NASA Astrophysics Data System (ADS)
Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing
2018-01-01
AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.
NASA Astrophysics Data System (ADS)
Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf
2017-08-01
Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.
Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics
Kephart, Jason M.; Kindvall, Anna; Williams, Desiree; ...
2018-01-18
Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less
NASA Astrophysics Data System (ADS)
Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.
2010-11-01
In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.
NASA Astrophysics Data System (ADS)
Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf
2017-08-01
The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.
Semiconductor/dielectric interface engineering and characterization
NASA Astrophysics Data System (ADS)
Lucero, Antonio T.
The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized without exposing the sample to air. This is the first time that such a system has been reported. A special air-gap C-V probe will allow top gated measurements to be made, allowing semiconductor-dielectric interfaces to be studied during device processing.
NASA Astrophysics Data System (ADS)
Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf
2017-08-01
Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.
Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.
Na, Junhong; Joo, Min-Kyu; Shin, Minju; Huh, Junghwan; Kim, Jae-Sung; Piao, Mingxing; Jin, Jun-Eon; Jang, Ho-Kyun; Choi, Hyung Jong; Shim, Joon Hyung; Kim, Gyu-Tae
2014-01-07
Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.
Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin
2013-11-21
A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Jason M.; Kindvall, Anna; Williams, Desiree
Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less
NASA Astrophysics Data System (ADS)
Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike
2017-02-01
Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Takeshi, E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, Noboru; Osada, Takenori
2015-08-15
This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resultingmore » MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.« less
Back contact buffer layer for thin-film solar cells
Compaan, Alvin D.; Plotnikov, Victor V.
2014-09-09
A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.
NASA Astrophysics Data System (ADS)
Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro
2016-09-01
In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2 surface was much more passivated by PbCl2 than by PbI2. This may explain partially the high efficiency when the perovskite layer was fabricated by one step process consisting of MAI and PbCl2 solution. We also observed that the crystal size increased with an increase in the amount of Cl anion which of course one of the explanation of the high efficiency. The interface of hole transport layer/perovskite layer, and between perovskite layer /perovskite layer (grain boundary) was passivated with organic amines. The passivation was also effective for increasing Voc and Jsc. This was explained by the results of transient absorption spectroscopy that the charge recombination time between hole transport payer/perovskite layer increased from 0.3 μsec to 60 μsec.
NASA Astrophysics Data System (ADS)
Li, Y.; Han, B. C.; Gao, M.; Wan, Y. Z.; Yang, J.; Du, H. W.; Ma, Z. Q.
2017-09-01
On the basis of a photon-assisted high frequency capacitance-voltage (C-V) method (1 MHz C-V), an effective approach is developed to evaluate the average interface state density (Dit) of an ITO-SiOx/n-Si heterojunction structure. Tin-doped indium oxide (ITO) films with different thicknesses were directly deposited on (100) n-type crystalline silicon by magnetron sputtering to fabricate semiconductor-insulator-semiconductor (SIS) hetero-interface regions where an ultra-thin SiOx passivation layer was naturally created. The morphology of the SiOx layer was confirmed by X-ray photoelectron spectroscopy depth profiling and transmission electron microscope analysis. The thinness of this SiOx layer was the main reason for the SIS interface state density being more difficult to detect than that of a typical metal-oxide-semiconductor structure. A light was used for photon injection while measuring the C-V of the device, thus enabling the photon-assisted C-V measurement of the Dit. By quantifying decreases of the light-induced-voltage as a variation of the capacitance caused by parasitic charge at interface states the passivation quality within the interface of ITO-SiOx/n-Si could be reasonably evaluated. The average interface state density of these SIS devices was measured as 1.2-1.7 × 1011 eV-1 cm-2 and declined as the passivation layer was made thicker. The lifetime of the minority carriers, dark leakage current, and the other photovoltaic parameters of the devices were also used to determine the passivation.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian
2017-08-01
Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.
Passivation layer breakdown during laser-fired contact formation for photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, A.; DebRoy, T.; Palmer, T. A.
2014-07-14
Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less
Highly air stable passivation of graphene based field effect devices.
Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich
2015-02-28
The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.
Trinh, Ngoc Duc; Lepage, David; Aymé-Perrot, David; Badia, Antonella; Dollé, Mickael; Rochefort, Dominic
2018-04-23
The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF 6 in acetonitrile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.
Ma, Jiyeon; Yoo, Geonwook
2018-09-01
So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.
HfO2 Gate Dielectric on (NH4)2S Passivated (100) GaAs Grown by Atomic Layer Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.T.; /Stanford U., Materials Sci. Dept.; Sun, Y.
