness of LaAlO3, fails to explain many other experimental observations. Oxygen vacancies, on the other hand, are known to dramatically affect the physical behaviour of this system, but their role at the atomic level is far from well understood. Here we perform ab initio simulations in order to assess whether the formation of oxygen vacancies at the surface of the polar material can account for various recent experimental results that defy the current theoretical understanding of these interfaces. We simulate SrTiO3/LaAlO3 slabs with various concentrations of surface oxygen vacancies and analyze the role of the defects on the formation of the metallic interface, their electrostatic coupling with the 2DEG and the interplay with the different instabilities of the materials involved. Financial support from Spanish MINECO under grant FIS2012-37549-C05-01. Computational resources provided by the Red Espñola de Supercomputación and DIPC.
Droplet formation at the non-equilibrium water/water (w/w) interface
NASA Astrophysics Data System (ADS)
Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung
2017-11-01
The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.
Devineau, Stéphanie; Inoue, Ken-Ichi; Kusaka, Ryoji; Urashima, Shu-Hei; Nihonyanagi, Satoshi; Baigl, Damien; Tsuneshige, Antonio; Tahara, Tahei
2017-04-19
Elucidation of the molecular mechanisms of protein adsorption is of essential importance for further development of biotechnology. Here, we use interface-selective nonlinear vibrational spectroscopy to investigate protein charge at the air/water interface by probing the orientation of interfacial water molecules. We measured the Im χ (2) spectra of hemoglobin, myoglobin, serum albumin and lysozyme at the air/water interface in the CH and OH stretching regions using heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy, and we deduced the isoelectric point of the protein by monitoring the orientational flip-flop of water molecules at the interface. Strikingly, our measurements indicate that the isoelectric point of hemoglobin is significantly lowered (by about one pH unit) at the air/water interface compared to that in the bulk. This can be predominantly attributed to the modifications of the protein structure at the air/water interface. Our results also suggest that a similar mechanism accounts for the modification of myoglobin charge at the air/water interface. This effect has not been reported for other model proteins at interfaces probed by conventional VSFG techniques, and it emphasizes the importance of the structural modifications of proteins at the interface, which can drastically affect their charge profiles in a protein-specific manner. The direct experimental approach using HD-VSFG can unveil the changes of the isoelectric point of adsorbed proteins at various interfaces, which is of major relevance to many biological applications and sheds new light on the effect of interfaces on protein charge.
NASA Astrophysics Data System (ADS)
Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.
2018-01-01
We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.
Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming
2016-01-01
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265
NASA Astrophysics Data System (ADS)
Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime
2018-02-01
It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.
Chagarov, E A; Porter, L; Kummel, A C
2016-02-28
The structural properties of a-HfO2/Ge(2 × 1)-(001) and a-ZrO2/Ge(2 × 1)-(001) interfaces were investigated with and without a GeOx interface interlayer using density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-HfO2 and a-ZrO2 samples were generated using a hybrid classical-DFT MD "melt-and-quench" approach and tested against experimental properties. The oxide/Ge stacks were annealed at 700 K, cooled to 0 K, and relaxed providing the system with enough freedom to form realistic interfaces. For each high-K/Ge stack type, two systems with single and double interfaces were investigated. All stacks were free of midgap states; however, stacks with a GeO(x) interlayer had band-edge states which decreased the band gaps by 0%-30%. These band-edge states were mainly produced by under-coordinated Ge atoms in GeO(x) layer or its vicinity due to deformation, intermixing, and bond-breaking. The DFT-MD simulations show that electronically passive interfaces can be formed either directly between high-K dielectrics and Ge or with a monolayer of GeO2 if the processing does not create or properly passivate under-coordinated Ge atoms and Ge's with significantly distorted bonding angles. Comparison to the charge states of the interfacial atoms from DFT to experimental x-ray photoelectron spectroscopy results shows that while most studies of gate oxide on Ge(001) have a GeO(x) interfacial layer, it is possible to form an oxide/Ge interface without a GeO(x) interfacial layer. Comparison to experiments is consistent with the dangling bonds in the suboxide being responsible for midgap state formation.
2011-01-01
Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS). PMID:21859449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargupta, H.; Stafford, B.; Hamzaoglu, I.
This paper describes an experimental parallel/distributed data mining system PADMA (PArallel Data Mining Agents) that uses software agents for local data accessing and analysis and a web based interface for interactive data visualization. It also presents the results of applying PADMA for detecting patterns in unstructured texts of postmortem reports and laboratory test data for Hepatitis C patients.
TELLTALE: Experiments in a Dynamic Hypertext Environment for Degraded and Multilingual Data.
ERIC Educational Resources Information Center
Pearce, Claudia; Nicholas, Charles
1996-01-01
Presents experimentation results for the TELLTALE system, a dynamic hypertext environment that provides full-text search from a hypertext-style user interface for text corpora that may be garbled by OCR (optical character recognition) or transmission errors, and that may contain languages other than English. (Author/LRW)
Ritchie, Andrew W; Webb, Lauren J
2015-11-05
Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.
X-ray driven reaction front dynamics at calcite-water interfaces
Laanait, Nouamane; Callagon, Erika Blanca R.; Zhang, Zhan; ...
2015-09-18
The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. As a result, these instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, H. L.; Mei, Z. X.; Zhang, Q. H.
2011-05-30
High-quality wurtzite MgZnO film was deposited on Si(111) substrate via a delicate interface engineering using BeO, by which solar-blind ultraviolet photodetectors were fabricated on the n-MgZnO(0001)/p-Si(111) heterojunction. A thin Be layer was deposited on clean Si surface with subsequent in situ oxidation processes, which provides an excellent template for high-Mg-content MgZnO growth. The interface controlling significantly improves the device performance, as the photodetector demonstrates a sharp cutoff wavelength at 280 nm, consistent with the optical band gap of the epilayer. Our experimental results promise potential applications of this technique in integration of solar-blind ultraviolet optoelectronic device with Si microelectronic technologies.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe.
Gurevich, A S; Kochereshko, V P; Bleuse, J; Mariette, H; Waag, A; Akimoto, R
2011-09-07
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe
NASA Astrophysics Data System (ADS)
Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.
2011-09-01
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninokata, H.; Deguchi, A.; Kawahara, A.
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less
Model for thickness dependence of radiation charging in MOS structures
NASA Technical Reports Server (NTRS)
Viswanathan, C. R.; Maserjian, J.
1976-01-01
The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.
