Periodontal Ligament Entheses and their Adaptive Role in the Context of Dentoalveolar Joint Function
Lin, Jeremy D.; Jang, Andrew T.; Kurylo, Michael P.; Hurng, Jonathan; Yang, Feifei; Yang, Lynn; Pal, Arvin; Chen, Ling; Ho, Sunita P.
2017-01-01
Objectives The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. Methods Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. Results Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. Significance A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing “functional regeneration and adaptation” strategies with an emphasis on restoring physiologic joint function. PMID:28476202
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, Rajiv; Varela, F. M.; Martinez-Fernandez, J.
2010-01-01
Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone approx.2.5-3.5 microns thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140+/-49MPa and 207+/-12MPa, respectively. High-temperature shear tests were performed at 1023K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.
Reduced-order modeling approach for frictional stick-slip behaviors of joint interface
NASA Astrophysics Data System (ADS)
Wang, Dong; Xu, Chao; Fan, Xuanhua; Wan, Qiang
2018-03-01
The complex frictional stick-slip behaviors of mechanical joint interface have a great effect on the dynamic properties of assembled structures. In this paper, a reduced-order modeling approach based on the constitutive Iwan model is proposed to describe the stick-slip behaviors of joint interface. An improved Iwan model is developed to describe the non-zero residual stiffness at macro-slip regime and smooth transition of joint stiffness from micro-slip to macro-slip regime, and the power-law relationship of energy dissipation during the micro-slip regime. In allusion to these nonlinear behaviors, the finite element method is used to calculate the recycle force under monolithic loading and the energy dissipation per cycle under oscillatory loading. The proposed model is then used to predict the nonlinear stick-slip behaviors of joint interface by curve-fitting to the results of finite element analysis, and the results show good agreements with the finite element analysis. A comparison with the experiment results in literature is also made. The proposed model agrees very well with the experiment results.
Development of the weldbond process for joining titanium
NASA Technical Reports Server (NTRS)
Fields, D.
1972-01-01
High quality resistance spot welds were produced by welding through epoxy adhesive on titanium alloys. Weldbond joints were consistently stronger than those of either mechanical fasteners, structural adhesive bonds, or mechanical fasteners with adhesive at the joint interface. Weldbond joints and/or spot weld joints showed superior strength at all temperature ranges as compared to other joints tested.
[The development of research in tribology of artificial joints].
Dai, Zhendong; Gong, Juanqing
2006-06-01
Aseptic loosening of the prosthesis is a major form for the failure of artificial joints, which results in the conglomeration of wear particles at the bone-implant interface. This paper briefly reviews the recent development of tribology of artificial joints preserving good lubrication, enhancing the wear resistance of materials for the joints, reducing the generation of sensitive-size particles and depressing the debris-tissue reactions. Suggestion for improvement in the design of artificial joints is presented.
2017-04-01
20 week old age point revealed a lack of response to joint unloading of the articular cartilage tidemark (interface of uncalcified and calcified...hallmark of disuse within this study. With this lack of response evident in our joint disuse model for 2 weeks of joint unloading for slightly older
NASA Astrophysics Data System (ADS)
Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.
2018-07-01
For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5- µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.
NASA Astrophysics Data System (ADS)
Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.
2018-05-01
For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5-µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahder, G.; Bopp, L.A.; Eager, G.S. Jr.
The reliability of extruded-dielectric transmission systems depends to a great extent on the quality of joints and terminals. Detailed procedures developed in this study for field-molding high-stress 230-kV cable joints can ensure the stability of critical interfaces over many years.
Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.
Pau, James W L; Xie, Shane S Q; Pullan, Andrew J
2012-09-01
Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.
Yang, Jingwei; Cao, Biao; Lu, Qinghua
2017-01-01
The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553
Yang, Jingwei; Cao, Biao; Lu, Qinghua
2017-02-16
The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed.
Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS
NASA Technical Reports Server (NTRS)
Hron, Anna B.
1992-01-01
This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.
Interfacing Computer Aided Parallelization and Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)
2003-01-01
When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...
ERIC Educational Resources Information Center
Warner, Paul D., Ed.; Campbell, Raymond, Ed.
This document is a summary of remarks presented at a joint meeting of Agriculture and Natural Resources and Community Resource Development state leaders in 1989. The focus of the meeting was economic viability, rural extension and education, water quality, waste management, biotechnology, low-input sustainable agriculture (LISA), and rural…
NASA Astrophysics Data System (ADS)
Apu, Md. Jakaria; Islam, Md. Shahidul
2016-07-01
Bi-material joint is often used in many advanced materials and structures. Determination of the bonding strength at the interface is very difficult because of the presence of the stress singularity. In this paper, the displacement and stress fields of a transversely isotropic bi-material joint around an interface edge are determined. Autodesk Simulation Mechanical 2015 is used to carry out the numerical computations. Stress and displacement fields demonstrate that the values near the edge of joint where the stress singularity occurs are larger than that at the inner portion. From the numerical results, it is suggested that de-bonding of the interface may occur at the interface edge of the joint due to the higher stress concentration at the free edge.
NASA Astrophysics Data System (ADS)
Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji
2014-08-01
The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
NASA Astrophysics Data System (ADS)
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-07-01
There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.
Building the Joint Battlespace Infosphere. Volume 2: Interactive Information Technologies
1999-12-17
G. A . Vouros, “ A Knowledge- Based Methodology for Supporting Multilingual and User -Tailored Interfaces ,” Interacting With Computers, Vol. 9 (1998), p...project is to develop a two-handed user interface to the stereoscopic field analyzer, an interactive 3-D scientific visualization system. The...62 See http://www.hitl.washington.edu/research/vrd/. 63 R. Baumann and R. Clavel, “Haptic Interface for Virtual Reality Based
NASA Astrophysics Data System (ADS)
Luo, Guoqiang; Zhang, Jian; Li, Meijuan; Wei, Qinqin; Shen, Qiang; Zhang, Lianmeng
2013-02-01
93W alloy and Ta metal were successfully diffusion bonded using a Ni interlayer. Ni4W was found at the W-Ni interface, and Ni3Ta and Ni2Ta were formed at the Ni-Ta interface. The shear strength of the joints increases with increasing holding time, reaching a value of 202 MPa for a joint prepared using a 90-minute holding time at 1103 K (830 °C) and 20 MPa. The fracture of this joint occurred within the Ni/Ta interface.
Pulse-echo NDT of adhesively bonded joints in automotive assemblies.
Titov, Sergey A; Maev, Roman Gr; Bogachenkov, Alexey N
2008-11-01
A new method for the detection of void-disbonds at the interfaces of adhesively bonded joins is considered. Based on a simple plane wave model, the output waveform is presented as a sum of two responses associated with the reflection of the ultrasonic wave at the first metal-adhesive interface and the second metal-adhesive interface, respectively. The strong response produced by the wave reverberating in the first metal sheet is eliminated through comparison between the pulse-echo signal measured at the area under the test and reference waveform recorded for the bare first metal sheet outside of the joint. The developed decomposition algorithm has been applied to the study of steel and aluminum samples having various adhesive layer thicknesses in a range of 0.1-1mm.
Characterization of the surface and interfacial properties of the lamina splendens
NASA Astrophysics Data System (ADS)
Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.
2017-06-01
Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the investigations needed to gain further insight into the lamina splendens and the progression of joint disease.
Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint
Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.
2017-01-05
There is a need for next-generation, high-performance power electronic packages and systems employing wide band gap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nanoscale or micron scale particles that can be processed without the application of an external pressure. Microstructural evolution at the interface of a pressureless sintered silver joint formed between a SiC die with a Ti/Ni/Au metallization and an Active Metal Brazed substrate with Agmore » metallization at 250 °C was evaluated using Scanning Electron Microscopy, X-ray microanalysis, and X-ray Photo Electron Spectroscopy. Results from Focused Ion Beam cross-sections show that during sintering, the pores in the sintered region close to the Au layer tend to be smaller and are oriented predominantly with their longer dimension oriented parallel to the interface. With further densification, this results in the alignment of small pores parallel to the interface, creating a path for easy crack propagation. Lastly, X-ray microchemical analyses results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.« less
2016-09-13
AFRL-AFOSR-VA-TR-2016-0317 A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing Pavana...Composites and Bonded Joints using Additive Manufacturing AWARD NO.: FA9550-15-1-0216 AGENCY NAME: The Air Force Office of Scientific Research (AFOSR), Ar...20 3 Additive Manufacturing for Bonded Composite Joints 21 3.1 Introduction
Development of brazing process for W-EUROFER joints using Cu-based fillers
NASA Astrophysics Data System (ADS)
de Prado, J.; Sánchez, M.; Ureña, A.
2016-02-01
A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.
Aspects of the structural evolution of lead-free solder joints
NASA Astrophysics Data System (ADS)
Zribi, A.; Kinyanjui, R.; Borgesen, P.; Zavalij, L.; Cotts, E. J.
2002-06-01
Studies of the formation of intermetallic compounds at some lead-free solder/metallization interfaces are briefly reviewed in this article. SnAgCu/Ni and SnAgCu/Cu interfaces are examined in particular. It has been found that (Cu,Ni)6Sn5 forms at SnAgCu/Ni interfaces until copper is depleted from the solder matrix. This article also contrasts the formation of (Au,Ni)Sn4 and related compounds in PbSn/Ni solder joints and lead-free solder joints.
Motion control of the rabbit ankle joint with a flat interface nerve electrode.
Park, Hyun-Joo; Durand, Dominique M
2015-12-01
A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.
Fatone, Stefania; Johnson, William Brett; Tucker, Kerice
2016-04-01
Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.
Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys
Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan
2014-01-01
Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. PMID:28788533
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1990-01-01
An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.
NASA Astrophysics Data System (ADS)
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.
2015-12-01
The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.
NASA Astrophysics Data System (ADS)
Sarkari Khorrami, Mahmoud; Kokabi, Amir Hossein; Movahedi, Mojtaba
2015-05-01
In this work, friction stir soldering (FSS) as a new approach for fabrication of copper/copper lap joints was introduced. This process is principally based on the friction stir processing (FSP) that can be performed using FSP tools with and without pin on the top sheet. In the present study, Pb-Sn foil was used as a solder which would be melted and then extruded in the area between the copper sheets during FSS process. This process was carried out using tools with and without pin at various rotation speeds of 1200, 1400, and 1600 rpm and traverse speed of 32 mm/min. Also, the same joint was fabricated using furnace soldering to compare the mechanical properties obtained with FSS and furnace soldering processes. It was observed that FSS possesses some advantages over the conventional furnace soldering process including the formation of more bond area at the interface corresponding to the higher fracture load of FSS joints compared with furnace soldering one. Moreover, it was concluded that the thickness of intermetallic compounds (IMCs) and the formation of voids at the joint interface were the predominant factor determining the mechanical properties of the FSS joints produced by FSS tool with and without pin, respectively. The microstructural examinations revealed that Cu-Sn IMCs of Cu3Sn and Cu6Sn5 were formed at the joint interface. It was observed that the FSS joint produced by tool with pin experienced the more peak temperature in comparison with that produced by pin-free tool. This may lead to the formation of thicker IMCs at the interface. Of course, the thickness of IMCs can be controlled by choosing proper FSS parameters, especially the rotation speed of the tool.
Polarity effect of electromigration on mechanical properties of lead-free solder joints
NASA Astrophysics Data System (ADS)
Ren, Fei
The trend of electronic packaging is to package the chips and the associated interconnections in a compact way that allows high speed operation; that allows for sufficient heat removal; that can withstand the thermal cycling associated with the turning on and turning off of the circuits; and that protects the circuits from environmental attack. These goals require that flip chip solder joints have higher resistance to electromigration, stronger mechanical property to sustain thermal mechanical stress, and are lead-free materials to satisfy environment and health concern. With lots of work on chemical reaction, electromigration and mechanical study in flip chip solder joints, however, the interaction between different driving forces is still little known. As a matter of fact, the combination study of chemical, electrical and mechanical is more and more significant to the understanding of the behavior of flip chip solder joints. In this dissertation, I developed one dimensional Cu (wire)-eutectic SnAgCu(ball)-Cu(wire) structure to investigate the interaction between electrical and mechanical force in lead-free solder joints. Electromigration was first conducted. The mechanical behaviors of solder joints before, after, and during electromigration were examined. Electrical current and mechanical stress were applied either in serial or in parallel to the solder joints. Tensile, creep, and drop tests, combined with different electrical current densities (1˜5x10 3A/cm2) and different stressing time (3˜144 hours), have been performed to study the effect of electromigration on the mechanical behavior of solder joints. Nano-indentation test was conducted to study the localized mechanical property of IMC at both interfaces in nanometer scale. Fracture images help analyze the failure mechanism of solder joints driven by both electrical and mechanical forces. The combination study shows a strain build-up during electromigration. Furthermore, a ductile-to-brittle transition in flip chip solder joints induced by electromigration is observed, in which the fracture position migrates from the middle to the cathode interface of the joint with increasing current density and time. The transition is explained by the polarity effect of electromigration, particular due to the accumulation of vacancies at the cathode interface.
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
Thermal resistance of pressed contacts of aluminum and niobium at liquid helium temperatures
Dhuley, R. C.; Geelhoed, M. I.; Thangaraj, J. C. T.
2018-06-15
Here, we examine the resistance to heat flow across contacts of mechanically pressed aluminum and niobium near liquid helium temperatures for designing a thermally conducting joint of aluminum and superconducting niobium. Measurements in the temperature range of 3.5 K to 5.5 K show the thermal contact resistance to grow as a near-cubic function of decreasing temperature, indicating phonons to be the primary heat carriers across the interface. In the 4 kN to 14 kN range of pressing force the contact resistance shows linear drop with the increasing force, in agreement with the model of micro-asperity plastic deformation at pressed contacts.more » Several thermal contact resistance models as well as the phonon diffuse mismatch model of interface thermal resistance are compared with the experimental data. The diffuse mismatch model shows closest agreement. The joints are further augmented with thin foil of indium, which lowers the joint resistance by an order of magnitude. The developed joint has nearly 1 K*cm2/W of thermal resistance at 4.2 K, is demountable, and free of the thermally resistive interfacial alloy layer that typically exists at welded, casted, or soldered joints of dissimilar metals.« less
Thermal resistance of pressed contacts of aluminum and niobium at liquid helium temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhuley, R. C.; Geelhoed, M. I.; Thangaraj, J. C. T.
Here, we examine the resistance to heat flow across contacts of mechanically pressed aluminum and niobium near liquid helium temperatures for designing a thermally conducting joint of aluminum and superconducting niobium. Measurements in the temperature range of 3.5 K to 5.5 K show the thermal contact resistance to grow as a near-cubic function of decreasing temperature, indicating phonons to be the primary heat carriers across the interface. In the 4 kN to 14 kN range of pressing force the contact resistance shows linear drop with the increasing force, in agreement with the model of micro-asperity plastic deformation at pressed contacts.more » Several thermal contact resistance models as well as the phonon diffuse mismatch model of interface thermal resistance are compared with the experimental data. The diffuse mismatch model shows closest agreement. The joints are further augmented with thin foil of indium, which lowers the joint resistance by an order of magnitude. The developed joint has nearly 1 K*cm2/W of thermal resistance at 4.2 K, is demountable, and free of the thermally resistive interfacial alloy layer that typically exists at welded, casted, or soldered joints of dissimilar metals.« less
HELIOS Third Joint Working Group Meeting
NASA Technical Reports Server (NTRS)
Ousley, Gilbert; Kutzer, Ants
1970-01-01
During the past six months since the Second Helios Joint Working Group Meeting held 27-30 April 1970 at Goddard Space Flight Center, the TDS Sub-Group supported the Helios Project Office and the other Sub-Groups in the timely disposition of action items and the dissemination of information pertinent to the development of interface documentation. Of particular importance during this time period was the Project's decision to incorporate a single-channel telemetry system design aboard the spacecraft. The TDS Sub-Group participated actively in the process that led to this decision. Still under active study with TDS participation is the pending Project Office decision regarding the incorporation of a ranging capability within the telecommunications design. The TDS Sub-Group assisted the Mission Analysis and Operations Sub-Group in establishment of a study effort concerning the Near-Earth Sequence of Events from launch to launch plus 8 hours. This study, which will provide valuable data for the spacecraft telecommunications design, will include participation by the Experiment, Launch Vehicle, Spacecraft, as well as the TDS and MA&O Sub-Groups. Also during the past 6-month period, the TDS, in conjunction with the Spacecraft Sub-Group, initiated activity to develop the Helios Spacecraft/TDS Compatibility Test Plans and Procedures. Activity concerning the foregoing interface discussions has been and will continue to be based upon the "TDS Estimated Capabilities Document for the Helios Missions" (613-1), and the "DSN/Flight Project Interface Design Handbook" (810-5). These will continue to be considered TDS controlling documents until specific Helios Project/TDS interface documentation is generated and signed off by the respective parties. In addition to the above, the DSN continued the Helios Trainee Program with seven GfW/DFVLR trainees in residence at JPL. Two trainees will complete their year's residency concurrent with the Third Helios Joint Working Group Meeting, while four new trainees are expected to arrive following the Third Helios Joint Working Group Meeting. These and other activities are reported in detail in the paragraphs that follow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.
2013-12-15
Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less
Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces
NASA Astrophysics Data System (ADS)
Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao
2018-03-01
The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.
Microstructure characteristics of vacuum glazing brazing joints using laser sealing technique
NASA Astrophysics Data System (ADS)
Liu, Sixing; Yang, Zheng; Zhang, Jianfeng; Zhang, Shanwen; Miao, Hong; Zhang, Yanjun; Zhang, Qi
2018-05-01
Two pieces of plate glass were brazed into a composite of glazing with a vacuum chamber using PbO-TiO2-SiO2-RxOy powder filler alloys to develop a new type of vacuum glazing. The brazing process was carried out by laser technology. The interface characteristics of laser brazed joints formed between plate glass and solder were investigated using optical microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The results show that the inter-diffusion of Pb/Ti/Si/O elements from the sealing solder toward the glass and O/Al/Si elements from the glass toward the solder, resulting in a reaction layer in the brazed joints. The microstructure phases of PbTiO3, AlSiO, SiO2 and PbO in the glass/solder interface were confirmed by XRD analysis. The joining of the sealing solder to the glass was realized by the reaction products like fibrous structures on interface, where the wetting layer can help improve the bonding performance and strength between the sealing solder and the plate glass during the laser brazing process.
NASA Astrophysics Data System (ADS)
Fukumoto, S.; Minami, M.; Soeda, A.; Matsushima, M.; Takahashi, M.; Yokoyama, Y.; Fujimoto, K.
2012-08-01
Zr-based bulk metallic glasses are expected to be welded to conventional structural alloys. Dissimilar welding of metallic glasses to stainless steel was carried out by resistance microwelding. The metallurgical analysis of the weld interface revealed the welding mechanism. A thin reaction layer was formed between the two liquid materials. The melting of stainless steel should be limited to obtain sound joints.
Perl at the Joint Astronomy Centre
NASA Astrophysics Data System (ADS)
Jenness, Tim; Economou, Frossie; Tilanus, Remo P. J.; Best, Casey; Prestage, Richard M.; Shimek, Pam; Glazebrook, Karl; Farrell, Tony J.
Perl is used extensively at the JAC (UKIRT and JCMT) and because of the language's flexibility (enabling us to interface perl to any library) we are finding that it is possible to write all of our utilities in it. This simplifies support and aids code reuse (via the module system and object oriented interface) as well as shortening development time. Currently we have developed interfaces to messaging systems (ADAM and DRAMA), I/O libraries (NDF, GSD), astronomical libraries (SLALIB) and the Starlink noticeboard system (NBS). We have also developed tools to aid in data taking (the JCMT observation desk) and data processing (surf and orac-dr) This paper will briefly review the facilities available, with an emphasis on those which might be of interest to other observatories.
Automated Geospatial Watershed Assessment
The Automated Geospatial Watershed Assessment (AGWA) tool is a Geographic Information Systems (GIS) interface jointly developed by the U.S. Environmental Protection Agency, the U.S. Department of Agriculture (USDA) Agricultural Research Service, and the University of Arizona to a...
High-temperature properties of joint interface of VPS-tungsten coated CFC
NASA Astrophysics Data System (ADS)
Tamura, S.; Liu, X.; Tokunaga, K.; Tsunekawa, Y.; Okumiya, M.; Noda, N.; Yoshida, N.
2004-08-01
Tungsten coated carbon fiber composite (CFC) is a candidate material for the high heat flux components in fusion reactors. In order to investigate the high-temperature properties at the joint interface of coating, heat load experiments by using electron beam were performed on VPS-tungsten coated CX-2002U samples. After the heat load test for 3.6 ks at 1400 °C, tungsten-rhenium multilayer (diffusion barrier for carbon) at the joint interface of coating was observed clearly. But, at the temperatures above 1600 °C, the multilayer was disappeared and a tungsten carbide layer was formed in the VPS-tungsten coating. At the temperatures below 1800 °C, the thickness of this layer logarithmically increased with increasing its loading time. At 2000 °C, the growth of the tungsten carbide layer was proportional to the square root of loading time. These results indicate that the diffusion barrier for carbon is not expected to suppress the carbide formation at the joint interface of the VPS-tungsten coating above 1600 °C.
The GRIN-Global Information Management System – Public Interface Demonstration and Input Opportunity
USDA-ARS?s Scientific Manuscript database
The GRIN-Global (GG) Information Management System, under development for the past three years, provides the world's crop genebanks and plant genetic resource (PGR) users with a powerful, flexible, easy-to-use PGR information management system. Developed jointly by the USDA Agricultural Research Ser...
NASA Astrophysics Data System (ADS)
Kudinov, Vladimir V.; Korneeva, Natalia V.
2010-06-01
The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.
Thermal interface material characterization for cryogenic electronic packaging solutions
NASA Astrophysics Data System (ADS)
Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.
2017-12-01
As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.
Multidisciplinary approach for in-deep assessment of joint prosthesis failure.
Tessarolo, F; Caola, I; Piccoli, F; Dorigotti, P; Demattè, E; Molinari, M; Malavolta, M; Barbareschi, M; Caciagli, P; Nollo, G
2009-01-01
In spite of advancement in biomaterials and biomechanics, in development of new osteo-integrative materials and coatings, and in macro- micro- component design, a non negligible fraction of the implanted prosthesis fails before the expected lifetime. A prospective observational clinical study has been conducted to define and apply a set of experimental techniques to in-deep assess the failure of joint prosthesis. Microbiological, histological and micro-structural techniques were implemented to specifically address phenomena occurring at the tissue-implant interface. Results obtained from 27 cases of prosthetic joint failure are discussed in terms of sensitivity and specificity. A procedural flow-chart is finally proposed for the assessment of joint prosthesis failure.
NASA Technical Reports Server (NTRS)
Brewer, W. V.; Rasis, E. P.; Shih, H. R.
1993-01-01
Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.
NASA Astrophysics Data System (ADS)
Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong
2018-05-01
This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.
Push-off tests and strength evaluation of joints combining shrink fitting with bonding
NASA Astrophysics Data System (ADS)
Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi
1997-03-01
Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.
Sheathless interface for coupling capillary electrophoresis with mass spectrometry
Wang, Chenchen; Tang, Keqi; Smith, Richard D.
2014-06-17
A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.
Positioning bedridden patients to reduce interface pressures over the sacrum and great trochanter.
Yoshikawa, Y; Maeshige, N; Sugimoto, M; Uemura, M; Noguchi, M; Terashi, H
2015-07-01
In this study, we evaluated the effect of hip-joint rotation on the interface pressure over the sacrum and greater trochanter with a new protocol for positioning of bedridden elderly patients. The interface pressure values over the sacrum and greater trochanter in bedridden patients were evaluated. These were collected in the supine position, 90° lateral position, and 30° and 40° laterally inclined positions with external rotation or neutral positioning of the hip joint. Each interface pressure was assessed with a device measuring pressure distribution, after which, the peak pressure index (PPI) was calculated. In the 17 patients examined, the PPI over the sacrum in the supine position was significantly greater than that in other positions. In the 30° and 40° laterally inclined positions, the PPIs over the greater trochanter were significantly lower in the neutral position of the hip joint compared with those in the external rotation position. Our findings revealed the effects of hip-joint rotation on the interface pressure for the greater trochanter, possibly due to the increased distance between the greater trochanter and the sacrum caused by neutral position of the hip joint. The results demonstrate that it is to best place the hip joint in a neutral position when the legs are in contact with the bed in order to distribute the pressure over the greater trochanter in the 30° and 40° laterally inclined positions. These results can be applied to the clinical setting to improve patient positioning and decrease pressure ulcers. The authors declare that they have no competing financial interests.
Characterization of Brazed Joints of C-C Composite to Cu-clad-Molybdenum
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.
2008-01-01
Carbon-carbon composites with either pitch+CVI matrix or resin-derived matrix were joined to copper-clad molybdenum using two active braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward de-lamination in resin-derived C-C composite due to its low inter-laminar shear strength. Extensive braze penetration of the inter-fiber channels in the pitch+CVI C-C composites was observed. The relatively low brazing temperatures (<950 C) precluded melting of the clad layer and restricted the redistribution of alloying elements but led to metallurgically sound composite joints. The Knoop microhardness (HK) distribution across the joint interfaces revealed sharp gradients at the Cu-clad-Mo/braze interface and higher hardness in Ticusil (approx.85-250 HK) than in Cusil-ABA (approx.50-150 HK). These C-C/Cu-clad-Mo joints with relatively low thermal resistance may be promising for thermal management applications.
Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.
Durandau, Guillaume; Farina, Dario; Sartori, Massimo
2018-03-01
Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.
1991-03-07
rsolve the attack; delay whil the weapon has to wait; RESOURCE ALLOCATION . PRIORITY OF signal readiness to CONTROL; TARGETS. AND BIAS OF THE SYSTEM...Communications Systems. focal point for Computer Resource He served as project manager for the Management (CRM), Advanced Software development of the Joint...Interface Test Technology (AST), Ada Technology, Systems (JITS) - the world’s largest Joint/Army Interoperability Testing distributed command and
Development of a gas pressure bonded four-pole alternator rotor
NASA Technical Reports Server (NTRS)
Lessmann, G. G.; Bryant, W. A.
1972-01-01
Methods were developed for fabrication of a solid four pole alternator rotor by hot isostatic pressure welding. The rotor blanks welded in this program had complex geometrical mating interfaces and were of considerable bulk, being approximately 3-1/2 inches (0.089 meters) in diameter and 14 inches (0.356 meters) long. Magnetic end pieces were machined from AlSl 4340 steel, while the non-magnetic central section was of Inconel 718. Excellent welds were produced which were shown to be responsive to post weld heat treatments which substantially improved joint strength. Prior to welding the rotors, test specimens of complex geometry were welded to demonstrate that complex surfaces with intentional mechanical misfit could be readily joined using HIP welding. This preliminary work demonstrated not only that interface compliance is achieved during welding but that welding pressure is developed in these thick sections sufficient to produce sound joints. Integral weld-heat treatment cycles were developed that permitted the attainment of magnetic properties while minimizing residual stress associated with the allotropic transformation of 4340 steel.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Tian, Wenya; Li, Junhui; Zhu, Wenhui
2018-04-01
In order to study the electromigration (EM) behavior of solder joints in electronics packaging, especially under high-current and high-temperature working conditions, line-type Cu/solder/Cu butting samples were prepared to observe the microstructural evolution under 1.0 × 104 A/cm2 current stressing. A prominent polarity effect was found such that the Cu6Sn5 intermetallic compound (IMC) layer at the anode side, which thickened linearly with time, was much thicker than that at the cathode side. Compared to the samples subjected to thermal aging at the same temperature of 180°C, EM enhanced the Cu3Sn growth at both the anode and the cathode. Two distinct types of damage were observed after extended duration of current stressing. Back-flow of Cu into Cu3Sn was found at the Cu3Sn/Cu6Sn5 interface of the anode side, causing large voids, while strip cracks developed at the cathode solder/Cu6Sn5 interface, causing a significant increase of joint electrical resistance. With the mass transport characteristics that determine the IMC growth and vacancy accumulation analyzed in detail at each interface, formation mechanisms of the two types of damages are discussed.
Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner
Reedy, E. D.
2014-09-06
The Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (T–U) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the T–U relationship. Most of the calculations usedmore » a rectangular T–U relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ* and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ*, Γ combinations that generate the same predicted joint strength. For each combination there is a corresponding CZ length. We developed an approximate CZ-like elasticity solution to show how such combinations arise and their connection with the CZ length.« less
ERIC Educational Resources Information Center
Alden, John D.
Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…
NASA Astrophysics Data System (ADS)
Luo, Xiangcheng
Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.
2009-12-31
Status and Assessment data interfaces leverage the TBONE Services and data model. The services and supporting Java 2 Platform Enterprise Edition (J2EE...existing Java ™ and .Net developed “Fat Clients.” The IOPC-X design includes an Open Services Gateway Initiative (OSGi) compliant plug-in...J2EE Java 2 Platform Enterprise Edition JAOP Joint Air Operations Plan JAST JAOP AOD Status Tool JFACC Joint Forces Air Component Commander Data
NASA Astrophysics Data System (ADS)
Tra, Tran Hung; Okazaki, Masakazu
2017-08-01
A forged INCONEL 718 and a cast MAR-M247 alloy were joined by a friction welding process. The creep-fatigue strength of this joint was investigated. The life of the joint was significantly shorter than that of the base alloys. The joint failed near the interface of the INCONEL 718 side, although the life of INCONEL 718 was longer than that of MAR-M247. To understand this behavior, the stress field in the welding was numerically analyzed using a visco-elastic model. The results suggested that triaxiality in the stress state could be promoted near the welded interface and lead to an acceleration of creep-fatigue crack nucleation.
Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300°C.
Guo, Weibing; Luan, Tianmin; He, Jingshan; Yan, Jiuchun
2018-01-01
The fine-grained Al alloys prefer to be soldered at as low as temperature to keep their mechanical properties. Solders of Sn-4Zn, Sn-9Zn, and Sn-20Zn alloys were used to solder fine-grained 7034 Al alloy pieces by ultrasonic-assisted soldering below 300°C in air. The joint using Sn-4Zn solder had the highest tensile strength of 201MPa and the fractures occurred in both β-Sn and Sn-Zn eutectic phases. Such joint was much stronger than the 1060 Al joint using Sn-4Zn solder, and its strength had approached the strength of 7034 Al joint using Zn-5Al solder. The strength of the joints using Sn-9Zn and Sn-20Zn solders dropped to∼160MPa due to the appearance of weak interfaces between η-Zn and eutectic phases in the bond layers. All the joints using Sn-Zn solders had very strong interfacial bonding, and alumina interlayers were identified at all the interfaces. Al dissolved in the bond layer reacted with the O rapidly to form alumina interlayers at the interfaces under the ultrasonic action. Zn segregated at the interface and formed strong bonds with both the Al terminated surface of alumina and the bond layer, resulting in strong interfacial bonding between Sn-Zn solders and Al alloys. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated Geospatial Watershed Assessment (AGWA) Documentation Version 2.0
The Automated Geospatial Watershed Assessment Http://www.epa.gov/nerlesd1/landsci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, University of Arizon...
AGWA: The Automated Geospatial Watershed Assessment Tool
The Automated Geospatial Watershed Assessment Tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...
Automated Geospatial Watershed Assessment Tool (AGWA) Poster Presentation
The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...
The standards process: X3 information processing systems
NASA Technical Reports Server (NTRS)
Emard, Jean-Paul
1993-01-01
The topics are presented in viewgraph form and include the following: International Organization for Standards (ISO); International Electrotechnical Committee (IEC); ISO/IEC Joint Technical Committee 1 (JTC-1); U.S. interface to JTC-1; ANSI; national organizations; U.S. standards development processes; national and international standards developing organizations; regional organizations; and X3 information processing systems.
Common software and interface for different helmet-mounted display (HMD) aircraft symbology sets
NASA Astrophysics Data System (ADS)
Mulholland, Fred F.