2007-09-28
The interface between hafnium oxide grown by atomic layer deposition and (100) GaAs treated with HCl cleaning and (NH{sub 4}){sub 2}S passivation has been characterized. Synchrotron radiation photoemission core level spectra indicated successful removal of the native oxides and formation of passivating sulfides on the GaAs surface. Layer-by-layer removal of the hafnia film revealed a small amount of As{sub 2}O{sub 3} formed at the interface during the dielectric deposition. Traces of arsenic and sulfur out-diffusion into the hafnia film were observed after a 450 C post-deposition anneal, and may be the origins for the electrically active defects. Transmission electron microscopymore » cross section images showed thicker HfO{sub 2} films for a given precursor exposure on S-treated GaAs versus the non-treated sample. In addition, the valence-band and the conduction-band offsets at the HfO{sub 2}/GaAs interface were deduced to be 3.18 eV and a range of 0.87-0.97 eV, respectively. It appears that HCl+(NH{sub 4})2{sub S} treatments provide a superior chemical passivation for GaAs and initial surface for ALD deposition.« less
Li, Yunsong; Leung, Kevin; Qi, Yue
2016-09-30
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yunsong; Leung, Kevin; Qi, Yue
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less
Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.
Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis
2014-10-01
Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se 2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF 2 coated with a thin atomic layer deposited Al 2 O 3 layer, or direct current magnetron sputtering of Al 2 O 3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al 2 O 3 /CIGS rear interface. (MgF 2 /)Al 2 O 3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.
Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells
Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis
2014-01-01
Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells. PMID:26300619
Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei
2016-12-01
Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.
NASA Astrophysics Data System (ADS)
Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei
2008-03-01
The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.
Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer
NASA Astrophysics Data System (ADS)
Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing
2016-12-01
It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).
Passivation and Depassivation of Defects in Graphene-based field-effect transistors
NASA Astrophysics Data System (ADS)
O'Hara, Andrew; Wang, Pan; Perini, Chris J.; Fleetwood, Daniel M.; Vogel, Eric M.; Pantelides, Sokrates T.
Field effect transistors based on graphene on amorphous SiO2 substrates were fabricated, both with and without a top oxide passivation layer of Al2O3. Initial I-V characteristics of these devices show that the Fermi energy occurs below the Dirac point in graphene (i.e. p-type behavior). Introduction of environmental stresses, e.g. baking the devices, causes a shift in the Fermi energy relative to the Dirac point. 1/f noise measurements indicate the presence of charge trapping defects. In order to find the origins of this behavior, we construct atomistic models of the substrate/graphene interface and the graphene/oxide passivation layer interface. Using density functional theory, we investigate the role that the introduction and removal of hydrogen and hydroxide passivants has on the electronic structure of the graphene layer as well as the relative energetics for these processes to occur in order to gain insights into the experimental results. Supported by DTRA: 1-16-0032 and NSF: ECCS-1508898.
NASA Astrophysics Data System (ADS)
Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.
2014-12-01
Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-02
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
2013-01-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. PMID:23452508
You, Shuai; Wang, Hui; Bi, Shiqing; Zhou, Jiyu; Qin, Liang; Qiu, Xiaohui; Zhao, Zhiqiang; Xu, Yun; Zhang, Yuan; Shi, Xinghua; Zhou, Huiqiong; Tang, Zhiyong
2018-04-18
Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI 3 ) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley-Read-Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO 2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI 3 and TiO 2 surfaces by HS occurs through the interactions of the functional groups (COO - , SO 3 - , or Na + ) in HS with undersaturated Pb and I ions in MAPbI 3 and Ti 4+ in TiO 2 . This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high-performance and stable perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinara, Syed Mukulika, E-mail: smdinara.iit@gmail.com; Jana, Sanjay Kr.; Ghosh, Saptarsi
2015-04-15
Enhancement of two dimensional electron gas (2DEG) concentrations at Al{sub 0.3}Ga{sub 0.7}N/GaN hetero interface after a-Si{sub 3}N{sub 4} (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al{sub 0.3}Ga{sub 0.7}N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al{sub 0.3}Ga{sub 0.7}N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’smore » equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al{sub 0.3}Ga{sub 0.7}N layer and also due to the decreased surface states at the interface of SiN/Al{sub 0.3}Ga{sub 0.7}N layer, effectively improving the carrier confinement at the interface.« less
Slow positron studies of hydrogen activation/passivation on SiO2/Si(100) interfaces
NASA Astrophysics Data System (ADS)
Lynn, K. G.; Asoka-Kumar, P.