Experimental Internet Environment Software Development
NASA Technical Reports Server (NTRS)
Maddux, Gary A.
1998-01-01
Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.
Stereodynamics in state-resolved scattering at the gas–liquid interface
Perkins, Bradford G.; Nesbitt, David J.
2008-01-01
Stereodynamics at the gas–liquid interface provides insight into the important physical interactions that directly influence heterogeneous chemistry at the surface and within the bulk liquid. We investigate molecular beam scattering of CO2 from a liquid perfluoropolyether (PFPE) surface in vacuum [incident energy Einc = 10.6(8) kcal/mol, incident angle θinc = 60°] to specifically reveal rotational angular-momentum directions for scattered molecules. Experimentally, internal quantum state populations and MJ distributions are probed by high-resolution polarization-modulated infrared laser spectroscopy. Analysis of J-state populations reveals dual-channel scattering dynamics characterized by a two-temperature Boltzmann distribution for trapping–desorption and impulsive scattering. In addition, molecular dynamics simulations of CO2 + fluorinated self-assembled monolayers have been used to model CO2 + PFPE dynamics. Experimental results and molecular dynamics simulations reveal highly oriented CO2 distributions that preferentially scatter with “top spin” as a strongly increasing function of J state. PMID:18678907
NASA Technical Reports Server (NTRS)
Oglebay, J. C.
1977-01-01
A thermal analytic model for a 30-cm engineering model mercury-ion thruster was developed and calibrated using the experimental test results of tests of a pre-engineering model 30-cm thruster. A series of tests, performed later, simulated a wide range of thermal environments on an operating 30-cm engineering model thruster, which was instrumented to measure the temperature distribution within it. The modified analytic model is described and analytic and experimental results compared for various operating conditions. Based on the comparisons, it is concluded that the analytic model can be used as a preliminary design tool to predict thruster steady-state temperature distributions for stage and mission studies and to define the thermal interface bewteen the thruster and other elements of a spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V.
2016-09-15
A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.
Understanding biomaterial-tissue interface quality: combined in vitro evaluation
Gasik, Michael
2017-01-01
Abstract One of the greatest challenges in the development of new medical products and devices remains in providing maximal patient safety, efficacy and suitability for the purpose. A ‘good quality’ of the tissue-implant interface is one of the most critical factors for the success of the implant integration. In this paper this challenge is being discussed from the point of view of basic stimuli combination to experimental testing. The focus is in particular on bacterial effects on tissue-implant interaction (for different materials). The demonstration of the experimental evaluation of the tissue-implant interface is for dental abutment with mucosal contact. This shows that testing of the interface quality could be the most relevant in controlled conditions, which mimic as possible the clinical applications, but consider variables being under the control of the evaluator. PMID:28970865
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities
NASA Astrophysics Data System (ADS)
Mikaelian, Karnig O.
2009-02-01
We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A /B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A /B/A configurations such as air/SF6/air gas-curtain experiments. We first consider conventional shock tubes that have a "fixed" boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a "free" boundary—a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction toward the interface(s). Complex acceleration histories are achieved, relevant for inertial confinement fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other and remain to be verified experimentally.
NASA Astrophysics Data System (ADS)
Liu, Shenggang; Li, Jiabo; Li, Jun; Xue, Tao; Tao, Tianjiong; Ma, Heli; Wang, Xiang; Weng, Jidong; Li, Zeren
2018-04-01
A novel method based on signal superimposing has been presented to simultaneously measure the dynamic emissivity and the radiance of a shocked sample/window interface in the near-infrared wavelength. In this method, we have used three rectangle laser pulses to illuminate the sample/window interface via an integrating sphere and expect that the reflected laser pulses from the sample/window interface can be superimposed on its thermal radiation at the shocked steady state by time precision synchronization. In the two proving trials, the second laser pulse reflected from the Al/LiF interface has been successfully superimposed on its thermal radiation despite large flyer velocity uncertainty. The dynamic emissivity and the radiance at 1064 nm have been obtained simultaneously from the superimposing signals. The obtained interface temperatures are 1842 ± 82 K and 1666 ± 154 K, respectively, the corresponding release pressures are 65.7 GPa and 62.6 GPa, and the deduced Hugonoit temperatures are consistent with the theoretical calculations. In comparison, the fitting temperatures from the gray body model are 300-500 K higher than our experimental measurement results and the theoretical calculations.
Intelligent Context-Aware and Adaptive Interface for Mobile LBS
Liu, Yanhong
2015-01-01
Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077
The modular architecture of protein-protein binding interfaces.
Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G
2005-01-04
Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.
Experimental studies of rock fracture behavior related to hydraulic fracture
NASA Astrophysics Data System (ADS)
Ma, Zifeng
The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, Gabriele, E-mail: milani@stru.polimi.it; Olivito, Renato S.; Tralli, Antonio
2014-10-06
The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim ofmore » both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimnyakov, D. A., E-mail: zimnykov@sgu.ru; Sadovoi, A. V.; Vilenskii, M. A.
2009-02-15
Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance ratemore » of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.« less
Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review
Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang
2016-01-01
Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902
Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.
Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing
2018-05-28
Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.
2014-07-01
The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.
A Comparison of Two Control Display Unit Concepts on Flight Management System Training
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1997-01-01
One of the biggest challenges for a pilot in the transition to a 'glass' cockpit is understanding the flight management system (FMS). Because of both the complex nature of the FMS and the pilot-FMS interface, a large portion of transition training is devoted to the FMS. The current study examined the impact of the primary pilot-FMS interface, the control display unit (CDU), on FMS training. Based on the hypothesis that the interface design could have a significant impact on training, an FMS simulation with two separate interfaces was developed. One interface was similar to a current-generation design, and the other was a multiwindows CDU based on graphical user interface techniques. For both application and evaluation reasons, constraints were applied to the graphical CDU design to maintain as much similarity as possible with the conventional CDU. This preliminary experiment was conducted to evaluate the interface effects on training. Sixteen pilots with no FMS experience were used in a between-subjects test. A time-compressed, airline-type FMS training environment was simulated. The subjects were trained to a fixed-time criterion, and performance was measured in a final, full-mission simulation context. This paper describes the technical approach, simulation implementation, and experimental results of this effort.