2000-06-01
Different aircraft in different services and countries have their own set of symbology they want displayed on their HMD. Even as flight symbolgy is standardized, there will still be some differences for types of aircraft, different weapons, different sensors, and different countries. As an HMD supplier, we want to provide a system that can be used across all these applications with no changes in the system, including no changes in the software. This HMD system must also provide the flexibility to accommodate new symbology as it is developed over the years, again, with no change in the HMD software. VSI has developed their HMD software to accommodate F-15, F- 16, F-18, and F-22 symbology sets for the Joint Helmet Mounted Cueing System. It also has the flexibility to accommodate the aircraft types and services of the Joint Strike Fighter: Conventional Takeoff and Landing variant for the USAF, Carrier-based Variant for the USN, and the Short Takeoff and Vertical Landing variant for the USMC and U.K. Royal Navy and Air Force. The key to this flexibility is the interface definition. The interface parameters are established at power-on with the download of an interface definition data set. This data set is used to interpret symbology commands from the aircraft OFP during operation and provide graphic commands to the HMD software. This presentation will define the graphics commands, provide an example of how the interface definition data set is defined, and then show how symbology commands produce a display.
Interaction of intermetallic compound formation in Cu/SnAgCu/NiAu sandwich solder joints
NASA Astrophysics Data System (ADS)
Xia, Yanghua; Lu, Chuanyan; Chang, Junling; Xie, Xiaoming
2006-05-01
The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.
Development Requirements for Spacesuit Elbow Joint
NASA Technical Reports Server (NTRS)
Peters, Benjamin
2017-01-01
Functional Requirements for spacesuit elbow joint:1) The system is a conformal, single-axis spacesuit pressurized joint that encloses the elbow joint of the suited user and uses a defined interface to connect to the suit systems on either side of the joint.2) The system shall be designed to bear the loads incurred from the internal pressure of the system, as well as the expected loads induced by the user while enabling the user move the joint through the required range of motion. The joint torque of the system experienced by the user shall remain at or below the required specification for the entire range of motion.3) The design shall be constructed, at a minimum, as a two-layer system. The internal, air-tight layer shall be referred to as the bladder, and the layer on the unpressurized side of the bladder shall be referred to as the restraint. The design of the system may include additional features or layers, such as axial webbing, to meet the overall requirements of the design.
He, Yongtian; Nathan, Kevin; Venkatakrishnan, Anusha; Rovekamp, Roger; Beck, Christopher; Ozdemir, Recep; Francisco, Gerard E; Contreras-Vidal, Jose L
2014-01-01
Stroke remains a leading cause of disability, limiting independent ambulation in survivors, and consequently affecting quality of life (QOL). Recent technological advances in neural interfacing with robotic rehabilitation devices are promising in the context of gait rehabilitation. Here, the X1, NASA's powered robotic lower limb exoskeleton, is introduced as a potential diagnostic, assistive, and therapeutic tool for stroke rehabilitation. Additionally, the feasibility of decoding lower limb joint kinematics and kinetics during walking with the X1 from scalp electroencephalographic (EEG) signals--the first step towards the development of a brain-machine interface (BMI) system to the X1 exoskeleton--is demonstrated.
Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M
2008-01-01
Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.
Automated Geospatial Watershed Assessment Tool (AGWA)
USDA-ARS?s Scientific Manuscript database
The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University ...
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...
Software for Simulating a Complex Robot
NASA Technical Reports Server (NTRS)
Goza, S. Michael
2003-01-01
RoboSim (Robot Simulation) is a computer program that simulates the poses and motions of the Robonaut a developmental anthropomorphic robot that has a complex system of joints with 43 degrees of freedom and multiple modes of operation and control. RoboSim performs a full kinematic simulation of all degrees of freedom. It also includes interface components that duplicate the functionality of the real Robonaut interface with control software and human operators. Basically, users see no difference between the real Robonaut and the simulation. Consequently, new control algorithms can be tested by computational simulation, without risk to the Robonaut hardware, and without using excessive Robonaut-hardware experimental time, which is always at a premium. Previously developed software incorporated into RoboSim includes Enigma (for graphical displays), OSCAR (for kinematical computations), and NDDS (for communication between the Robonaut and external software). In addition, RoboSim incorporates unique inverse-kinematical algorithms for chains of joints that have fewer than six degrees of freedom (e.g., finger joints). In comparison with the algorithms of OSCAR, these algorithms are more readily adaptable and provide better results when using equivalent sets of data.
On the Occurrence of Liquation During Linear Friction Welding of Ni-Based Superalloys
NASA Astrophysics Data System (ADS)
Masoumi, F.; Shahriari, D.; Jahazi, M.; Cormier, J.; Flipo, B. C. D.
2017-06-01
A combination of experimental and analytical methods was used to study the possible occurrence of liquation during LFW of the newly developed AD730TM Ni-based superalloy. LFWed joints were produced using a semi-industrial size facility and the interfaces of the joints as well as the ejected flash were examined using optical and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). Physical simulation of the LFW thermal cycle, using thermomechanical simulator Gleeble™ 3800, showed that incipient melting started from 1473 K (1200 °C). The analytical model, calibrated by experiments, predicted that the highest temperature of the interface was about 1523 K (1250 °C). The constitutive equations based on lattice and pipe diffusion models were developed to quantify the self-diffusivity of the elements and control the extent of liquation by considering the effect of LFW process parameters. Analytical results show that the application of compressive stresses during LFW results in 25 times increase in the diffusion of Ni atoms at the weld interface. Therefore, no presence of re-solidified phases, i.e., occurrence of liquation, was observed in the microstructure of the weld zone or the flash in the present study. Based on the obtained results, a methodology was developed for designing the optimum pressure above which no liquation, and hence cracking, will be observable.
A Report of Bethune-Cookman College NASA JOVE Projects
NASA Technical Reports Server (NTRS)
Agba, Lawrence C.; David, Sunil K.; Rao, Narsing G.; Rahmani, Munir A.
1997-01-01
This document is the final report for the Joint Venture (JOVE) in Space Sciences, and describes the tasks, performed with the support of the contract. These tasks include work in: (1) interfacing microprocessor systems to high performance parallel interface chips, SCSI drive and memory, needed for the implementation of a Space Optical Data Recorder; (2) designing a digital interface architecture for a microprocessor controlled sensors monitoring unit for a NASA Jitter Attenuation and Dynamics Experiment (JADE) project; (3) developing an enhanced back-propagation training algorithm; (4) studying the effect of simulated spaceflight on Aortic Contractility; (5) developing a course in astronomy; and (6) improving internet access by running cables, and installing hubs in various places on the campus; and (7) researching the characteristics of Nd:YALO laser resonator.
Flight Telerobotic Servicer prototype simulator
NASA Astrophysics Data System (ADS)
Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob
A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.
Development of a contact heat exchanger for a constructable radiator system
NASA Technical Reports Server (NTRS)
Howell, H. R.
1983-01-01
A development program for a contact heat exchanger to be used to transfer heat from a spacecraft coolant loop to a heat pipe radiator is described. The contact heat exchanger provides for a connectable/disconnectable joint which allows for on-orbit assembly of the radiator system and replacement or exchange of radiator panels for repair and maintenance. The contact heat exchanger does not require the transfer of fluid across the joint; the spacecraft coolant loop remains contained in an all welded system with no static or dynamic fluid seals. The contact interface is also "dry' with no conductive grease or interstitial material required.
Investigation Leads to Improved Understanding of Space Shuttle RSRM Internal Insulation Joints
NASA Technical Reports Server (NTRS)
McWhorter, Bruce B.; Bolton, Doug E.; Hicken, Steve V.; Allred, Larry D.; Cook, Dave J.
2003-01-01
The Space Shuttle Reusable Solid Rocket Motor (RSRM) uses an internal insulation J-joint design for the mated insulation interface between two assembled RSRM segments. In this assembled (mated) segment configuration, this J-joint design serves as a thermal barrier to prevent hot gases from affecting the case field joint metal surfaces and O-rings. A pressure sensitive adhesive (PSA) provides some adhesion between the two mated insulation surfaces. In 1995, after extensive testing, a new ODC-free PSA (free of ozone depleting chemicals) was selected for flight on RSRM-55 (STS-78). Post-flight inspection revealed that the J-joint, equipped with the new ODC-free PSA, did not perform well. Hot gas seeped inside the J-joint interface. Although not a flight safety threat, the J-joint hot gas intrusion on RSRM-55 was a mystery to the investigators since the PSA had previously worked well on a full-scale static test. A team was assembled to study the J-joint and PSA further. All J-joint design parameters, measured data, and historical performance data were re-reviewed and evaluated by subscale testing and analysis. Although both the ODC-free and old PSA were weakened by humidity, the ODC-free PSA strength was lower to start with. Another RSRM full-scale static test was conducted in 1998 and intentionally duplicated the gas intrusion. This test, along with many concurring tests, showed that if a J-joint was 1) mated with the new ODC-free PSA, 2) exposed to a history of high humidity (Kennedy Space Center levels), and 3) also a joint which experienced significant but normal joint motion (J-joint deformation resulting from motor pressurization dynamics) then that J-joint would open (allow gas intrusion) during motor operation. When all of the data from the analyses, subscale tests, and full-scale tests were considered together, a theory emerged. Most of the joint motion on the RSRM occurs early in motor operation at which point the J-joints are pulled into tension. If the new PSA has been weakened due to humidity, then the J-joint will partially pull apart (inboard side), and the J-joint surfaces will be charred by exposure to hot gases. After early operation, a J-joint that has been pulled apart will come back together as the J-joint deformation decreases. This J-joint heating event is relatively short and occurs only during the first part of motor operation. Internal instrumentation was developed for another full-scale static test in February 2000. The static test instrumentation did indeed prove this theory to be correct. Post-test inspection revealed very similar charring characteristics as observed on RSRM-55. This experience of the development of a new PSA, its testing, the RSRM-55 flight, followed by the J-joint investigation led to good 'lessons learned' and to an additional fundamental understanding of the RSRM J-joint function.
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execut...
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and
Parameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...
NASA Astrophysics Data System (ADS)
Kundu, S.; Sam, S.; Mishra, B.; Chatterjee, S.
2014-01-01
The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 °C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise σ phase and the λ + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNi3 intermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + λ phase when bonding was processed for 2.7 ks; however, failure takes place through σ phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.
NASA Astrophysics Data System (ADS)
Prakashan, A.; Mukunda, H. S.; Samuel, S. D.; Colaco, J. C.
1992-11-01
This paper addresses the design and development of a four degree of freedom industrial manipulator, with three liner axes in the positioning mechanism and one rotary axis in the orientation mechanism. The positioning mechanism joints are driven with dc servo motors fitted with incremental shaft encoders. The rotary joint of the orientation mechanism is driven by a stepping motor. The manipulator is controlled by an IBM 386 PC/AT. Microcomputer based interface cards have been developed for independent joint control. PID controllers for dc motors have been designed. Kinematic modeling, dynamic modeling, and path planning have been carried out to generate the control sequence to accomplish a given task with reference to source and destination state constraints. This project has been sponsored by the Department of Science and Technology, Government of India, New Delhi, and has been executed in collaboration with M/s Larsen & Toubro Ltd, Mysore, India.
Effect of Sn-Ag-Cu on the Improvement of Electromigration Behavior in Sn-58Bi Solder Joint
NASA Astrophysics Data System (ADS)
Wang, Fengjiang; Zhou, Lili; Zhang, Zhijie; Wang, Jiheng; Wang, Xiaojing; Wu, Mingfang
2017-10-01
Reliability issues caused by the formation of a Bi-rich layer at the anode interface usually occurs in the Sn-58Bi eutectic solder joint during electromigration (EM). To improve the EM performance of a Sn-58Bi solder joint, Sn-3.0Ag-0.5Cu solder was introduced into it to produce SnBi-SnAgCu structural or compositional composite joints, and their EM behaviors were investigated with the current density of 1.0 × 104 A/cm2 for different stressing times. The structure of the compositional composite solder joint was obtained by the occurrence of partial or full mixing between Sn-Bi and Sn-Ag-Cu solder with a suitable soldering temperature. In the structural composite joint, melted Sn-Bi was partially mixed with Sn-Ag-Cu solder to produce a Cu/Sn-Bi/Sn-Ag-Cu/Sn-Bi/Cu structure. In the compositional composite joint, full melting and mixing between these two solders occurred to produce a Cu/Sn-Ag-Cu-Bi/Cu structure, in which the solder matrix was a homogeneous structure including Sn, Bi phases, Cu6Sn5 and Ag3Sn IMCs. After current stressing, the EM performance of Sn-Bi solder was obviously improved with the structural or the compositional composite joint. In Sn-58Bi joints, a thick Bi-rich layer was easily produced at the anode interface, and obviously increased with stressing time. However, after current stressing on the structural composite joints, the existence of s Sn-3.0Ag-0.5Cu interlayer between the two Sn-58Bi solders effectively acted as a diffusion barrier and significantly slowed the formation of the Bi-rich layer at the anode side and the IMC thicknesses at the interfaces.
EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
Yin, Yue H; Fan, Yuan J; Xu, Li D
2012-07-01
Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.
NASA Astrophysics Data System (ADS)
Jesudoss Hynes, N. Rajesh; Shenbaga Velu, P.
2018-02-01
In the last two decades, major car manufacturing companies are exploring the possibilities of joining magnesium with aluminium, via friction welding technique for many crucial automotive applications. Our primary objective, is to carry out an experimental investigation in order to study the behaviour of dissimilar joints. The microscopic structure at the welded joint interface was analysed using an optical microscopy and scanning electron microscope. It was found that, by increasing the value of friction time, the value of the tensile strength increases and the result of tensile strength is found to be 120 MPa at a friction time of 10 s. Micro hardness was found to be higher at the interface of the weldment due to the development of a brittle intermetallic compound. Micro structural studies using SEM reveals, distinct zones such as an unaffected parent metal zone, the heat affected zone, a thermo-mechanically affected zone and a fully deformed plasticised zone.
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata
2014-04-01
An investigation was carried out on the solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- μm thickness as an intermediate material prepared in vacuum in the temperature range from 973 K to 1073 K (700 °C to 800 °C) in steps of 298 K (25 °C) using uniaxial compressive pressure of 3 MPa and 60 minutes as bonding time. Scanning electron microscopy images, in backscattered electron mode, had revealed existence of layerwise Ti-Ni-based intermetallics such as either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) diffusion zone was free from intermetallic phases for all joints processed. Chemical composition of the reaction layers was determined in atomic percentage by energy dispersive spectroscopy and confirmed by X-ray diffraction study. Room-temperature properties of the bonded joints were characterized using microhardness evaluation and tensile testing. The maximum hardness value of ~800 HV was observed at TiA/Ni interface for the bond processed at 1073 K (800 °C). The hardness value at Ni/SS interface for all the bonds was found to be ~330 HV. Maximum tensile strength of ~206 MPa along with ~2.9 pct ductility was obtained for the joint processed at 1023 K (750 °C). It was observed from the activation study that the diffusion rate at TiA/Ni interface is lesser than that at the Ni/SS interface. From microhardness profile, fractured surfaces and fracture path, it was demonstrated that failure of the joints was initiated and propagated apparently at the TiA/Ni interface near Ni3Ti intermetallic phase.
In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint
NASA Astrophysics Data System (ADS)
Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu
2018-03-01
Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.
Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A
2016-10-12
The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m 2 , respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.
Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm
NASA Astrophysics Data System (ADS)
Nabeel, Hafiz Muhammad; Azher, Anum; Usman Ali, Syed M.; Wahab Mughal, Abdul
2013-12-01
In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface.
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Xiao, Liyuan; Liu, Fuyun; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2017-05-01
In this work, we describe a method to improve the bonding of an immiscible Mg/steel system using Ni as an interlayer by coating it on the steel surface. Laser welding-brazing of AZ31B Mg alloy to Ni-coated Q235 steel using Mg-based filler was performed in a lap configuration. The influence of laser power on the weld characteristics, including joint appearance, formation of interfacial reaction layers and mechanical properties was investigated. The results indicated that the presence of the Ni-coating promoted the wetting of the liquid filler metal on the steel surface. A thermal gradient along the interface led to the formation of heterogeneous interfacial reaction layers. When using a low laser power of 1600 W, the reaction products were an FeAl phase in the direct laser irradiation zone, an AlNi phase close to the intermediate zone and mixtures of AlNi phase and an (α-Mg + Mg2Ni) eutectic structure near the interface at the seam head zone. For high powers of more than 2000 W, the FeAl phase grew thicker in the direct laser irradiation zone and a new Fe(Ni) transition layer formed at the interface of the intermediate zone and the seam head zone. However, the AlNi phase and (α-Mg + Mg2Ni) eutectic structure were scattered at the Mg seam. All the joints fractured at the fusion zone, indicating that the improved interface was not the weakest joint region. The maximum tensile-shear strength of the Mg/Ni-coated steel joint reached 190 N/mm, and the joint efficiency was 70% with respect to the Mg alloy base metal.
Joint Service Aircrew Mask (JSAM) Rotary Wing (RW): MPU-5 Noise Attenuation Performance
2016-06-09
Swayne Ball Aerospace and Technologies Corp. Dayton, OH Hilary Gallagher Warfighter Interface Division Battlespace Acoustics Branch Wright... Acoustics Branch Battlespace Acoustics Branch Warfighter Interface Division //signed// WILLIAM E. RUSSELL Chief, Warfighter Interface...Directorate Warfighter Interface Division Battlespace Acoustics Branch Wright-Patterson AFB OH 45433 711 HPW/RHCB 11. SPONSOR
The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly
developed by the USDA Agricultural Research Service, the U.S. Environmental Protection
Agency, the University of Arizona, and the University of Wyoming to automate the
parame...
The Automated Geospatial Watershed Assessment (http://www.epa.gov/nerlesd1/land-sci/agwa/introduction.htm and www.tucson.ars.ag.gov/agwa) tool is a GIS interface jointly developed by the U.S. Environmental Protection Agency, USDA-Agricultural Research Service, and the University ...
Using ITS to Create an Insurance Industry Application: A Joint Case Study.
ERIC Educational Resources Information Center
Boies, Stephen J.; And Others
1993-01-01
Presents an empirical case study of the use of ITS, a software development environment designed by IBM, by Continental Insurance for underwriting applications. Use of a rule-based user interface style that made electronic forms look like standard insurance industry paper forms and worked according to Continental's guidelines is described.…
Development of a stereoscopic three-dimensional drawing application
NASA Astrophysics Data System (ADS)
Carver, Donald E.; McAllister, David F.
1991-08-01
With recent advances in 3-D technology, computer users have the opportunity to work within a natural 3-D environment; a flat panel LCD computer display of this type, the DTI-100M made by Dimension Technologies, Inc., recently went on the market. In a joint venture between DTI and NCSU, an object-oriented 3-D drawing application, 3-D Draw, was developed to address some issues of human interface design for interactive stereo drawing applications. The focus of this paper is to determine some of the procedures a user would naturally expect to follow while working within a true 3-D environment. The paper discusses (1) the interface between the Macintosh II and DTI-100M during implementation of 3-D Draw, including stereo cursor development and presentation of current 2-D systems, with an additional `depth'' parameter, in the 3-D world, (2) problems in general for human interface into the 3-D environment, and (3) necessary functions and/or problems in developing future stereoscopic 3-D operating systems/tools.
NASA Astrophysics Data System (ADS)
Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.
2016-03-01
Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.
A reductionist approach to the analysis of learning in brain-computer interfaces.
Danziger, Zachary
2014-04-01
The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.
Designing a hands-on brain computer interface laboratory course.
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2016-08-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.
Influence of micro-oxidation on joints of C/C composites and GH3044 for large-size aerospace parts
NASA Astrophysics Data System (ADS)
Shi, Xiaohong; Jin, Xiuxiu; Yan, Ningning; Yang, Li
2017-11-01
To improve the bonding strength of carbon/carbon (C/C) composites and GH3044 nickel-based superalloy, the bonding interlayer with Ti/Ni/Cu/Ni multiple foils were prepared by a two-step technique involving micro-oxidation and partial transient liquid phase (PTLP) process. Interface characteristics and mechanical behavior of joints were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscope (LSCM) and energy X-ray dispersive spectrometer (EDS). Results show that a porous layer on C/C composites is formed by micro-oxidation for more than 2 min at 1073 K in air, which provides a diffusion path for liquid phase to infiltrate into C/C substrate and generate a wedge interlocking interface. After micro-oxidation for 4 min, the shear strength of joints reaches 32.09 ± 1.98 MPa what is 36.73% higher than that of joints without micro-oxidation (23.47 ± 1.15 MPa). The increase of shear strength remarkably depends on physical interlocking and chemical bonding at porous interface.
2006-12-01
interface as well as to minimize the interface contact resistance. There is an on- going effort by numerous researchers of dispersing conductive nano...constituents (single wall carbon nanotube (SWCNT), multi wall carbon nano tube ( MWCNT )) in polymers (adhesive) to enhance its thermal conductivity [1...propose to use vertically aligned MWCNT in joints to enhance through-thickness conductivity [10] because of its known high thermal conductivity
DOT National Transportation Integrated Search
2013-04-01
A longitudinal joint is the interface between two adjacent and parallel hot-mix asphalt (HMA) mats. Inadequate joint construction can lead to a location where water can penetrate the pavement layers and reduce the structural support of the underlying...
COMET-AR User's Manual: COmputational MEchanics Testbed with Adaptive Refinement
NASA Technical Reports Server (NTRS)
Moas, E. (Editor)
1997-01-01
The COMET-AR User's Manual provides a reference manual for the Computational Structural Mechanics Testbed with Adaptive Refinement (COMET-AR), a software system developed jointly by Lockheed Palo Alto Research Laboratory and NASA Langley Research Center under contract NAS1-18444. The COMET-AR system is an extended version of an earlier finite element based structural analysis system called COMET, also developed by Lockheed and NASA. The primary extensions are the adaptive mesh refinement capabilities and a new "object-like" database interface that makes COMET-AR easier to extend further. This User's Manual provides a detailed description of the user interface to COMET-AR from the viewpoint of a structural analyst.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.
Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A
2017-09-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces
Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.
2017-01-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332
Rotary Joints With Electrical Connections
NASA Technical Reports Server (NTRS)
Osborn, F. W.
1986-01-01
Power and data transmitted on many channels. Two different rotary joints equipped with electrical connections between rotating and stationary parts. One joint transmits axial thrust and serves as interface between spinning and nonspinning parts of Galileo spacecraft. Other is scanning (limitedrotation) joint that aims scientific instruments from nonspinning part. Selected features of both useful to designers of robots, advanced production equipment, and remotely controlled instruments.
Pressure-actuated joint system
NASA Technical Reports Server (NTRS)
McGuire, John R. (Inventor)
2004-01-01
A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.
Joint working. Local differences.
Hudson, B
1997-09-18
The interface between social care and primary healthcare remains underdeveloped. Where joint working is effective, it is the result of co-operation, trust and mutual respect. Successful local networks take account of professional autonomy.
Geared Electromechanical Rotary Joint
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Geared rotary joint provides low-noise ac or dc electrical contact between electrical subsystems rotating relative to each other. Designed to overcome some disadvantages of older electromechanical interfaces, especially intermittency of sliding-contact and rolling-contact electromechanical joints. Hollow, springy planetary gears provide continuous, redundant, low-noise electrical contact between inner and outer gears.
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata
2014-04-01
In the current study, solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- μm thickness as an intermediate material was carried out in vacuum. Uniaxial compressive pressure and temperature were kept at 4 MPa and 1023 K (750 °C), respectively, and the bonding time was varied from 30 to 120 minutes in steps of 15 minutes. Scanning electron microscopy images, in backscattered electron mode, revealed the layerwise Ti-Ni-based intermetallics like either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) interface was free from intermetallic phases for all the joints. Chemical composition of the reaction layers was determined by energy dispersive spectroscopy (SEM-EDS) and confirmed by X-ray diffraction study. Maximum tensile strength of ~382 MPa along with ~3.7 pct ductility was observed for the joints processed for 60 minutes. It was found that the extent of diffusion zone at Ni/SS interface was greater than that of TiA/Ni interface. From the microhardness profile, fractured surfaces, and fracture path, it was demonstrated that the failure of the joints was initiated and propagated apparently at TiA/Ni interface near Ni3Ti intermetallic for bonding time less than 90 minutes, and through Ni for bonding time 90 minutes and greater.
NASA Astrophysics Data System (ADS)
Macwan, A.; Jiang, X. Q.; Chen, D. L.
2015-07-01
Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
Mechanical Engineering Design Project report: Enabler control systems
NASA Technical Reports Server (NTRS)
Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.
1992-01-01
The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.
Lindsay K. Campbell; Erika S. Svendsen; Lara A. Roman
2016-01-01
Cities are increasingly engaging in sustainability efforts and investment in green infrastructure, including large-scale urban tree planting campaigns. In this context, researchers and practitioners are working jointly to develop applicable knowledge for planning and managing the urban forest. This paper presents three case studies of knowledge co-production in the...
Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint
NASA Astrophysics Data System (ADS)
Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo
2011-09-01
Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.
NASA Astrophysics Data System (ADS)
Hunt, Ryan Matthew
Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic Pressing (HIP) process (at a temperature between 700 °C and 750 °C for 2 hours at 103 M Pa) with 10 mu m of titanium and 20 mum of copper deposited between substrates. Without the copper and titanium interlayers, the bond formed an intermetallic that lead to fracture from internal residual stresses. Also, slowing the rate of cooling and adding an intermediate hold temperature during cool-down significantly increased bond strength. These beneficial effects were confirmed by the numerical simulations, which showed reduced residual stress resulting from all bonding techniques. Both metals interlayers, as well as the reduced cooling rate were critical in overcoming the otherwise brittle quality of the beryllium to ferritic steel joint. However, the introduced interlayers are not an ideal solution to the problem. They introduced both Be-Ti and Cu-Ti compounds, which proved to be the eventual failure location in the bond. Further optimization of this joint is necessary, and can potentially be achieved with variation of cooling rates. To make the joint ready for implementation will require larger scale fabrication to verify reliability and to test the joint under operational loads.
A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy
NASA Astrophysics Data System (ADS)
Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao
2018-04-01
The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.
Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge
NASA Astrophysics Data System (ADS)
Sato, T.; Oda, K.; Tsutsumi, N.
2018-06-01
Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.
NASA Technical Reports Server (NTRS)
Clark, David A.
1998-01-01
In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.
Designing a Hands-On Brain Computer Interface Laboratory Course
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2017-01-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946
An intelligent system with EMG-based joint angle estimation for telemanipulation.
Suryanarayanan, S; Reddy, N P; Gupta, V
1996-01-01
Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.H.
This paper reports on a ceramic joining technique that has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC ceramics using Ti-C-Ni powder mixtures that ignite below 1200{degrees} C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. during this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between themore » TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa.« less
Miller, Bradley J.; Patten, Jr., Donald O.
1991-01-01
Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.
Deng, Li; Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP
Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740
NASA Astrophysics Data System (ADS)
Wu, Chia-Yu; Huang, Yin-Hsien; Wu, Hsin-Han; Hsieh, Tsung-Eong
2018-06-01
Fourier's law of heat conduction at steady-state was adopted to establish a measurement method utilizing platinum (Pt) thin-film electrodes as the heater and the temperature sensor. The thermal conductivities (κ's) of Pyrex glass, an epoxy resin and a commercial underfill for flip-chip devices were measured and a good agreement with previously reported values was obtained. The thermal boundary resistances (RTBR's) of Pt/sample interfaces were also extracted for discussing their influence on the thermal conduction of samples. Afterward, the flip-chip samples with 2×2 solder joint array utilizing Si wafers as the die and the substrate, without and with the underfills, were prepared and their thermal conductance were measured. For the sample without underfill, the air presenting in the gap of die and the substrate led to the poor thermal conductance of sample. With the insertion of underfills, the thermal conductance of flip-chip samples improved. The resistance to heat transfer across Si/underfill interfaces was also suppressed and to promote the thermal conductance of samples. The thermal properties of underfill and RTBR at Si/underfill interface were further implanted in the calculation of thermal conductance of flip-chip samples containing various solder joint arrays. The increasing number of solder joints diminished the influence of thermal conduction of underfill and RTBR of Si/underfill interface on the thermal conductance of samples. The insertion of underfill with high-κ value might promote the heat conductance of samples containing low-density solder joint arrays; however, it became insignificant in improving the heat conductance of samples containing high-density solder joint arrays.
Internal rotor friction instability
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint
NASA Astrophysics Data System (ADS)
She, Cheng-Xue; Sun, Fu-Ting
2018-03-01
The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.
Joint Service Aircrew Mask (JSAM) - Strategic Aircraft (SA): Noise Attenuation Performance
2015-08-25
Billy Swayne Ball Aerospace and Technologies Corp. Dayton, OH Hilary Gallagher Warfighter Interface Division Battlespace Acoustics Branch...DISTRIBUTION STATEMENT. //signed// //signed// Hilary Gallagher Robert C. McKinley Work Unit Manager Chief, Battlespace Acoustics Branch...Battlespace Acoustics Branch Warfighter Interface Division //signed// William E. Russell, Chief Warfighter Interface Division Human
Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications
NASA Astrophysics Data System (ADS)
Lee, Byung-Suk; Yoon, Jeong-Won
2018-01-01
Cu-Sn solid-liquid interdiffusion (SLID) bonded joints were fabricated using a Sn-Cu solder paste and Cu for high-temperature power electronics applications. The interfacial reaction behaviors and the mechanical properties of Cu6Sn5 and Cu3Sn SLID-bonded joints were compared. The intermetallic compounds formed at the interfaces in the Cu-Sn SLID-bonded joints significantly affected the die shear strength of the joint. In terms of thermal and mechanical properties, the Cu3Sn SLID-bonded joint was superior to the conventional solder and the Cu6Sn5 SLID-bonded joints.
Radiation hydrodynamic effects in two beryllium plates with an idealized aluminum joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkov, S.A.; Mkhitarian, L.S.; Vinokurov, O.A.
A beryllium capsule formed from two hemispherical shells with a thin bond is one possible ignition target for the National Ignition Facility [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)] Nonuniformities in density, opacity, and interface position at the joint between these hemishells will initiate two-dimensional (2-D) perturbations of the shock wave and material behind the shock as the shock passes through the shell perpendicular to the joint width. Rarefaction of material flow behind the shock front can cause the interface between the shell and joint material to oscillate in position. The amplitude of thesemore » oscillations may be comparable to the joint width. The evolution of these perturbations is studied by numerically simulating shock passage through flat beryllium plates containing aluminum joints. Using the MIMOSA-ND code [D. Sofronov {ital et al.}, Vopr. At. Nauki Tekh., Ser: Mat. modelirovanie fizicheskih processov {bold 2}, 3 (1990)] two different cases are calculated{emdash}a wide (10 {mu}m) and a narrow (1 {mu}m) joint of aluminum between two 150 {mu}m long semiinfinite beryllium plates. Both cases showed good agreement with an analytic representation of the oscillation behavior. For the narrow joint, a special technique allows the calculation of mixing between the joint and surrounding material caused by the Kelvin{endash}Helmholtz instability. {copyright} {ital 1999 American Institute of Physics.}« less
Data representation for joint kinematics simulation of the lower limb within an educational context.
Van Sint Jan, Serge; Hilal, Isam; Salvia, Patrick; Sholukha, Victor; Poulet, Pascal; Kirokoya, Ibrahim; Rooze, Marcel
2003-04-01
Three-dimensional (3D) visualization is becoming increasingly frequent in both qualitative and quantitative biomechanical studies of anatomical structures involving multiple data sources (e.g. morphological data and kinematics data). For many years, this kind of experiment was limited to the use of bi-dimensional images due to a lack of accurate 3D data. However, recent progress in medical imaging and computer graphics has forged new perspectives. Indeed, new techniques allow the development of an interactive interface for the simulation of human motions combining data from both medical imaging (i.e., morphology) and biomechanical studies (i.e., kinematics). Fields of application include medical education, biomechanical research and clinical research. This paper presents an experimental protocol for the development of anatomically realistic joint simulation within a pedagogical context. Results are shown for the lower limb. Extension to other joints is straightforward. This work is part of the Virtual Animation of the Kinematics of the Human project (VAKHUM) (http://www.ulb.ac.be/project/vakhum).
NASA Astrophysics Data System (ADS)
Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.
2016-06-01
Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.
Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm
Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W
2015-01-01
Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and software platforms, so that the different components can communicate in real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a single target. We utilized the output of this model in real time to drive mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) interface. The robotic arm sent back information on its joint positions, which was then used by a visualization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomimetic learning algorithms for controlling real-time devices. PMID:26709323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.
A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, themore » 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.« less
1991-02-01
FY 1990 ACCOMPLISHMENTS: a. (U) Completed physical functional and operational audit of system, subcomponents and interfaces related to digital...receiver hardware. b. (U) Developed system specification reflecting audit results. c. (U) Established reliability assessment and recommended changes and/or...interoperability testing and demonstrations. d. (U) Updated joint terminal specifications and standards. e. (U) Audited Army/Navy/Air Force terminal designs. f. (U
Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy
NASA Astrophysics Data System (ADS)
Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.