The hydrogen atoms are one of the most common impurity species found in semiconductor systems owing to its large diffusivity, and are easily incorporated either in a controlled process like in ion implantation or in an uncontrolled process like the one at the fabrication stage. Hydrogen can passivate dangling bonds and dislocations in these systems and hence can be used to enhance the electrical properties. In a SiO2/Si system, hydrogen can passivate electronic states at the interface and can alter the fixed or mobile charges in the oxide layer. Since hydrogen is present in almost all of the environments of SiO2/Si wafer fabrication, the activation energy of hydrogen atoms is of paramount importance to a proper understanding of SiO2/Si based devices and has not been measured on the technologically most important Si(100) face. There are no direct, nondestructive methods available to observe hydrogen injection into the oxide layer and subsequent diffusion. The positrons are used as a 'sensitive', nondestructive probe to observe hydrogen interaction in the oxide layer and the interface region. A new way is described of characterizing the changes in the density of the interface states under a low temperature annealing using positrons.
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue
2018-06-06
The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.
NASA Astrophysics Data System (ADS)
Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang
2018-04-01
Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.
Zhang, Zhaofu; Cao, Ruyue; Wang, Changhong; Li, Hao-Bo; Dong, Hong; Wang, Wei-Hua; Lu, Feng; Cheng, Yahui; Xie, Xinjian; Liu, Hui; Cho, Kyeongjae; Wallace, Robert; Wang, Weichao
2015-03-11
The use of an interfacial passivation layer is one important strategy for achieving a high quality interface between high-k and III-V materials integrated into high-mobility metal-oxide-semiconductor field-effect transistor (MOSFET) devices. Here, we propose gallium nitride (GaN) as the interfacial layer between III-V materials and hafnium oxide (HfO2). Utilizing first-principles calculations, we explore the structural and electronic properties of the GaN/HfO2 interface with respect to the interfacial oxygen contents. In the O-rich condition, an O8 interface (eight oxygen atoms at the interface, corresponding to 100% oxygen concentration) displays the most stability. By reducing the interfacial O concentration from 100 to 25%, we find that the interface formation energy increases; when sublayer oxygen vacancies exist, the interface becomes even less stable compared with O8. The band offset is also observed to be highly dependent on the interfacial oxygen concentration. Further analysis of the electronic structure shows that no interface states are present at the O8 interface. These findings indicate that the O8 interface serves as a promising candidate for high quality III-V MOS devices. Moreover, interfacial states are present when such interfacial oxygen is partially removed. The interface states, leading to Fermi level pinning, originate from unsaturated interfacial Ga atoms.
NASA Astrophysics Data System (ADS)
Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin
2018-06-01
Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.
NASA Astrophysics Data System (ADS)
Anantathanasarn, Sanguan; Hasegawa, Hideki
2002-05-01
A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim
2014-12-28
Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less
NASA Astrophysics Data System (ADS)
Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.
2012-01-01
We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Method of passivating semiconductor surfaces
Wanlass, M.W.
1990-06-19
A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.
Method of passivating semiconductor surfaces
Wanlass, Mark W.
1990-01-01
A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.
NASA Astrophysics Data System (ADS)
Adamowicz, B.; Miczek, M.; Ikeya, K.; Mutoh, M.; Saitoh, T.; Fujikura, H.; Hasegawa, H.
1999-03-01
The photoluminescence surface state spectroscopy (PLS 3) method was applied to a study of the surface state distribution ( NSS), effective surface recombination velocity ( Seff), electron ( EFn) and hole ( EFp) quasi-Fermi levels and band bending ( VS) on the Al 0.33Ga 0.67As surface air-exposed and passivated by the Si interface control layer (ICL) technique. Using the detailed measurements of the PL quantum efficiency for different excitation intensities, combined with the rigorous computer simulations of the bulk and surface recombination processes, the behavior and correlation among the surface characteristics under photo-excitation was determined. The present analysis indicated that forming of a Si 3N 4/Si ICL double layer (with a monolayer level control) on AlGaAs surface reduces the minimum interface state density down to 10 10 cm -2 eV -1 and surface recombination velocity to the range of 10 4 cm/s under low excitations.
Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing
2015-01-01
In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. N.; Choi, H. W.; Lai, P. T., E-mail: laip@eee.hku.hk
2015-11-23
GaAs metal-oxide-semiconductor capacitor with TaYON/LaTaON gate-oxide stack and fluorine-plasma treatment is fabricated and compared with its counterparts without the LaTaON passivation interlayer or the fluorine treatment. Experimental results show that the sample exhibits better characteristics: low interface-state density (8 × 10{sup 11 }cm{sup −2}/eV), small flatband voltage (0.69 V), good capacitance-voltage behavior, small frequency dispersion, and small gate leakage current (6.35 × 10{sup −6} A/cm{sup 2} at V{sub fb} + 1 V). These should be attributed to the suppressed growth of unstable Ga and As oxides on the GaAs surface during gate-oxide annealing by the LaTaON interlayer and fluorine incorporation, and the passivating effects of fluorine atoms on the acceptor-likemore » interface and near-interface traps.« less
NASA Astrophysics Data System (ADS)
Shahid, Muhammad Umair; Mohamed, Norani Muti; Muhsan, Ali Samer; Khatani, Mehboob; Bashiri, Robabeh; Zaine, Siti Nur Azella; Shamsudin, Adel Eskandar
2018-02-01
The FTO/TiO2 interface plays a crucial role in the performance of dye-sensitized solar cells (DSSCs). The uneven microstructure morphology of FTO (fluorine-doped tin oxide) glass surface and high porosity of TiO2 layer produce tiny gaps and voids at the FTO/TiO2 interface that breaks the connectivity, leading to an increase in the recombination process. In the current work, a dual functional passivating layer is introduced by the combination of the graphene/TiO2 compact layer. The excellent mobility and flexibility of graphene is capitalized using its layer to fill the voids in the FTO surface, which can consequently reduce the charge transfer resistance at the interface, while the added TiO2 compact layer avoids direct contact with the electrolyte thus reducing the recombination. Graphene was synthesized by the facile solvent exfoliation method with the assistance of the probe sonication process. The parameters of sonication were optimized to achieve high-quality concentrated graphene inks (0.177-0.51 mg/ml). Raman spectroscopy and transmission electron microscopy (TEM) revealed that the graphene obtained is of a few-layer type. Electrochemical impedance spectroscopy (EIS) analysis indicated that the incorporated compact layer of graphene/TiO2 was capable of accelerating the charge transfer and reducing the recombination process at the FTO/TiO2 interface. Consequently, the photoconversion efficiency (PCE) for the device (1 cm2 active area) with double-coated graphene layer under one sun irradiation (AM 1.5) was found to be 49.49% higher than the conventional one.
Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo
2016-08-17
Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.
TEM-EELS Investigation of Boron and Phosphorus Passivated 4H-SiC/SiO2 Interface Structures
NASA Astrophysics Data System (ADS)
Klingshirn, Christopher; Taillon, Joshua; Liu, Gang; Dhar, Sarit; Feldman, Leonard; Zheleva, Tsvetanka; Lelis, Aivars; Salamanca-Riba, Lourdes
A high density of electronic defects at the SiC/SiO2 interface adversely affects SiC-based metal oxide semiconductor devices. Various treatments are known to improve device performance. Annealing in a nitric oxide (NO) environment, for example, passivates electronic defects at the interface and raises the carrier mobility in the active region to 35-40 cm2/Vs, but the effect saturates after about 60 minutes of annealing. Passivation with phosphorus or boron improves upon NO by a factor of 2, increasing the mobility to over 90 cm2/Vs.2 We investigate the chemical and structural effects of these treatments on the SiC/SiO2 transition layer using high-resolution transmission electron microscopy (HRTEM) and high angle annular dark field (HAADF). Electron energy loss spectroscopy Spectrum Imaging (EELS SI) collected across the transition region allow identification of the width, composition and types of bonding at the transition layer. Advanced machine learning techniques applied to the EELS data reveal intermediate bonding states within this region. Supported by ARL under Grant No. W911NF1420110.
NASA Astrophysics Data System (ADS)
Wang, Qian; Cheng, Xinhong; Zheng, Li; Shen, Lingyan; Zhang, Dongliang; Gu, Ziyue; Qian, Ru; Cao, Duo; Yu, Yuehui
2018-01-01
The influence of lanthanum silicate (LaSiOx) passivation interlayer on the band alignment between plasma enhanced atomic layer deposition (PEALD)-Al2O3 films and 4H-SiC was investigated by high resolution X-ray photoelectron spectroscopy (XPS). An ultrathin in situ LaSiOx interfacial passivation layer (IPL) was introduced between the Al2O3 gate dielectric and the 4H-SiC substrate to enhance the interfacial characteristics. The valence band offset (VBO) and corresponding conduction band offset (CBO) for the Al2O3/4H-SiC interface without any passivation were extracted to be 2.16 eV and 1.49 eV, respectively. With a LaSiOx IPL, a VBO of 1.79 eV and a CBO of 1.86 eV could be obtained across the Al2O3/4H-SiC interface. The difference in the band alignments was dominated by the band bending or band shift in the 4H-SiC substrate as a result of different interfacial layers (ILs) formed at the interface. This understanding of the physical details of the band alignment could be a good foundation for Al2O3/LaSiOx/4H-SiC heterojunctions applied in the 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).
He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi
2016-12-27
Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.
Ahoughalandari, Bahar; Cabral, Alexandre R
2017-11-01
The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer.