Speech-recognition interfaces for music information retrieval
NASA Astrophysics Data System (ADS)
Goto, Masataka
2005-09-01
This paper describes two hands-free music information retrieval (MIR) systems that enable a user to retrieve and play back a musical piece by saying its title or the artist's name. Although various interfaces for MIR have been proposed, speech-recognition interfaces suitable for retrieving musical pieces have not been studied. Our MIR-based jukebox systems employ two different speech-recognition interfaces for MIR, speech completion and speech spotter, which exploit intentionally controlled nonverbal speech information in original ways. The first is a music retrieval system with the speech-completion interface that is suitable for music stores and car-driving situations. When a user only remembers part of the name of a musical piece or an artist and utters only a remembered fragment, the system helps the user recall and enter the name by completing the fragment. The second is a background-music playback system with the speech-spotter interface that can enrich human-human conversation. When a user is talking to another person, the system allows the user to enter voice commands for music playback control by spotting a special voice-command utterance in face-to-face or telephone conversations. Experimental results from use of these systems have demonstrated the effectiveness of the speech-completion and speech-spotter interfaces. (Video clips: http://staff.aist.go.jp/m.goto/MIR/speech-if.html)
A Universal Intelligent System-on-Chip Based Sensor Interface
Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo
2010-01-01
The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
Interface roughness mediated phonon relaxation rates in Si quantum dots.
NASA Astrophysics Data System (ADS)
Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib
2015-03-01
Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.
2014-05-28
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less
NASA Astrophysics Data System (ADS)
Singh, Rakesh Kumar; Ramadas, C.; Balachandra Shetty, P.; Satyanarayana, K. G.
2017-04-01
Considering the superior strength properties of polymer based composites over metallic materials, they are being used in primary structures of aircrafts. However, these polymeric materials are much more complex in behaviour due to their structural anisotropy along with existence of different materials unlike in metallic alloys. These pose challenge in flaw detection, residual strength determination and life of a structure with their high susceptibility to impact damage in the form of delaminations/disbonds or cracks. This reduces load-bearing capability and potentially leads to structural failure. With this background, this study presents a method to identify location of delamination interface along thickness of a laminate. Both numerical and experimental studies have been carried out with a view to identify the defect, on propagation, mode conversion and scattering characteristics of fundamental anti-symmetric Lamb mode (Ao) when it passed through a semi-infinite delamination. Further, the reflection and transmission scattering coefficients based on power and amplitude ratios of the scattered waves have been computed. The methodology was applied on numerically simulated delaminations to illustrate the efficacy of the method. Results showed that it could successfully identify delamination interface.
Molina, Ángela; Laborda, Eduardo; Olmos, José Manuel; Millán-Barrios, Enrique
2018-03-06
Analytical expressions are obtained for the study of the net current and individual fluxes across macro- and micro-liquid/liquid interfaces in series as those found in ion sensing with solvent polymeric membranes and in ion-transfer batteries. The mathematical solutions deduced are applicable to any voltammetric technique, independently of the lipophilicity and charge number of the target and compensating ions. When supporting electrolytes of semihydrophilic ions are employed, the so-called double transfer voltammograms have a tendency to merge into a single signal, which complicates notably the modeling and analysis of the electrochemical response. The present theoretical results point out that the appearance of one or two voltammetric waves is highly dependent on the size of the interfaces and on the viscosity of the organic solution. Hence, the two latter can be adjusted experimentally in order to "split" the voltammograms and extract information about the ions involved. This has been illustrated in this work with the experimental study in water | 1,2-dichloroethane | water cells of the transfer of the monovalent tetraethylammonium cation compensated by anions of different lipophilicity, and also of the divalent hexachloroplatinate anion.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements
NASA Astrophysics Data System (ADS)
Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
NASA Astrophysics Data System (ADS)
Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.
2014-09-01
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Andreasen Struijk, Lotte N S; Bentsen, Bo; Gaihede, Michael; Lontis, Eugen R
2017-11-01
For severely paralyzed individuals, alternative computer interfaces are becoming increasingly essential for everyday life as social and vocational activities are facilitated by information technology and as the environment becomes more automatic and remotely controllable. Tongue computer interfaces have proven to be desirable by the users partly due to their high degree of aesthetic acceptability, but so far the mature systems have shown a relatively low error-free text typing efficiency. This paper evaluated the intra-oral inductive tongue computer interface (ITCI) in its intended use: Error-free text typing in a generally available text editing system, Word. Individuals with tetraplegia and able bodied individuals used the ITCI for typing using a MATLAB interface and for Word typing for 4 to 5 experimental days, and the results showed an average error-free text typing rate in Word of 11.6 correct characters/min across all participants and of 15.5 correct characters/min for participants familiar with tongue piercings. Improvements in typing rates between the sessions suggest that typing ratescan be improved further through long-term use of the ITCI.
NASA Astrophysics Data System (ADS)
Yao, Fen; Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Zhang, Xiong; Zhang, Wenwen; Meng, Jian; Zhang, Hongjie
2018-03-01
We investigate the internal charge transfer at the isopolar interfaces in LaTiO3/RO/LaNiO3 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) superlattices by means of density functional theory calculations. The charge transfer from Ti sites to Ni sites in all superlattices is induced by the electronegativity difference between the elements Ti and Ni, and the lanthanide oxides interfaces can modulate the amount of charge transfer. Comparison of the perovskite heterostructures with the different rare-earth interfaces shows that increasing the deviations of bond angles from 180.0° and the oxygen motions near the interfaces enhance charge transfer. The 4f electrons themselves of rare-earth elements have faint influences on charge transfer. In addition, the reasons why our calculated 4f states of Sm and Tm elements disagree with the experimental systems have been provided. It is hoped that all the calculated results could be used to design new functional nanoelectronic devices in perovskite oxides.
Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.
Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N
2011-08-04
The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.
Gas Gun Studies of Interface Wear Effects
NASA Astrophysics Data System (ADS)
Jackson, Tyler; Kennedy, Greg; Thadhani, Naresh
2011-06-01
The characteristics of interface wear were studied by performing gas gun experiments at velocities up to 1 km/s. The approach involved developing coefficients of constitutive strength models for Al 6061 and OFHC-Cu, then using those to design die geometry for interface wear gas gun experiments. Taylor rod-on-anvil impact experiments were performed to obtain coefficients of the Johnson-Cook constitutive strength model by correlating experimentally obtained deformed states of impacted samples with those predicted using ANSYS AUTODYN hydrocode. Simulations were used with validated strength models to design geometry involving acceleration of Al rods through a copper concentric cylindrical angular extrusion die. Experiments were conducted using 7.62 mm and 80 mm diameter gas guns. Differences in the microstructure of the interface layer and microhardness values illustrate that stress-strain conditions produced during acceleration of Al through the hollow concentric copper die, at velocities less than 800 m/s, result in formation of a layer via solid state alloying due to severe plastic deformation, while higher velocities produce an interface layer consisting of melted and re-solidified aluminum.