2017-04-01
A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.
Amaral, Carlos P; Simões, Marco A; Mouga, Susana; Andrade, João; Castelo-Branco, Miguel
2017-10-01
We present a novel virtual-reality P300-based Brain Computer Interface (BCI) paradigm using social cues to direct the focus of attention. We combined interactive immersive virtual-reality (VR) technology with the properties of P300 signals in a training tool which can be used in social attention disorders such as autism spectrum disorder (ASD). We tested the novel social attention training paradigm (P300-based BCI paradigm for rehabilitation of joint-attention skills) in 13 healthy participants, in 3 EEG systems. The more suitable setup was tested online with 4 ASD subjects. Statistical accuracy was assessed based on the detection of P300, using spatial filtering and a Naïve-Bayes classifier. We compared: 1 - g.Mobilab+ (active dry-electrodes, wireless transmission); 2 - g.Nautilus (active electrodes, wireless transmission); 3 - V-Amp with actiCAP Xpress dry-electrodes. Significant statistical classification was achieved in all systems. g.Nautilus proved to be the best performing system in terms of accuracy in the detection of P300, preparation time, speed and reported comfort. Proof of concept tests in ASD participants proved that this setup is feasible for training joint attention skills in ASD. This work provides a unique combination of 'easy-to-use' BCI systems with new technologies such as VR to train joint-attention skills in autism. Our P300 BCI paradigm is feasible for future Phase I/II clinical trials to train joint-attention skills, with successful classification within few trials, online in ASD participants. The g.Nautilus system is the best performing one to use with the developed BCI setup. Copyright © 2017 Elsevier B.V. All rights reserved.
Joining dissimilar materials using Friction Stir scribe technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep
2016-10-03
The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS processmore » and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.« less
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2012-01-01
A welding apparatus is provided for forming a weld joint between first and second elements of a workpiece. The apparatus heats the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding mixer, to remove any dendritic-type weld microstructures introduced into the interface material during heating.
Experimental and numerical study of Bondura® 6.6 PIN joints
NASA Astrophysics Data System (ADS)
Berkani, I.; Karlsen, Ø.; Lemu, H. G.
2017-12-01
Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.
NASA Astrophysics Data System (ADS)
de Prado, J.; Sánchez, M.; Antusch, S.; Ureña, A.
2017-12-01
The present work describes a joining procedure between two different tungsten composite materials (W-2Y2O3 and W-1TiC) with reduced activation ferritic-martensitic steel (Eurofer). The results indicated the achievement, in both cases, of high quality W-composites/Eurofer joints using 80Cu-20Ti as filler material. The braze is constituted by several ternary Cu-Ti-Fe phases distributed along a Cu-matrix, which acts as ductile phase capable of relieving the residual stresses, which could be produced during the service life of the component. Some cracks growing from W-braze interface into the base material have been detected. They are originated by the stresses produced during the cooling stage of the brazing cycle. Regarding the strength of the joints, similar shear strengths of both joints were obtained (˜105 MPa). These values were slightly lower than the ones obtained when pure tungsten was used as the base metal.
Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints
NASA Astrophysics Data System (ADS)
Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.
2014-07-01
In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.
Experiences in Interagency and International Interfaces for Mission Support
NASA Technical Reports Server (NTRS)
Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.
1996-01-01
The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.
Vianco, Paul T.
2017-03-01
Whether structural or electronic, all solder joints must provide the necessary level of reliability for the application. The Part 1 report examined the effects of filler metal properties and the soldering process on joint reliability. Filler metal solderability and mechanical properties, as well as the extents of base material dissolution and interface reaction that occur during the soldering process, were shown to affect reliability performance. The continuation of this discussion is presented in this Part 2 report, which highlights those factors that directly affect solder joint reliability. There is the growth of an intermetallic compound (IMC) reaction layer at themore » solder/base material interface by means of solid-state diffusion processes. In terms of mechanical response by the solder joint, fatigue remains as the foremost concern for long-term performance. Thermal mechanical fatigue (TMF), a form of low-cycle fatigue (LCF), occurs when temperature cycling is combined with mismatched values of the coefficient of thermal expansion (CTE) between materials comprising the solder joint “system.” Vibration environments give rise to high-cycle fatigue (HCF) degradation. Although accelerated aging studies provide valuable empirical data, too many variants of filler metals, base materials, joint geometries, and service environments are forcing design engineers to embrace computational modeling to predict the long-term reliability of solder joints.« less
Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Mall, S.
1985-01-01
An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.
Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Mall, S.
1986-01-01
An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.
The unified database for the fixed target experiment BM@N
NASA Astrophysics Data System (ADS)
Gertsenberger, K. V.
2016-09-01
The article describes the developed database designed as comprehensive data storage of the fixed target experiment BM@N [1] at Joint Institute for Nuclear Research (JINR) in Dubna. The structure and purposes of the BM@N facility will be briefly presented. The scheme of the unified database and its parameters will be described in detail. The use of the BM@N database implemented on the PostgreSQL database management system (DBMS) allows one to provide user access to the actual information of the experiment. Also the interfaces developed for the access to the database will be presented. One was implemented as the set of C++ classes to access the data without SQL statements, the other-Web-interface being available on the Web page of the BM@N experiment.
Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I
2004-01-01
Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.
A restrained-torque-based motion instructor: forearm flexion/extension-driving exoskeleton
NASA Astrophysics Data System (ADS)
Nishimura, Takuya; Nomura, Yoshihiko; Sakamoto, Ryota
2013-01-01
When learning complicated movements by ourselves, we encounter such problems as a self-rightness. The self-rightness results in a lack of detail and objectivity, and it may cause to miss essences and even twist the essences. Thus, we sometimes fall into the habits of doing inappropriate motions. To solve these problems or to alleviate the problems as could as possible, we have been developed mechanical man-machine human interfaces to support us learning such motions as cultural gestures and sports form. One of the promising interfaces is a wearable exoskeleton mechanical system. As of the first try, we have made a prototype of a 2-link 1-DOF rotational elbow joint interface that is applied for teaching extension-flexion operations with forearms and have found its potential abilities for teaching the initiating and continuing flection motion of the elbow.
Method of beam welding metallic parts together and apparatus for doing same
Lewandowski, Edward F.; Cassidy, Dale A.; Sommer, Robert G.
1987-01-01
The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.
Method of beam welding metallic parts together and apparatus for doing same
Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.
1985-11-29
This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.
NASA Astrophysics Data System (ADS)
Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai
2018-03-01
Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.
Correlation signatures of wet soils and snows. [algorithm development and computer programming
NASA Technical Reports Server (NTRS)
Phillips, M. R.
1972-01-01
Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.
75 FR 69642 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... which result in a contrary determination. ADDRESSES: You may submit comments, identified by docket... generated records. Data is also received from various interfaces; Defense Manpower Data Center; Defense Civilian Payroll System; Joint Personnel Adjudication System; Air Force Manpower Interface; National Guard...
NASA Astrophysics Data System (ADS)
Hu, Yanying; Liu, Huijie; Du, Shuaishuai
2018-06-01
The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.
Analysis of singular interface stresses in dissimilar material joints for plasma facing components
NASA Astrophysics Data System (ADS)
You, J. H.; Bolt, H.
2001-10-01
Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.
A universal six-joint robot controller
NASA Technical Reports Server (NTRS)
Bihn, D. G.; Hsia, T. C.
1987-01-01
A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.
Extravehicular activity space suit interoperability.
Skoog, A I; McBarron JW 2nd; Severin, G I
1995-10-01
The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp
An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less
Pierce, Jim D.; Stephens, John J.; Walker, Charles A.
1999-01-01
A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.
2008-01-01
Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.
NASA Astrophysics Data System (ADS)
Chong, Jiajun; Chu, Risheng; Ni, Sidao; Meng, Qingjun; Guo, Aizhi
2018-02-01
It is known that a receiver function has relatively weak constraint on absolute seismic wave velocity, and that joint inversion of the receiver function with surface wave dispersion has been widely applied to reduce the trade-off of velocity with interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear-wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the receiver function to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear-wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion.
Evaluation of total knee mechanics using a crouching simulator with a synthetic knee substitute.
Lowry, Michael; Rosenbaum, Heather; Walker, Peter S
2016-05-01
Mechanical evaluation of total knees is frequently required for aspects such as wear, strength, kinematics, contact areas, and force transmission. In order to carry out such tests, we developed a crouching simulator, based on the Oxford-type machine, with novel features including a synthetic knee including ligaments. The instrumentation and data processing methods enabled the determination of contact area locations and interface forces and moments, for a full flexion-extension cycle. To demonstrate the use of the simulator, we carried out a comparison of two different total knee designs, cruciate retaining and substituting. The first part of the study describes the simulator design and the methodology for testing the knees without requiring cadaveric knee specimens. The degrees of freedom of the anatomic hip and ankle joints were reproduced. Flexion-extension was obtained by changing quadriceps length, while variable hamstring forces were applied using springs. The knee joint was represented by three-dimensional printed blocks on to which the total knee components were fixed. Pretensioned elastomeric bands of realistic stiffnesses passed through holes in the block at anatomical locations to represent ligaments. Motion capture of the knees during flexion, together with laser scanning and computer modeling, was used to reconstruct contact areas on the bearing surfaces. A method was also developed for measuring tibial component interface forces and moments as a comparative assessment of fixation. The method involved interposing Tekscan pads at locations on the interface. Overall, the crouching machine and the methodology could be used for many different mechanical measurements of total knee designs, adapted especially for comparative or parametric studies. © IMechE 2016.
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2012-01-01
A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.
Thermal stir welding apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2011-01-01
A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.
Application of Bionic Design to FRP T-Joints
NASA Astrophysics Data System (ADS)
Luo, Guang-Min; Kuo, Chia-Hung
2017-09-01
We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.
The microstructure and microhardness of friction stir welded dissimilar copper/Al-5% Mg alloys
NASA Astrophysics Data System (ADS)
Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.
2017-12-01
A friction stir welded joint between copper and aluminum alloy has been investigated and characterized for the microstructure and microhardness number distribution. The microstructural evolution of the joint is studied using optical microscopy and microhardness. The mechanical characteristics in structural zones of FSW joints are determined by Vickers microhardness measurements. Samples were cut across the cross section. It is shown that intermetallic Cu/Al particles are formed at interfaces. The intermetallics microhardness in the dissimilar aluminum/cooper FSW joint differs from that of the joint produced by fusion welding. The grain structures obtained in different dissimilar joint zones are examined.
Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation
NASA Astrophysics Data System (ADS)
Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.
Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.
ACR/NEMA Digital Image Interface Standard (An Illustrated Protocol Overview)
NASA Astrophysics Data System (ADS)
Lawrence, G. Robert
1985-09-01
The American College of Radiologists (ACR) and the National Electrical Manufacturers Association (NEMA) have sponsored a joint standards committee mandated to develop a universal interface standard for the transfer of radiology images among a variety of PACS imaging devicesl. The resulting standard interface conforms to the ISO/OSI standard reference model for network protocol layering. The standard interface specifies the lower layers of the reference model (Physical, Data Link, Transport and Session) and implies a requirement of the Network Layer should a requirement for a network exist. The message content has been considered and a flexible message and image format specified. The following Imaging Equipment modalities are supported by the standard interface... CT Computed Tomograpy DS Digital Subtraction NM Nuclear Medicine US Ultrasound MR Magnetic Resonance DR Digital Radiology The following data types are standardized over the transmission interface media.... IMAGE DATA DIGITIZED VOICE HEADER DATA RAW DATA TEXT REPORTS GRAPHICS OTHERS This paper consists of text supporting the illustrated protocol data flow. Each layer will be individually treated. Particular emphasis will be given to the Data Link layer (Frames) and the Transport layer (Packets). The discussion utilizes a finite state sequential machine model for the protocol layers.
A wearable exoskeleton suit for motion assistance to paralysed patients.
Chen, Bing; Zhong, Chun-Hao; Zhao, Xuan; Ma, Hao; Guan, Xiao; Li, Xi; Liang, Feng-Yan; Cheng, Jack Chun Yiu; Qin, Ling; Law, Sheung-Wai; Liao, Wei-Hsin
2017-10-01
The number of patients paralysed due to stroke, spinal cord injury, or other related diseases is increasing. In order to improve the physical and mental health of these patients, robotic devices that can help them to regain the mobility to stand and walk are highly desirable. The aim of this study is to develop a wearable exoskeleton suit to help paralysed patients regain the ability to stand up/sit down (STS) and walk. A lower extremity exoskeleton named CUHK-EXO was developed with considerations of ergonomics, user-friendly interface, safety, and comfort. The mechanical structure, human-machine interface, reference trajectories of the exoskeleton hip and knee joints, and control architecture of CUHK-EXO were designed. Clinical trials with a paralysed patient were performed to validate the effectiveness of the whole system design. With the assistance provided by CUHK-EXO, the paralysed patient was able to STS and walk. As designed, the actual joint angles of the exoskeleton well followed the designed reference trajectories, and assistive torques generated from the exoskeleton actuators were able to support the patient's STS and walking motions. The whole system design of CUHK-EXO is effective and can be optimised for clinical application. The exoskeleton can provide proper assistance in enabling paralysed patients to STS and walk.
Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)
NASA Astrophysics Data System (ADS)
Hammond, Barney; Popa, Mirela
2005-05-01
This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.
NASA Astrophysics Data System (ADS)
Chen, Peng; Trociewitz, Ulf P.; Davis, Daniel S.; Bosque, Ernesto S.; Hilton, David K.; Kim, Youngjae; Abraimov, Dmytro V.; Starch, William L.; Jiang, Jianyi; Hellstrom, Eric E.; Larbalestier, David C.
2017-02-01
Superconducting joints are one of the key components needed to make Ag-alloy clad Bi2Sr2CaCu2O8+x (Bi-2212) superconducting round wire (RW) successful for high-field, high-homogeneity magnet applications, especially for nuclear magnetic resonance magnets in which persistent current mode operation is highly desired. In this study, a procedure for fabricating superconducting joints between Bi-2212 RWs during coil reaction was developed. Melting temperatures of Bi-2212 powder with different amounts of Ag addition were investigated by differential thermal analysis so as to provide information for selecting the proper joint matrix. Test joints of 1.3 mm dia. wires heat treated in 1 bar flowing oxygen using the typical partial melt Bi-2212 heat treatment (HT) had transport critical currents I c of ˜900 A at 4.2 K and self-field, decreasing to ˜480 A at 14 T evaluated at 0.1 μV cm-1 at 4.2 K. Compared to the I c of the open-ended short conductor samples with identical 1 bar HT, the I c values of the superconducting joint are ˜20% smaller than that of conductor samples measured in parallel field but ˜20% larger than conductor samples measured in perpendicular field. Microstructures examined by scanning electron microscopy clearly showed the formation of a superconducting Bi-2212 interface between the two Bi-2212 RWs. Furthermore, a Bi-2212 RW closed-loop solenoid with a superconducting joint heat treated in 1 bar flowing oxygen showed an estimated joint resistance below 5 × 10-12 Ω based on its field decay rate. This value is sufficiently low to demonstrate the potential for persistent operation of large inductance Bi-2212 coils.
Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu
2016-07-01
Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Jinlong; Xue, Songbai; Sekulic, Dusan P.
2017-01-01
This work offers an analysis of the microstructure and the growth rate of an intermetallic compound within the aged AA 6061 aluminum alloy-304 stainless steel joint brazed with Zn-15Al and Zn-15Al-0.2Zr filler metals. The effect of zirconium addition on mechanical integrity of the brazed joint was studied. The experimental results confirm that the thickness of the Fe-Al intermetallic layer formed at the brazed seam/stainless steel interface increases with the increase of the aging time. Furthermore, it is established that the growth rate of the intermetallic layer for the Zn-15Al-0.2Zr brazed joint was lower than that for Zn-15Al. The results also indicate that the shear strength of both Zn-15Al and Zn-15Al-0.2Zr brazed joints decreases monotonously during aging. The value of the strength after aging lasting for 800 h for Zn-15Al and Zn-15Al-0.2Zr has decreased by 20 and 17%, respectively. The fracture of joints occurred at the interface between the brazed seam and the Fe4Al13 intermetallic layer. The morphology of the surfaces exhibits a cleavage fracture.
NASA Astrophysics Data System (ADS)
Ji, Hongjun; Ma, Yuyou; Li, Mingyu; Wang, Chunqing
2015-02-01
The silver content of lead-free solders affects their microstructure, the interfacial reaction, and the performance of the joints in reliability tests. In this study, Sn3.0Ag0.5Cu (wt.%, SAC305) and Sn1.0Ag0.5Cu (wt.%, SAC105) solder balls of diameter 55 μm were reflowed on gold surface pads by laser-jet soldering. It was found that four types of layered intermetallic compound (IMC) were formed at the interfaces; these were Au5Sn/AuSn, AuSn, AuSn2, and AuSn4 from the pad side to the solder matrix. The Au5Sn/AuSn eutectic region, thickness 400 nm, formed because of the high cooling rate induced by the laser-jet soldering. During high-temperature storage tests, the silver became segregated at the interfaces between the Au-Sn IMC and the solder matrix, resulting in inhibition of IMC growth in SAC305 joints, the shear strengths of which were higher than those of SAC105 joints. In mechanical drop tests, however, percentage failure of the SAC305 joints was twice that of the SAC105 joints.
Brazing of Stainless Steels to Yttria Stabilized Zirconia (YSZ) Using Silver -Base Brazes
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Shpargel, Tarah P.; Asthana, Rajiv
2005-01-01
Three silver-base brazes containing either noble metal palladium (Palcusil-10 and Palcusil-15) or active metal titanium (Ticusil) were evaluated for high-temperature oxidation resistance, and their effectiveness in joining yttria stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel. Thermogravimetric analysis (TGA), and optical- and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) were used to evaluate the braze oxidation behavior and the structure and chemistry of the YSZ/braze/steel joints. The effect of the braze type and processing conditions on the interfacial microstructure and composition of the joint regions is discussed with reference to the chemical changes that occur at the interface. It was found that chemical interdiffusion of the constituents of YSZ, steel and the brazes led to compositional changes and/or interface reconstruction, and metallurgically sound joints.
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation
NASA Astrophysics Data System (ADS)
Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.
2017-09-01
In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.
NASA Astrophysics Data System (ADS)
FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng
2018-01-01
To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.
Modeling of the Nonlinear Interface in Reinforced Concrete
NASA Astrophysics Data System (ADS)
Curiel Sosa, J. L.
2010-04-01
This article presents a novel scheme for modeling of reinforced concrete. The strategy takes into account the nonlinear behavior of the concrete as well as the debonding in the interface. The proposed technique solves the kinematic and kinetic jump in the interface by performing sub-cycles over the constituents-reinforcing bar and concrete-jointly with an innovative interface constitutive law. Application to pull-out problems is performed to show the capabilities of the proposed methodology by means of comparison with available experimental data.
Stochastic Inversion of 2D Magnetotelluric Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo
2013-01-01
Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.
2008-01-01
Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoye; Tan, Caiwang; Meng, Shenghao; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2018-03-01
Fiber laser welding-brazing of 1-mm-thick AZ31B Mg alloys to 1.5-mm-thick copper (T2) with Mg-based filler was performed in a lap configuration. The weld appearance, interfacial microstructure and mechanical properties were investigated with different heat inputs. The results indicated that processing windows for optimizing appropriate welding parameters were relatively narrow in this case. Visually acceptable joints with certain strength were achieved at appropriate welding parameters. The maximum tensile-shear fracture load of laser-welded-brazed Mg/Cu joint could reach 1730 N at the laser power of 1200 W, representing 64.1% joint efficiency relative to AZ31Mg base metal. The eutectic structure (α-Mg + Mg2Cu) and Mg-Cu intermetallic compound was observed at the Mg/Cu interface, and Mg-Al-Cu ternary intermetallic compound were identified between intermetallics and eutectic structure at high heat input. All the joints fractured at the Mg-Cu interface. However, the fracture mode was found to differ. For laser power of 1200 W, the surface was characterized by tearing edge, while that with poor joint strength was almost dominated by smooth surface or flat tear pattern.
JDFTx: Software for joint density-functional theory
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...
2017-11-14
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
JDFTx: Software for joint density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco
2005-10-01
The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
NASA Astrophysics Data System (ADS)
Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.
2017-02-01
Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.
Brazing of Carbon Carbon Composites to Cu-clad Molybdenum for Thermal Management Applications
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.; Shpargel, T> P.
2007-01-01
Advanced carbon carbon composites were joined to copper-clad molybdenum (Cu/Mo) using four active metal brazes containing Ti (Cu ABA, Cusin-1 ABA, Ticuni, and Ticusil) for potential use in thermal management applications. The brazed joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Knoop microhardness measurements across the joint region. Metallurgically sound C-C/Cu/Mo joints, devoid of interfacial cracks formed in all cases. The joint interfaces were preferentially enriched in Ti, with Cu ABA joints exhibiting the largest interfacial Ti concentrations. The microhardness measurements revealed hardness gradients across the joint region, with a peak hardness of 300-350 KHN in Cusin-1 ABA and Ticusil joints and 200-250 KHN in Cu ABA and Ticuni joints, respectively.
Engineering and commercialization of human-device interfaces, from bone to brain.
Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf
2016-07-01
Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
1987-03-01
38 7. STEP 4 - CURRENT VERSION ..................................... 40 8 . STEP 4 - PROTOTYPE...1- 4 respectively. Tables 2, 4 , 6, and 8 are the respective prototype versions of source code. There are several noticeable differences between the...prompt in the scroll area (to make an input). This is distracting and time consuming. 42 IL a- TABLE 8 STEP 4 - PROTOTYPE Ge tNextEvent MouseClick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.
This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.
Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.; ...
2016-11-16
This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.
NASA Astrophysics Data System (ADS)
Simanovskii, Ilya; Viviani, Antonio; Dubois, Frank; Queeckers, Patrick
2018-01-01
Nonlinear convective flows developed under the joint action of buoyant and thermocapillary effects in a laterally heated two-layer system filling the closed cavity, have been investigated. The influence of a temperature-dependent interfacial heat release/consumption on nonlinear steady and oscillatory regimes, has been studied. It is shown that sufficiently strong temperature dependence of interfacial heat sinks and heat sources can change the sequence of bifurcations and lead to the development of specific oscillatory regimes in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles R; Gobbato, Maurizio; Conte, Joel
2009-01-01
The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less
Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R
2016-06-01
Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).
Performance Evaluation and Durability Studies of Adhesive Bonds
NASA Astrophysics Data System (ADS)
Ranade, Shantanu Rajendra
In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights into the long-term performance of silicone sealants designed for load-bearing applications such as solar panel support sealants. Using small strain constitutive tests and time-temperature-superposition principle, thermal shift factors were obtained and successfully used to characterize the creep rupture master curves for specific joint configurations, leading to insights into delayed failures corresponding to three years through experiments carried out in one month.
NASA Technical Reports Server (NTRS)
Smith, Russ; Hagen, Richard
2015-01-01
In support of the Deep Space Habitat project a number of composite rack prototypes were developed, designed, fabricated and tested to various extents ( with the International Standard Payload Rack configuration, or crew quarters, as a baseline). This paper focuses specifically on a composite rack prototype with a direct tie in to Space Station hardware. The outlined prototype is an all composite construction, excluding metallic fasteners, washers, and their associated inserts. The rack utilizes braided carbon composite tubing for the frame with the sidewalls, backwall and flooring sections utilizing aircraft grade composite honeycomb sandwich panels. Novel additively manufactured thermoplastic joints and tube inserts were also developed in support of this effort. Joint and tube insert screening tests were conducted at a preliminary level. The screening tests allowed for modification, and enhancement, of the fabrication and design approaches, which will be outlined. The initial joint tests did not include mechanical fasteners. Adhesives were utilized at the joint to composite tube interfaces, along with mechanical fasteners during final fabrication (thus creating a stronger joint than the adhesive only variant). In general the prototype was focused on a potential in-space assembly approach, or kit-of-parts construction concept, which would not necessarily require the inclusion of an adhesive in the joint regions. However, given the tie in to legacy Station hardware (and potential flight loads with imbedded hardware mass loadings), the rack was built as stiff and strong as possible. Preliminary torque down tests were also conducted to determine the feasibility of mounting the composite honeycomb panels to the composite tubing sections via the additively manufactured tube inserts. Additional fastener torque down tests were also conducted with inserts (helicoils) imbedded within the joints. Lessons learned are also included and discussed.
Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi
2007-05-01
A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.
Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates
NASA Astrophysics Data System (ADS)
Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui
2018-01-01
The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.
Design of high strength polymer metal interfaces by laser microstructured surfaces
NASA Astrophysics Data System (ADS)
Steinert, P.; Dittes, A.; Schimmelpfennig, R.; Scharf, I.; Lampke, T.; Schubert, A.
2018-06-01
In the areas of automotive, aeronautics and civil structures, lightweight construction is a current and a future need. Thus, multi material design has rapidly grown in importance, especially hybrid materials based on fiber reinforced plastics and aluminum offer great potential. Therefore, mechanical interlocking is a convenient way of designing the interface. Laser structuring is already used to generate a variety of surface topographies leading to high bond strengths. This paper investigates different laser structures aiming on highest joint strengths for aluminum and glass fiber reinforced polyamide 6 interfaces. Self-organizing pin structures comprised by additional micro/nano features as well as drilled hole structures, both ranging on the micrometer range, are compared to corundum blasting as a standard method for surface conditioning. For the presented surface structures, thermal joining and ultrasonic assisted joining are regarded towards their potential for an optimum joint design.
Coal-shale interface detection system
NASA Technical Reports Server (NTRS)
Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)
1979-01-01
A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.
NASA Technical Reports Server (NTRS)
Reid, H., Jr. (Inventor)
1980-01-01
A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.
Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint
NASA Astrophysics Data System (ADS)
Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.
2006-12-01
Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.
Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.
1996-01-01
The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,
Morphology and Mobility of the Reconstructed Basilar Joint of the Pollicized Index Finger.
Strugarek-Lecoanet, Clotilde; Chevrollier, Jérémie; Pauchard, Nicolas; Blum, Alain; Dap, François; Dautel, Gilles
2016-09-01
To evaluate outcome and function of the reconstructed basilar thumb joint after index finger pollicization in patients presenting congenital thumb deficiency. Plain radiographs and 4-dimensional dynamic volume computed tomography scan were used to evaluate the outcome of 23 pollicizations performed on 14 children between 1996 and 2009. The mean follow-up was 8 years. Patients performed continuous movements of thumb opposition during the imaging studies. Four-dimensional scan images made it possible to visualize mobility within the reconstructed joint. In 14 cases, union occurred in the metacarpal head/metacarpal base interface. In the 9 other cases, there was a nonunion at this interface. The reconstructed joint was mobile in 20 cases, including 3 in which there was also mobility at the site of the nonunion. In 3 cases in our series, mobility was present only at the site of the nonunion, between the base and the head of the second metacarpal. Remodeling and flattening out of the metacarpal head occurred in 16 of 23 cases. The transposed metacarpal head remained spherical in 7 cases. The reconstructed joint adapts, both morphologically and functionally, allowing movement on all 3 spatial planes. Existing mechanical constraints on the reconstructed joint may explain its remodeled appearance. Therapeutic IV. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring
NASA Astrophysics Data System (ADS)
Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.
2017-05-01
The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)
2001-01-01
Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.
2008-01-01
Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.
Photovoltaic Universal Joints: Ball-and-Socket Interfaces in Molecular Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay, Noah J.; Gorodetsky, Alon A.; Cox, Marshall P.
2010-02-15
A new approach toward higher efficiency organic photovoltaic devices (OPVs) is described. Complementarity in shape between the donor (contorted hexabenzocoronene, see picture) and acceptor (buckminsterfullerene) molecules results in OPVs that perform surprisingly well. This exploitation of host-guest chemistry at the organic/organic interface demonstrates a new direction for OPV device design.
NASA Astrophysics Data System (ADS)
Tokunaga, K.; Matsubara, T.; Miyamoto, Y.; Takao, Y.; Yoshida, N.; Noda, N.; Kubota, Y.; Sogabe, T.; Kato, T.; Plöchl, L.
2000-12-01
Tungsten coatings of 0.5 and 1 mm thickness were successfully deposited by the vacuum plasma spraying (VPS) technique on carbon/carbon fiber composite (CFC), CX-2002U and isotropic fine grained graphite, IG-430U. High heat flux experiments by irradiation of electron beam with uniform profile were performed on the coated samples in order to prove the suitability and load limit of such coating materials. The cross-sectional composition and structure of the interface of VPS-W and carbon material samples were investigated. Compositional analyses showed that the Re/W multi-layer acts as diffusion barrier for carbon and suppresses tungsten carbide formation in the VPS-W layer at high temperature about 1300°C. Microstructure of the joint interface of the sample changed in the case of a peak temperature of about 2800°C. The multi-layer structure completely disappeared and compositional distribution was almost uniform in the interface of the sample after melting and resolidification. The diffusion barrier for carbon is not expected to act in this stage.
Shimada, Youichi; Terayama, Yukio
2006-01-01
This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.
NASA Astrophysics Data System (ADS)
Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen
2017-12-01
Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.
NASA Astrophysics Data System (ADS)
Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon
2018-05-01
Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.
Recrystallization characteristics and interfacial oxides on the compression bonding interface
NASA Astrophysics Data System (ADS)
Xie, Bijun; Sun, Mingyue; Xu, Bin; Li, Dianzhong
2018-05-01
Up to now, the mechanism of interface bonding is still not fully understood. This work presents interfacial characteristics of 316LN stainless steel bonding joint after cold compression bonding with subsequent annealing. EBSD analysis shows that fine recrystallization grains preferentially appear near the bonding interface and grow towards both sides of the interface. Transmission electron microscopy reveals that initial cold compression bonding disintegrates the native oxide scales and brings pristine metal from both sides of the interface come into intimate contact, while the broken oxide particles are remained at the original interface. The results indicate that partial bonding can be achieved by cold compression bonding with post-annealing treatment and recrystallization firstly occurs along the bonding interface. However, the interfacial oxides impede the recrystallization grains step over the interface and hinder the complete healing of the bonding interface.
NASA X-34 Technology in Motion
NASA Technical Reports Server (NTRS)
Beech, Geoffrey; Chandler, Kristie
1997-01-01
The X-34 technology development program is a joint industry/government project to develop, test, and operate a small, fully-reusable hypersonic flight vehicle. The objective is to demonstrate key technologies and operating concepts applicable to future reusable launch vehicles. Integrated in the vehicle are various systems to assure successful completion of mission objectives, including the Main Propulsion System (MPS). NASA-Marshall Space Flight Center (MSFC) is responsible for developing the X-34's MPS including the design and complete build package for the propulsion system components. The X-34 will be powered by the Fastrac Engine, which is currently in design and development at NASA-MSFC. Fastrac is a single-stage main engine, which burns a mixture of liquid oxygen (LOX) and kerosene(RP-1). The interface between the MPS and Fastrac engine are critical for proper system operation and technologies applicable to future reusable launch vehicles. Deneb's IGRIP software package with the Dynamic analysis option provided a key tool for conducting studies critical to this interface as well as a mechanism to drive the design of the LOX and RP-1 feedlines. Kinematic models were created for the Fastrac Engine and the feedlines for various design concepts. Based on the kinematic simulation within Envision, design and joint limits were verified and system interference controlled. It was also critical to the program to evaluate the effect of dynamic loads visually, providing a verification tool for dynamic analysis and in some cases uncovering areas that had not been considered. Deneb's software put the X-34 technology in motion and has been a key factor in facilitating the strenuous design schedule.
Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4
NASA Astrophysics Data System (ADS)
Wanjara, P.; Naik, B. S.; Yang, Q.; Cao, X.; Gholipour, J.; Chen, D. L.
2018-02-01
In the nuclear industry, there are a number of applications where the transition of stainless steel to Zircaloy is of technological importance. However, due to the differences in their properties there are considerable challenges associated with developing a joining process that will sufficiently limit the heat input and welding time—so as to minimize the extent of interaction at the joint interface and the resulting formation of intermetallic compounds—but still render a functional metallurgical bond between these two alloys. As such, linear friction welding, a solid-state joining technology, was selected in the present study to assess the feasibility of welding 316L stainless steel to Zircaloy-4. The dissimilar alloy welds were examined to evaluate their microstructural characteristics, microhardness evolution across the joint interface, static tensile properties, and fatigue behavior. Microstructural observations revealed a central intermixed region and, on the Zircaloy-4 side, dynamically recrystallized and thermomechanically affected zones were present. By contrast, deformation on the 316L stainless steel side was limited. In the intermixed region a drastic change in the composition was observed along with a local increase in hardness, which was attributed to the presence of intermetallic compounds, such as FeZr3 and Cr2Zr. The average yield (316 MPa) and ultimate tensile (421 MPa) strengths met the minimum strength properties of Zircaloy-4, but the elongation was relatively low ( 2 pct). The tensile and fatigue fracture of the welds always occurred at the interface in the mode of partial cohesive failure.