Lee, Yonghui; Lee, Seunghwan; Seo, Gabseok; Paek, Sanghyun; Cho, Kyung Taek; Huckaba, Aron J; Calizzi, Marco; Choi, Dong-Won; Park, Jin-Seong; Lee, Dongwook; Lee, Hyo Joong; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja
2018-06-01
Planar perovskite solar cells using low-temperature atomic layer deposition (ALD) of the SnO 2 electron transporting layer (ETL), with excellent electron extraction and hole-blocking ability, offer significant advantages compared with high-temperature deposition methods. The optical, chemical, and electrical properties of the ALD SnO 2 layer and its influence on the device performance are investigated. It is found that surface passivation of SnO 2 is essential to reduce charge recombination at the perovskite and ETL interface and show that the fabricated planar perovskite solar cells exhibit high reproducibility, stability, and power conversion efficiency of 20%.
NASA Astrophysics Data System (ADS)
Kim, Kyoung H.; Gordon, Roy G.; Ritenour, Andrew; Antoniadis, Dimitri A.
2007-05-01
Atomic layer deposition (ALD) was used to deposit passivating interfacial nitride layers between Ge and high-κ oxides. High-κ oxides on Ge surfaces passivated by ultrathin (1-2nm) ALD Hf3N4 or AlN layers exhibited well-behaved C-V characteristics with an equivalent oxide thickness as low as 0.8nm, no significant flatband voltage shifts, and midgap density of interface states values of 2×1012cm-1eV-1. Functional n-channel and p-channel Ge field effect transistors with nitride interlayer/high-κ oxide/metal gate stacks are demonstrated.
NASA Astrophysics Data System (ADS)
Jackson, Michael J.; Jackson, Biyun L.; Goorsky, Mark S.
2011-11-01
Sulfur passivation and subsequent wafer-bonding treatments are demonstrated for III-V semiconductor applications using GaAs-GaAs direct wafer-bonded structures. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native-oxide-etch treatments. The electrical conductivity across a sulfur-treated 400 - °C-bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 min) at elevated temperatures (500-600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur-treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero-bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is 0.03 Ω.cm at room temperature. These results emphasize that sulfur-passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high-efficiency solar cells and other devices.
Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.
Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan
2015-07-29
The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a suitable passivation layer to suppress oxidation in metal oxide thin films for enhanced lifetime in inverted organic solar cells.
Zhang, Fan; Song, Jun; Hu, Rui; Xiang, Yuren; He, Junjie; Hao, Yuying; Lian, Jiarong; Zhang, Bin; Zeng, Pengju; Qu, Junle
2018-05-01
Organic-inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (V OC ). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the V OC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron drag in ferromagnetic structures separated by an insulating interface
NASA Astrophysics Data System (ADS)
Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.
2018-06-01
We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.
Chagarov, E A; Porter, L; Kummel, A C
2016-02-28
The structural properties of a-HfO2/Ge(2 × 1)-(001) and a-ZrO2/Ge(2 × 1)-(001) interfaces were investigated with and without a GeOx interface interlayer using density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-HfO2 and a-ZrO2 samples were generated using a hybrid classical-DFT MD "melt-and-quench" approach and tested against experimental properties. The oxide/Ge stacks were annealed at 700 K, cooled to 0 K, and relaxed providing the system with enough freedom to form realistic interfaces. For each high-K/Ge stack type, two systems with single and double interfaces were investigated. All stacks were free of midgap states; however, stacks with a GeO(x) interlayer had band-edge states which decreased the band gaps by 0%-30%. These band-edge states were mainly produced by under-coordinated Ge atoms in GeO(x) layer or its vicinity due to deformation, intermixing, and bond-breaking. The DFT-MD simulations show that electronically passive interfaces can be formed either directly between high-K dielectrics and Ge or with a monolayer of GeO2 if the processing does not create or properly passivate under-coordinated Ge atoms and Ge's with significantly distorted bonding angles. Comparison to the charge states of the interfacial atoms from DFT to experimental x-ray photoelectron spectroscopy results shows that while most studies of gate oxide on Ge(001) have a GeO(x) interfacial layer, it is possible to form an oxide/Ge interface without a GeO(x) interfacial layer. Comparison to experiments is consistent with the dangling bonds in the suboxide being responsible for midgap state formation.
Tailoring Heterovalent Interface Formation with Light
Park, Kwangwook; Alberi, Kirstin
2017-08-17
Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less
Passivation of Si(111) surfaces with electrochemically grafted thin organic films
NASA Astrophysics Data System (ADS)
Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.
2010-09-01
Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.