Statistical characterization of the optical interaction at a supercavitating interface
NASA Astrophysics Data System (ADS)
Walters, Gage; Kane, Tim; Jefferies, Rhett; Antonelli, Lynn
2016-05-01
The optical characteristics of an air/water interface have been widely studied for natural interface formations. However, the creation and management of artificial cavities creates a complicated interaction of gas and liquid that makes optical sensing and communication through the interface challenging. A ventilated cavity can reduce friction in underwater vehicles, but the resulting bubble drastically impedes optical and acoustic communication propagation. The complicated interaction at the air/water boundary yields surface waves and turbulence that make modeling and compensating of the optical properties difficult. Our experimental approach uses a narrow laser beam to probe the surface of the interface and measure the beam deflection and lensing effects. Using a vehicle model with a cavitator in a water tunnel, a laser beam is propagated outward from the model through the boundary and projected onto a target grid. The beam projection is captured using a high-speed camera, allowing us to measure and analyze beam shape and deflection. This approach has enabled us to quantify the temporal and spatial periodic variations in the beam propagation through the cavity boundary and fluid.
Structural impact detection with vibro-haptic interfaces
NASA Astrophysics Data System (ADS)
Jung, Hwee-Kwon; Park, Gyuhae; Todd, Michael D.
2016-07-01
This paper presents a new sensing paradigm for structural impact detection using vibro-haptic interfaces. The goal of this study is to allow humans to ‘feel’ structural responses (impact, shape changes, and damage) and eventually determine health conditions of a structure. The target applications for this study are aerospace structures, in particular, airplane wings. Both hardware and software components are developed to realize the vibro-haptic-based impact detection system. First, L-shape piezoelectric sensor arrays are deployed to measure the acoustic emission data generated by impacts on a wing. Unique haptic signals are then generated by processing the measured acoustic emission data. These haptic signals are wirelessly transmitted to human arms, and with vibro-haptic interface, human pilots could identify impact location, intensity and possibility of subsequent damage initiation. With the haptic interface, the experimental results demonstrate that human could correctly identify such events, while reducing false indications on structural conditions by capitalizing on human’s classification capability. Several important aspects of this study, including development of haptic interfaces, design of optimal human training strategies, and extension of the haptic capability into structural impact detection are summarized in this paper.
NASA Astrophysics Data System (ADS)
Djezzar, Boualem; Tahi, Hakim; Benabdelmoumene, Abdelmadjid; Chenouf, Amel; Kribes, Youcef
2012-11-01
In this paper, we present a new method, named on the fly oxide trap (OTFOT), to extract the bias temperature instability (BTI) in MOS transistors. The OTFOT method is based on charge pumping technique (CP) at low and high frequencies. We emphasize on the theoretical-based concept, giving a clear insight on the easy-use of the OTFOT methodology and demonstrating its viability to characterize the negative BTI (NBTI). Using alternatively high and low frequencies, OTFOT method separates the interface-traps (ΔNit) and border-trap (ΔNbt) (switching oxide-trap) densities independently and also their contributions to the threshold voltage shift (ΔVth), without needing additional methods. The experimental results, from two experimental scenarios, showing the extraction of NBTI-induced shifts caused by interface- and oxide-trap increases are also presented. In the first scenario, all stresses are performed on the same transistor. It exhibits an artifact value of exponent n. In the second scenario, each voltage stress is applied only on one transistor. Its results show an average n of 0.16, 0.05, and 0.11 for NBTI-induced ΔNit, ΔNbt, ΔVth, respectively. Therefore, OTFOT method can contribute to further understand the behavior of the NBTI degradation, especially through the threshold voltage shift components such as ΔVit and ΔVot caused by interface-trap and border-trap, respectively.
NASA Astrophysics Data System (ADS)
Alsih, Abdulkareem; Flavel, Richard; McGrath, Gavan
2017-04-01
This study presents experimental results investigating spatial patterns of infiltration and evaporation in heterogeneous water repellent media. Infrared camera measurements and 3D X-ray computed tomography imaging was performed across wet-dry cycles on glass beads with engineered patches of water repellence. The imaging revealed spatial variability in infiltration and the redistribution of water in the media resulting in differences in relative evaporation rates during drying. It appears that the spatial organization of the heterogeneity play a role in the breakdown of water repellence at the interface of the two media. This suggests a potential mechanism for self-organization of repellency spatial patterns in field soils. At the interface between wettable and water repellent beads a lateral drying front propagates towards the wettable beads from the repellent beads. During this drying the relative surface temperatures change from a relatively cooler repellent media surface to a relatively cooler wettable media surface indicating the changes in evaporative water loss between the beads of varying water repellence. The lateral drying front was confirmed using thermography in a small-scale model of glass beads with chemically induced repellence and then subjected to 3D X-ray imaging. Pore-scale imaging identified the hydrology at the interface of the two media and at the drying front giving insights into the physics of water flow in water repellent soil.
A diffuse interface model of grain boundary faceting
NASA Astrophysics Data System (ADS)
Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.
2016-06-01
Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.
NASA Astrophysics Data System (ADS)
Irfan, Mohammad Abdulaziz
Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.