Coal-shale interface detection
NASA Technical Reports Server (NTRS)
Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)
1979-01-01
A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.
2010-06-30
intelligence application package for theater battle management core system ( TBMCS ) functionality at wing and squadron levels. The automated four... TBMCS , Joint Surveillance and Target Attack Radar System (Ground Control Station), and Global Command and Control System, as well as with Allied FA...The TBMCS is a force level integrated air C2 system. TBMCS provides hardware, software, and communications interfaces to support the preparation
Experimental study on joining of AA6063 and AISI 1040 steel
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Raja, S.
2018-05-01
Feasibility of joining of dissimilar metals with different physical, chemical and thermal properties such as AA6063 alloy and AISI 1040 steel is worthwhile study, since it has tremendous applications in all most of all engineering domains. The mechanism of bonding is studied using scanning electron microscopy. Impact strength of AA2024/AISI joints, axial shortening distance, micro hardness distribution and joint strength are determined. Micro hardness profile shows increased hardness value at the joint interface, due to grain refinement.
Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F
2007-07-01
We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.
Planar cell polarity controls directional Notch signaling in the Drosophila leg
Capilla, Amalia; Johnson, Ruth; Daniels, Maki; Benavente, María; Bray, Sarah J.; Galindo, Máximo Ibo
2012-01-01
The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor. PMID:22736244
Control algorithm implementation for a redundant degree of freedom manipulator
NASA Technical Reports Server (NTRS)
Cohan, Steve
1991-01-01
This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation.
Oklahoma's induced seismicity strongly linked to wastewater injection depth
NASA Astrophysics Data System (ADS)
Hincks, Thea; Aspinall, Willy; Cooke, Roger; Gernon, Thomas
2018-03-01
The sharp rise in Oklahoma seismicity since 2009 is due to wastewater injection. The role of injection depth is an open, complex issue, yet critical for hazard assessment and regulation. We developed an advanced Bayesian network to model joint conditional dependencies between spatial, operational, and seismicity parameters. We found that injection depth relative to crystalline basement most strongly correlates with seismic moment release. The joint effects of depth and volume are critical, as injection rate becomes more influential near the basement interface. Restricting injection depths to 200 to 500 meters above basement could reduce annual seismic moment release by a factor of 1.4 to 2.8. Our approach enables identification of subregions where targeted regulation may mitigate effects of induced earthquakes, aiding operators and regulators in wastewater disposal regions.
Finite element based simulation on friction stud welding of metal matrix composites to steel
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.
2016-05-01
Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.
Jia, Xiaohong; Zhang, Ming; Li, Xiaobing; Lee, Winson C C
2005-07-01
To predict the interface pressure between residual limb and prosthetic socket for trans-tibial amputees during walking. A quasi-dynamic finite element model was built based on the actual geometry of residual limb, internal bones and socket liner. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. Besides variable external loads and material inertia, the coupling between the large rigid displacement of knee joint and small elastic deformation of residual limb and prosthetic components were also considered. Interface pressure distribution was found to have the same profile during walking. The high pressures fall over popliteal depression, middle patella tendon, lateral tibia and medial tibia regions. Interface pressure predicted by static or quasi-dynamic analysis had the similar double-peaked waveform shape in stance phase. The consideration of inertial effects and motion of knee joint cause 210% average variation of the area between the pressure curve and the horizontal line of pressure threshold between two cases, even though there is only a small change in the peak pressure. The findings in this paper show that the coupling dynamic effects of inertial loads and knee flexion must be considered to study interface pressure between residual limb and prosthetic socket during walking.
Design of a knee joint mechanism that adapts to individual physiology.
Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M
2014-01-01
This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion.
Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.
Jamwal, Prashant K; Hussain, Shahid; Tsoi, Yun Ho; Ghayesh, Mergen H; Xie, Sheng Quan
2017-05-01
A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Key issues in application of composites to transport aircraft
NASA Technical Reports Server (NTRS)
Stone, M.
1978-01-01
The application of composite materials to transport aircraft was identified and reviewed including the major contributing disciplines of design, manufacturing, and processing. Factors considered include: crashworthiness considerations (structural integrity, postcrash fires, and structural fusing), electrical/avionics subsystems integration, lightning, and P-static protection design; manufacturing development, evaluation, selection, and refining of tooling and curing procedures; and major joint design considerations. Development of the DC-10 rudder, DC-10 vertical stabilizer, and the DC-9 wing study project was reviewed. The Federal Aviation Administration interface and the effect on component design of compliance with Federal Aviation Regulation 25 Composite Guidelines are discussed.
JPL Space Telecommunications Radio System Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike
2013-01-01
A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).
Databases and coordinated research projects at the IAEA on atomic processes in plasmas
NASA Astrophysics Data System (ADS)
Braams, Bastiaan J.; Chung, Hyun-Kyung
2012-05-01
The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.
Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints
2012-01-01
eccentricity of the axis of a lap joint gives rise to transverse or peel stresses at the Report Documentation Page Form ApprovedOMB No. 0704-0188...Computers and Structures 29, 1011 (1988). 21 S. Roy and J. N. Reddy, Tire Sci. Technol. 16, 146 (1988). 22 S. Roy and J. N. Reddy, Intl. J. Numer
Joint Services Electronics Program.
1980-05-01
STATEMMEN A Approved for public release, COD Distribution Unlimited.99 Joint Services Electronics Program* _-ANNUAL PROGRESS RP O. 93) 7 / Covering Period...and the temperature dependence of that (dispersive transport) trap limited mobility has shown interesting new effects. Publications of the Research...Low-Cost Laboratory Computer Interface System," (Scheduled for publication May, 1980, Review ot Scinti’i3 Instruments). | i III. INFORMATION
NASA Astrophysics Data System (ADS)
Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Kong, Qingzhao; Mousavi, Reza; Song, Gangbing
2016-08-01
Bolted joints are ubiquitous structural elements, and form critical connections in mechanical and civil structures. As such, loosened bolted joints may lead to catastrophic failures of these structures, thus inspiring a growing interest in monitoring of bolted joints. A novel energy based wave method is proposed in this study to monitor the axial load of bolted joint connections. In this method, the time reversal technique was used to focus the energy of a piezoelectric (PZT)-generated ultrasound wave from one side of the interface to be measured as a signal peak by another PZT transducer on the other side of the interface. A tightness index (TI) was defined and used to correlate the peak amplitude to the bolt axial load. The TI bypasses the need for more complex signal processing required in other energy-based methods. A coupled, electro-mechanical analysis with elasto-plastic finite element method was used to simulate and analyze the PZT based ultrasonic wave propagation through the interface of two steel plates connected by a single nut and bolt connection. Numerical results, backed by experimental results from testing on a bolted connection between two steel plates, revealed that the peak amplitude of the focused signal increases as the bolt preload (torque level) increases due to the enlarging true contact area of the steel plates. The amplitude of the focused peak saturates and the TI reaches unity as the bolt axial load reaches a threshold value. These conditions are associated with the maximum possible true contact area between the surfaces of the bolted connection.
Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire
NASA Astrophysics Data System (ADS)
Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan
2015-05-01
Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Lu, Qingshuang; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai; Wang, Yang
2017-03-01
AZ31B Magnesium (Mg) and Ti-6Al-4V titanium (Ti) alloys with Ni coating were joined by laser welding-brazing process using AZ92 Mg based filler. The influence of laser power on microstructure and mechanical properties were investigated. Ni coating was found to significantly promote good wetting-spreading ability of molten filler on the Ti sheet. Acceptable joints without obvious defects were obtained within a relatively wide processing window. In the process metallurgical bonding was achieved by the formation of Ti3Al phase at direct irradiation zone and Al-Ni phase followed by a layer of Mg-Al-Ni ternary compound adjacent to the fusion zone at the intermediate zone. The thickness of reaction layers increased slowly with the increasing laser power. The tensile-shear test indicated that joints produced at the laser power of 1300 W reached 2387 N fracture load, representing 88.5% joint efficiency with respect to the Mg base metal. The corresponding failure occurred in the fusion zone of the Mg base metal, while joints fractured at the interface at lower/higher laser power due to the crack or excessive intermetallic compound (IMC) formation along the interface.
Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints
Nine, Md J.; Choudhury, Dipankar; Hee, Ay Ching; Mootanah, Rajshree; Osman, Noor Azuan Abu
2014-01-01
Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials. PMID:28788496
NASA Astrophysics Data System (ADS)
Wang, Dan; Shen, Jun; Wang, Lin-Zhi
2012-03-01
The effects of the types of overlap on the mechanical properties of the friction stir spot welding (FSSW) welded AZ series magnesium alloy joints were investigated by microstructural observations, microhardness tests, and tensile tests. The results show that the microstructure of the stir zone adjacent to the periphery of the rotating pin is mainly composed of the upper sheet. The average distance D between the longitudinal segment of the curved interface and the keyhole periphery, the tensile shear force, and the microhardness of the stir zone of the FSSW welded AZ61 alloy joint are the highest in all samples. During FSSW of AZ31 and AZ61 dissimilar magnesium alloys, the irregular deformation of the longitudinal segment of the curved interface appears, while the microhardness of the stir zone is higher when AZ61 alloy is the upper sheet. Moreover, the microhardness of the stir zone increases initially and then decreases sharply in the longitudinal test position.
Exoskeleton for gait rehabilitation of children: Conceptual design.
Cornejo, Jorge L; Santana, Jesus F; Salinas, Sergio A
2017-07-01
This paper presents the conceptual design of an exoskeleton for gait rehabilitation of children. This system has electronics, mechanicals and software sections, which are implemented and tested using a mannequin of a child. The prototype uses servomotors to move robotic joints that are attached to simulated patient's legs. The design has 4 DOF (degrees of freedom) two for hip joints and other two for knee joints, in the sagittal plane. A microcontroller measures sensor signals, controls motors and exchanges data with a computer. The user interacts with a graphical interface to configure, control and monitor the exoskeleton activities. The laboratory tests show soften movements in joint angle tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wang_wei_310@163.com; Lu, Yonghao, E-mail: lu_yonghao@mater.ustb.edu.cn; Ding, Xianfei, E-mail: xfding@ustb.edu.cn
Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetricallymore » across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.« less
Telescience Testbed Program: A study of software for SIRTF instrument control
NASA Technical Reports Server (NTRS)
Young, Erick T.
1992-01-01
As a continued element in the Telescience Testbed Program (TTP), the University of Arizona Steward Observatory and the Electrical and Computer Engineering Department (ECE) jointly developed a testbed to evaluate the Operations and Science Instrument System (OASIS) software package for remote control of an instrument for the Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope with three focal plane instruments that will be the infrared element of NASA's Great Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of the complexity of the SIRTF mission, it was not expected that the OASIS package would be suitable for instrument control in the flight situation, however, its possible use as a common interface during the early development and ground test phases of the project was considered. The OASIS package, developed at the University of Colorado for control of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the operator and the remote instrument which is connected via a network. OASIS provides a rudimentary windowing system as well as support for standard spacecraft communications protocols. The experiment performed all of the functions required of the MIPS simulation program. Remote control of the instrument was demonstrated but found to be inappropriate for SIRTF at this time for the following reasons: (1) programming interface is too difficult; (2) significant computer resources were required to run OASIS; (3) the communications interface is too complicated; (4) response time was slow; and (5) quicklook of image data was not possible.
NASA Astrophysics Data System (ADS)
Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.
2016-03-01
The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.
LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System
NASA Astrophysics Data System (ADS)
Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.
2016-12-01
In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.
Evaluation of a Conductive Elastomer Seal for Spacecraft
NASA Technical Reports Server (NTRS)
Daniels, C. C.; Mather, J. L.; Oravec, H. A.; Dunlap, P. H., Jr.
2016-01-01
An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.
Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Hongliang
The microstructure, residual strain and interfacial chemical composition distribution of a safe-end dissimilar metal weld joint (DMWJ, SA508-52-316L) prepared by narrow-gap gas-tungsten arc welding (NG-GTAW) were studied by optical microscope (OM) and scanning electron microscope equipped with an energy dispersive X-ray microanalysis (SEM/EDX) and an electron back scattering diffraction (EBSD) system. Complex microstructure and chemical composition distribution are found, especially at the SA508-52 interface and the 52-316L interface. In brief, a complicated microstructure transition exists within the SA508 heat affected zone (HAZ); the residual strain, the fraction of high angle random grain boundaries and low angle boundaries decrease with increasingmore » the distance from the fusion boundary in 316L HAZ; neither typical type II boundary nor obvious carbon-depleted zone is found near the SA508-52 interface; dramatic and complicated changes of the contents of the main elements, Fe, Cr and Ni, are observed at the distinct interfaces, especially at the SA508-52 interface. No carbon concentration is found at the SA508-52 interface. - Highlights: •Residual strain and GBCD change as a function of the distance from FB in 316L HAZ. •Neither type II boundary nor obvious carbon-depleted zone is found in SA508 HAZ. •No carbon concentration is found at the SA508-52 interface. •The middle part of the DMWJ has the highest residual strain.« less
Multi-degree of freedom joystick for virtual reality simulation.
Head, M J; Nelson, C A; Siu, K C
2013-11-01
A modular control interface and simulated virtual reality environment were designed and created in order to determine how the kinematic architecture of a control interface affects minimally invasive surgery training. A user is able to selectively determine the kinematic configuration of an input device (number, type and location of degrees of freedom) for a specific surgical simulation through the use of modular joints and constraint components. Furthermore, passive locking was designed and implemented through the use of inflated latex tubing around rotational joints in order to allow a user to step away from a simulation without unwanted tool motion. It is believed that these features will facilitate improved simulation of a variety of surgical procedures and, thus, improve surgical skills training.
Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Sleight, David W.; Grenoble, Ray
2015-01-01
The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
DOE Office of Scientific and Technical Information (OSTI.GOV)
E, J. C.; Huang, J. Y.; Bie, B. X.
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
E, J. C.; Huang, J. Y.; Bie, B. X.; ...
2016-08-02
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Photonic Choke-Joints for Dual-Polarization Waveguides
NASA Technical Reports Server (NTRS)
Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.
2010-01-01
Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.
The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement
2007-06-01
includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT
NASA Astrophysics Data System (ADS)
Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio
2017-08-01
A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.
Formation of porous inner architecture at the interface of magnetic pulse welded Al/Cu joints
NASA Astrophysics Data System (ADS)
Sapanathan, T.; Raoelison, R. N.; Yang, K.; Buiron, N.; Rachik, M.
2016-10-01
Porous inner architecture has been revealed at the interface of magnetic pulse welded aluminum/copper (Al/Cu) joints. These materials could serve the purpose of heterogeneous architectured materials, while their makeup of inner architecture of porous interface with the pore sizes of sub-micron to a few microns, could offer potential attributes in energy storage application. Two welding cases with various impact intensities are compared. An input voltage of 6.5 kV with an initial air gap of 1.5 mm and a higher voltage of 7.5 kV with a large initial air gap of 5 mm are respectively considered as two cases with low and high velocity impacts. Overall morphology of the porous medium was revealed at the interface either in layered or pocketed structures. The allocation of the porous zone and pore sizes vary with the impact condition. The low velocity impact welding conditions also produces smaller pores compared to the high velocity impact case, where the pore sizes varies in submicron to a few microns (<10μm). By investigating the potential mechanism of the porous zone formation, it was identified that a combined phenomena of cavitation and coalescence play a major role in nucleation and growth of the pores where a rapid cooling that eventually freezes the porous structure at the interface.
Investigation of the adhesion interface obtained through two-component injection molding
NASA Astrophysics Data System (ADS)
Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel
2011-01-01
In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.
Costantini, Oren; Choi, Daniel S; Kontaxis, Andreas; Gulotta, Lawrence V
2015-07-01
There has been a renewed interest in lateralizing the center of rotation (CoR) in implants used in reverse shoulder arthroplasty. The aim of this study was to determine the sensitivity of lateralization of the CoR on the glenohumeral joint contact forces, muscle moment arms, torque across the bone-implant interface, and the stability of the implant. A 3-dimensional virtual model was used to investigate how lateralization affects deltoid muscle moment arm and glenohumeral joint contact forces. This model was virtually implanted with 5 progressively lateralized reverse shoulder prostheses. The joint contact loads and deltoid moment arms were calculated for each lateralization over the course of 3 simulated standard humerothoracic motions. Lateralization of the CoR leads to an increase in the overall joint contact forces across the glenosphere. Most of this increased loading occurred through compression, although increases in anterior/posterior and superior/inferior shear were also observed. Moment arms of the deltoid consistently decreased with lateralization. Bending moments at the implant interface increased with lateralization. Progressive lateralization resulted in improved stability ratios. Lateralization results in increased joint loading. Most of that loading occurs through compression, although there were also increases in shear forces. Anterior/posterior shear is currently not accounted for in implant fixation studies, leaving its effect on implant fixation unknown. Future studies should incorporate shear forces into their models to more accurately assess fixation methods. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Effect of adhesive applied to the tooth-wood interface on metal-plate connections loaded in tension
Leslie H. Groom
1991-01-01
The structural behavior of metal-plate connections (MPCs) is affected not only by the isolated properties of the adjoining wood members and metal plate but also by the interfacial region between individual teeth and the surrounding wood. This study looked at maintaining a good interface by applying an epoxy adhesive to metal-plate teeth immediately preceding joint...
Tire/runway friction interface
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1990-01-01
An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.
NASA Astrophysics Data System (ADS)
Tesfa, B.; Horler, G.; Thobiani, F. Al; Gu, F.; Ball, A. D.
2012-05-01
Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. Sense changes in the clamping force of the joint and report this fact. Provide compatibility with the large dynamic range of clamping force. Satisfy the limitations in terms of physical size. Provide the means to electronically interface with the washer. Provide a means of powering the washer in situ. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show that a smart washer can be developed to monitor the condition of bolted joints as found on railway track and points.
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
NASA Astrophysics Data System (ADS)
Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.
2008-05-01
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.
2008-05-20
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.
The friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For the welds in lap configuration, an enhancement to this technology is made by introducing a short hard insert, referred to as cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanically coupled computational model employing coupled Eulerian-Lagrangian approach is developed to quantitativelymore » capture the morphology of these interlocks during the FSW process. The simulations using developed model are validated by the experimental observations.The identified interface morphology coupled with the predicted temperature field from this process-structure model can then be used to estimate the post-weld microstructure and joint strength.« less
NASA Technical Reports Server (NTRS)
Sweeney, Christopher; Bunnell, John; Chung, William; Giovannetti, Dean; Mikula, Julie; Nicholson, Bob; Roscoe, Mike
2001-01-01
Joint Shipboard Helicopter Integration Process (JSHIP) is a Joint Test and Evaluation (JT&E) program sponsored by the Office of the Secretary of Defense (OSD). Under the JSHDP program is a simulation effort referred to as the Dynamic Interface Modeling and Simulation System (DIMSS). The purpose of DIMSS is to develop and test the processes and mechanisms that facilitate ship-helicopter interface testing via man-in-the-loop ground-based flight simulators. Specifically, the DIMSS charter is to develop an accredited process for using a flight simulator to determine the wind-over-the-deck (WOD) launch and recovery flight envelope for the UH-60A ship/helicopter combination. DIMSS is a collaborative effort between the NASA Ames Research Center and OSD. OSD determines the T&E and warfighter training requirements, provides the programmatics and dynamic interface T&E experience, and conducts ship/aircraft interface tests for validating the simulation. NASA provides the research and development element, simulation facility, and simulation technical experience. This paper will highlight the benefits of the NASA/JSHIP collaboration and detail achievements of the project in terms of modeling and simulation. The Vertical Motion Simulator (VMS) at NASA Ames Research Center offers the capability to simulate a wide range of simulation cueing configurations, which include visual, aural, and body-force cueing devices. The system flexibility enables switching configurations io allow back-to-back evaluation and comparison of different levels of cueing fidelity in determining minimum training requirements. The investigation required development and integration of several major simulation system at the VMS. A new UH-60A BlackHawk interchangeable cab that provides an out-the-window (OTW) field-of-view (FOV) of 220 degrees in azimuth and 70 degrees in elevation was built. Modeling efforts involved integrating Computational Fluid Dynamics (CFD) generated data of an LHA ship airwake and integrating a real-time ship motion model developed based on a batch model from Naval Surface Warfare Center. Engineering development and integration of a three degrees-of-freedom (DOF) dynamic seat to simulate high frequency rotor-dynamics dependent motion cues for use in conjunction with the large motion system was accomplished. The development of an LHA visual model in several different levels of resolution and an aural cueing system in which three separate fidelity levels could be selected were developed. VMS also integrated a PC-based E&S simFUSION system to investigate cost effective IG alternatives. The DIMSS project consists of three phases that follow an approved Validation, Verification and accreditation (VV&A) process. The first phase will support the accreditation of the individual subsystems and models. The second will follow the verification and validation of the integrated subsystems and models, and will address fidelity requirements of the integrated models and subsystems. The third and final phase will allow the verification and validation of the full system integration. This VV&A process will address the utility of the simulated WOD launch and recovery envelope. Simulations supporting the first two stages have been completed and the data is currently being reviewed and analyzed.
Databases and coordinated research projects at the IAEA on atomic processes in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braams, Bastiaan J.; Chung, Hyun-Kyung
2012-05-25
The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint workmore » towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.« less
Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.
2017-01-01
Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079
Kloefkorn, Heidi E.; Allen, Kyle D.
2017-01-01
Aim of the Study The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. Materials and Methods To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). Results Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. Conclusions OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury. PMID:27797605
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Liu, Menglong; Liao, Yaozhong; Su, Zhongqing; Xiao, Yi
2018-03-01
The significance of evaluating bolt tightness in engineering structures, preferably in a continuous manner, cannot be overemphasized. With hybrid use of high-order harmonics (HOH) and spectral sidebands, a contact acoustic nonlinearity (CAN)-based monitoring framework is developed for detecting bolt loosening and subsequently evaluating the residual torque on a loose bolt. Low-frequency pumping vibration is introduced into the bolted joint to produce a "breathing" effect at the joining interface that modulates the propagation characteristics of a high-frequency probing wave when it traverses the bolt, leading to the generation of HOH and vibro-acoustic nonlinear distortions (manifested as sidebands in the signal spectrum). To gain insight into the mechanism of CAN generation and to correlate the acquired nonlinear responses of a loose joint with the residual torque remaining on the bolt, an analytical model based on micro-contact theory is established. Two types of nonlinear index, respectively exploiting the induced HOH and spectral sidebands, are defined without dependence on excitation intensity and are experimentally demonstrated to be effective in continuously monitoring bolt loosening in both aluminum-aluminum and composite-composite bolted joints. Taking a step further, variation of the index pair is quantitatively associated with the residual torque on a loose bolt. The approach developed provides a reliable method of continuous evaluation of bolt tightness in both composite and metallic joints, regardless of their working conditions, from early awareness of bolt loosening at an embryonic stage to quantitative estimation of residual torque.
Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis
2006-08-22
A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.
Interactive robot control system and method of use
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E. (Inventor); Sanders, Adam M. (Inventor); Platt, Robert (Inventor); Reiland, Matthew J. (Inventor); Linn, Douglas Martin (Inventor)
2012-01-01
A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.
Leslie H. Groom
1995-01-01
Wood trusses are frequently located in light-frame structures where they are subjected to significant shifts in moisture conditions. However, little is known about the effects of moisture cycling of the wood members on the mechanical behavior of metal-plate connector (MPC) joints. Thus, the primary objective of this study was to quantify the effect of wood moisture...
Experimental Study of Solder/Copper Interface Failure Under Varying Strain Rates
2011-03-01
Factors Affecting Solder Joint Reliability Gu et al. [1] determined that during the life cycle of electronic assemblies, approximately 55 percent of...related to vibration and shock, with the remaining percentage associated with changes in 2 humidity. Research conducted by Ross et al. [2] adds...that creep strain is the most important time-dependent factor affecting the reliability of solder joints in electronic equipment. 2. Effects of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samavatian, Majid, E-mail: m.samavatian@srbiau.ac.ir; Halvaee, Ayoub; Amadeh, Ahmad Ali
Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion processmore » led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.« less
Joining of alumina via copper/niobium/copper interlayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.
2000-03-15
Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less
Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.
Dabiri, Yaghoub; Li, LePing
2015-06-01
A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.
Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints
NASA Astrophysics Data System (ADS)
Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.
2014-10-01
Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang
2015-07-01
The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.
Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A
2017-06-01
Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.
Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.
2017-01-01
Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674
A simple 5-DOF walking robot for space station application
NASA Technical Reports Server (NTRS)
Brown, H. Benjamin, Jr.; Friedman, Mark B.; Kanade, Takeo
1991-01-01
Robots on the NASA space station have a potential range of applications from assisting astronauts during EVA (extravehicular activity), to replacing astronauts in the performance of simple, dangerous, and tedious tasks; and to performing routine tasks such as inspections of structures and utilities. To provide a vehicle for demonstrating the pertinent technologies, a simple robot is being developed for locomotion and basic manipulation on the proposed space station. In addition to the robot, an experimental testbed was developed, including a 1/3 scale (1.67 meter modules) truss and a gravity compensation system to simulate a zero-gravity environment. The robot comprises two flexible links connected by a rotary joint, with a 2 degree of freedom wrist joints and grippers at each end. The grippers screw into threaded holes in the nodes of the space station truss, and enable it to walk by alternately shifting the base of support from one foot (gripper) to the other. Present efforts are focused on mechanical design, application of sensors, and development of control algorithms for lightweight, flexible structures. Long-range research will emphasize development of human interfaces to permit a range of control modes from teleoperated to semiautonomous, and coordination of robot/astronaut and multiple-robot teams.
Osman, K; Panagiotidou, A P; Khan, M; Blunn, G; Haddad, F S
2016-05-01
There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice. Cite this article: Bone Joint J 2016;98-B:579-84. ©2016 The British Editorial Society of Bone & Joint Surgery.
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.
2010-01-01
Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.
Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints
NASA Astrophysics Data System (ADS)
Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu
2018-03-01
In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.
Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George
2017-05-01
Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage during placement. The framework presented may be useful for designing and testing customized devices for the treatment of debilitating bone and joint conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-07-01
The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less
Interfacial growth of large-area single-layer metal-organic framework nanosheets
Makiura, Rie; Konovalov, Oleg
2013-01-01
The air/liquid interface is an excellent platform to assemble two-dimensional (2D) sheets of materials by enhancing spontaneous organizational features of the building components and encouraging large length scale in-plane growth. We have grown 2D molecularly-thin crystalline metal-organic-framework (MOF) nanosheets composed of porphyrin building units and metal-ion joints (NAFS-13) under operationally simple ambient conditions at the air/liquid interface. In-situ synchrotron X-ray diffraction studies of the formation process performed directly at the interface were employed to optimize the NAFS-13 growth protocol leading to the development of a post-injection method –post-injection of the metal connectors into the water subphase on whose surface the molecular building blocks are pre-oriented– which allowed us to achieve the formation of large-surface area morphologically-uniform preferentially-oriented single-layer nanosheets. The growth of such large-size high-quality sheets is of interest for the understanding of the fundamental physical/chemical properties associated with ultra-thin sheet-shaped materials and the realization of their use in applications. PMID:23974345
A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data
NASA Astrophysics Data System (ADS)
Vandegriff, Jon; Weigel, Robert; Faden, Jeremy; King, Todd; Candey, Robert
2016-10-01
We describe a low level interface for accessing digital Planetary and Heliophysics data, focusing primarily on time-series data from in-situ instruments. As the volume and variety of planetary data has increased, it has become harder to merge diverse datasets into a common analysis environment. Thus we are building low-level computer-to-computer infrastructure to enable data from different missions or archives to be able to interoperate. The key to enabling interoperability is a simple access interface that standardizes the common capabilities available from any data server: 1. identify the data resources that can be accessed; 2. describe each resource; and 3. get the data from a resource. We have created a standardized way for data servers to perform each of these three activities. We are also developing a standard streaming data format for the actual data content to be returned (i.e., the result of item 3). Our proposed standard access interface is simple enough that it could be implemented on top of or beside existing data services, or it could even be fully implemented by a small data provider as a way to ensure that the provider's holdings can participate in larger data systems or joint analysis with other datasets. We present details of the interface and of the streaming format, including a sample server designed to illustrate the data request and streaming capabilities.
Spacelab Lyman Alpha-White Light Coronagraph Program
NASA Technical Reports Server (NTRS)
Kohl, J. L.
1986-01-01
The Spacelab Lyman Alpha Coronagraph (SLAC) of the Smithsonian Astrophysical Observatory (SAO) and the White Light Coronagraph (WLC) to be provided by the High Altitude Observatory (HAO) are two separate coronagraphs which would be operated in a joint fashion during Spacelab missions to be flown by the Space Shuttle. The two instruments would be used to perform joint observations of solar coronal structures from 1.2 to 8.0 solar radii from sun-center in vacuum ultraviolet and visible radiations. Temperatures, densities, and flow velocities throughout the solar wing acceleration region of the inner solar corona were measured. The Phase I Definition activity resulted in the successful definition and preliminary design of the experiment/instrumentation subsystem and associated software, ground support equipment and interfaces to the extended required to accurately estimate the scope of the investigation and prepare an Investigational Development Plan; the performance of the necessary functional, operations, and safety analyses necessary to complete the Experiment Requirements document.
Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tung, Daniel Joseph; Mahaffey, David; Senkov, Oleg
Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from anmore » analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.« less
Visual exploration and analysis of human-robot interaction rules
NASA Astrophysics Data System (ADS)
Zhang, Hui; Boyles, Michael J.
2013-01-01
We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming interfaces, information visualization, and visual data mining methods to facilitate designing, comprehending, and evaluating HRI interfaces.
Global cortical activity predicts shape of hand during grasping
Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.
2015-01-01
Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616
Zhou, Xiaoyu; Ouyang, Zheng
2016-07-19
Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.
NASA Astrophysics Data System (ADS)
Feng, Qinggao; Zhan, Hongbin
2015-02-01
A mathematical model for describing groundwater flow to a partially penetrating pumping well of a finite diameter in an anisotropic leaky confined aquifer is developed. The model accounts for the jointed effects of aquitard storage, aquifer anisotropy, and wellbore storage by treating the aquitard leakage as a boundary condition at the aquitard-aquifer interface rather than a volumetric source/sink term in the governing equation, which has never developed before. A new semi-analytical solution for the model is obtained by the Laplace transform in conjunction with separation of variables. Specific attention was paid on the flow across the aquitard-aquifer interface, which is of concern if aquitard and aquifer have different pore water chemistry. Moreover, Laplace-domain and steady-state solutions are obtained to calculate the rate and volume of (total) leakage through the aquitard-aquifer interface due to pump in a partially penetrating well, which is also useful for engineers to manager water resources. The sensitivity analyses for the drawdown illustrate that the drawdown is most sensitive to the well partial penetration. It is apparently sensitive to the aquifer anisotropic ratio over the entire time of pumping. It is moderately sensitive to the aquitard/aquifer specific storage ratio at the intermediate times only. It is moderately sensitive to the aquitard/aquifer vertical hydraulic conductivity ratio and the aquitard/aquifer thickness ratio with the identical influence at late times.
NASA Astrophysics Data System (ADS)
Gadag, Shiva P.; Patra, Susant
2000-12-01
Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.
Source of the slippage in the universal joints of the Hoffmann external fixator.
Drijber, F L; Finlay, J B; Moroz, T K; Rorabeck, C H
1990-01-01
An investigation was conducted to determine what improvements in the resistance to slippage could be obtained in selected interfaces (rod/clip torsional, cheek/bowl and cheek/clip) of the Hoffmann external fixator. The modification involved changing the standard wing-nut clamp for a bolt with a thread of 7 mm and a 1 mm pitch and placing an FAG 28-303 thrust-bearing (needle roller and cage assembly) between the bolt and the cheek. The results showed a significant improvement in the slippage values of all interfaces; increases of approximately six times were obtained at all torque values of the wing-nut clamp or fastener tested. Such improvements would markedly increase the reliability of external fixation systems and thus reduce the incidence of loss-of-reduction of fracture due to slippage of the universal joint.