Passivation of uranium towards air corrosion by N 2+ and C + ion implantation
NASA Astrophysics Data System (ADS)
Arkush, R.; Mintz, M. H.; Shamir, N.
2000-10-01
The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.
Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells
NASA Astrophysics Data System (ADS)
Gao, Shoushuai; Jiang, Zhenwu; Wu, Li; Ao, Jianping; Zeng, Yu; Sun, Yun; Zhang, Yi
2018-01-01
Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non-toxicity. However, the record efficiency of 12.6% for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is much lower than that of Cu(In,Ga)Se2 (CIGS) solar cells. One crucial reason is the recombination at interfaces. In recent years, large amount investigations have been done to analyze the interfacial problems and improve the interfacial properties via a variety of methods. This paper gives a review of progresses on interfaces of CZTS(e) solar cells, including: (1) the band alignment optimization at buffer/CZTS(e) interface, (2) tailoring the thickness of MoS(e)2 interfacial layers between CZTS(e) absorber and Mo back contact, (3) the passivation of rear interface, (4) the passivation of front interface, and (5) the etching of secondary phases.
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine
Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...
2016-08-01
Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; ...
2015-03-02
Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less
Recombination reduction at the c-Si/RCA oxide interface through Ar-H2 plasma treatment
NASA Astrophysics Data System (ADS)
Landheer, Kees; Bronsveld, Paula C. P.; Poulios, Ioannis; Tichelaar, Frans D.; Kaiser, Monja; Schropp, Ruud E. I.; Rath, Jatin K.
2017-02-01
An Ar-H2 plasma treatment was applied on an ultrathin RCA oxide to create well-passivated silicon wafers with symmetric c-Si/SiOx:H/a-Si:H passivation layer stacks. The effective lifetime of these samples increased from 10 μs to 4 ms after annealing at 200 °C through Ar-H2 plasma treatment of the oxide. The results indicate that the plasma treatment can modify the RCA oxide and this enables atomic hydrogen diffusion at low annealing temperature, leading to a well passivated c-Si/SiOx:H interface. This might provide new possibilities to use wet chemical oxides in c-Si solar cells, for example as tunnel contacts.
Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C
2015-06-23
We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.
Interface Engineering to Create a Strong Spin Filter Contact to Silicon
NASA Astrophysics Data System (ADS)
Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.
2016-03-01
Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers-without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime-and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon.
films on silicon at different annealing temperatures
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density ( Q f) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q f can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q f obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q f. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO x /Si interface region decreased with increased temperature. Measurement results of Q f proved that the Al vacancy of the bulk film may not be related to Q f. The defect density in the SiO x region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
A Comparison of the Scalar and Vorticity Criterion defining the T/NT Interface
NASA Astrophysics Data System (ADS)
Boschung, Jonas; Hennig, Fabian; Peters, Norbert
2013-11-01
Free shear flows are characterized by a turbulent core region, a non-turbulent outer flow and a turbulent/non-turbulent interface separating the two zones. While there exist different approaches to identify this transitional region, the interface position is mostly defined to coincide with the isoscalar surfaces of either a passive scalar or the magnitude of the vorticity. Both criteria are examined and compared using a shear layer DNS.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.
1996-01-01
A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.
1996-07-30
A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.
Phosphorus oxide gate dielectric for black phosphorus field effect transistors
NASA Astrophysics Data System (ADS)
Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.
2018-04-01
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
Detecting ice lenses and melt-refreeze crusts using satellite passive microwaves (Invited)
NASA Astrophysics Data System (ADS)
Montpetit, B.; Royer, A.; Roy, A.
2013-12-01
With recent winter climate warming in high latitude regions, rain-on-snow and melt-refreeze events are more frequent creating ice lenses or ice crusts at the surface or even within the snowpack through drainage. These ice layers create an impermeable ice barrier that reduces vegetation respiration and modifies snow properties due to the weak thermal diffusivity of ice. Winter mean soil temperatures increase due to latent heat being released during the freezing process. When ice layers freeze at the snow-soil interface, they can also affect the feeding habits of the northern wild life. Ice layers also significantly affect satellite passive microwave signals that are widely used to monitor the spatial and temporal evolution of snow. Here we present a method using satellite passive microwave brightness temperatures (Tb) to detect ice lenses and/or ice crusts within a snowpack. First the Microwave Emission Model for Layered Snowpacks (MEMLS) was validated to model Tb at 10.7, 19 and 37 GHz using in situ measurements taken in multiple sub-arctic environments where ice layers where observed. Through validated modeling, the effects of ice layer insertion were studied and an ice layer index was developed using the polarization ratio (PR) at all three frequencies. The developed ice index was then applied to satellite passive microwave signals for reported ice layer events.