Golden, Mary S.; Cote, Shaun M.; Sayeg, Marianna; Zerbe, Brandon S.; Villar, Elizabeth A.; Beglov, Dmitri; Sazinsky, Stephen L.; Georgiadis, Rosina M.; Vajda, Sandor; Kozakov, Dima; Whitty, Adrian
2013-01-01
We report a comprehensive analysis of binding energy hot spots at the protein-protein interaction (PPI) interface between NF-κB Essential Modulator (NEMO) and IκB kinase subunit β (IKKβ), an interaction that is critical for NF-κB pathway signaling, using experimental alanine scanning mutagenesis and also the FTMap method for computational fragment screening. The experimental results confirm that the previously identified NBD region of IKKβ contains the highest concentration of hot spot residues, the strongest of which are W739, W741 and L742 (ΔΔG = 4.3, 3.5 and 3.2 kcal/mol, respectively). The region occupied by these residues defines a potentially druggable binding site on NEMO that extends for ~16 Å to additionally include the regions that bind IKKβ L737 and F734. NBD residues D738 and S740 are also important for binding but do not make direct contact with NEMO, instead likely acting to stabilize the active conformation of surrounding residues. We additionally found two previously unknown hot spot regions centered on IKKβ residues L708/V709 and L719/I723. The computational approach successfully identified all three hot spot regions on IKKβ. Moreover, the method was able to accurately quantify the energetic importance of all hot spots residues involving direct contact with NEMO. Our results provide new information to guide the discovery of small molecule inhibitors that target the NEMO/IKKβ interaction. They additionally clarify the structural and energetic complementarity between “pocket-forming” and “pocket occupying” hot spot residues, and further validate computational fragment mapping as a method for identifying hot spots at PPI interfaces. PMID:23506214
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Smith; Jeffrey M. Lacy; Barry H. Rabin
12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEUmore » to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.« less
Method for determining optimal supercell representation of interfaces
NASA Astrophysics Data System (ADS)
Stradi, Daniele; Jelver, Line; Smidstrup, Søren; Stokbro, Kurt
2017-05-01
The geometry and structure of an interface ultimately determines the behavior of devices at the nanoscale. We present a generic method to determine the possible lattice matches between two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We apply this method to explore two relevant classes of interfaces for which accurate structural measurements of the interface are available: (i) the interface between pentacene crystals and the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide and aluminum. For both systems, we demonstrate that the presented method predicts interface geometries in good agreement with those measured experimentally, which present nontrivial matching characteristics and would be difficult to guess without relying on automated structure-searching methods.
Sharp, B; Morton, D; Clark, A E
2000-12-01
Microleakage at the junction between the metal alloy and acrylic resin in a removable partial denture may result in discoloration, fluid percolation, and acrylic resin deterioration. The junction between a metal alloy and acrylic resin is an area of clinical concern. Failure of a removable partial denture may be linked to this interface. Enhancing resistance to microleakage at this interface may improve the long-term union between the 2 materials. This investigation was designed to determine the effects of various metal surface treatment protocols on microleakage and bond strength between the metal alloy and acrylic resin used in the fabrication of a removable partial denture. Ninety-six nickel-chromium-beryllium alloy specimens were randomly divided into 8 groups. After adaptation of baseplate wax, each specimen was invested. Subsequent to wax removal, each specimen was divided into a control half and an experimental half. Air abrasion, tinplating/oxidation, and silanation were evaluated individually and in all combinations. Heat-polymerized acrylic resin was processed against all specimens before storage in distilled water at 37 degrees C for 72 hours. Each specimen then was thermocycled in distilled water (3000 cycles) before immersion in sodium fluorescein dye for 24 hours. Counting grids that exhibited dye penetration under ultraviolet light exposure allowed assessment of microleakage. Air abrasion resulted in a significant decrease in microleakage when used individually and in all combinations (P<0.05). All experimental combinations that did not involve air abrasion demonstrated no significant reduction in measured microleakage between the experimental and control sides. Tukey's pair-wise comparison of the difference in the mean number of squares exhibiting microleakage between the control and treated sites for each experimental group revealed a significant difference, based on the involvement of air abrasion. Groups involving air abrasion did not differ significantly from each other (P<0.05). In addition, no significant difference was detected between groups not involving air abrasion (P<0.05). Air abrasion, alone and in combination with tinplating/oxidation and with silanation, resulted in a significant reduction in microleakage between the metal alloy and acrylic resin.
Tuncel, Umut; Turan, Aydin; Markoc, Fatma; Erkorkmaz, Unal; Elmas, Cigdem; Kostakoglu, Naci
2014-03-01
Since the introduction of negative pressure wound therapy (NPWT), the physiological effects of various interface dressing materials have been studied. The purpose of this experimental study was to compare the use of loofah sponge to standard polyurethane foam or a cotton gauze sponge. Three wounds, each measuring 3 cm x 3 cm, were created by full-thickness skin excision on the dorsal sides of 24 New Zealand adult white rabbits. The rabbits were randomly divided into four groups of six rabbits each. In group 1 (control), conventional saline-moistened gauze dressing was provided and changed at daily intervals. The remaining groups were provided NPWT dressings at -125 mm Hg continuous pressure. This dressing was changed every 3 days for 9 days; group 2 was provided polyurethane foam, group 3 had conventional saline-soaked antimicrobial gauze, and group 4 had loofah sponge. Wound area measurements and histological findings (inflammation, granulation tissue, neovascularization, and reepithelialization) were analyzed on days 3, 6, and 9. Wound area measurements at these intervals were significantly different between the control group and study groups (P<0.05). Granulation and neovascularization scores were also significantly different between the control and treatment groups at day 3 (P=0.002). No differences in any of the healing variables studied were observed between the other three dressing materials. According to scanning electron microscopy analysis of the three interface materials, the mean pore size diameter of foam and gauze interface materials was 415.80±217.58 μm and 912.33±116.88 μm, respectively. The pore architecture of foam was much more regular than that of gauze. The average pore size diameter of loofah sponge was 736.83±23.01 μm; pores were hierarchically located--ie, the smaller ones were usually peripheral and larger ones werecentral. For this study, the central part of loofah sponge was discarded to achieve a more homogenous structure of interface material. Loofah sponge study results were similar to those using gauze or foam, but the purchase price of loofah sponge is lower than that of currently available interface dressings. More experimental, randomized controlled studies are needed to confirm these results.
Periodontal Ligament Entheses and their Adaptive Role in the Context of Dentoalveolar Joint Function
Lin, Jeremy D.; Jang, Andrew T.; Kurylo, Michael P.; Hurng, Jonathan; Yang, Feifei; Yang, Lynn; Pal, Arvin; Chen, Ling; Ho, Sunita P.
2017-01-01
Objectives The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. Methods Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. Results Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. Significance A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing “functional regeneration and adaptation” strategies with an emphasis on restoring physiologic joint function. PMID:28476202
Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface
NASA Astrophysics Data System (ADS)
Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.
2015-10-01
Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.
Second-Order Vibrational Lineshapes from the Air/Water Interface.
Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M
2018-05-10
We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.