The dynamic natures of implant loading.
Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E
2009-06-01
A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.
Explosive Joining for the Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Sanok, Joseph T.
2000-01-01
A unique, small-scale, ribbon explosive joining process is being developed as an option for closing and sealing a metal canister to allow the return of a pristine sample of the Martian surface and atmosphere to Earth. This joining process is accomplished by an explosively driven, high-velocity, angular collision of the metal, which melts and effaces the oxide films from the surfaces to allow valence electron sharing to bond the interface. Significant progress has been made through more than 100 experimental tests to meet the goals of this ongoing developmental effort. The metal of choice, aluminum alloy 6061, has been joined in multiple interface configurations and in complete cylinders. This process can accommodate dust and debris on the surfaces to be joined. It can both create and sever a joint at its midpoint with one explosive input. Finally, an approach has been demonstrated that can capture the back blast from the explosive.
3D Cosmic Ray Muon Tomography from an Underground Tunnel
Guardincerri, Elena; Rowe, Charlotte Anne; Schultz-Fellenz, Emily S.; ...
2017-03-31
Here, we present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock–air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock–air interface matches that obtained from LIDAR withinmore » 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.« less
3D Cosmic Ray Muon Tomography from an Underground Tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guardincerri, Elena; Rowe, Charlotte Anne; Schultz-Fellenz, Emily S.
Here, we present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock–air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock–air interface matches that obtained from LIDAR withinmore » 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.« less
Expandable pallet for space station interface attachments
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor)
1988-01-01
Described is a foldable expandable pallet for Space Station interface attachments with a basic square configuration. Each pallet consists of a series of struts joined together by node point fittings to make a rigid structure. The struts have hinge fittings which are spring loaded to permit collapse of the module for stowage transport to a Space Station in the payload bay of the Space Shuttle, and development on orbit. Dimensions of the pallet are selected to provide convenient, closely spaced attachment points between the node points of the relatively widely spaced trusses of a Space Station platform. A pallet is attached to a strut at four points: one close fitting hole, two oversize holes, and a slot to allow for thermal expansion/contraction and for manufacturing tolerances. Applications of the pallet include its use in rotary or angular joints; servicing of splints; with gridded plates; as instrument mounting bases; and as a roadbed for a Mobile Service Center (MSC).
3D Cosmic Ray Muon Tomography from an Underground Tunnel
NASA Astrophysics Data System (ADS)
Guardincerri, Elena; Rowe, Charlotte; Schultz-Fellenz, Emily; Roy, Mousumi; George, Nicolas; Morris, Christopher; Bacon, Jeffrey; Durham, Matthew; Morley, Deborah; Plaud-Ramos, Kenie; Poulson, Daniel; Baker, Diane; Bonneville, Alain; Kouzes, Richard
2017-05-01
We present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock-air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock-air interface matches that obtained from LIDAR within 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.
An Open Source Web Map Server Implementation For California and the Digital Earth: Lessons Learned
NASA Technical Reports Server (NTRS)
Sullivan, D. V.; Sheffner, E. J.; Skiles, J. W.; Brass, J. A.; Condon, Estelle (Technical Monitor)
2000-01-01
This paper describes an Open Source implementation of the Open GIS Consortium's Web Map interface. It is based on the very popular Apache WWW Server, the Sun Microsystems Java ServIet Development Kit, and a C language shared library interface to a spatial datastore. This server was initially written as a proof of concept, to support a National Aeronautics and Space Administration (NASA) Digital Earth test bed demonstration. It will also find use in the California Land Science Information Partnership (CaLSIP), a joint program between NASA and the state of California. At least one WebMap enabled server will be installed in every one of the state's 58 counties. This server will form a basis for a simple, easily maintained installation for those entities that do not yet require one of the larger, more expensive, commercial offerings.
Hall Thruster Thermal Modeling and Test Data Correlation
NASA Technical Reports Server (NTRS)
Myers, James
2016-01-01
HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.
NASA Astrophysics Data System (ADS)
Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Kohno, Y.; Kohyama, A.
2013-09-01
Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steels, have been developed as candidates of structural materials for fusion. In the design of a fusion reactor, cooling channels are built in the first wall of the blanket. One large issue is to determine how to join rectangular tubes to thin panels to fabricate the first wall. Hot Isostatic Pressing (HIPing) is a solution to solve the issue. Because of the thin HIPed walls of the channels, the specimen size for inspection of HIPed interface is limited. In the present research, Small Specimen Test Techniques (SSTT) are screened for the destructive toughness investigation technique of HIPed F82H joints. 1/3 size Charpy V-notch impact (1/3 CVN) and small punch (SP) tests are employed for the present research. The toughness of the HIPed joints is strongly affected by various surface finishing of specimens treated previous to the HIPing. In the present research, several kinds of HIPed joints were surface finished by different methods and investigated by 1/3 CVN impact test. The HIPed F82H joints had different toughness ranging from 20% to 70% of the toughness of the F82H base metal. The SP test is also available for the investigation of toughness change by the HIPing. The sensitivity of 1/3 CVN impact test against toughness change was better than the SP test, it revealed that the SP test has some limitations.
Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction
NASA Technical Reports Server (NTRS)
Liu, Frank C.
1987-01-01
An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.
Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction
NASA Technical Reports Server (NTRS)
Liu, Frank C.
1986-01-01
An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.
Zhuang, Katie Z.; Lebedev, Mikhail A.
2014-01-01
Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153
NASA Astrophysics Data System (ADS)
Chen, Biqiang; Zhang, Guifeng; Zhang, Linjie; Xu, Tingting
2017-10-01
In order to broaden the application of SiC particle-reinforced aluminum matrix composite in electronics packaging, newly developed ZnAlGaMgTi filler with a low melting point of 418-441 °C was utilized as filler metal for active soldering of aluminum matrix composites (70 vol.%, SiCp/Al-MMCs) for the first time. The effect of loading pressure on joint properties of ZnAlGaMgTi active filler was investigated. The experimental results indicated that novel filler could successfully solder Al-MMCs, and the presence of Mg in the filler enhanced the penetration of Zn, while the forming of Zn-rich barrier layer influenced the active element MPD (melting point depressant) diffusion into parent composite, and the bulk-like (Mg-Si)-rich phase and Ti-containing phase were readily observed at the interface and bond seam. With the increase in loading pressure, the runout phenomenon appeared more significant, and the filler foil thickness and the Zn penetration depth varied pronouncedly. Sound joints with maximum shear strength of 29.6 MPa were produced at 480 °C at 1 MPa, and the crack occurred adjacent to the boundary of SiC particle and then propagated along the interface. A novel model describing the significant mutual diffusion of Al and Zn atoms between the parent material and solder was proposed.
IJEMS: Iowa Joint Experiment in Microgravity Solidification
NASA Technical Reports Server (NTRS)
Bendle, John R.; Mashl, Steven J.; Hardin, Richard A.
1995-01-01
The Iowa Joint Experiment in Microgravity Solidification (IJEMS) is a cooperative effort between Iowa State University and the University of Iowa to study the formation of metal-matrix composites in a microgravity environment. Of particular interest is the interaction between the solid/liquid interface and the particles in suspension. The experiment is scheduled to fly on STS-69, Space Shuttle Endeavor on August 3, 1995. This project is unique in its heavy student participation and cooperation between the universities involved.
BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
Bacek, Tomislav; Moltedo, Marta; Langlois, Kevin; Prieto, Guillermo Asin; Sanchez-Villamanan, Maria Carmen; Gonzalez-Vargas, Jose; Vanderborght, Bram; Lefeber, Dirk; Moreno, Juan C
2017-07-01
This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints. By employing a simple torque control strategy, the exoskeleton can be used to deliver user-specific assistance, both in gait rehabilitation and in assisting people suffering musculoskeletal impairments. The result of the presented BioMot efforts is a low-footprint exoskeleton with powerful compliant actuators, simple, yet effective torque controller and easily adjustable flexible structure.
Jaeger, Gayle H; Wosar, Marc A; Marcellin-Little, Denis J; Lascelles, B Duncan X
2005-08-15
To describe placement of hinged transarticular external fixation (HTEF) frames and evaluate their ability to protect the primary repair of unstable joints while allowing joint mobility in dogs and cats. Retrospective study. 8 cats and 6 dogs. HTEF frames were composed of metal or epoxy connecting rods and a hinge. Measurements of range of motion of affected and contralateral joints and radiographs were made after fixator application and removal. 9 animals (4 cats and 5 dogs) had tarsal and 5 (4 cats and 1 dog) had stifle joint injuries. Treatment duration ranged from 45 to 100 days (median, 57 days). Ranges of motion in affected stifle and tarsal joints were 57% and 72% of control while HTEF was in place and 79% and 84% of control after frame removal. Complications were encountered in 3 cats and 2 dogs and included breakage of pins and connecting rods, hinge loosening, and failure at the hinge-epoxy interface. HTEF in animals with traumatic joint instability provided adjunctive joint stabilization during healing and protection of the primary repair and maintained joint motion during healing, resulting in early weight bearing of the affected limb.
Open Architecture SDR for Space
NASA Technical Reports Server (NTRS)
Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.
2005-01-01
This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.
,
1999-01-01
In May 1997, the U.S. Geological Survey (USGS) and the Microsoft Corporation of Redmond, Wash., entered into a cooperative research and development agreement (CRADA) to make vast amounts of geospatial data available to the general public through the Internet. The CRADA is a 36-month joint effort to develop a general, public-oriented browsing and retrieval site for geospatial data on the Internet. Specifically, Microsoft plans to (1) modify a large volume of USGS geospatial data so the images can be displayed quickly and easily over the Internet, (2) implement an easy-to-use interface for low-speed connections, and (3) develop an Internet Web site capable of servicing millions of users per day.
,
1998-01-01
In May 1997, the U.S. Geological Survey (USGS) and the Microsoft Corporation of Redmond, Wash., entered into a cooperative research and development agreement (CRADA) to make vast amounts of geospatial data available to the general public through the Internet. The CRADA is a 36-month joint effort to develop a general, public-oriented browsing and retrieval site for geospatial data on the Internet. Specifically, Microsoft plans to (1) modify a large volume of USGS geospatial data so the images can be displayed quickly and easily over the Internet, (2) implement an easy-to-use interface for low-speed connections, and (3) develop an Internet Web site capable of servicing millions of users per day.
A system for intelligent teleoperation research
NASA Technical Reports Server (NTRS)
Orlando, N. E.
1983-01-01
The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.
Spacelab: An International Success Story
NASA Technical Reports Server (NTRS)
Lord, Douglas R.
1987-01-01
Spacelab is a European-developed and U.S.-operated space laboratory carried in the cargo bay of the Space Shuttle Orbiter. This story of the Spacelab Development Program traces the program from the origin of the Spacelab concept, describing negotiations and agreements for European participation and the role of Europe and the United States in system development, operational capability development, and utilization planning. It also considers the joint management structure, coordination, and experience in solving management and technical interface problems. The book is not an exhaustive historical treatise, but an informative and readable story of the evolution and technical accomplishments of this unique program in manned space flight and of some of the unusual political and human interest aspects of the program from the viewpoint of one of the key participants.
Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent
2016-10-01
In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.
Trans-dimensional joint inversion of seabed scattering and reflection data.
Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2013-03-01
This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.
NASA Technical Reports Server (NTRS)
Andrucyk, Dennis J.; Orlando, Fred J.; Chalfant, Charles H.
1999-01-01
The Spaceborne Fiber Optic Data Bus (SFODB) is the next generation in on-board data handling networks. It will do for high speed payloads what SAE 1773 has done for on-board command and telemetry systems. That is, it will significantly reduce the cost of payload development, integration and test through interface standardization. As defined in IEEE 1393, SFODB is a 1 Gb/s, fiber optic network specifically designed to support the real-time, on-board data handling requirements of remote sensing spacecraft. The network is highly reliable, fault tolerant, and capable of withstanding the rigors of launch and the harsh space environment. SFODB achieves this operational and environmental performance while maintaining the small size, light weight, and low power necessary for spaceborne applications. SFODB was developed jointly by DoD and NASA GSFC to meet the on-board data handling needs of Remote Sensing satellites. This jointly funded project produced a complete set of flight transmitters, receivers and protocol ASICS; a complete Development & Evaluation System; and, the IEEE 1393 standard.
Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.
Olivier, Jeremy; Bouri, Mohamed; Ortlieb, Amalric; Bleuler, Hannes; Clavel, Reymond
2013-06-01
With the increase of life expectancy, a higher number of elderly need assistance to maintain their mobility and their independance. The hip joint is crucial for walking and is problematic for a large number of aged people. In this paper we present a novel design of a motorized hip orthosis to assist elderly people while walking, stair climbing and during the sit-to-stand transistions. The kinematics was developed based on biomechanics considerations. To be able to achieve a large assistance rate, velocity and torques of the hip joint were studied from the literature. In order to fit with these requirements, an amplification mechanism inspired by excavators was developed and implemented. Comfort considerations were also taken into account and a custom interface was designed with the collaboration of a professional orthopaedic technician. First tests with the prototype showed that the workspace is sufficient for walking, for stair climbing as well as for sit-to-stand transitions. The assistance rate can go up to 30% for a 70 kg subject during walking at a cadence of 100 steps/min. The comfort is guaranteed despite the important weight (4.3 kg) of this first prototype.
Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets
NASA Astrophysics Data System (ADS)
Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang
2018-01-01
The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile fracture while the fracture or perforation of the BM is ductile.
Cho, Hideo; Rokhlin, Stanislav I
2015-09-01
The Rayleigh-to-interface wave conversion and the propagation of the resulting symmetric and antisymmetric modes on a bonded interface between solids is analyzed by the two dimensional finite difference time domain method. The propagated patterns were visualized to improve understanding of the phenomena. It is found that the partition of the energy of the interface waves above and below the interface changes repeatedly with propagation distance due to interference between the two modes which have slightly different phase velocities. The destructive interference of those two modes results in dips in the amplitude spectrum of the interface waves, which shift in frequency with propagation distance. The Rayleigh wave received that is created by the interface wave at the exit corner of the joint also shows interference dips in its spectrum. Those dips depend on the interface properties and can potentially be used for interface characterization. Conversion factors related to the interface wave at the upward and downward corners are determined and discussed. As a result, the total transition factor through the upward and downward corners for the interface wave was estimated as 0.37 and would be sufficiently large to probe the interface by coupling from the Rayleigh to the interface wave. Copyright © 2015 Elsevier B.V. All rights reserved.
Davies, J P; Tse, M K; Harris, W H
1996-08-01
Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.
Computational Modelling and Movement Analysis of Hip Joint with Muscles
NASA Astrophysics Data System (ADS)
Siswanto, W. A.; Yoon, C. C.; Salleh, S. Md.; Ngali, M. Z.; Yusup, Eliza M.
2017-01-01
In this study, the model of hip joint and the main muscles are modelled by finite elements. The parts included in the model are hip joint, hemi pelvis, gluteus maximus, quadratus femoris and gamellus inferior. The materials that used in these model are isotropic elastic, Mooney Rivlin and Neo-hookean. The hip resultant force of the normal gait and stair climbing are applied on the model of hip joint. The responses of displacement, stress and strain of the muscles are then recorded. FEBio non-linear solver for biomechanics is employed to conduct the simulation of the model of hip joint with muscles. The contact interfaces that used in this model are sliding contact and tied contact. From the analysis results, the gluteus maximus has the maximum displacement, stress and strain in the stair climbing. Quadratus femoris and gamellus inferior has the maximum displacement and strain in the normal gait however the maximum stress in the stair climbing. Besides that, the computational model of hip joint with muscles is produced for research and investigation platform. The model can be used as a visualization platform of hip joint.
Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Bartoszyk, Andrew E.
2004-01-01
A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the preliminary analysis has been revisited based on the test data In this work, we present an overview of the test plan, results today, and resulting design improvements.
Joint Cockpit Office: history and role in defense-wide issues regarding avionics displays
NASA Astrophysics Data System (ADS)
O'Connor, John C.; Kraemer, William A.
2000-08-01
The charter of the Joint Cockpit Office (JCO) is to plan, coordinate and accelerate the transition of advanced development cockpit/crew station technologies critical to crew effectiveness in current and future air vehicles. The JCO helps assure a single, coordinated, and highly integrated cockpit/crew station Science and Technology (S&T) program within and between the Air Force, the Army, and the Navy. It serves as the primary interface and focal point for issues involving these technologies for organizations within and external to the Services. The Services are at the advent of fielding new technologies such as helmet-mounted displays as a primary flight reference. They will most certainly evaluate the use of windowless cockpits to counter the laser threat and allow for less constraining aerodynamic conditions in future vehicle design. The transition to multi-spectral displays in future military and commercial aircraft is imminent. The JCO is well positioned to assess and focus the research needed to safely exploit these new technologies and meet customer requirements. Presently, the JCO is undertaking three initiatives: creation of a joint-service, Cooperative Research and Development Agreement (CRDA) with Lockheed Martin to study the thresholds of virtual helmet-mounted display attributes and effects on pilot performance; management of the Spatial Disorientation Countermeasures program, and facilitation of the actions determined by the DoD Executive Agent for Flat Panel Displays.
Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding
NASA Astrophysics Data System (ADS)
Zhao, Bo; Wang, Yanfang; Zhang, Yafei
2017-03-01
Reliable interconnection between carbon nanotubes (CNTs) and external circuit is one of the prerequisite in CNT electronics. In this work, ultrasonic nanowelding was used to bond CNTs with metal electrodes. By exerting ultrasonic energy at the interface of CNT/electrode, a reliable joint with negligible contact resistance was obtained between CNTs and electrodes. The performance of welding is susceptible to the ultrasonic parameters such as ultrasonic power and clamping force, as well as the metal type. It is found that the metals with good ductility or low melting point are easier to achieve effective joints. Moreover, interfacial compounds are formed at the welded surface of metal Al and Fe, which is resulted from the interacting and chemical bonding of carbon and metal atoms. After nanowelding, the contact resistance between CNTs and electrode is decreased dramatically, and the two-terminal resistance of the sample approximates to the intrinsic resistance of the CNT itself.
[Treatment of metaphyseal fractures of shin bones by the method of blocking osteosynthesis].
Neverov, V A; Khromov, A A; Cherniaev, S N; Egorov, K S; Shebarshov, A L
2008-01-01
The proposed method of reposition and polyaxial stabilization of fragments for intramedullary meallosynthesis of fractures of long tubular bones allows blocking osteosynthesis to be successfully used in treatment of complex metaphyseal fractures of shin bones. It results in strong fixation of the fragments, makes it possible to successfully eliminate residual deformities after introduction of the nail and to avoid the development of them in future under the influence of loading. The method provides early functioning of the interfacing joints, early axial loading, shorter period of disability, the absence of external immobilization.
IBM Application System/400 as the foundation of the Mayo Clinic/IBM PACS project
NASA Astrophysics Data System (ADS)
Rothman, Melvyn L.; Morin, Richard L.; Persons, Kenneth R.; Gibbons, Patricia S.
1990-08-01
An IBM Application System/400 (AS/400) anchors the Mayo Clinic/IBM joint development PACS project. This paper highlights some of the AS/400's features and the resulting benefits which make it a strong foundation for a medical image archival and review system. Among the AS/400's key features are: 1. A high-level machine architecture 2. Object orientation 3. Relational data base and other functions integrated into the system's architecture 4. High-function interfaces to IBM Personal Computers and IBM Personal System/2s' (pS/2TM).
Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon
2016-12-01
The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.
Man-equivalent telepresence through four fingered human-like hand system
NASA Technical Reports Server (NTRS)
Jau, Bruno M.
1992-01-01
The author describes a newly developed mechanical hand system. The robot hand is in human-like configuration with a thumb and three fingers, a palm, a wrist, and the forearm in which the hand and wrist actuators are located. Each finger and the wrist has its own active electromechanical compliance system, allowing the joint drive trains to be stiffened or loosened. This mechanism imitates the human muscle dual function of positioner and stiffness controller. This is essential for soft grappling operations. The hand-wrist assembly has 16 finger joints, three wrist joints, and five compliance mechanisms for a total of 24 degrees of freedom. The strength of the hand is roughly half that of the human hand and its size is comparable to a male hand. The hand is controlled through an exoskeleton glove controller that the operator wears. The glove provides the man-machine interface in telemanipulation control mode: it senses the operator's inputs to guide the mechanical hand in hybrid position and force control. The hand system is intended for dexterous manipulations in structured environments. Typical applications will include work in hostile environment such as space operations and nuclear power plants.
Talbot phase-contrast X-ray imaging for the small joints of the hand
Stutman, Dan; Beck, Thomas J; Carrino, John A; Bingham, Clifton O
2011-01-01
A high resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of Rheumatoid Arthritis (RA) and Osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 μm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast or refraction based X-ray imaging (DPC) with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and it can be implemented with conventional X-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high resolution bench-top interferometer using 10 μm period gratings, a W anode tube and a CCD based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging comes thus mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long ‘symmetric’ interferometer operated in a high Talbot order. PMID:21841214
Talbot phase-contrast x-ray imaging for the small joints of the hand
NASA Astrophysics Data System (ADS)
Stutman, Dan; Beck, Thomas J.; Carrino, John A.; Bingham, Clifton O.
2011-09-01
A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long 'symmetric' interferometer operated in a high Talbot order.
Apparatus, Systems, and Methods for Reconfigurable Robotic Manipulator and Coupling
NASA Technical Reports Server (NTRS)
Chu, Mars Wei (Inventor); Wolfe, Bryn Tyler (Inventor); Burridge, Robert Raven (Inventor)
2016-01-01
A robotic manipulator arm is disclosed. The arm includes joints that are attachable and detachable in a tool-free manner via a universal mating adapter. The universal mating adapter includes a built-in electrical interface for an operative electrical connection upon mechanical coupling of the adapter portions. The universal mating adapter includes mechanisms and the ability to store and communicate parameter configurations such that the joints can be rearranged for immediate operation of the arm without further reprogramming, recompiling, or other software intervention.
Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.
2015-01-01
A photonic choke joint structure with a wide-stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm that the structure can provide broadband suppression of more than 56dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.
Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.
2015-01-01
A photonic choke joint structure with a wide- stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm the structure can provide broadband suppression, more than 56 dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.
NASA Astrophysics Data System (ADS)
Kanjilal, Anwesha; Kumar, Praveen
2018-01-01
The effects of mechanical strain on the growth kinetics of interfacial intermetallic compounds (IMCs) sandwiched between Cu substrate and Sn-1.0 wt.%Ag-0.5 wt.%Cu (SAC105) solder have been investigated. Isothermal aging (IA) at 70°C and 125°C, and thermal cycling (TC) as well as thermomechanical cycling (TMC) with shear strain of 12.8% per cycle between -25°C and 125°C were applied to diffusion-bonded solder joints to study the growth behavior of the interfacial IMC layer under various types of thermomechanical excursion (TME). The microstructure of the solder joint tested under each TME was observed at regular intervals. It was observed that the growth rate of the IMC layer was higher in the case of TMC compared with TC or IA. This increased growth rate of the IMC layer in the presence of mechanical strain suggests an additional driving force that enhances the growth kinetics of the IMC. Finite element analysis was performed to gain insight into the effect of TC and TMC on the stress field in the solder joint, especially near the interface between the solder and the substrate. Finally, an analytical model was developed to quantify the effect of strain on the effective diffusivity and express the growth kinetics for all three types of TME using a single expression.
MacBarb, Regina F; Lindsey, Derek P; Woods, Shane A; Lalor, Peggy A; Gundanna, Mukund I; Yerby, Scott A
2017-01-01
Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants ( p <0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core ( p <0.002). Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.
Sperry, Megan M.; Ita, Meagan E.; Kartha, Sonia; Zhang, Sijia; Yu, Ya-Hsin; Winkelstein, Beth
2017-01-01
Chronic joint pain is a widespread problem that frequently occurs with aging and trauma. Pain occurs most often in synovial joints, the body's load bearing joints. The mechanical and molecular mechanisms contributing to synovial joint pain are reviewed using two examples, the cervical spinal facet joints and the temporomandibular joint (TMJ). Although much work has focused on the macroscale mechanics of joints in health and disease, the combined influence of tissue mechanics, molecular processes, and nociception in joint pain has only recently become a focus. Trauma and repeated loading can induce structural and biochemical changes in joints, altering their microenvironment and modifying the biomechanics of their constitutive tissues, which themselves are innervated. Peripheral pain sensors can become activated in response to changes in the joint microenvironment and relay pain signals to the spinal cord and brain where pain is processed and perceived. In some cases, pain circuitry is permanently changed, which may be a potential mechanism for sustained joint pain. However, it is most likely that alterations in both the joint microenvironment and the central nervous system (CNS) contribute to chronic pain. As such, the challenge of treating joint pain and degeneration is temporally and spatially complicated. This review summarizes anatomy, physiology, and pathophysiology of these joints and the sensory pain relays. Pain pathways are postulated to be sensitized by many factors, including degeneration and biochemical priming, with effects on thresholds for mechanical injury and/or dysfunction. Initiators of joint pain are discussed in the context of clinical challenges including the diagnosis and treatment of pain. PMID:28056123
Exoskeletal meal assistance system (EMAS II) for progressive muscle dystrophy patient.
Hasegawa, Yasuhisa; Oura, Saori
2011-01-01
This paper introduces a 4-DOFs exoskeletal meal assistance system (EMAS II) for progressive muscle dystrophy patient. It is generally better for the patient to use his/her hands by himself in daily life because active works maintain level of residual functions, health and initiative of him/her. The EMAS II that has a new joystick-type user interface device and three-DOFs on a shoulder part is enhanced for an easier operation and more comfortable support on eating, as the succeeding model of the previous system that has two-DOFs on a shoulder. In order to control the 4-DOFs system by the simple user interface device, the EMAS II simulates upper limb motion patterns of a healthy person. The motion patterns are modeled by extracting correlations between the height of a user's wrist joint and that of the user's elbow joint at the table. Moreover, the EMAS II automatically brings user's hand up to his/her mouth or back to a table when he/she pushes a preset switch on the interface device. Therefore a user has only to control a position of his/her wrist to pick or scoop foods and then flip the switch to start automatic mode, while a height of the elbow joint is automatically controlled by the EMAS II itself. The results of experiments, where a healthy subject regarded as a muscle dystrophy patient eats a meal with EMAS II, show that the subject finished her meal in a natural way in 18 minutes 40 seconds which was within a recommended time of 30 minutes. © 2011 IEEE
Lightweight coaxial cable connector reduces signal loss
NASA Technical Reports Server (NTRS)
Brejcha, A. G., Jr.
1965-01-01
Connectors with milled interface surfaces for perfect electrical contact eliminate secondary- emission discharge and low signal loss in RF coaxial cables. the connectors which contain alignment and centering components for proper joint concentricity are used in communications systems designs.
2011-06-01
effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the
Adapting human-machine interfaces to user performance.
Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A
2008-01-01
The goal of this study was to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user of a human-machine interface and the controlled device. In this experiment, subjects' high-dimensional finger motions remotely controlled the joint angles of a simulated planar 2-link arm, which was used to hit targets on a computer screen. Subjects were required to move the cursor at the endpoint of the simulated arm.
NASA Astrophysics Data System (ADS)
Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.
2016-01-01
In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.
International Docking Standard (IDSS) Interface Definition Document (IDD) . E; Revision
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Cryan, Scott P.
2016-01-01
This International Docking System Standard (IDSS) Interface Definition Document (IDD) is the result of a collaboration by the International Space Station membership to establish a standard docking interface to enable on-orbit crew rescue operations and joint collaborative endeavors utilizing different spacecraft. This IDSS IDD details the physical geometric mating interface and design loads requirements. The physical geometric interface requirements must be strictly followed to ensure physical spacecraft mating compatibility. This includes both defined components and areas that are void of components. The IDD also identifies common design parameters as identified in section 3.0, e.g., docking initial conditions and vehicle mass properties. This information represents a recommended set of design values enveloping a broad set of design reference missions and conditions, which if accommodated in the docking system design, increases the probability of successful docking between different spacecraft. This IDD does not address operational procedures or off-nominal situations, nor does it dictate implementation or design features behind the mating interface. It is the responsibility of the spacecraft developer to perform all hardware verification and validation, and to perform final docking analyses to ensure the needed docking performance and to develop the final certification loads for their application. While there are many other critical requirements needed in the development of a docking system such as fault tolerance, reliability, and environments (e.g. vibration, etc.), it is not the intent of the IDSS IDD to mandate all of these requirements; these requirements must be addressed as part of the specific developer's unique program, spacecraft and mission needs. This approach allows designers the flexibility to design and build docking mechanisms to their unique program needs and requirements. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.
NASA Astrophysics Data System (ADS)
Benz, N.; Bartlow, N. M.
2017-12-01
The addition of borehole strainmeter (BSM) to cGPS time series inversions can yield more precise slip distributions at the subduction interface during episodic tremor and slip (ETS) events in the Cascadia subduction zone. Traditionally very noisy BSM data has not been easy to incorporate until recently, but developments in processing noise, re-orientation of strain components, removal of tidal, hydrologic, and atmospheric signals have made this additional source of data viable (Roeloffs, 2010). The major advantage with BSMs is their sensitivity to spatial derivatives in slip, which is valuable for investigating the ETS nucleation process and stress changes on the plate interface due to ETS. Taking advantage of this, we simultaneously invert PBO GPS and cleaned BSM time series with the Network Inversion Filter (Segall and Matthews, 1997) for slip distribution and slip rate during selected Cascadia ETS events. Stress distributions are also calculated for the plate interface using these inversion results to estimate the amount of stress change during an ETS event. These calculations are performed with and without the utilization of BSM time series, highlighting the role of BSM data in constraining slip and stress.
Load transfer mechanics between trans-tibial prosthetic socket and residual limb--dynamic effects.
Jia, Xiaohong; Zhang, Ming; Lee, Winson C C
2004-09-01
The effects of inertial loads on the interface stresses between trans-tibial residual limb and prosthetic socket were investigated. The motion of the limb and prosthesis was monitored using a Vicon motion analysis system and the ground reaction force was measured by a force platform. Equivalent loads at the knee joint during walking were calculated in two cases with and without consideration of the material inertia. A 3D nonlinear finite element (FE) model based on the actual geometry of residual limb, internal bones and socket liner was developed to study the mechanical interaction between socket and residual limb during walking. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. The prediction results indicated that interface pressure and shear stress had the similar double-peaked waveform shape in stance phase. The average difference in interface stresses between the two cases with and without consideration of inertial forces was 8.4% in stance phase and 20.1% in swing phase. The maximum difference during stance phase is up to 19%. This suggests that it is preferable to consider the material inertia effect in a fully dynamic FE model.
Critical bending moment of four implant-abutment interface designs.
Lee, Frank K; Tan, Keson B; Nicholls, Jack I
2010-01-01
Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Lin, E-mail: wangwl77@gmail.com; Tsai, Yi-Chia, E-mail: tij@itri.org.tw
2012-06-15
Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on themore » titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac
Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was foundmore » to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.« less
Multibody dynamic simulation of knee contact mechanics
Bei, Yanhong; Fregly, Benjamin J.
2006-01-01
Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multi-body knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer’s CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously. PMID:15564115
Bo, Arixin; Alarco, Jose; Zhu, Huaiyong; Waclawik, Eric R; Zhan, Haifei; Gu, YuanTong
2017-03-15
Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI). The irradiation fuses the contacted spot of titanate NWs yielding an intact nanojoint. Nanojoints with different morphologies can be produced. The joint structures consist of titanium dioxide (TiO 2 ) rutile, anatase, and titanate phases in the direction away from the e-beam melting spot. The titanate binds to anatase via a crystallographic matching coherent interface (the oxygen atoms at the interface are shared by the two phases) and the anatase solidly binds to the rutile joint. The resulting rutile joint is stable at high temperatures. Additionally, it is demonstrated that the heat production from EBI treated rutile can be utilized to break metal NWs (Ag, Cu, and Ni) apart by spot melting. The required e-beam intensity is considerably mild (75 pA/cm 2 ) which allows visual access and control over the NW melting. Direct melting of Ag and Cu is not applicable under EBI due to their high thermal conductivity even with high current density (500 pA/cm 2 ). Our findings reveal that ceramic nanojoint formation and spot melting at nanoscale are applicable if the properties of nanomaterials are understood and properly utilized.