Effect of interfaces on the nearby Brownian motion
Huang, Kai; Szlufarska, Izabela
2015-01-01
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green–Kubo relation for friction at the liquid–solid interface. Our computer experiment unambiguously reveals that the t−3/2 long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t−5/2 decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid–solid interfaces. PMID:26438034
Liao, Lingmin; Wang, Xiao; Fang, Pengfei; Liew, Kim Meow; Pan, Chunxu
2011-02-01
Interface enhancement with carbon nanotubes (CNTs) provides a promising approach for improving shock strength and toughness of glass fiber reinforced plastic (GFRP) composites. The effects of incorporating flame-synthesized CNTs (F-CNTs) into GFRP were studied, including on hand lay-up preparation, microstructural characterization, mechanical properties, fracture morphologies, and theoretical calculation. The experimental results showed that: (1) the impact strength of the GFRP modified by F-CNTs increased by more than 15% over that of the GFRP modified by CNTs from chemical vapor deposition; and (2) with the F-CNT enhancement, no interfacial debonding was observed at the interface between the fiber and resin matrix on the GFRP fracture surface, which indicated strong adhesive strength between them. The theoretical calculation revealed that the intrinsic characteristics of the F-CNTs, including lower crystallinity with a large number of defects and chemical functional groups on the surface, promoted their surface activity and dispersibility at the interface, which improved the interfacial bond strength of GFRP.
Dynamic failure in two-phase materials
Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; ...
2015-12-21
Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less
Charge transfer kinetics at the solid-solid interface in porous electrodes
NASA Astrophysics Data System (ADS)
Bai, Peng; Bazant, Martin Z.
2014-04-01
Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.
Effect of interfaces on the nearby Brownian motion.
Huang, Kai; Szlufarska, Izabela
2015-10-06
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green-Kubo relation for friction at the liquid-solid interface. Our computer experiment unambiguously reveals that the t(-3/2) long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t(-5/2) decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid-solid interfaces.
Raffaini, Giuseppina; Milani, Roberto; Ganazzoli, Fabio; Resnati, Giuseppe; Metrangolo, Pierangelo
2016-01-01
Hydrophobins are proteins of interest for numerous applications thanks to their unique conformational and surface properties and their ability to self-assemble at interfaces. Here we report fully atomistic molecular mechanics and molecular dynamics results together with circular dichroism experimental data, aimed to study the conformational properties of the hydrophobin HFBII in a fluorinated solvent in comparison with a water solution and/or at an aqueous/vacuum interface. Both the atomistic simulations and the circular dichroism data show the remarkable structural stability of HFBII at all scales in all these environments, with no significant structural change, although a small cavity is formed in the fluorinated solvent. The combination of theoretical calculations and circular dichroism data can describe in detail the protein conformation and flexibility in different solvents and/or at an interface, and constitutes a first step towards the study of their self-assembly. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rogti, F.
2015-12-01
Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.
A Programmable Plug & Play Sensor Interface for WSN Applications
Vera, Sergio D.; Bayo, Alberto; Medrano, Nicolás; Calvo, Belén; Celma, Santiago
2011-01-01
Cost reduction in wireless sensor networks (WSN) becomes a priority when extending their application to fields where a great number of sensors is needed, such as habitat monitoring, precision agriculture or diffuse greenhouse emission measurement. In these cases, the use of smart sensors is expensive, consequently requiring the use of low-cost sensors. The solution to convert such generic low-cost sensors into intelligent ones leads to the implementation of a versatile system with enhanced processing and storage capabilities to attain a plug and play electronic interface able to adapt to all the sensors used. This paper focuses on this issue and presents a low-voltage plug & play reprogrammable interface capable of adapting to different sensor types and achieving an optimum reading performance for every sensor. The proposed interface, which includes both electronic and software elements so that it can be easily integrated in WSN nodes, is described and experimental test results to validate its performance are given. PMID:22164118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. N.; Choi, H. W.; Lai, P. T., E-mail: laip@eee.hku.hk
2015-11-23
GaAs metal-oxide-semiconductor capacitor with TaYON/LaTaON gate-oxide stack and fluorine-plasma treatment is fabricated and compared with its counterparts without the LaTaON passivation interlayer or the fluorine treatment. Experimental results show that the sample exhibits better characteristics: low interface-state density (8 × 10{sup 11 }cm{sup −2}/eV), small flatband voltage (0.69 V), good capacitance-voltage behavior, small frequency dispersion, and small gate leakage current (6.35 × 10{sup −6} A/cm{sup 2} at V{sub fb} + 1 V). These should be attributed to the suppressed growth of unstable Ga and As oxides on the GaAs surface during gate-oxide annealing by the LaTaON interlayer and fluorine incorporation, and the passivating effects of fluorine atoms on the acceptor-likemore » interface and near-interface traps.« less
Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.
2014-08-01
In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesismore » of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.« less
Spontaneous supercurrent and φ0 phase shift parallel to magnetized topological insulator interfaces
NASA Astrophysics Data System (ADS)
Alidoust, Mohammad; Hamzehpour, Hossein
2017-10-01
Employing a Keldysh-Eilenberger technique, we theoretically study the generation of a spontaneous supercurrent and the appearance of the φ0 phase shift parallel to uniformly in-plane magnetized superconducting interfaces made of the surface states of a three-dimensional topological insulator. We consider two weakly coupled uniformly magnetized superconducting surfaces where a macroscopic phase difference between the s -wave superconductors can be controlled externally. We find that, depending on the magnetization strength and orientation on each side, a spontaneous supercurrent due to the φ0 states flows parallel to the interface at the nanojunction location. Our calculations demonstrate that nonsinusoidal phase relations of current components with opposite directions result in maximal spontaneous supercurrent at phase differences close to π . We also study the Andreev subgap channels at the interface and show that the spin-momentum locking phenomenon in the surface states can be uncovered through density of states studies. We finally discuss realistic experimental implications of our findings.
Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.
2009-01-01
The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.
Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.
2010-01-01
The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.
NASA Astrophysics Data System (ADS)
Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.
2012-03-01
We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.
Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs
NASA Astrophysics Data System (ADS)
Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki
2017-11-01
We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist,
Formation of surface nanobubbles on nanostructured substrates.
Wang, Lei; Wang, Xingya; Wang, Liansheng; Hu, Jun; Wang, Chun Lei; Zhao, Binyu; Zhang, Xuehua; Tai, Renzhong; He, Mengdong; Chen, Liqun; Zhang, Lijuan
2017-01-19
The nucleation and stability of nanoscale gas bubbles located at a solid/liquid interface are attracting significant research interest. It is known that the physical and chemical properties of the solid surface are crucial for the formation and properties of the surface nanobubbles. Herein, we experimentally and numerically investigated the formation of nanobubbles on nanostructured substrates. Two kinds of nanopatterned surfaces, namely, nanotrenches and nanopores, were fabricated using an electron beam lithography technique and used as substrates for the formation of nanobubbles. Atomic force microscopy images showed that all nanobubbles were selectively located on the hydrophobic domains but not on the hydrophilic domains. The sizes and contact angles of the nanobubbles became smaller with a decrease in the size of the hydrophobic domains. The results indicated that the formation and stability of the nanobubbles could be controlled by regulating the sizes and periods of confinement of the hydrophobic nanopatterns. The experimental results were also supported by molecular dynamics simulations. The present study will be very helpful for understanding the effects of surface features on the nucleation and stability of nanobubbles/nanodroplets at a solid/liquid interface.
NASA Astrophysics Data System (ADS)
Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao
2017-09-01
Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.
NASA Astrophysics Data System (ADS)
Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.
2017-06-01
The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.
Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures
NASA Astrophysics Data System (ADS)
Chen, G.; Tien, C. L.; Wu, X.; Smith, J. S.
1994-05-01
This work develops a new measurement technique that determines the thermal diffusivity of thin films in both parallel and perpendicular directions, and presents experimental results on the thermal diffusivity of GaAs/AlGaAs-based thin-film structures. In the experiment, a modulated laser source heats up the sample and a fast-response temperature sensor patterned directly on the sample picks up the thermal response. From the phase delay between the heating source and the temperature sensor, the thermal diffusivity in either the parallel or perpendicular direction is obtained depending on the experimental configuration. The experiment is performed on a molecular-beam-epitaxy grown vertical-cavity surface-emitting laser (VCSEL) structure. The substrates of the samples are etched away to eliminate the effects of the interface between the film and the substrate. The results show that the thermal diffusivity of the VCSEL structure is 5-7 times smaller than that of its corresponding bulk media. The experiments also provide evidence on the anisotropy of thermal diffusivity caused solely by the effects of interfaces and boundaries of thin films.
NASA Astrophysics Data System (ADS)
Shugurov, K. U.; Mozharov, A. M.; Sapunov, G. A.; Fedorov, V. V.; Bolshakov, A. D.; Mukhin, I. S.
2018-03-01
Volt-ampere and spectral characteristics of GaN/Si solar cell samples differing in interface layer preparation are obtained and analyzed. External quantum efficiency curves are experimentally determined via excitation with a 532 nm incident radiation wavelength. It is demonstrated that interface preparation has a significant influence on photovoltaic characteristics of the studied samples.
ERIC Educational Resources Information Center
Slabakova, Roumyana; Kempchinsky, Paula; Rothman, Jason
2012-01-01
This experimental study tests the Interface Hypothesis by looking into processes at the syntax-discourse interface, teasing apart acquisition of syntactic, semantic and discourse knowledge. Adopting Lopez's (2009) pragmatic features [[plus or minus]a(naphor)] and [[plus or minus]c(ontrast)], which in combination account for the constructions of…
Experimental and Numerical Study of the Evaporation of Water at Low Pressures.
Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W
2017-05-09
Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Alkasab, Kalil A.
1991-01-01
The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.
Charge Inversion by Electrostatic Complexation: Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Faraudo, Jordi; Travesset, Alex
2007-03-01
Ions near interfaces play an important role in many biological and physico-chemical processes and exhibit a fascinating diverse range of phenomena. A relevant example is charge inversion, where interfacial charges attract counterions in excess of their own nominal charge, thus leading to an inversion of the sign of the interfacial charge. In this work, we argue that in the case of amphiphilic interfaces, charge inversion can be generated by complexation, that is, electrostatic complexes containing several counterions bound to amphiphilic molecules. The formation of these complexes require the presence at the interface of groups with conformational degrees of freedom with many electronegative atoms. We illustrate this mechanism by analyzing all atomic molecular dynamics simulations of a DMPA (Dimirystoil-Phosphatidic acid) phospholipid monolayer in contact with divalent counterions. The results are found to be in agreement with recent experimental results on Langmuir monolayers. We also discuss the implications for biological systems, as Phosphatidic acid is emerging as a key signaling phospholipid.
Direct numerical simulation of incompressible multiphase flow with phase change
NASA Astrophysics Data System (ADS)
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A
2014-01-01
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.
Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie
2016-12-01
Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H 2 PtCl 6 ) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to ~20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.
NASA Astrophysics Data System (ADS)
Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie
2016-11-01
Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to 20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.
Active turbulence in a gas of self-assembled spinners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokot, Gasper; Das, Shibananda; Winkler, Roland G.
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less
Active turbulence in a gas of self-assembled spinners
Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...
2017-11-20
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less
Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.
Vamsikrishna, K M; Dogra, Debi Prosad; Desarkar, Maunendra Sankar
2016-05-01
Physical rehabilitation supported by the computer-assisted-interface is gaining popularity among health-care fraternity. In this paper, we have proposed a computer-vision-assisted contactless methodology to facilitate palm and finger rehabilitation. Leap motion controller has been interfaced with a computing device to record parameters describing 3-D movements of the palm of a user undergoing rehabilitation. We have proposed an interface using Unity3D development platform. Our interface is capable of analyzing intermediate steps of rehabilitation without the help of an expert, and it can provide online feedback to the user. Isolated gestures are classified using linear discriminant analysis (DA) and support vector machines (SVM). Finally, a set of discrete hidden Markov models (HMM) have been used to classify gesture sequence performed during rehabilitation. Experimental validation using a large number of samples collected from healthy volunteers reveals that DA and SVM perform similarly while applied on isolated gesture recognition. We have compared the results of HMM-based sequence classification with CRF-based techniques. Our results confirm that both HMM and CRF perform quite similarly when tested on gesture sequences. The proposed system can be used for home-based palm or finger rehabilitation in the absence of experts.
Control Strategies for the DAB Based PV Interface System
El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.
2016-01-01
This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138
Dielectric relaxation in AC powder electroluminescent devices
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah
2017-01-01
The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.
NASA Astrophysics Data System (ADS)
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
NASA Astrophysics Data System (ADS)
Naqvi, Rizwan Ali; Park, Kang Ryoung
2016-06-01
Gaze tracking systems are widely used in human-computer interfaces, interfaces for the disabled, game interfaces, and for controlling home appliances. Most studies on gaze detection have focused on enhancing its accuracy, whereas few have considered the discrimination of intentional gaze fixation (looking at a target to activate or select it) from unintentional fixation while using gaze detection systems. Previous research methods based on the use of a keyboard or mouse button, eye blinking, and the dwell time of gaze position have various limitations. Therefore, we propose a method for discriminating between intentional and unintentional gaze fixation using a multimodal fuzzy logic algorithm applied to a gaze tracking system with a near-infrared camera sensor. Experimental results show that the proposed method outperforms the conventional method for determining gaze fixation.