Update on slip and wear in multi-layer azimuth track systems
NASA Astrophysics Data System (ADS)
Juneja, Gunjeet; Kan, Frank W.; Antebi, Joseph
2006-06-01
Many antennas, such as the 100-m Green Bank Telescope, use a wheel-on-track systems in which the track segments consist of wear plates mounted on base plates. The wear plates are typically 2 to 3 inches thick and are case hardened or through hardened. The base plates are usually 3 to 4 times thicker than the wear plates and are not hardened. The wear plates are typically connected to the base plates using bolts. The base plates are supported on grout and anchored to the underlying concrete foundation. For some antennas, slip has been observed between the wear plate and base plate, and between the base plate and the grout, with the migration in the wheel rolling direction. In addition, there has been wear at the wear plate/base plate interface. This paper is an update on the evaluation of GBT track retrofit. The paper describes the use of three-dimensional non-linear finite element analyses to understand and evaluate the behavior of (1) the existing GBT wheel-on-track system with mitered joints, and (2) the various proposed modifications. The modifications include welding of the base plate joints, staggering of the wear plate joints from the base plate joints, changing thickness of the wear plate, and increasing bolt diameter and length. Parameters included in the evaluation were contact pressure, relative slip, wear at the wear plate/base plate interface, and bolt shears and moments.
Morris, Tommy J; Pajak, John; Havlik, Frank; Kenyon, Jessica; Calcagni, Dean
2006-08-01
This paper discusses the innovation process of the Battlefield Medical Information System- Tactical (BMIST), a point-of-care mobile computing solution for reducing medical errors and improving the quality of care provided to our military personnel in the field. In such remote environments, medical providers have traditionally had limited access to medical information, a situation quite analogous to that in remote areas of underdeveloped or developing countries. BMIST provides an all-in-one suite of mobile applications that empowers providers via access to critical medical information and powerful clinical decision support tools to accurately create an electronic health record (EHR). This record is synchronized with Department of Defense (DOD) joint health surveillance and medical information systems from the earliest echelons of care through chronic care provided by the Veterans Administration. Specific goals met in the initial phase were: integration of the PDA and wireless interface; development of the local application and user interface; development of a communications infrastructure and development of a data storage and retrieval system. The system had been used extensively in the field to create an EHR far forward that supports a longitudinal medical record across time and across all elements of the Military Healthcare System.
Laser Welding of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Oliveira, Joao Pedro de Sousa
Joining of shape memory alloys is of great importance for both functional and structural applications as it can provide an increased design flexibility. In this work similar NiTi/NiTi, CuAlMn/CuAlMn and dissimilar NiTi/Ti6Al4V joints were produced by Nd:YAG laser. For the NiTi/NiTi joints the effect of process parameters (namely the heat input) on the superelastic and shape memory effects of the joints was assessed and correlated to its microstructure. Microstructural analysis was performed by means of X-ray diffraction using synchrotron radiation, which allowed for fine probing of the welded material. It was noticed the presence of martensite in the thermally affected regions, while the base material remained fully austenitic. The mechanisms for the formation of martensite, at room temperature, due to the welding procedure are presented and the influence of this phase on the functional properties of the joints is discussed. Additionally, the residual stresses were determined using synchrotron X-ray diffraction. For the dissimilar NiTi/Ti6Al4V joints, a Niobium interlayer was used to prevent the formation undesired brittle intermetallic compounds. Additionally, it was observed that positioning of the laser beam was of significant importance to obtain a sound joint. The mechanisms responsible for the joint formation are discussed based on observations with advanced characterization techniques, such as transmission electron microscopy. At the NiTi/Nb interface, an eutectic reaction promotes joining of the two materials, while at the Ti6Al4V/Nb interface fusion and, subsequent solidification of the Ti6Al4V was responsible for joining. Short distance diffusion of Nb to the fusion zone of Ti6Al4V was observed. Although fracture of the dissimilar welded joints occurred at a stress lower than the minimum required for the stress induced transformation, an improvement on the microstructure and mechanical properties, relatively to existing literature, was obtained. Finally, the first weldability study of superelastic CuAlMn alloy was performed. Superelasticity was preserved after welding. Post-weld laser processing improved the damping capability of the welded joint when compared to both as-welded and base materials, aiming for seismic construction. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None
In vivo performance of a reduced-modulus bone cement
NASA Astrophysics Data System (ADS)
Forehand, Brett Ramsey
Total joint replacement has become one of the most common procedures in the area of orthopedics and is often the solution in patients with diseased or injured hip joints. Component loosening is a significant problem and is primarily caused by bone resorption at the bone-cement interface in cemented implants. It is our hypothesis that localized shear stresses are responsible for the resorption. It was previously shown analytically that local stresses at the interface could be reduced by using a cement of lower modulus. A new reduced modulus cement, polybutyl methylmethacrylate (PBMMA), was developed to test the hypothesis. PBMMA was formulated to exist as polybutyl methacrylate filler in a polymethyl methacrylate matrix. The success of PBMMA cement is based largely on the fact that the polybutyl component of the cement will be in the rubbery state at body temperature. In vitro characterization of the cement was undertaken previously and demonstrated a modulus of approximately one-eighth that of conventional bone cement, polymethyl methacrylate (PMMA) and increased fracture toughness. The purpose of this experiment was to perform an in vivo comparison of the two cements. A sheep model was selected. Total hip arthroplasty was performed on 50 ewes using either PBMMA or PMMA. Radiographs were taken at 6 month intervals. At one year, the contralateral femur of each sheep was implanted so that each animal served as its own control, and the animals were sacrificed. The stiffness of the bone-cement interface of the femoral component within the femur was assessed by applying a torque to the femoral component and demonstrated a significant difference in loosening between the cements when the specimens were tested in external rotation (p < 0.007). Evaluation of the mechanical data also suggests that the PBMMA sheep had a greater amount of loosening for each subject, 59% versus 4% for standard PMMA. A radiographic analysis demonstrated more signs of loosening in the PMMA series of subjects. A brief histological examination showed similar bony reaction to both cements, however, study of the interface membrane was not able to be accomplished. Reasons for the rejection of the hypothesis are discussed.
NASA Astrophysics Data System (ADS)
Gemme, Frederic
The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)
Study of confinement and sliding friction of fluids using sum frequency generation spectroscopy
NASA Astrophysics Data System (ADS)
Nanjundiah, Kumar
2007-12-01
Friction and wear are important technologically. Tires on wet roads, windshield wipers and human joints are examples where nanometer-thick liquids are confined between flexible-rigid contact interfaces. Fundamental understanding of the structure of these liquids can assist in the design of products such as artificial joints and lubricants for Micro-electromechanical systems [MEMS]. Prior force measurements have suggested an increase in apparent viscosity of confined liquid and sometimes solid-like responses. But, these have not given the state of molecules under confinement. In the present study, we have used a surface sensitive, non-linear optical technique (infrared-visible sum frequency generation spectroscopy [SFG]) to investigate molecular structure at hidden interfaces. SFG can identify chemical groups, concentration and orientation of molecules at an interface. A friction cell was developed to study sliding of a smooth elastomeric lens against a sapphire surface. Experiments were done with dry sliding as well as lubricated sliding in the presence of linear alkane liquids. SFG spectra at the alkane/sapphire interface revealed ordering of the confined alkane molecules. These were more ordered than alkane liquid, but less ordered than alkane crystal. Cooling of the confined alkane below its melting temperature [TM] led to molecular orientation that was different from that of bulk crystal next to a sapphire surface. Molecules were oriented with their symmetry axis parallel to the surface normal. In addition, the melting temperature [Tconf] under confinement for a series of linear alkanes (n =15--27) showed a surprising trend. Intermediate molecular weights showed melting point depression. The T conf values suggested that melting started at the alkane/sapphire interface. In another investigation, confinement of water between an elastomeric PDMS lens and sapphire was studied. SFG spectra at the sapphire/water/PDMS interface revealed a heterogeneous morphology. The presence of peaks related to PDMS, as well as water, suggested water puddles in the contact area and the sapphire surface had a layer of bound water. This heterogeneity picture provides insight into high friction and stick-slip behavior found in boundary lubrication. For the first time, a broadband SFG system has been coupled with a friction cell to study dynamics and molecular changes at an interface during sliding; sliding of confined alkane between sapphire and PDMS was investigated. A series of SFG spectra were taken while the confined alkane contact spot moved in and out of the laser beam. Even though the experiments were done 15°C above melting temperature, the spectra showed ordering of alkane molecules, similar to that of the confined crystal at the leading and trailing edge. The results suggest that a large portion of the resistance to sliding may come from ordering of molecules at the lens front.
Interaction design challenges and solutions for ALMA operations monitoring and control
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar
2012-09-01
The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.
NASA Technical Reports Server (NTRS)
Notis, Michael R.; Oh, Min-Seok
1990-01-01
Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.
Arc brazing of austenitic stainless steel to similar and dissimilar metals
NASA Astrophysics Data System (ADS)
Moschini, Jamie Ian
There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the stainless steel resulted in embrittlement as discussed by Glickman.
NASA Astrophysics Data System (ADS)
Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.
2002-02-01
The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.
National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1980-01-01
A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.
NASA Astrophysics Data System (ADS)
Abdelhadi, Ousama Mohamed Omer
Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases, η-phase (Cu6Sn 5) and epsilon-phase (Cu3Sn), were found in almost all the cases regardless of the process parameters and size levels. The physics-based analytical model was successfully able to capture the governing mechanisms of IMC growth: chemical reaction controlled and diffusion-controlled. Examination of microstructures of solder joints of different sizes revealed the size of the solder joint has no effect on the type of IMCs formed during the process. Joint size, however, affected the thickness of IMC layers significantly. IMC layers formed in the solder joints of smaller sizes were found to be thicker than those in the solder joints of larger sizes. The growth rate constants and activation energies of Cu3Sn IMC layer were also reported and related to joint thickness. In an effort to optimize the EBSD imaging in the multi-layer configuration, an improved specimen preparation technique and optimum software parameters were determined. Nanoindentation results show that size effects play a major role on the mechanical properties of micro-scale solder joints. Smaller joints show higher Young's modulus, hardness, and yield strength and lower work hardening exponents comparing to thicker joints. To obtain the stress concentration factors in a multilayer specimen with IMC layer as bonding material, a four-point bending notched configuration was used. The analytical solutions developed for peeling and shear stresses in notched structure were used to evaluate the stresses at IMC interface layers. Results were in good agreement with the finite-element simulation. The values of interfacial stresses were utilized in obtaining fracture toughness of the IMC material. (Abstract shortened by UMI.)
Improving Conceptual Design for Launch Vehicles
NASA Technical Reports Server (NTRS)
Olds, John R.
1998-01-01
This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.
A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom
NASA Astrophysics Data System (ADS)
Pan, Lizhi; Yang, Zhen; Zhang, Dingguo
2015-10-01
The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.
NASA Technical Reports Server (NTRS)
Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville
2005-01-01
Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.
A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom.
Pan, Lizhi; Yang, Zhen; Zhang, Dingguo
2015-10-01
The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.
Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals
Kanas, Vasileios G.; Mporas, Iosif; Benz, Heather L.; Sgarbas, Kyriakos N.; Bezerianos, Anastasios; Crone, Nathan E.
2014-01-01
Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines (SVM) as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and non-speech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllable repetition tasks and may contribute to the development of portable ECoG-based communication. PMID:24658248
Banta, E.R.; Hill, M.C.; Poeter, E.; Doherty, J.E.; Babendreier, J.
2008-01-01
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input and output conventions allow application users to access various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate, for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity analysis, data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas. Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example.
Guhathakurta, Debarpan; Dutta, Anirban
2016-01-01
Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
Guhathakurta, Debarpan; Dutta, Anirban
2016-01-01
Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about −15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization. PMID:27378836
NASA Astrophysics Data System (ADS)
Huang, M. L.; Zhao, N.
2015-10-01
Board-level drop tests of plastic ball grid array (PBGA) packages were performed in accordance with the Joint Electron Devices Engineering Council standard to investigate the effect of electromigration (EM) on the drop reliability of Sn-3.0Ag-0.5Cu solder joints with two substrate surface finishes, organic solderability preservative (OSP) and electroless nickel electroless palladium immersion gold (ENEPIG). In the as-soldered state, drop failures occurred at the substrate sides only, with cracks propagating within the interfacial intermetallic compound (IMC) layer for OSP solder joints and along the IMC/Ni-P interface for ENEPIG solder joints. The drop lifetime of OSP solder joints was approximately twice that of ENEPIG joints. EM had an important effect on crack formation and drop lifetime of the PBGA solder joints. ENEPIG solder joints performed better in drop reliability tests after EM, that is, the drop lifetime of ENEPIG joints decreased by 43% whereas that of OSP solder joints decreased by 91%, compared with the as-soldered cases. The more serious polarity effect, i.e., excessive growth of the interfacial IMC at the anode, was responsible for the sharper decrease in drop lifetime. The different types of drop failure of PBGA solder joints before and after EM, including the position of initiation and the propagation path of cracks, are discussed on the basis of the growth behavior of interfacial IMC.
Method and apparatus for automatic control of a humanoid robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)
2013-01-01
A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva
2014-01-01
Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for EGFL7, which is a novel finding and suggests a role of EGFL7 in the vascular infiltration of growth cartilage. PMID:25175365
Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel
NASA Astrophysics Data System (ADS)
Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan
2018-01-01
In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.
Riester, Scott M.; Bonin, Carolina A.; Kremers, Hilal Maradit; Dudakovic, Amel; Kakar, Sanjeev; Cohen, Robert C.; Westendorf, Jennifer J.
2015-01-01
The biological interface between an orthopedic implant and the surrounding host tissue may have a dramatic effect upon clinical outcome. Desired effects include bony ingrowth (osseointegration), stimulation of osteogenesis (osteoinduction), increased vascularization, and improved mechanical stability. Implant loosening, fibrous encapsulation, corrosion, infection, and inflammation, as well as physical mismatch may have deleterious clinical effects. This is particularly true of implants used in the reconstruction of load-bearing synovial joints such as the knee, hip, and the shoulder. The surfaces of orthopedic implants have evolved from solid-smooth to roughened-coarse and most recently, to porous in an effort to create a three-dimensional architecture for bone apposition and osseointegration. Total joint surgeries are increasingly performed in younger individuals with a longer life expectancy, and therefore, the postimplantation lifespan of devices must increase commensurately. This review discusses advancements in biomaterials science and cell-based therapies that may further improve orthopedic success rates. We focus on material and biological properties of orthopedic implants fabricated from porous metal and highlight some relevant developments in stem-cell research. We posit that the ideal primary and revision orthopedic load-bearing metal implants are highly porous and may be chemically modified to induce stem cell growth and osteogenic differentiation, while minimizing inflammation and infection. We conclude that integration of new biological, chemical, and mechanical methods is likely to yield more effective strategies to control and modify the implant–bone interface and thereby improve long-term clinical outcomes. PMID:25348836
Kobayashi, Masanori; Oka, Masanori
2004-01-01
We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future.
The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil
NASA Astrophysics Data System (ADS)
Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai
2017-09-01
Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.
Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo
2014-12-01
This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.
2016-01-01
The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.
Center for Nanophase Materials Sciences
NASA Astrophysics Data System (ADS)
Horton, Linda
2002-10-01
The Center for Nanophase Materials Sciences (CNMS) will be a user facility with a strong component of joint, collaborative research. CNMS is being developed, together with the scientific community, with support from DOE's Office of Basic Energy Sciences. The Center will provide a thriving, multidisciplinary environment for research as well as the education of students and postdoctoral scholars. It will be co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS). The CNMS will integrate nanoscale research with neutron science, synthesis science, and theory/modeling/simulation, bringing together four areas in which the United States has clear national research and educational needs. The Center's research will be organized under three scientific thrusts: nano-dimensioned "soft" materials (including organic, hybrid, and interfacial nanophases); complex "hard" materials systems (including the crosscutting areas of interfaces and reduced dimensionality that become scientifically critical on the nanoscale); and theory/modeling/simulation. This presentation will summarize the progress towards identification of the specific research focus topics for the Center. Currently proposed topics, based on two workshops with the potential user community, include catalysis, nanomagnetism, synthetic and bio-inspired macromolecular materials, nanophase biomaterials, nanofluidics, optics/photonics, carbon-based nanostructures, collective behavior, nanoscale interface science, virtual synthesis and nanomaterials design, and electronic structure, correlations, and transport. In addition, the proposed 80,000 square foot facility (wet/dry labs, nanofabrication clean rooms, and offices) and the associated technical equipment will be described. The CNMS is scheduled to begin construction in spring, 2003. Initial operations are planned for late in 2004.
NASA Astrophysics Data System (ADS)
Sung, Back-Sub; Bang, Hee-Seon; Jeong, Su-Ok; Choi, Woo-Seong; Kwon, Yong-Hyuk; Bang, Han-Sur
2017-05-01
Two dissimilar materials, aluminum alloy Al5083-O and advanced high strength steel DP590, were successfully joined by using friction stir spot joining (FSSJ). Satisfactory joint strengths were obtained at a rotational speed of 300 rpm and a plunge depth of 0.7 mm. Resulting joints were welded without a non-welded zone. This may be attributed to the enhanced smooth material flow owing to sufficient stirring effect and tool down force between the upper Al5083-O side and the lower DP590 side. The maximum tensile shear strength was 6.5 kN, which was higher than the joint strength required by the conventional method of resistance spot welding. The main fracture mode was plug fracture in the tensile shear test of joints. An intermetallic compound (IMC) layer with <6 μm thickness was formed at the joint interface, which meets the allowance value of <10 μm for the dissimilar material Al-Fe joints. Thus, the use of FSSJ to weld the dissimilar materials Al5083-O and DP590 resulted in mechanically and metallurgically sound joints.
KmL3D: a non-parametric algorithm for clustering joint trajectories.
Genolini, C; Pingault, J B; Driss, T; Côté, S; Tremblay, R E; Vitaro, F; Arnaud, C; Falissard, B
2013-01-01
In cohort studies, variables are measured repeatedly and can be considered as trajectories. A classic way to work with trajectories is to cluster them in order to detect the existence of homogeneous patterns of evolution. Since cohort studies usually measure a large number of variables, it might be interesting to study the joint evolution of several variables (also called joint-variable trajectories). To date, the only way to cluster joint-trajectories is to cluster each trajectory independently, then to cross the partitions obtained. This approach is unsatisfactory because it does not take into account a possible co-evolution of variable-trajectories. KmL3D is an R package that implements a version of k-means dedicated to clustering joint-trajectories. It provides facilities for the management of missing values, offers several quality criteria and its graphic interface helps the user to select the best partition. KmL3D can work with any number of joint-variable trajectories. In the restricted case of two joint trajectories, it proposes 3D tools to visualize the partitioning and then export 3D dynamic rotating-graphs to PDF format. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.
Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex
2010-05-01
For the past 10 years, animal health experts and human health experts have been gaining experience in the technical aspects of avian influenza in mostly separate fora. More recently, in 2006, in a meeting of the small WHO Working Group on Influenza Research at the Human Animal Interface (Meeting report available from: http://www.who.int/csr/resources/publications/influenza/WHO_CDS_EPR_GIP_2006_3/en/index.html) in Geneva allowed influenza experts from the animal and public health sectors to discuss together the most recent avian influenza research. Ad hoc bilateral discussions on specific technical issues as well as formal meetings such as the Technical Meeting on HPAI and Human H5N1 Infection (Rome, June, 2007; information available from: http://www.fao.org/avianflu/en/conferences/june2007/index.html) have increasingly brought the sectors together and broadened the understanding of the topics of concern to each sector. The sectors have also recently come together at the broad global level, and have developed a joint strategy document for working together on zoonotic diseases (Joint strategy available from: ftp://ftp.fao.org/docrep/fao/011/ajl37e/ajl37e00.pdf). The 2008 FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human Animal Interface described here was the first opportunity for a large group of influenza experts from the animal and public health sectors to gather and discuss purely technical topics of joint interest that exist at the human-animal interface. During the consultation, three influenza-specific sessions aimed to (1) identify virological characteristics of avian influenza viruses (AIVs) important for zoonotic and pandemic disease, (2) evaluate the factors affecting evolution and emergence of a pandemic influenza strain and identify existing monitoring systems, and (3) identify modes of transmission and exposure sources for human zoonotic influenza infection (including discussion of specific exposure risks by affected countries). A final session was held to discuss broadening the use of tools and systems to other emerging zoonotic diseases. The meeting was structured as short technical presentations with substantial time available for facilitated discussion, to take advantage of the vast influenza knowledge and experience available from the invited expert participants. Particularly important was the identification of gaps in knowledge that have not yet been filled by either sector. Technical discussions focused on H5N1, but included other potentially zoonotic avian and animal influenza viruses whenever possible. During the consultation, the significant threat posed by subtypes other than H5N1 was continually emphasized in a variety of contexts. It was stressed that epidemiological and virological surveillance for these other viruses should be broadening and strengthened. The important role of live bird markets (LBMs) in amplifying and sustaining AIVs in some countries was also a recurring topic, and the need for better understanding of the role of LBMs in human zoonotic exposure and infection was noted. Much is understood about the contribution of various virus mutations and gene combinations to transmissibility, infectivity, and pathogenicity, although it was agreed that the specific constellation of gene types and mutations that would characterize a potentially pandemic virus remains unclear. The question of why only certain humans have become infected with H5N1 in the face of massive exposure in some communities was frequently raised during discussion of human exposure risks. It was suggested that individual-level factors may play a role. More research is needed to address this as well as questions of mode of transmission, behaviors associated with increased risk, virological and ecological aspects, and viral persistence in the environment in order to better elucidate specific human exposure risks. It became clear that great strides have been made in recent years in collaboration between the animal health and public health sectors, especially at the global level. In some countries outbreaks of H5N1 are being investigated jointly. Even greater transparency, cooperation, and information and materials exchange would allow more timely and effective responses in emergency situations, as well as in assessment and planning phases. Ensuring sustainability was also frequently emphasized, e.g. in infrastructure and capacity development and in development of tools and systems for surveillance, assessment and response. It was suggested that one way for tools and systems built or planned to address avian influenza to become more sustainable would be to make them applicable for a broader array of existing and emerging zoonotic diseases.
Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Mohanty, Lipi; Tjin, Swee Chuan
2006-02-01
We present the concept of a fiber-optic sensor that can be used for pressure mapping at the prosthetic knee joint, in vitro and in vivo. An embedded array of fiber Bragg gratings is used to measure the load on the tibial spacer. The sensor gives the magnitude and the location of the applied load. The effect of material properties on the sensitivity of each subgrating is presented. The wavelength-shift maps show the malalignment of implants and demonstrate the potential of this sensor for use during total knee arthroplasty.
Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas
2013-01-01
Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.
Analysis of operational comfort in manual tasks using human force manipulability measure.
Tanaka, Yoshiyuki; Nishikawa, Kazuo; Yamada, Naoki; Tsuji, Toshio
2015-01-01
This paper proposes a scheme for human force manipulability (HFM) based on the use of isometric joint torque properties to simulate the spatial characteristics of human operation forces at an end-point of a limb with feasible magnitudes for a specified limb posture. This is also applied to the evaluation/prediction of operational comfort (OC) when manually operating a human-machine interface. The effectiveness of HFM is investigated through two experiments and computer simulations of humans generating forces by using their upper extremities. Operation force generation with maximum isometric effort can be roughly estimated with an HFM measure computed from information on the arm posture during a maintained posture. The layout of a human-machine interface is then discussed based on the results of operational experiments using an electric gear-shifting system originally developed for robotic devices. The results indicate a strong relationship between the spatial characteristics of the HFM and OC levels when shifting, and the OC is predicted by using a multiple regression model with HFM measures.
Z-1 Prototype Space Suit Testing Summary
NASA Technical Reports Server (NTRS)
Ross, Amy
2013-01-01
The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.
Z-1 Prototype Space Suit Testing Summary
NASA Technical Reports Server (NTRS)
Ross, Amy J.
2012-01-01
The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.
NASA Astrophysics Data System (ADS)
Ji, Shude; Li, Zhengwei
2017-11-01
Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.
NASA Astrophysics Data System (ADS)
Venugopal, A.; Narayanan, P. Ramesh; Sharma, S. C.
2016-04-01
AA2219 aluminum alloy plate (T87) and ring (T851) were joined by tungsten inert gas (TIG) welding using multi-pass welding. The mechanical properties and stress corrosion cracking (SCC) resistance of the above base metals (BMs) in different directions (L, LT, and ST) were examined. Similarly, the weld metal joined by plate to plate and plate to ring (PR) joints was evaluated. The results revealed that the mechanical properties of the ring were comparatively lower than the plate. This was found to be due to the extremely coarse grain size of the ring along with severe Cu-rich segregation along the grain boundaries when compared to the plate material. The SCC resistance of the base and weldments were found to be good and not susceptible to SCC. This was shown to be due to high values of SCC index (>0.9) and the typical ductile cracking morphology of the BM and the weld joints after SCC test in the environment (3.5 wt pct NaCl) when compared to test performed in the control environment (air). However, the corrosion resistance of the weld interface between the FZ and ring was inferior to the FZ-plate interface.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements
NASA Astrophysics Data System (ADS)
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
Zhang, Sen; Chen, Huan; Wang, An; Liu, Yong; Hou, Hongwei; Hu, Qingyuan
2018-05-21
To investigate the genotoxicity of gaseous toxicants CO and 1,3-butadiene in vitro, a novel combination technology-the in vitro γH2AX high content screening assay combined with air-liquid interface system was established. The results showed that this new technology was available and effective. Based on the joint technology, genotoxicity of CO and 1,3-butadiene was evaluated further in this study. The results showed that treatment concentrations (0, 20%,40%, 80% and 100%, v/v) and exposure time (15, 30, 45, 60 and 90 min) of CO both had no statistically significant effects on the induction of γH2AX (p > 0.05). However, 1,3-butadiene can induce significant γH2AX (p < 0.01) in A549 cells in a dose/time-dependent manner both in the absence and presence of rat liver S9. When the concentrations of 1,3-butadiene were more than 80%, a higher γH2AX level could be induced than the 1.5-fold of vehicle controls after 1 h of treatment. Overall, this new technology can be used a complementary tool to evaluate the genotoxicity of airborne toxicants in vitro based on the in vitro γH2AX high content screening assay combined with air-liquid interface system. Based on the joint technology, CO was not genotoxic in A549 cells, while 1,3-butadiene showed significant genotoxicity in the dose/time-dependency on the induction of γH2AX.
A review of Spacelab mission management approach
NASA Technical Reports Server (NTRS)
Craft, H. G., Jr.
1979-01-01
The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.
Zullo, Steven J.; Srivastava, Sudhir; Looney, J. Patrick; Barker, Peter E.
2002-01-01
A recent meeting jointly sponsored by the National Cancer Institute (NCI) and National Institute of Standards and Technology (NIST) brought together researchers active in nanotechnology and cancer molecular biology to discuss and evaluate the interface between disciplines. Emerging areas where nanotechnologies may impact cancer prevention and early cancer detection were elaborated by key researchers who catalyzed interdisciplinary dialogue aimed at fostering cross-discipline communications and future collaboration. PMID:12590168
Seal Joint Analysis and Design for the Ares-I Upper Stage LOX Tank
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Wingate, Robert J.
2011-01-01
The sealing capability of the Ares-I Upper Stage liquid oxygen tank-to-sump joint is assessed by analyzing the deflections of the joint components. Analyses are performed using three-dimensional symmetric wedge finite element models and the ABAQUS commercial finite element software. For the pressure loads and feedline interface loads, the analyses employ a mixed factor of safety approach to comply with the Constellation Program factor of safety requirements. Naflex pressure-assisted seals are considered first because they have been used successfully in similar seal joints in the Space Shuttle External Tank. For the baseline sump seal joint configuration with a Naflex seal, the predicted joint opening greatly exceeds the seal design specification. Three redesign options of the joint that maintain the use of a Naflex seal are studied. The joint openings for the redesigned seal joints show improvement over the baseline configuration; however, these joint openings still exceed the seal design specification. RACO pressure-assisted seals are considered next because they are known to also be used on the Space Shuttle External Tank, and the joint opening allowable is much larger than the specification for the Naflex seals. The finite element models for the RACO seal analyses are created by modifying the models that were used for the Naflex seal analyses. The analyses show that the RACO seal may provide sufficient sealing capability for the sump seal joint. The results provide reasonable data to recommend the design change and plan a testing program to determine the capability of RACO seals in the Ares-I Upper Stage liquid oxygen tank sump seal joint.
A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface.
Choudhury, Dipankar; Urban, Filip; Vrbka, Martin; Hartl, Martin; Krupka, Ivan
2015-05-01
This study investigates a tribological performance of diamond like carbon (DLC) coated micro dimpled prosthesis heads against ceramic cups in a novel pendulum hip joint simulator. The simulator enables determining friction coefficient and viscous effects of a concave shaped specimen interface (conformal contact). Two types of DLC such as hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) and one set of micro dimple (diameter of 300µm, depth of 70µm, and pitch of 900µm) were fabricated on metallic prosthesis heads. The experiment results reveal a significant friction coefficient reduction to the 'dimpled a-C:H/ceramic' prosthesis compared to a 'Metal (CoCr)/ceramic' prosthesis because of their improved material and surface properties and viscous effect. The post-experiment surface analysis displays that the dimpled a-C:H yielded a minor change in the surface roughness, and generated a larger sizes of wear debris (40-200nm sized, equivalent diameter), a size which could be certainly stored in the dimple, thus likely to reducing their possible third body abrasive wear rate. Thus, dimpled a:C-H can be used as a 'metal on ceramic hip joint interface', whereas the simulator can be utilized as an advanced bio-tribometer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer.
Xiao, Yong; Wang, Qiwei; Wang, Ling; Zeng, Xian; Li, Mingyu; Wang, Ziqi; Zhang, Xingyi; Zhu, Xiaomeng
2018-07-01
In this study, Cu alloy joints were fabricated with a Ni-foam reinforced Sn-based composite solder with the assistance of ultrasonic vibration. Effects of ultrasonic soldering time on the microstructure and mechanical properties of Cu/Ni-Sn/Cu joints were investigated. Results showed that exceptional metallurgic bonding could be acquired with the assistance of ultrasonic vibration using a self-developed Ni-foam/Sn composite solder. For joint soldered for 5 s, a (Cu,Ni) 6 Sn 5 intermetallic compound (IMC) layer was formed on the Cu substrate surface, Ni skeletons distributed randomly in the soldering seam and a serrated (Ni,Cu) 3 Sn 4 IMC layer was formed on the Ni skeleton surface. Increasing the soldering time to 20 s, the (Ni,Cu) 3 Sn 4 IMC layer grew significantly and exhibited a loose porous structure on the Ni skeleton surface. Further increase the soldering time to 30 s, Ni skeletons were largely dissolved in the Sn base solder, and micro-sized (Ni,Cu) 3 Sn 4 particles were formed and dispersed homogeneously in the soldering seam. The formation of (Ni,Cu) 3 Sn 4 particles was mainly ascribed to acoustic cavitations induced erosion and grain refining effects. The joint soldered for 30 s exhibited the highest shear strength of 64.9 ± 3.3 MPa, and the shearing failure mainly occurred at the soldering seam/Cu substrate interface. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Scarselli, G.; Ciampa, F.; Ginzburg, D.; Meo, M.
2015-04-01
Nonlinear ultrasonic non-destructive evaluation (NDE) methods can be used for the identification of defects within adhesive bonds as they rely on the detection of nonlinear elastic features for the evaluation of the bond strength. In this paper the nonlinear content of the structural response of a single lap joint subjected to ultrasonic harmonic excitation is both numerically and experimentally evaluated to identify and characterize the defects within the bonded region. Different metallic samples with the same geometry were experimentally tested in order to characterize the debonding between two plates by using two surface bonded piezoelectric transducers in pitch-catch mode. The dynamic response of the damaged samples acquired by the single receiver sensor showed the presence of higher harmonics (2nd and 3rd) and subharmonics of the fundamental frequencies. These nonlinear elastic phenomena are clearly due to nonlinear effects induced by the poor adhesion between the two plates. A new constitutive model aimed at representing the nonlinear material response generated by the interaction of the ultrasonic waves with the adhesive joint is also presented. Such a model is implemented in an explicit FE software and uses a nonlinear user defined traction-displacement relationship implemented by means of a cohesive material user model interface. The developed model is verified for the different geometrical and material configurations. Good agreement between the experimental and numerical nonlinear response showed that this model can be used as a simple and useful tool for understanding the quality of the adhesive joint.
Common modeling system for digital simulation
NASA Technical Reports Server (NTRS)
Painter, Rick
1994-01-01
The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.
Lubricant Selection Manual, Phase 3
NASA Technical Reports Server (NTRS)
Kannel, J. W.; Lowry, J. A.; Dufrane, K. F.
1991-01-01
Future spacecraft must be designated to operate for very long time periods in space. For example, a target goal for the Space Station is 30 years of operation. Although the actual life may be significantly less than this optimistic goal, the life will certainly be a critical issue in design. The bearings on primary components such as the alpha and beta joints must obviously be designed and lubricated with the objective of optimum performance life. In addition to these joints, there will be numerous other tribological (rubbing or rolling) interfaced that will be required to function for the life of the spacecraft. A major key to adequate performance of tribological interface is proper lubrication. Lubricants can be divided into two basic classes: solid films and liquids. Both types have been used extensively in space applications. Both have advantages and disadvantages that must be carefully considered in their selection. The purpose here is to summarize selection criteria for liquid and solid lubricants applied to long-life spacecraft.
A Method to Capture Macroslip at Bolted Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Ronald Neil; Heitman, Lili Anne Akin
2015-10-01
Relative motion at bolted connections can occur for large shock loads as the internal shear force in the bolted connection overcomes the frictional resistive force. This macroslip in a structure dissipates energy and reduces the response of the components above the bolted connection. There is a need to be able to capture macroslip behavior in a structural dynamics model. A linear model and many nonlinear models are not able to predict marcoslip effectively. The proposed method to capture macroslip is to use the multi-body dynamics code ADAMS to model joints with 3-D contact at the bolted interfaces. This model includesmore » both static and dynamic friction. The joints are preloaded and the pinning effect when a bolt shank impacts a through hole inside diameter is captured. Substructure representations of the components are included to account for component flexibility and dynamics. This method was applied to a simplified model of an aerospace structure and validation experiments were performed to test the adequacy of the method.« less
A Method to Capture Macroslip at Bolted Interfaces [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Ronald Neil; Heitman, Lili Anne Akin
2016-01-01
Relative motion at bolted connections can occur for large shock loads as the internal shear force in the bolted connection overcomes the frictional resistive force. This macroslip in a structure dissipates energy and reduces the response of the components above the bolted connection. There is a need to be able to capture macroslip behavior in a structural dynamics model. A linear model and many nonlinear models are not able to predict marcoslip effectively. The proposed method to capture macroslip is to use the multi-body dynamics code ADAMS to model joints with 3-D contact at the bolted interfaces. This model includesmore » both static and dynamic friction. The joints are preloaded and the pinning effect when a bolt shank impacts a through hole inside diameter is captured. Substructure representations of the components are included to account for component flexibility and dynamics. This method was applied to a simplified model of an aerospace structure and validation experiments were performed to test the adequacy of the method.« less
Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded
NASA Astrophysics Data System (ADS)
Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.
2007-11-01
A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.
Formation of alternating interfacial layers in Au-12Ge/Ni joints
Lin, Shih-kang; Tsai, Ming-yueh; Tsai, Ping-chun; Hsu, Bo-hsun
2014-01-01
Au-Ge alloys are promising materials for high-power and high-frequency packaging, and Ni is frequently used as diffusion barriers. This study investigates interfacial reactions in Au-12Ge/Ni joints at 300°C and 400°C. For the reactions at 300°C, typical interfacial morphology was observed and the diffusion path was (Au) + (Ge)/NiGe/Ni5Ge3/Ni. However, an interesting phenomenon – the formation of (Au,Ni,Ge)/NiGe alternating layers – was observed for the reactions at 400°C. The diffusion path across the interface was liquid/(Au,Ni,Ge)/NiGe/···/(Au,Ni,Ge)/NiGe/Ni2Ge/Ni. The periodic thermodynamic instability at the NiGe/Ni2Ge interface caused the subsequent nucleation of new (Au,Ni,Ge)/NiGe pairs. The thermodynamic foundation and mechanism of formation of the alternating layers are elaborated in this paper. PMID:24690992
Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads
NASA Astrophysics Data System (ADS)
Chen, Lei; Lian, Youyun; Liu, Xiang
2014-03-01
In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale flat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results.
Development of stiffer and ductile glulam portal frame
NASA Astrophysics Data System (ADS)
Komatsu, Kohei
2017-11-01
Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces
Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang
2014-07-01
The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of themore » complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.« less
Analysis of bonded joints. [shear stress and stress-strain diagrams
NASA Technical Reports Server (NTRS)
Srinivas, S.
1975-01-01
A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.
Adhesive joint evaluation by ultrasonic interface and lamb waves
NASA Technical Reports Server (NTRS)
Rokhlin, S. I.
1986-01-01
Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.
On-line remote monitoring of radioactive waste repositories
NASA Astrophysics Data System (ADS)
Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria
2014-12-01
A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.
Using a Java Web-based Graphical User Interface to access the SOHO Data Arch ive
NASA Astrophysics Data System (ADS)
Scholl, I.; Girard, Y.; Bykowski, A.
This paper presents the architecture of a Java web-based graphical interface dedicated to the access of the SOHO Data archive. This application allows local and remote users to search in the SOHO data catalog and retrieve the SOHO data files from the archive. It has been developed at MEDOC (Multi-Experiment Data and Operations Centre), located at the Institut d'Astrophysique Spatiale (Orsay, France), which is one of the European Archives for the SOHO data. This development is part of a joint effort between ESA, NASA and IAS in order to implement long term archive systems for the SOHO data. The software architecture is built as a client-server application using Java language and SQL above a set of components such as an HTTP server, a JDBC gateway, a RDBMS server, a data server and a Web browser. Since HTML pages and CGI scripts are not powerful enough to allow user interaction during a multi-instrument catalog search, this type of requirement enforces the choice of Java as the main language. We also discuss performance issues, security problems and portability on different Web browsers and operating syste ms.
The watershed and river systems management program
Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,
2005-01-01
The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.
Space Station Human Factors: Designing a Human-Robot Interface
NASA Technical Reports Server (NTRS)
Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael
2001-01-01
The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
Improving 3D Character Posing with a Gestural Interface.
Kyto, Mikko; Dhinakaran, Krupakar; Martikainen, Aki; Hamalainen, Perttu
2017-01-01
The most time-consuming part of character animation is 3D character posing. Posing using a mouse is a slow and tedious task that involves sequences of selecting on-screen control handles and manipulating the handles to adjust character parameters, such as joint rotations and end effector positions. Thus, various 3D user interfaces have been proposed to make animating easier, but they typically provide less accuracy. The proposed interface combines a mouse with the Leap Motion device to provide 3D input. A usability study showed that users preferred the Leap Motion over a mouse as a 3D gestural input device. The Leap Motion drastically decreased the number of required operations and the task completion time, especially for novice users.
Effect of the surface roughness on interfacial breakdown between two dielectric surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, D.
1996-12-31
Cable splices and accessories are the weak link in an underground power distribution system. Investigations of problems related to cable splices and accessories becomes quite intricate once the simpler causes of failures are dismissed to allow more complex phenomena to be examined. The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. In order to better understand this phenomenon, breakdown experiments were performed at interfaces found in cable splices. An experimental jig was designed to induce breakdown between dielectric surfaces longitudinally along their interface. Effects of surface roughness at EPDM/XLPEmore » and EPDM/EPDM interfaces as well as the presence of silicone grease are taken into account.« less
Aeyels, B; Peeraer, L; Vander Sloten, J; Van der Perre, G
1992-05-01
The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Tests were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials.(ABSTRACT TRUNCATED AT 250 WORDS)
Pip pin reliability and design
NASA Technical Reports Server (NTRS)
Skyles, Lane P.
1994-01-01
Pip pins are used in many engineering applications. Of particular interest to the aerospace industry is their use in various mechanism designs. Many payloads that fly aboard our nation's Space Shuttle have at least one actuated mechanism. Often these mechanisms incorporate pip pins in their design in order to fasten interfacing parts or joints. Pip pins are most often used when an astronaut will have a direct interface with the mechanism. This interfacing can be done during Space Shuttle mission EVA's (ExtraVehicular Activity). The main reason for incorporating pip pins is convenience and their ability to provide a quick release for interfacing parts. However, there are some issues that must be taken into account when using them in a design. These issues include documented failures and quality control problems when using substandard pip pins. A history of pip pins as they relate to the aerospace industry as well as general design features is discussed.
Explosive Joining for Nuclear-Reactor Repair
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bailey, J. W.
1983-01-01
In explosive joining technique, adapter flange from fuel channel machined to incorporate a V-notch interface. Ribbon explosive, 1/2 inch (1.3 cm) in width, drives V-notched wall of adapter into bellows assembly, producing atomic-level metallurgical bond. Ribbon charge yields joint with double parent metal strength.
Lindsey, Derek P.; Woods, Shane A.; Lalor, Peggy A.; Gundanna, Mukund I.; Yerby, Scott A.
2017-01-01
Background Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. Methods A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Results Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). Conclusions Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants’ core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Clinical Relevance Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures. PMID:28765800
Analysis on the Fracture of Al-Cu Dissimilar Materials Friction Stir Welding Lap Joint
NASA Astrophysics Data System (ADS)
Sun, Hongyu; Zhou, Qi; Zhu, Jun; Peng, Yong
2017-12-01
Friction stir welding (FWS) is regarded as a more plausible alternative to other welding methods for Al-Cu dissimilar joining. However, the structure of an FSW joint is different from others. In this study, lap joints of 6061 aluminum alloy and commercially pure copper were produced by FSW, and the effects of rotation rate on macromorphology, microstructure and mechanical properties were investigated. In addition, a fracture J integral model was used to analyze the effect of microstructure on the mechanical properties. The results revealed that the macrodefect-free joints were obtained at a feed rate of 150 mm/min and 1100 rpm and that the failure load of the joint reached as high as 4.57 kN and only reached 2.91 kN for the 900 rpm, where tunnel defects were identified. Particle-rich zones composed of Cu particles dispersed in an Al matrix, and "Flow tracks" were observed by the EDS. The J integral results showed that the microdefects on the advancing side cause serious stress concentration compared with the microdefects located on the Al-Cu interface, resulting in the fracture of the joints.
Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3 SiC 2 /SiC joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
Previously, results for CVD-SiC joints created using solid state displacement reactions to form a dual-phase SiC/MAX phase irradiated at 800°C and 5 dpa indicated some extent of cracking in the joint and along the CVD-SiC/joint interface. This paper elucidates the origin of cracking by thermomechanical modeling combined with irradiation-induced swelling effects using a continuum damage approach with support of micromechanical modeling. Three irradiation temperatures (400°C, 500°C and 800°C) are considered assuming experimental irradiation doses in a range leading to saturation swelling in SiC. The analyses indicate that a SiC/MAX joint heated to 400°C fails during irradiation-induced swelling at this temperaturemore » while it experiences some damage after being heated to 500°C and irradiated at the same temperature. However, it fails during cooling from 500°C to room temperature. The joint experiences minor damage when heated to and irradiated at 800°C but does not fail after cooling. The prediction agrees with the experimental findings available for this case.« less
Direct adaptive control of a PUMA 560 industrial robot
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Lee, Thomas; Delpech, Michel
1989-01-01
The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.
Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection
NASA Astrophysics Data System (ADS)
Pun, Kelvin P. L.; Islam, M. N.; Rotanson, Jason; Cheung, Chee-wah; Chan, Alan H. S.
2018-05-01
Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni-P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.
Giancola, D; Voyvodich, M
1984-12-01
Many hospitals are concerned about the loss of control which is associated with contracting for linen service. On the the hand, many laundries do not have the resources or experience to serve hospitals in a comprehensive and trouble-free manner. In many communities a joint venture, such as the one described here, can successfully combine the interests of the hospital and laundry communities without causing the hospitals to lose control of the service and without requiring the laundry operator to have detailed knowledge of hospital operations. As more hospitals opt for contract service, and if this service is to be provided at the lowest total cost, the hospitals and the laundries must come to grips with the problems surrounding the laundry-hospital interface. A joint venture, such as that described here, is one way to accomplish this.
The failure analysis and lifetime prediction for the solder joint of the magnetic head
NASA Astrophysics Data System (ADS)
Xiao, Xianghui; Peng, Minfang; Cardoso, Jaime S.; Tang, Rongjun; Zhou, YingLiang
2015-02-01
Micro-solder joint (MSJ) lifetime prediction methodology and failure analysis (FA) are to assess reliability by fatigue model with a series of theoretical calculations, numerical simulation and experimental method. Due to shortened time of solder joints on high-temperature, high-frequency sampling error that is not allowed in productions may exist in various models, including round-off error. Combining intermetallic compound (IMC) growth theory and the FA technology for the magnetic head in actual production, this thesis puts forward a new growth model to predict life expectancy for solder joint of the magnetic head. And the impact of IMC, generating from interface reaction between slider (magnetic head, usually be called slider) and bonding pad, on mechanical performance during aging process is analyzed in it. By further researching on FA of solder ball bonding, thesis chooses AuSn4 growth model that affects least to solder joint mechanical property to indicate that the IMC methodology is suitable to forecast the solder lifetime. And the diffusion constant under work condition 60 °C is 0.015354; the solder lifetime t is 14.46 years.
Diffusion welding of MA 6000 and a conventional nickel-base superalloy
NASA Technical Reports Server (NTRS)
Moore, T. J.; Glasgow, T. K.
1985-01-01
A feasibility study of diffusion welding the oxide dispersion strengthened (ODS) alloy MA 6000 to itself and to conventional Ni-base superalloy Udimet 700 was conducted. Butt joints between MA 6000 pieces and lap joints between Udimet 700 and the ODS alloy were produced by hot pressing for 1.25 hr at temperatures ranging from 1000 to 1200 C (1832-2192 F) in vacuum. Following pressing, all weldments were heat treated and machined into mechanical property test specimens. While three different combinations of recrystallized and unrecrystallized MA 6000 butt joints were produced, the unrecrystallized to unrecrystallized joint was most successful as determined by mechanical properties and microstructural examination. Failure to weld the recrystallized material probably related to a lack of adequate deformation at the weld interface. While recrystallized MA 6000 could be diffusion welded to Udimet 700 in places, complete welding over the entire lap joint was not achieved, again due to the lack of sufficient deformation at the faying surfaces. Several methods are proposed to promote the intimate contact necessary for diffusion welding MA 6000 to itself and to superalloys.
Development and application of biomimetic electrospun nanofibers in total joint replacement
NASA Astrophysics Data System (ADS)
Song, Wei
Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on joint replacement prosthesis to improve osseointegration and prevent osteomyelitis.
Ma, Xiangmeng; Armas, Stephanie M; Soliman, Mikhael; Lytle, Darren A; Chumbimuni-Torres, Karin; Tetard, Laurene; Lee, Woo Hyoung
2018-02-20
A novel method using a micro-ion-selective electrode (micro-ISE) technique was developed for in situ lead monitoring at the water-metal interface of a brass-leaded solder galvanic joint in a prepared chlorinated drinking water environment. The developed lead micro-ISE (100 μm tip diameter) showed excellent performance toward soluble lead (Pb 2+ ) with sensitivity of 22.2 ± 0.5 mV decade -1 and limit of detection (LOD) of 1.22 × 10 -6 M (0.25 mg L -1 ). The response time was less than 10 s with a working pH range of 2.0-7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface (within 50 μm) over time. Combined with two-dimensional (2D) pH mapping, this work clearly demonstrated that Pb 2+ ions build-up across the lead anode surface was substantial, nonuniform, and dependent on local surface pH. A large pH gradient (ΔpH = 6.0) developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed above the leaded solder to a pH as low as 4.0, indicating it was anodic relative to the brass. The low pH above the leaded solder supported elevated lead levels where even small local pH differences of 0.6 units (ΔpH = 0.6) resulted in about four times higher surface lead concentrations (42.9 vs 11.6 mg L -1 ) and 5 times higher fluxes (18.5 × 10 -6 vs 3.5 × 10 -6 mg cm -2 s -1 ). Continuous surface lead leaching monitoring was also conducted for 16 h.
OSTEOLYSIS AROUND TOTAL KNEE ARTHOPLASTY: A REVIEW OF PATHOGENETIC MECHANISMS
Gallo, Jiri; Goodman, Stuart B.; Konttinen, Yrjö T.; Wimmer, Markus A.; Holinka, Martin
2014-01-01
Aseptic loosening and other wear-related complications are one of the most frequent late reasons for revision of total knee arthroplasty (TKA). Periprosthetic osteolysis (PPOL) predates aseptic loosening in many cases indicating the clinical significance of this pathogenic mechanism. A variety of implant-, surgery-, and host-related factors have been delineated to explain the development of PPOL. These factors influence the development of PPOL due to changes in mechanical stresses within the vicinity of the prosthetic device, excessive wear of the polyethylene liner, and joint fluid pressure and flow acting on the peri-implant bone. The process of aseptic loosening is initially governed by factors such as implant/limb alignment, device fixation quality, and muscle coordination/strength. Later large numbers of wear particles detached from TKAs trigger and perpetuate particle disease, as highlighted by progressive growth of inflammatory/granulomatous tissue around the joint cavity. An increased accumulation of osteoclasts at the bone-implant interface, an impairment of osteoblast function, mechanical stresses, and an increased production of joint fluid contribute to bone resorption and subsequent loosening of the implant. In addition, hypersensitivity and adverse reactions to metal debris may contribute to aseptic TKA failure but should be determined more precisely. Patient activity level appears to be the most important factor when the long-term development of PPOL is considered. Surgical technique, implant design, and material factors are the most important preventative factors because they influence both the generation of wear debris and excessive mechanical stresses. New generations of bearing surfaces and designs for TKA should carefully address these important issues in extensive preclinical studies. Currently, there is little evidence that PPOL can be prevented with pharmacological interventions. PMID:23669623
A Solution Method for Large Deformation Contact Problems.
1984-10-01
15] Desai, C.S., Zaman, M.M., Lightner , J.G., and Siriwardane, H.J., "Thin Element for Interfaces and Joints," Int. J. Anal. and Num. Meth. in...Urbana, IL 61801 SMCCR-SPS-IL 1 Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer Cambridge
DOT National Transportation Integrated Search
2012-12-01
The overall integrity of the plastic piping system is predicated on the long term strength : of its weakest link which often occurs at fitting and joint interfaces, e.g. electrofusion, : mechanical, heat fusion, etc. In order to maximize the overall ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... WG3 Meetings 28 June--Tuesday 9 a.m. Joint Plenary meeting with AEEC Systems Architecture & Interface... Meeting Plans and Dates Other Business 1 July--Friday 9 a.m. WG1, WG2, and WG3 Meetings 12 p.m. Adjourn...
LATDYN - PROGRAM FOR SIMULATION OF LARGE ANGLE TRANSIENT DYNAMICS OF FLEXIBLE AND RIGID STRUCTURES
NASA Technical Reports Server (NTRS)
Housner, J. M.
1994-01-01
LATDYN is a computer code for modeling the Large Angle Transient DYNamics of flexible articulating structures and mechanisms involving joints about which members rotate through large angles. LATDYN extends and brings together some of the aspects of Finite Element Structural Analysis, Multi-Body Dynamics, and Control System Analysis; three disciplines that have been historically separate. It combines significant portions of their distinct capabilities into one single analysis tool. The finite element formulation for flexible bodies in LATDYN extends the conventional finite element formulation by using a convected coordinate system for constructing the equation of motion. LATDYN's formulation allows for large displacements and rotations of finite elements subject to the restriction that deformations within each are small. Also, the finite element approach implemented in LATDYN provides a convergent path for checking solutions simply by increasing mesh density. For rigid bodies and joints LATDYN borrows extensively from methodology used in multi-body dynamics where rigid bodies may be defined and connected together through joints (hinges, ball, universal, sliders, etc.). Joints may be modeled either by constraints or by adding joint degrees of freedom. To eliminate error brought about by the separation of structural analysis and control analysis, LATDYN provides symbolic capabilities for modeling control systems which are integrated with the structural dynamic analysis itself. Its command language contains syntactical structures which perform symbolic operations which are also interfaced directly with the finite element structural model, bypassing the modal approximation. Thus, when the dynamic equations representing the structural model are integrated, the equations representing the control system are integrated along with them as a coupled system. This procedure also has the side benefit of enabling a dramatic simplification of the user interface for modeling control systems. Three FORTRAN computer programs, the LATDYN Program, the Preprocessor, and the Postprocessor, make up the collective LATDYN System. The Preprocessor translates user commands into a form which can be used while the LATDYN program provides the computational core. The Postprocessor allows the user to interactively plot and manage a database of LATDYN transient analysis results. It also includes special facilities for modeling control systems and for programming changes to the model which take place during analysis sequence. The documentation includes a Demonstration Problem Manual for the evaluation and verification of results and a Postprocessor guide. Because the program should be viewed as a byproduct of research on technology development, LATDYN's scope is limited. It does not have a wide library of finite elements, and 3-D Graphics are not available. Nevertheless, it does have a measure of "user friendliness". The LATDYN program was developed over a period of several years and was implemented on a CDC NOS/VE & Convex Unix computer. It is written in FORTRAN 77 and has a virtual memory requirement of 1.46 MB. The program was validated on a DEC MICROVAX operating under VMS 5.2.
Supporting the Growing Needs of the GIS Industry
NASA Technical Reports Server (NTRS)
2003-01-01
Visual Learning Systems, Inc. (VLS), of Missoula, Montana, has developed a commercial software application called Feature Analyst. Feature Analyst was conceived under a Small Business Innovation Research (SBIR) contract with NASA's Stennis Space Center, and through the Montana State University TechLink Center, an organization funded by NASA and the U.S. Department of Defense to link regional companies with Federal laboratories for joint research and technology transfer. The software provides a paradigm shift to automated feature extraction, as it utilizes spectral, spatial, temporal, and ancillary information to model the feature extraction process; presents the ability to remove clutter; incorporates advanced machine learning techniques to supply unparalleled levels of accuracy; and includes an exceedingly simple interface for feature extraction.
NASA Technical Reports Server (NTRS)
Perret, A.
1986-01-01
This report presents the results of technical studies conducted at CNES/PMF/APS between October 1984 and September 1985 on the VESTA project. These preliminary studies were conducted to establish mission feasibility in terms ofthe trajectory and the scientific objectives, and to determine the type of interfaces which will be required with the Soviets and to measure the magnitude of French participation. A joint French-Soviet report recommends that the project enter phase A, and was approved by CNES and INTERCOSMOS in September, 1985. The mission analysis is made for a mid-1991 launch, and a development schedule for an end-1992 launch is suggested. The decision to postpone the mission was made during the course of the study.
Method of doping a semiconductor
Yang, Chiang Y.; Rapp, Robert A.
1983-01-01
A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.
Studying the Issues in Laser Joining of Lightweight Materials in a Coach-Peel Joint Configuration
NASA Astrophysics Data System (ADS)
Yang, Guang
In the automotive industry, aluminum alloys have been widely used and partially replaced the conventional steel structures in order to decrease the weight of a car and improve its fuel efficiency. This Thesis focuses on the development of laser joining of light-weight materials, such as aluminum alloys and high-strength galvanized steels. Among different joint types, the coach-peel configuration is of a specific design that requires a heat source capable of heating up a large surface area of the joint. Coach-peel joints applied on the visible exterior of a car require a smooth transition from the weld surface to the panel surface and low surface roughness without any need for post-processing. Although these joints are used as non-load-bearing components, a desirable strength of the weld is also needed. A fusion-brazing process using a dual-beam laser allows the automotive components such as the roof and side member panels to be joined in a coach-peel configuration with a high surface quality as well as an acceptable strength of the weld. To improve the weld surface quality, processing parameters such as laser beam configuration, laser-wire position, and shielding gas parameters were optimized for joining of aluminum alloy to aluminum alloy. Laser power was optimized for dual-beam laser joining of aluminum alloy to galvanized steel at high speed. The feasibility of joining as-received panels with lubricant was also explored. The identification of strain hardening models of aluminum alloys was conducted for the mechanical finite element analysis of the joint. Control of the molten pool solidification through the selection of laser beam configuration is one approach to improve joint quality. Laser joining of aluminum alloy AA 6111-T4 coach peel panels with the addition of AA 4047 filler wire was investigated using three configurations of laser beam: a single beam, dual beams in-line with the weld bead, and dual beams aligned perpendicular to the weld bead (herein referred to as cross-beam). To compare the three joining processes, the transient heat distribution, cooling rates, and solidification rates were analyzed by three-dimensional finite element models using ANSYS. Microstructure evolution, tensile strength, fracture mechanisms, and surface roughness of joints were investigated accordingly. To improve the weld surface quality of aluminum joints, the laser-wire position and the gas parameters were optimized. Visualization of the gas flow by a CCD camera revealed the effects of nozzle shape, flow rate, inclination angle of the gas tube, nozzle position, and gas compositions (argon and helium) on the weld surface quality. The suppression of plasma plume and the effects of oxidation on the molten pool were illustrated in detail. With an optimized set of processing parameters, the weld surface roughness (Ra) of approximately 1 microm can be achieved. The feasibility of fabricating the aluminum alloy panel joint in the as-received condition, i.e., with stamping lubricant, by using the cross-beam laser was investigated. Two commercial mineral oils, Bonderite L-FM MP-404 and Ferrocote 61 MAL HCL, were applied onto clean panels prior to joining in order to simulate the conditions of the production environment. The formation and growth of hydrogen bubbles inside the molten pool, the stability of welding process, and the possible energy absorption capability of the porous weld were explained. Besides joining of similar materials, cross-beam laser was applied to join aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 microm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. Simulation of the mechanical response of a coach-peel joint is instructive for improvement of the joining process. The effective true stress-strain curve of fusion-brazed AA 4047 was difficult to obtain experimentally. Therefore, the von Mises isotropic flow function of the weld bead was inversely derived by image-based finite element analysis. Through iterative correction, the predicted tensile response of the coach-peel joint matched well with the experiment. The von Mises fracture stresses at the fusion zone boundary and the brazing interface were identified, respectively.
Development of a statewide Landsat digital data base for forest insect damage assessment
NASA Technical Reports Server (NTRS)
Williams, D. L.; Dottavio, C. L.; Nelson, R. F.
1983-01-01
A Joint Research Project (JRP) invlving NASA/Goddard Space Flight Center and the Pennsylvania Bureau of Forestry/Division of Forest Pest Management demonstrates the utility of Landsat data for assessing forest insect damage. A major effort within the project has been the creation of map-registered, statewide Landsat digital data base for Pennsylvania. The data base, developed and stored on computers at the Pennsylvania State University Computation Center, contains Landsat imagery, a Landsat-derived forest resource map, and digitized data layers depicting Forest Pest Management District boundaries and county boundaries. A data management front-end system was also developed to provide an interface between the various layers of information within the data base and image analysis software. This front-end system insures than an automated assessment of defoliation damage can be conducted and summarized by geographic area or jurisdiction of interest.
2001-03-19
KENNEDY SPACE CENTER, FLA. -- Members of the STS-104 crew look over equipment inside the equipment lock component of the Joint Airlock Module. At left is Mission Specialist Janet L. Kavandi, and at right Pilot Charles O. Hobaugh. The crew is at KSC to take part in Crew Equipment Interface Test activities. The mission will carry the Joint Airlock Module to the International Space Station. The U.S.-made module will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which also comprises a crew lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
2001-03-19
KENNEDY SPACE CENTER, FLA. -- Members of the STS-104 crew look over equipment inside the equipment lock component of the Joint Airlock Module. At left is Mission Specialist Janet L. Kavandi, and at right Pilot Charles O. Hobaugh. The crew is at KSC to take part in Crew Equipment Interface Test activities. The mission will carry the Joint Airlock Module to the International Space Station. The U.S.-made module will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which also comprises a crew lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module
Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints
NASA Astrophysics Data System (ADS)
Kish, J. R.; Birbilis, N.; McNally, E. M.; Glover, C. F.; Zhang, X.; McDermid, J. R.; Williams, G.
2017-11-01
A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.
Salmingo, Remel Alingalan; Skytte, Tina Lercke; Traberg, Marie Sand; Mikkelsen, Lars Pilgaard; Henneberg, Kaj-Åge; Wong, Christian
2017-01-01
Perthes' disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes' disease by finite element (FE) contact modeling using MRI. The MRI data of a unilateral Perthes' case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns in the unaffected hip were well distributed. Elevated concentrations of stress and contact pressure were found in the Perthes' hip. The highest femoral cartilage von Mises stress 3.9 MPa and contact pressure 5.3 MPa were found in the Perthes' hip, whereas 2.4 MPa and 4.9 MPa in the healthy hip, respectively. The healthy bone in the femoral head of the Perthes' hip carries additional loads as indicated by the increase of stress levels around the necrotic-healthy bone interface. Identifying the biomechanical changes, such as the location of stress and contact pressure concentrations, is a prerequisite for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes' disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study is required to test the strength of the proposed method as a pre-surgery planning tool.
Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications
NASA Astrophysics Data System (ADS)
Riggs, Bryan
Brazed joints are commonly used in the manufacture and repair of aerospace components including high temperature gas turbine components made of Ni-base superalloys. For such critical applications, it is becoming increasingly important to account for the mechanical strength and reliability of the brazed joint. However, material properties of brazed joints are not readily available and methods for evaluating joint strength such as those listed in AWS C3.2 have inherent challenges compared with testing bulk materials. In addition, joint strength can be strongly influenced by the degree of interaction between the filler metal (FM) and the base metal (BM), the joint design, and presence of flaws or defects. As a result, there is interest in the development of a multi-scale computational model to predict the overall mechanical behavior and fitness-for-service of brazed joints. Therefore, the aim of this investigation was to generate data and methodology to support such a model for Ni-base superalloy brazed joints with conventional Ni-Cr-B based FMs. Based on a review of the technical literature a multi-scale modeling approach was proposed to predict the overall performance of brazed joints by relating mechanical properties to the brazed joint microstructure. This approach incorporates metallurgical characterization, thermodynamic/kinetic simulations, mechanical testing, fracture mechanics and finite element analysis (FEA) modeling to estimate joint properties based on the initial BM/FM composition and brazing process parameters. Experimental work was carried out in each of these areas to validate the multi-scale approach and develop improved techniques for quantifying brazed joint properties. Two Ni-base superalloys often used in gas turbine applications, Inconel 718 and CMSX-4, were selected for study and vacuum furnace brazed using two common FMs, BNi-2 and BNi-9. Metallurgical characterization of these brazed joints showed two primary microstructural regions; a soft, ductile a-Ni phase that formed at the joint interface and a hard, brittle multi-phase centerline eutectic. CrB and Ni3B type borides were identified in the eutectic region via electron probe micro-analysis, and a boron diffusion gradient was observed in the BM adjacent to the joint. The volume fraction of centerline eutectic was found to be highly dependent on the extent of the boron diffusion that occurred during brazing and therefore a function of the primary process parameters; hold time, temperature, FM/BM composition, and joint gap. Thermo-Calc(TM) and DICTRA(TM) simulations were used to model the BM dissolution, isothermal solidification and phase transformations that occurred during brazing to predict the final joint microstructure based on these process parameters. Good agreement was found between experimental and simulated joint microstructures at various joint gaps demonstrating the application of these simulations for brazed joints. However, thermodynamic/kinetic databases available for brazing FMs were limited. A variety of mechanical testing was performed to determine the mechanical properties of CMSX-4/BNi-2 and IN718/BNi-2 brazed joints including small-scale tensile tests, standard-size butt joints and lap shear tests. Small-scale tensile testing provided a novel method for studying microstructure-property relationships in brazed joints and indicated that both joint strength and ductility decrease significantly with an increase in the volume fraction of centerline eutectic. In-situ observations during small-scale testing also showed strain localization and crack initiation occurs around the hard, eutectic phases in the joint microstructure during loading. The average tensile strength for standard-size IN718/BNi-2 butt joints containing a low volume fraction of centerline eutectic was found to be 152.8 ksi approximately 90% of the BM yield strength (˜170 ksi). The average lap shear FM stress was found to decrease from 70 to 20 ksi for IN718/BNi-2 joints and from 50 to 15 ksi for CMSX-4/BNi-2 as the overlap was increased from 1T to 5T due to non-uniform stress/strain distribution across the joint. Digital image correlation techniques and FEA models of the lap shear brazed joints were developed to assess the strain distributions across the overlap. Results were used to validate the use of damage zone models for predicting the load carrying capacity of lap shear brazed joints and suggest that the damage zone is independent of the overlap length. To account for the presence of flaws and defects in fitness-for-service assessments of brazed joints determination of the average fracture toughness (KIC) is necessary. Currently no standard exists to measure the KIC for brazed joints, so three test methods were evaluated in this investigation on IN718/BNi-2 brazed joints. The compact tension and double cantilever beam test methods were found to give the most conservative KIC values of 16.42 and 14.42 ksivin respectively. Linear-elastic FEA models of the test specimens were used to validate the calculated KIC values. Similar to joint strength the fracture toughness appeared to be strongly influenced by the volume fraction of centerline eutectic phases. (Abstract shortened by ProQuest.).
Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints
Huang, Ying; Zhang, Zhijie
2017-01-01
Sn-Bi solder with different Bi content can realize a low-to-medium-to-high soldering process. To obtain the effect of Bi content in Sn-Bi solder on the microstructure of solder, interfacial behaviors in solder joints with Cu and the joints strength, five Sn-Bi solders including Sn-5Bi and Sn-15Bi solid solution, Sn-30Bi and Sn-45Bi hypoeutectic and Sn-58Bi eutectic were selected in this work. The microstructure, interfacial reaction under soldering and subsequent aging and the shear properties of Sn-Bi solder joints were studied. Bi content in Sn-Bi solder had an obvious effect on the microstructure and the distribution of Bi phases. Solid solution Sn-Bi solder was composed of the β-Sn phases embedded with fine Bi particles, while hypoeutectic Sn-Bi solder was composed of the primary β-Sn phases and Sn-Bi eutectic structure from networked Sn and Bi phases, and eutectic Sn-Bi solder was mainly composed of a eutectic structure from short striped Sn and Bi phases. During soldering with Cu, the increase on Bi content in Sn-Bi solder slightly increased the interfacial Cu6Sn5 intermetallic compound (IMC)thickness, gradually flattened the IMC morphology, and promoted the accumulation of more Bi atoms to interfacial Cu6Sn5 IMC. During the subsequent aging, the growth rate of the IMC layer at the interface of Sn-Bi solder/Cu rapidly increased from solid solution Sn-Bi solder to hypoeutectic Sn-Bi solder, and then slightly decreased for Sn-58Bi solder joints. The accumulation of Bi atoms at the interface promoted the rapid growth of interfacial Cu6Sn5 IMC layer in hypoeutectic or eutectic Sn-Bi solder through blocking the formation of Cu6Sn5 in solder matrix and the transition from Cu6Sn5 to Cu3Sn. Ball shear tests on Sn-Bi as-soldered joints showed that the increase of Bi content in Sn-Bi deteriorated the shear strength of solder joints. The addition of Bi into Sn solder was also inclined to produce brittle morphology with interfacial fracture, which suggests that the addition of Bi increased the shear resistance strength of Sn-Bi solder. PMID:28792440
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Li, Fenghui; Guo, Fu; Shi, Yaowu
2011-01-01
The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from -25°C to 125°C and -40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.
Kinematic path planning for space-based robotics
NASA Astrophysics Data System (ADS)
Seereeram, Sanjeev; Wen, John T.
1998-01-01
Future space robotics tasks require manipulators of significant dexterity, achievable through kinematic redundancy and modular reconfigurability, but with a corresponding complexity of motion planning. Existing research aims for full autonomy and completeness, at the expense of efficiency, generality or even user friendliness. Commercial simulators require user-taught joint paths-a significant burden for assembly tasks subject to collision avoidance, kinematic and dynamic constraints. Our research has developed a Kinematic Path Planning (KPP) algorithm which bridges the gap between research and industry to produce a powerful and useful product. KPP consists of three key components: path-space iterative search, probabilistic refinement, and an operator guidance interface. The KPP algorithm has been successfully applied to the SSRMS for PMA relocation and dual-arm truss assembly tasks. Other KPP capabilities include Cartesian path following, hybrid Cartesian endpoint/intermediate via-point planning, redundancy resolution and path optimization. KPP incorporates supervisory (operator) input at any detail to influence the solution, yielding desirable/predictable paths for multi-jointed arms, avoiding obstacles and obeying manipulator limits. This software will eventually form a marketable robotic planner suitable for commercialization in conjunction with existing robotic CAD/CAM packages.
NASA Astrophysics Data System (ADS)
Balle, Frank; Magin, Jens
Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.
Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2016-01-01
Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.
Coleman, P J; Scott, D; Mason, R M; Levick, J R
1999-01-01
1. The effect of a rooster comb hyaluronan (3.6-4.0 g l-1) of similar chain length to rabbit synovial fluid hyaluronan, on the trans-synovial escape of fluid from the joint cavity in the steady state ( 8d s) was studied in 29 rabbit knees at controlled intra-articular pressures (Pj). 2. Rooster hyaluronan caused the pressure-flow relation to flatten out as pressure was raised. At 10-20 cmH2O the slope of the quasi-plateau, 0.05 +/- 0.01 microliter min-1 cmH2O-1 (mean +/- s.e.m.), was 1/39th that for Ringer solution (1.94 +/- 0.01 microliter 2O-1 ). 3. Bovine synovial fluid had a similar effect to hyaluronan in Ringer solution. 4. The quasi-plateau was caused by increasing opposition to outflow; the pressure required to drive unit outflow increased 4.4-fold between 5 and 20 cmH2O. The increased opposition to outflow at 20 cmH2O was equivalent to an effective osmotic pressure of 13-17 cmH2O at the interface. Since the infusate's osmotic pressure was only 0.9 cmH2O, this implied concentration polarization to 15-18 g l-1 hyaluronan at the interface. 5. Mechanical perforation of the lining, or enzymatic degradation of the interstitial matrix by chymopapain, abolished the quasi-plateau. Hydrational expansion of the matrix by approximately 2-fold did not. The increased opposition to outflow was reversible by washing out the hyaluronan, or by reducing Pj. It was unaffected by interruption of tissue blood flow or synoviocyte oxidative metabolism. These properties are compatible with a concentration polarization mechanism, i.e. flow-induced concentration of hyaluronan at the synovial interface due to molecular reflection. 6. A concentration polarization theory was developed for a partially reflected solute. Numerical solutions supported the feasibility of this osmotic explanation of the quasi-plateau. Additional mechanisms may also be involved. 7. It is concluded that native-size hyaluronan helps to retain synovial fluid in the joint cavity when pressure is raised and acts, at least in part, by exerting osmotic pressure at the interface between synovial matrix and a concentration polarization layer.
Coleman, P J; Scott, D; Mason, R M; Levick, J R
1999-01-01
The effect of a rooster comb hyaluronan (3.6–4.0 g l−1) of similar chain length to rabbit synovial fluid hyaluronan, on the trans-synovial escape of fluid from the joint cavity in the steady state (Q̇s) was studied in 29 rabbit knees at controlled intra-articular pressures (Pj).Rooster hyaluronan caused the pressure-flow relation to flatten out as pressure was raised. At 10–20 cmH2O the slope of the quasi-plateau, 0.05 ± 0.01 μl min−1 cmH2O−1 (mean ±s.e.m.), was 1/39th that for Ringer solution (1.94 ± 0.01 μl min−1 cmH2O−1).Bovine synovial fluid had a similar effect to hyaluronan in Ringer solution.The quasi-plateau was caused by increasing opposition to outflow; the pressure required to drive unit outflow increased 4.4-fold between 5 and 20 cmH2O. The increased opposition to outflow at 20 cmH2O was equivalent to an effective osmotic pressure of 13–17 cmH2O at the interface. Since the infusate's osmotic pressure was only 0.9 cmH2O, this implied concentration polarization to 15–18 g l−1 hyaluronan at the interface.Mechanical perforation of the lining, or enzymatic degradation of the interstitial matrix by chymopapain, abolished the quasi-plateau. Hydrational expansion of the matrix by /2-fold did not. The increased opposition to outflow was reversible by washing out the hyaluronan, or by reducing Pj. It was unaffected by interruption of tissue blood flow or synoviocyte oxidative metabolism. These properties are compatible with a concentration polarization mechanism, i.e. flow-induced concentration of hyaluronan at the synovial interface due to molecular reflection.A concentration polarization theory was developed for a partially reflected solute. Numerical solutions supported the feasibility of this osmotic explanation of the quasi-plateau. Additional mechanisms may also be involved.It is concluded that native-size hyaluronan helps to retain synovial fluid in the joint cavity when pressure is raised and acts, at least in part, by exerting osmotic pressure at the interface between synovial matrix and a concentration polarization layer. PMID:9831732
U.S. Army weapon systems human-computer interface style guide. Version 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, L.W.; O`Mara, P.A.; Shepard, A.P.
1997-12-31
A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4),more » in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.« less
Safer Systems: A NextGen Aviation Safety Strategic Goal
NASA Technical Reports Server (NTRS)
Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.
2008-01-01
The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.
Phadnis, Joideep; Bain, Gregory
2015-08-01
Dry arthroscopy is attractive because it affords an unsurpassed clarity of view and minimizes swelling. The elbow is a challenging joint to assess arthroscopically; however, dry arthroscopy has some particular benefits in the elbow. The primary benefit is the quality of the tissue definition, but dry arthroscopy also increases the working time for surgery by reducing swelling and results in less postoperative discomfort for the patient. With dry arthroscopy, all joint surfaces are covered in synovial fluid, which reflects light, to provide a clearer image of the joint surfaces and depth of field. The air-fluid interface provides an uninterrupted appreciation of the synovial recesses and tissue perfusion. This article describes the technique and indications for dry elbow arthroscopy, which will allow other surgeons to reap the benefits of dry arthroscopy without the need for special equipment or changes in their basic technique.
Phadnis, Joideep; Bain, Gregory
2015-01-01
Dry arthroscopy is attractive because it affords an unsurpassed clarity of view and minimizes swelling. The elbow is a challenging joint to assess arthroscopically; however, dry arthroscopy has some particular benefits in the elbow. The primary benefit is the quality of the tissue definition, but dry arthroscopy also increases the working time for surgery by reducing swelling and results in less postoperative discomfort for the patient. With dry arthroscopy, all joint surfaces are covered in synovial fluid, which reflects light, to provide a clearer image of the joint surfaces and depth of field. The air-fluid interface provides an uninterrupted appreciation of the synovial recesses and tissue perfusion. This article describes the technique and indications for dry elbow arthroscopy, which will allow other surgeons to reap the benefits of dry arthroscopy without the need for special equipment or changes in their basic technique. PMID:26759772
Silver flip chip interconnect technology and solid state bonding
NASA Astrophysics Data System (ADS)
Sha, Chu-Hsuan
In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross-section, there is no void or gap observed. The new bonding technique presented should be valuable in packaging high power electronic devices for high temperature operations. It should also be useful to bond two 304SS parts together at low bonding temperature of 190ºC. Solid state bonding technique is then introduced to bond semiconductor chips, such as Si, to common substrates, such as Cu or alumina, using pure Ag and Au at a temperature matching the typical reflow temperature used in packaging industries, 260°C. In bonding, we realize the possibilities of solid state bonding of Au to Au, Au to Ag, and Ag to Cu. The idea comes from that Cu, Ag, and Au are located in the same column on periodic table, meaning that they have similar electronic configuration. They therefore have a better chance to share electrons. Also, the crystal lattice of Cu, Ag, and Au is the same, face-centered cubic. In the project, the detailed bonding mechanism is beyond the scope and here we determine the bonding by the experimental result. Ag is chosen as the joint material because of its superior physical properties. It has the highest electrical and thermal conductivities among all metals. It has low yield strength and is relatively ductile. Au is considered as well because its excellent ductility and fatigue resistance. Thus, the Ag or Au joints can deform to accommodate the shear strain caused by CTE mismatch between Si and Cu. Ag and Au have melting temperatures higher than 950°C, so the pure Ag or Au joints are expected to sustain in high operating temperature. The resulting joints do not contain any intermetallic compound. Thus, all reliability issues associated with intermetallic growth in commonly used solder joints do not exist anymore. We finally move to the applications of solid state Ag bonding in flip chip interconnects design. At present, nearly all large-scale integrated circuit (IC) chips are packaged with flip-chip technology. This means that the chip is flipped over and the active (front) side is connected to the package using a large number of tiny solder joints, which provide mechanical support, electrical connection, and heat conduction. For chip-to-package level interconnects, a challenge is the severe mismatch in coefficient of thermal expansion (CTE) between chips and package substrates. The interconnect material thus needs to be compliant to deal with the CTE mismatch. At present, nearly all flip-chip interconnects in electronic industries are made of lead-free Sn-based solders. Soft solders are chosen due to high ductility, low yield strength, relatively low melting temperature, and reasonably good electrical and thermal conductivities. In the never ending scaling down trend, more and more transistors are placed on the same Si chip size. This results in larger pin-out numbers and smaller solder joints. According to International Technology Roadmap for Semiconductors (ITRS), by 2018, the pitch in flip-chip interconnects will become smaller than 70mum for high performance applications. Two problems occur. The first is increase in shear strain. The aspect ratio of flip-chip joints is constrained to 0.7 because it goes through molten phase in the reflow process. Therefore, smaller joints become shorter as well, resulting in larger shear strain arising from CTE mismatch between Si chips and package substrates. The second is increase in stress in the joints. Since intermetallic (IMC) thickness in the joint does not scale down with joint size, ratio of IMC thickness to joint height increases. This further enlarges the shear stress because the IMC does not deform as the soft solder does to accommodate CTE mismatch. In this research, the smallest dimension we achieve for Ag flip chip interconnect joint is 15mum in diameter. The ten advantages of Ag flip chip interconnect technology can be identified as (a) High electrical conductivity, 7.7 times of that of Pb-free solders, (b) High thermal conductivity, 5.2 times of that of Pb-free solders, (c) Completely fluxless, (d) No IMCs; all reliability issues associated with IMC and IMC growth do not exist, (e) Ag is very ductile and can manage CTE mismatch between chips and packages, (f) Ag joints can sustain at very high operation temperature because Ag has high melting temperature of 961°C, (g) No molten phase involved; the bump can better keep its shape and geometry, (h) No molten phase involved; bridging of adjacent bumps is less likely to occur, i. Aspect ratio of bumps can be made greater than 1, (j) The size of the bumps is only limited by the lithographic process. Cu-Ag composite flip chip interconnect joints is developed based on three reasons. The first is lower material cost. The second is to strengthen the columns because the yield strength of Cu is 6 times of that of Ag. The third is to avoid possible Ag migration between Ag electrodes under voltage at temperatures above 250°C. This Cu-Ag composite design presents a solution in the path to the scale down roadmap.
ERIC Educational Resources Information Center
Hardesty, Jennifer L.; Chung, Grace H.
2006-01-01
Joint custody and cooperative coparenting are often unsafe for women who leave violent partners. Although certain legal protections are available, more work is needed to understand and address abused women's needs in this context. This study provides divorce scholars and practitioners with information on the interface between separation/divorce…
Charles Carll
2006-01-01
Effective water management involves understanding the roles of siding, trim, fenestration units, flashing, and (where appropriate) caulk seals and how these entities interface with each other. Where caulk seals are used, their geometry and dimensions are important to joint performance, as is the care with which they are executed. In selection of caulking material,...
40 CFR 63.902 - Standards-Tank fixed roof.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...
40 CFR 63.902 - Standards-Tank fixed roof.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...
40 CFR 63.902 - Standards-Tank fixed roof.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...
40 CFR 63.902 - Standards-Tank fixed roof.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section joints or between the interface of the roof edge and the tank wall. (3) Each opening in the fixed... closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and...
Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K.; Gudonis, Eugenijus; Misiunaite, Ieva
2017-01-01
This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets. PMID:28773024
Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva
2017-06-17
This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.
NDE of Space Shuttle Solid Rocket Motor field joint
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.
1987-01-01
One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.
Pareto joint inversion of 2D magnetotelluric and gravity data
NASA Astrophysics Data System (ADS)
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13
Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.
2016-10-01
Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.
NASA Astrophysics Data System (ADS)
Kövér, László
2014-10-01
This Special Issue of the journal Applied Surface Science contains full papers from a selection of contributions presented in the Applied Surface Science sessions of the 19th International Vacuum Congress (IVC-19) held in the Palais des Congrès, Paris, between September 9 and 13, 2013. The triennial IVC conferences represent major meetings in the field of the vacuum related sciences and are the largest scientific events of the International Union for Vacuum Science, Technique and Applications (IUVSTA). The IVC-19 and partner conferences had altogether 2555 participants. Supported by the Applied Surface Science Division of IUVSTA, the Applied Surface Science part was one of the most attended among the sub-conferences of the IVC-19. This Special Issue - without trying to achieve completeness - intends to provide a cross section of the topics of the Applied Surface Science and joint sessions of the IVC-19, covering important fields such as Surface Analysis, Surface Modifications, Surface Chemistry and Catalysis, Quantitative Surface and Interface Analysis, Coatings, Tribology, Adhesion, Characterization of Nanomaterials, Energy and Sustainable Development, Self Assembly, Nano-instrumentation, SPM and Novel Probe Techniques, New Approaches and Novel Applications of Surface/Interface Analytical Methods.
A Modeling Approach for Plastic-Metal Laser Direct Joining
NASA Astrophysics Data System (ADS)
Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca
2017-09-01
Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.
Detailed description of the Mayo/IBM PACS
NASA Astrophysics Data System (ADS)
Gehring, Dale G.; Persons, Kenneth R.; Rothman, Melvyn L.; Salutz, James R.; Morin, Richard L.
1991-07-01
The Mayo Clinic and IBM/Rochester have jointly developed a picture archiving system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. The system was developed to replace the imaging system's vendor-supplied magnetic tape archiving capability. The system consists of seven MR imagers and nine CT scanners, each interfaced to the PACS via IBM Personal System/2(tm) (PS/2) computers, which act as gateways from the imaging modality to the PACS network. The PAC system operates on the token-ring component of Mayo's city-wide local area network. Also on the PACS network are four optical storage subsystems used for image archival, three optical subsystems used for image retrieval, an IBM Application System/400(tm) (AS/400) computer used for database management and multiple PS/2-based image display systems and their image servers.
US and foreign alloy cross-reference database
NASA Technical Reports Server (NTRS)
Springer, John M.; Morgan, Steven H.
1991-01-01
Marshall Space Flight Center and other NASA installations have a continuing requirement for materials data from other countries involved with the development of joint international Spacelab experiments and other hardware. This need includes collecting data for common alloys to ascertain composition, physical properties, specifications, and designations. This data is scattered throughout a large number of specification statements, standards, handbooks, and other technical literature which make a manual search both tedious and often limited in extent. In recognition of this problem, a computerized database of information on alloys was developed along with the software necessary to provide the desired functions to access this data. The intention was to produce an initial database covering aluminum alloys, along with the program to provide a user-interface to the data, and then later to extend and refine the database to include other nonferrous and ferrous alloys.
NASA Astrophysics Data System (ADS)
Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa
2014-12-01
Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.
NASA Astrophysics Data System (ADS)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2017-02-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
NASA Astrophysics Data System (ADS)
Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir
2014-12-01
A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Anderson, Iver E.; Terpstra, Robert L.
2001-05-15
A Sn--Ag--Cu eutectic alloy is modified with one or more low level and low cost alloy additions to enhance high temperature microstructural stability and thermal-mechanical fatigue strength without decreasing solderability. Purposeful fourth or fifth element additions in the collective amount not exceeding about 1 weight % (wt. %) are added to Sn--Ag--Cu eutectic solder alloy based on the ternary eutectic Sn--4.7%Ag--1.7%Cu (wt. %) and are selected from the group consisting essentially of Ni, Fe, and like-acting elements as modifiers of the intermetallic interface between the solder and substrate to improve high temperature solder joint microstructural stability and solder joint thermal-mechanical fatigue strength.
New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report.
Moritz, Chet T; Ruther, Patrick; Goering, Sara; Stett, Alfred; Ball, Tonio; Burgard, Wolfram; Chudler, Eric H; Rao, Rajesh P N
2016-07-01
To identify and overcome barriers to creating new neurotechnologies capable of restoring both motor and sensory function in individuals with neurological conditions. This report builds upon the outcomes of a joint workshop between the US National Science Foundation and the German Research Foundation on New Perspectives in Neuroengineering and Neurotechnology convened in Arlington, VA, USA, November 13-14, 2014. The participants identified key technological challenges for recording and manipulating neural activity, decoding, and interpreting brain data in the presence of plasticity, and early considerations of ethical and social issues pertinent to the adoption of neurotechnologies. The envisaged progress in neuroengineering requires tightly integrated hardware and signal processing efforts, advances in understanding of physiological adaptations to closed-loop interactions with neural devices, and an open dialog with stakeholders and potential end-users of neurotechnology. The development of new neurotechnologies (e.g., bidirectional brain-computer interfaces) could significantly improve the quality of life of people living with the effects of brain or spinal cord injury, or other neurodegenerative diseases. Focused efforts aimed at overcoming the remaining barriers at the electrode tissue interface, developing implantable hardware with on-board computation, and refining stimulation methods to precisely activate neural tissue will advance both our understanding of brain function and our ability to treat currently intractable disorders of the nervous system.
An 8-DOF dual-arm system for advanced teleoperation performance experiments
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan F.
1992-01-01
This paper describes the electro-mechanical and control features of an 8-DOF manipulator manufactured by AAI Corporation and installed at the Jet Propulsion Lab. (JPL) in a dual-arm setting. The 8-DOF arm incorporates a variety of features not found in other lab or industrial manipulators. Some of the unique features are: 8-DOF revolute configuration with no lateral offsets at joint axes; 1 to 5 payload to weight ratio with 20 kg (44 lb) payload at a 1.75 m (68.5 in.) reach; joint position measurement with dual relative encoders and potentiometer; infinite roll of joint 8 with electrical and fiber optic slip rings; internal fiber optic link of 'smart' end effectors; four-axis wrist; graphite epoxy links; high link and joint stiffness; use of an upgraded JPL Universal Motor Controller (UMC) capable of driving up to 16 joints. The 8-DOF arm is equipped with a 'smart' end effector which incorporates a 6-DOF forcemoment sensor at the end effector base and grasp force sensors at the base of the parallel jaws. The 8-DOF arm is interfaced to a 6 DOF force reflecting hand controller. The same system is duplicated for and installed at NASA-Langley.
Stowable Energy-Absorbing Rocker-Bogie Suspensions
NASA Technical Reports Server (NTRS)
Harrington, Brian; Voorhees, Christopher
2007-01-01
A report discusses the design of the rocker-bogie suspensions of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. Going beyond the basic requirements regarding mobility on uneven terrain, the design had to satisfy requirements (1) to enable each suspension to contort so that the rover could be stowed within limited space in a tetrahedral lander prior to deployment and (2) that the suspension be able to absorb appreciable impact loads, with limited deflection, during egress from the lander and traversal of terrain. For stowability, six joints (three on the right, three on the left) were added to the basic rocker-bogie mechanism. One of the joints on each side was a yoke-and-clevis joint at the suspension/differential interface, one was a motorized twist joint in the forward portion of the rocker, and one was a linear joint created by modifying a fixed-length bogie member into a telescoping member. For absorption of impact, the structural members were in the form of box beams made by electron-beam welding of machined, thin-walled, C-channel, titanium components. The box beams were very lightweight and could withstand high bending and torsional loads.
Corrosion Control at Graphite/Epoxy-Aluminum and Titanium Interfaces
1974-07-01
Exfoliation Salt Spray Showing Corrosion on Back Side of Bond Interface (2x) 18 19 20 23 24 27 31 31 32 32 33 33 34 35 ; vll...25 29 Vlll ’-■"■’"-’—’—’"■ •■■’■■: UtaMMUitaittikHMalMiiakii T= zsm ~ ■ - ■- • ’■ ■ -■■■ ■: ---"• SUMMARY Graphlte/epoxy...joint specimen. Cure M 35 psl and 3a0*F for GO minutes. Apply 0,2-0.4 ml ol BH127 adhesive primer to the bond intiiface areas. Bond 4 mil 1100
First Spacelab flight - A status report of the joint ESA/NASA mission
NASA Technical Reports Server (NTRS)
Craft, H. G., Jr.; Sanfourche, J.-P.
1978-01-01
A general overview of the first Spacelab flight is presented and a table is given listing the payload composition. An accommodation study is presented with emphasis on the configuration, mass status, timeline, and experiment interface specifications. Also considered are flight and ground operations, safety factors, and payload specialists training for the first flight.
The Wannabee Culture: Why No-One Does What They Used To.
ERIC Educational Resources Information Center
Dixon, Anne
1998-01-01
Electronic publishing has been an agent for change in not just how one publishes but in what one publishes. Describes HyperCite, a joint project with the Institution of Electrical Engineers (IEE) to create INSPEC database. Highlights include the database; the research phase (cross database searching and new interface); and what and how much was…
NASA Technical Reports Server (NTRS)
Holko, K. H.; Moore, T. J. (Inventor)
1973-01-01
Surfaces of unrecrystallized alloys are sanded and polished. This is followed by a two-step welding process by which the strength of the parent metal is retained at the weld joint. The first step forces the surfaces into intimate contact at a temperature where the metal still has good ductility. The second step causes diffusion, recrystallization, and grain growth across the original weld interface.
2004-02-26
Code R and Code D hosted NESC Principal Engineer Mike Kirsch who is Program Leader for Composite Crew Module (CCM). The purpose of the visit was to review/observe experiments that GRC is performing in support of the CCM program. The test object is the critical Low Impact Docking System/Tunnel interface joint that links the metal docking ring with the polymer composite tunnel element of the crew module pressure vessel. The rectangular specimens simulated the splice joint between the aluminum and the PMC sheets, including a PMC doubler sheet. GRC was selected for these tests due to our expertise in composite testing and our ability to perform 3D fullfield displacement and strain measurements of the complex bond geometry using digital image correlation. The specimens performed above their minimum load requirements and the full field strain measurements showed the strain levels at the critical bond line. This work is part of a joint Code D & R investigation.
Static and dynamic deflection studies of the SRM aft case-nozzle joint
NASA Technical Reports Server (NTRS)
Christian, David C.; Kos, Lawrence D.; Torres, Isaias
1989-01-01
The redesign of the joints on the solid rocket motor (SRM) has prompted the need for analyzing the behavior of the joints using several different types of analyses. The types of analyses performed include modal analysis, static analysis, transient response analysis, and base driving response analysis. The forces used in these analyses to drive the mathematical model include SRM internal chamber pressure, nozzle blowout and side forces, shuttle vehicle lift-off dynamics, SRM pressure transient rise curve, gimbal forces and moments, actuator gimbal loads, and vertical and radial bolt preloads. The math model represented the SRM from the aft base tangent point (1,823.95 in) all the way back to the nozzle, where a simplified, tuned nozzle model was attached. The new design used the radial bolts as an additional feature to reduce the gap opening at the aft dome/nozzle fixed housing interface.
Greenberg, Lina; Hatini, Victor
2009-06-01
The Drosophila leg imaginal disc provides a paradigm with which to understand the fundamental developmental mechanisms that generate an intricate appendage structure. Leg formation depends on the subdivision of the leg proximodistal (PD) axis into broad domains by the leg gap genes. The leg gap genes act combinatorially to initiate the expression of the Notch ligands Delta (Dl) and Serrate (Ser) in a segmental pattern. Dl and Ser induce the expression of a set of transcriptional regulators along the segment border, which mediate leg segment growth and joint morphogenesis. Here we show that Lines accumulates in nuclei in the presumptive tarsus and the inter-joints of proximal leg segments and governs the formation of these structures by destabilizing the nuclear protein Bowl. Across the presumptive tarsus, lines modulates the opposing expression landscapes of the leg gap gene dachshund (dac) and the tarsal PD genes, bric-a-brac 2 (bab), apterous (ap) and BarH1 (Bar). In this manner, lines inhibits proximal tarsal fates and promotes medial and distal tarsal fates. Across proximal leg segments, lines antagonizes bowl to promote Dl expression by relief-of-repression. In turn, Dl signals asymmetrically to stabilize Bowl in adjacent distal cells. Bowl, then, acts cell-autonomously, together with one or more redundant factors, to repress Dl expression. Together, lines and bowl act as a binary switch to generate a stable Notch signaling interface between Dl-expressing cells and adjacent distal cell. lines plays analogous roles in developing antennae, which are serially homologous to legs, suggesting evolutionarily conserved roles for lines in ventral appendage formation.
Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Blankenship, D. D.
2014-12-01
The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.
Three-dimensional modeling and animation of two carpal bones: a technique.
Green, Jason K; Werner, Frederick W; Wang, Haoyu; Weiner, Marsha M; Sacks, Jonathan M; Short, Walter H
2004-05-01
The objectives of this study were to (a). create 3D reconstructions of two carpal bones from single CT data sets and animate these bones with experimental in vitro motion data collected during dynamic loading of the wrist joint, (b). develop a technique to calculate the minimum interbone distance between the two carpal bones, and (c). validate the interbone distance calculation process. This method utilized commercial software to create the animations and an in-house program to interface with three-dimensional CAD software to calculate the minimum distance between the irregular geometries of the bones. This interbone minimum distance provides quantitative information regarding the motion of the bones studied and may help to understand and quantify the effects of ligamentous injury.
The ALMA Common Software as a Basis for a Distributed Software Development
NASA Astrophysics Data System (ADS)
Raffi, Gianni; Chiozzi, Gianluca; Glendenning, Brian
The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe, North America and Japan. ALMA will consist of 64 12-m antennas operating in the millimetre and sub-millimetre wavelength range, with baselines of more than 10 km. It will be located at an altitude above 5000 m in the Chilean Atacama desert. The ALMA Computing group is a joint group with staff scattered on 3 continents and is responsible for all the control and data flow software related to ALMA, including tools ranging from support of proposal preparation to archive access of automatically created images. Early in the project it was decided that an ALMA Common Software (ACS) would be developed as a way to provide to all partners involved in the development a common software platform. The original assumption was that some key middleware like communication via CORBA and the use of XML and Java would be part of the project. It was intended from the beginning to develop this software in an incremental way based on releases, so that it would then evolve into an essential embedded part of all ALMA software applications. In this way we would build a basic unity and coherence into a system that will have been developed in a distributed fashion. This paper evaluates our progress after 1.5 year of work, following a few tests and preliminary releases. It analyzes the advantages and difficulties of such an ambitious approach, which creates an interface across all the various control and data flow applications.
The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint
Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero
2014-01-01
This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947
ESTABLISHING A LIVE CARTILAGE-ON-CARTILAGE INTERFACE FOR TRIBOLOGICAL TESTING.
Trevino, Robert L; Stoia, Jonathan; Laurent, Michel P; Pacione, Carol A; Chubinskaya, Susan; Wimmer, Markus A
2017-03-01
Mechano-biochemical wear encompasses the tribological interplay between biological and mechanical mechanisms responsible for cartilage wear and degradation. The aim of this study was to develop and start validating a novel tribological testing system, which better resembles the natural joint environment through incorporating a live cartilage-on-cartilage articulating interface, joint specific kinematics, and the application of controlled mechanical stimuli for the measurement of biological responses in order to study the mechano-biochemical wear of cartilage. The study entailed two parts. In Part 1, the novel testing rig was used to compare two bearing systems: (a) cartilage articulating against cartilage (CoC) and (b) metal articulating against cartilage (MoC). The clinically relevant MoC, which is also a common tribological interface for evaluating cartilage wear, should produce more wear to agree with clinical observations. In Part II, the novel testing system was used to determine how wear is affected by tissue viability in live and dead CoC articulations. For both parts, bovine cartilage explants were harvested and tribologically tested for three consecutive days. Wear was defined as release of glycosaminoglycans into the media and as evaluation of the tissue structure. For Part I, we found that the live CoC articulation did not cause damage to the cartilage, to the extent of being comparable to the free swelling controls, whereas the MoC articulation caused decreased cell viability, extracellular matrix disruption, and increased wear when compared to CoC, and consistent with clinical data. These results provided confidence that this novel testing system will be adequate to screen new biomaterials for articulation against cartilage, such as in hemiarthroplasty. For Part II, the live and dead cartilage articulation yielded similar wear as determined by the release of proteoglycans and aggrecan fragments, suggesting that keeping the cartilage alive may not be essential for short term wear tests. However, the biosynthesis of glycosaminoglycans was significantly higher due to live CoC articulation than due to the corresponding live free swelling controls, indicating that articulation stimulated cell activity. Moving forward, the cell response to mechanical stimuli and the underlying mechano-biochemical wear mechanisms need to be further studied for a complete picture of tissue degradation.