Modified low-temperture direct bonding method for vacuum microelectronics application
NASA Astrophysics Data System (ADS)
Ju, Byeong-Kwon; Lee, Duck-Jung; Choi, Woo-Beom; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan
1997-06-01
This paper presents the process and experimental results for the improved silicon-to-glass bonding using silicon direct bonding (SDB) followed by anodic bonding. The initial bonding between glass and silicon was caused by the hydrophilic surfaces of silicon-glass ensemble using SDB method. Then the initially bonded specimen had to be strongly bonded by anodic bonding process. The effects of the bonding process parameters on the interface energy were investigated as functions of the bonding temperature and voltage. We found that the specimen which was bonded using SDB process followed by anodic bonding process had higher interface energy than one using anodic bonding process only. The main factor contributing to the higher interface energy in the glass-to-silicon assemble bonded by SDB followed by anodic bonding was investigated by secondary ion mass spectroscopy analysis.
Dietz, Aimee; Weissling, Kristy; Griffith, Julie; McKelvey, Miechelle; Macke, Devan
2014-12-01
The purpose of this collective case study was to describe the communication behaviors of five people with chronic aphasia when they retold personal narratives to an unfamiliar communication partner using four variants of a visual scene display (VSD) interface. The results revealed that spoken language comprised roughly 70% of expressive modality units; variable patterns of use for other modalities emerged. Although inconsistent across participants, several people with aphasia experienced no trouble sources during the retells using VSDs with personally relevant photographs and text boxes. Overall, participants perceived the personally relevant photographs and the text as helpful during the retells. These patterns may serve as a springboard for future experimental investigations regarding how interface design influences the communicative and linguistic performance of people with aphasia.
Going ballistic: Graphene hot electron transistors
NASA Astrophysics Data System (ADS)
Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.
2015-12-01
This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.
The influence of surface-active agents in gas mixture on the intensity of jet condensation
NASA Astrophysics Data System (ADS)
Yezhov, YV; Okhotin, VS
2017-11-01
The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and the thermal conductivity of the liquid jet. The first circumstance leads to deterioration of the condensation process, the second to the intensification of this process. There is obviously an optimum value of concentration of the additive surfactants to the vapour when the condensation process is maximum. According to the developed design methodology contact condensation can evaluate these optimum conditions, their practical effect in the field study.
NASA Astrophysics Data System (ADS)
Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining
2018-05-01
The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.
Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after
NASA Astrophysics Data System (ADS)
Boukhvalov, D. W.; Bazylewski, P. F.; Kukharenko, A. I.; Zhidkov, I. S.; Ponosov, Yu. S.; Kurmaev, E. Z.; Cholakh, S. O.; Lee, Y. H.; Chang, G. S.
2017-12-01
We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed
InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.
Dionízio Moreira, M; Venezuela, P; Miwa, R H
2010-07-16
We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic <--> swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.
Modeling of the Nonlinear Interface in Reinforced Concrete
NASA Astrophysics Data System (ADS)
Curiel Sosa, J. L.
2010-04-01
This article presents a novel scheme for modeling of reinforced concrete. The strategy takes into account the nonlinear behavior of the concrete as well as the debonding in the interface. The proposed technique solves the kinematic and kinetic jump in the interface by performing sub-cycles over the constituents-reinforcing bar and concrete-jointly with an innovative interface constitutive law. Application to pull-out problems is performed to show the capabilities of the proposed methodology by means of comparison with available experimental data.
The Heat and Mass Transfer Processes at the Cooling of Strong Heated Sphere in a Cold Liquid
NASA Astrophysics Data System (ADS)
Puzina, Yu Yu
2017-10-01
Some new experimental results of continuum mechanics problems in two-phase systems are described. The processes of heat and mass transfer during cooling of strong heated sphere in the subcooled liquid are studied. Due to high level of heater temperature the stable vapor film is formed on the sphere surface. Calculation of steady-state transport processes at vapor - water interface is carried out using methods of molecular-kinetic theory. Heat transfer in vapor by thermal conductivity and natural convection in liquid are considered. Pressure balance is provided by hydrostatic pressure and non-equilibrium boundary condition. The results of the calculations are analyzed by comparison with previous data and experimental results.
Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...
2015-08-31
The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.
Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface
Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus
2017-01-01
While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution. PMID:28338011
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface
NASA Astrophysics Data System (ADS)
Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus
2017-03-01
While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution.
Implementation and performance evaluation open-source controller for precision control of gripper
NASA Astrophysics Data System (ADS)
Lee, Seung-Yong; Ham, Un-Hyeong; Park, Young-Woo; Jung, Hak-Sang; Jung, Il-Kyun; Lim, Sun
2017-12-01
This paper proposes integrating gripper embedded operating system, which consist of external interface structure for sophisticated gripper control. This system has multiple functions that control the gripping module and measure the pose of the gripper body with respect to contact environment. A controller based on open source only for the gripper is developed and an external communication interface between robot controller and gripper controller is designed. An experimental environment for the fixed-cycle test consists of integrating magic gripper software system and hardware on commercial business. As a result, a deviation is measured approximately 2% and the system were verified for gripper control.
Dissolution mechanism of aluminum hydroxides in acid media
NASA Astrophysics Data System (ADS)
Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.
2008-08-01
The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.
A brain computer interface-based explorer.
Bai, Lijuan; Yu, Tianyou; Li, Yuanqing
2015-04-15
In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.
Exchange coupling in the complex magnetic multilayers
NASA Astrophysics Data System (ADS)
Uzdin, V. M.; Adamowicz, L.; Kocinski, P.
1996-06-01
Exchange coupling in the complex magnetic sandwich structures containing nonmagnetic (NM) and ferromagnetic (FM) layers composed of two different ferromagnetic metals has been studied within the framework of the quantum wells model. The strength of the exchange coupling in the multilayer structure with thin layers of a second ferromagnetic material inserted at the interface of FM/NM/FM sandwich was calculated at various physical situations. In one case the exponential dependence of the exchange coupling on the thickness of the interface ferromagnetic layer has been obtained in striking resemblance to the Parkin experimental results for magnetoresistance (S. S. P. Parkin, Phys. Rev. Lett., 71 (1993) 1641).