NASA Astrophysics Data System (ADS)
Li, Xue-Fei; Liu, Xiao-Jie; Cao, Yan-Qiang; Li, Ai-Dong; Li, Hui; Wu, Di
2013-01-01
We report the characteristics of HfO2 films deposited on Ge substrates with and without La2O3 passivation at 250 °C by atomic layer deposition (ALD) using La[N(SiMe3)2]3 and Hf[N(CH3)(C2H5)]4 as the precursors. The HfO2 is observed to form defective HfGeOx at its interface during 500 °C postdeposition annealing. The insertion of an ultrathin La2O3 interfacial passivation layer effectively prevents the Ge outdiffusion and improves interfacial and electrical properties. Capacitance equivalent thickness (CET) of 1.35 nm with leakage current density JA of 8.3 × 10-4 A/cm2 at Vg = 1 V is achieved for the HfO2/La2O3 gate stacks on Ge substrates.
Zirconium oxide surface passivation of crystalline silicon
NASA Astrophysics Data System (ADS)
Wan, Yimao; Bullock, James; Hettick, Mark; Xu, Zhaoran; Yan, Di; Peng, Jun; Javey, Ali; Cuevas, Andres
2018-05-01
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum layer thickness and activation annealing conditions are determined to be 20 nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy imaging shows an approximately 1.6 nm thick SiOx interfacial layer underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements (˜20 nm). Capacitance-voltage measurements show that the annealed ZrOx film features a low interface defect density of 1.0 × 1011 cm-2 eV-1 and a low negative film charge density of -6 × 1010 cm-2. Effective lifetimes of 673 μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si wafers, respectively, corresponding to an implied open circuit voltage above 720 mV in both cases. The results demonstrate that surface passivation quality provided by ALD ZrOx is consistent with the requirements of high efficiency silicon solar cells.
Optimal design of damping layers in SMA/GFRP laminated hybrid composites
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.
2017-10-01
This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Boccard, Mathieu; Holman, Zachary C.
2015-08-14
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces
NASA Technical Reports Server (NTRS)
Hoenk, Michael
2011-01-01
Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu
2015-06-15
Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps withmore » a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.« less
NASA Astrophysics Data System (ADS)
Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.
2014-07-01
Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al2O3. This AlN passivation incorporated nitrogen at the Al2O3/GaAs interface, improving the capacitance-voltage (C-V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C-V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (Dit). The Dit was reduced over the entire GaAs band gap. In particular, these devices exhibited Dit around the midgap of less than 4 × 1012 cm-2eV-1, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.
NASA Astrophysics Data System (ADS)
Wang, L. S.; Xu, J. P.; Zhu, S. Y.; Huang, Y.; Lai, P. T.
2013-08-01
The interfacial and electrical properties of sputtered HfTiON on sulfur-passivated GaAs with or without TaON as interfacial passivation layer (IPL) are investigated. Experimental results show that the GaAs metal-oxide-semiconductor capacitor with HfTiON/TaON stacked gate dielectric annealed at 600 °C exhibits low interface-state density (1.0 × 1012 cm-2 eV-1), small gate leakage current (7.3 × 10-5 A cm-2 at Vg = Vfb + 1 V), small capacitance equivalent thickness (1.65 nm), and large equivalent dielectric constant (26.2). The involved mechanisms lie in the fact that the TaON IPL can effectively block the diffusions of Hf, Ti, and O towards GaAs surface and suppress the formation of interfacial As-As bonds, Ga-/As-oxides, thus unpinning the Femi level at the TaON/GaAs interface and improving the interface quality and electrical properties of the device.
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan
Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
NASA Astrophysics Data System (ADS)
Nugraha, T. A.; Rohrmueller, M.; Gerstmann, U.; Greulich-Weber, S.; Stellhorn, A.; Cantin, J. L.; von Bardeleben, J.; Schmidt, W. G.; Wippermann, S.
SiC is widely used in high-power, high-frequency electronic devices. Recently, it has also been employed as a building block in nanocomposites used as light absorbers in solar energy conversion devices. Analogous to Si, SiC features SiO2 as native oxide that can be used for passivation and insulating layers. However, a significant number of defect states are reported to form at SiC/SiO2 interfaces, limiting mobility and increasing recombination of free charge carriers. We investigated the growth of oxide on different 3C-SiC surfaces from first principles. Carbon antisite Csi defects are found to be strongly stabilized in particular at the interface, because carbon changes its hybridization from sp3 in the SiC-bulk to sp2 at the interface, creating a dangling bond inside a porous region of the SiO2 passivating layer. Combining ab initio g-tensor calculations and electron paramagnetic resonance (EPR) measurements, we show that Csi defects explain the measured EPR signatures, while the hyperfine structure allows to obtain local structural information of the oxide layer. Financial support from BMBF NanoMatFutur Grant 13N12972 and DFG priority program SPP-1601 is gratefully acknowledged.
Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen
2018-06-12
Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.
NASA Astrophysics Data System (ADS)
Pudasaini, P. R.; Ayon, A. A.
2013-12-01
Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.
NASA Astrophysics Data System (ADS)
Hsieh, Yu-Lin; Lee, Chien-Chieh; Lu, Chia-Cheng; Fuh, Yiin-Kuen; Chang, Jenq-Yang; Lee, Ju-Yi; Li, Tomi T.
2017-07-01
A symmetrically stacked structure [(a-Si:H(n+)/a-Si:H(i)/CZ wafer (n)/a-Si:H(i)/a-Si:H(n+)] was used to optimize the growth process conditions of the n-type hydrogenated amorphous silicon [a-Si:H(n+)] thin films. Here a-Si:H(n+) film was used as back surface field (BSF) layer for the silicon heterojunction solar cell and all stacked films were prepared by conventional radio-frequency plasma-enhanced chemical vapor deposition. The characterizations of the effective carrier lifetime (τeff), electrical and structural properties, as well as correlation with the hydrogen dilution ratio (R=H2/SiH4) were systematically discussed with the emphasis on the effectiveness of the passivation layer using the lifetime tester, spectroscopic ellipsometry, and hall measurement. High quality of a stacked BSF layer (intrinsic/n-type a-Si:H layer) with effective carrier lifetime of 1.8 ms can be consistently obtained. This improved passivation layer can be primarily attributed to the synergy of chemical and field effect to significantly reduce the surface recombination.
Interface Engineering to Create a Strong Spin Filter Contact to Silicon
Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.
2016-01-01
Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515
Luo, Hao; Liang, Lingyan; Cao, Hongtao; Dai, Mingzhi; Lu, Yicheng; Wang, Mei
2015-08-12
For ultrathin semiconductor channels, the surface and interface nature are vital and often dominate the bulk properties to govern the field-effect behaviors. High-performance thin-film transistors (TFTs) rely on the well-defined interface between the channel and gate dielectric, featuring negligible charge trap states and high-speed carrier transport with minimum carrier scattering characters. The passivation process on the back-channel surface of the bottom-gate TFTs is indispensable for suppressing the surface states and blocking the interactions between the semiconductor channel and the surrounding atmosphere. We report a dielectric layer for passivation of the back-channel surface of 20 nm thick tin monoxide (SnO) TFTs to achieve ambipolar operation and complementary metal oxide semiconductor (CMOS) like logic devices. This chemical passivation reduces the subgap states of the ultrathin channel, which offers an opportunity to facilitate the Fermi level shifting upward upon changing the polarity of the gate voltage. With the advent of n-type inversion along with the pristine p-type conduction, it is now possible to realize ambipolar operation using only one channel layer. The CMOS-like logic inverters based on ambipolar SnO TFTs were also demonstrated. Large inverter voltage gains (>100) in combination with wide noise margins are achieved due to high and balanced electron and hole mobilities. The passivation also improves the long-term stability of the devices. The ability to simultaneously achieve field-effect inversion, electrical stability, and logic function in those devices can open up possibilities for the conventional back-channel surface passivation in the CMOS-like electronics.
Carrier collection losses in interface passivated amorphous silicon thin-film solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.
In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatmentmore » at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.« less
Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.
Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela
2016-08-23
As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.
One-dimensional pressure transfer models for acoustic-electric transmission channels
NASA Astrophysics Data System (ADS)
Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.
2015-09-01
A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.
NASA Astrophysics Data System (ADS)
Benilov, E. S.
2018-05-01
This paper examines quasigeostrophic flows in an ocean that can be subdivided into an upper active layer (AL) and a lower passive layer (PL), with the flow and density stratification mainly confined to the former. Under this assumption, an asymptotic model is derived parameterizing the effect of the PL on the AL. The model depends only on the PL's depth, whereas its Väisälä-Brunt frequency turns out to be unimportant (as long as it is small). Under an additional assumption-that the potential vorticity field in the PL is well-diffused and, thus, uniform-the derived model reduces to a simple boundary condition. This condition is to be applied at the AL/PL interface, after which the PL can be excluded from consideration.
Voc enhancement of a solar cell with doped Li+-PbS as the active layer
NASA Astrophysics Data System (ADS)
Chávez Portillo, M.; Alvarado Pulido, J.; Gallardo Hernández, S.; Soto Cruz, B. S.; Alcántara Iniesta, S.; Gutiérrez Pérez, R.; Portillo Moreno, O.
2018-06-01
In this report, we investigate the fabrication of solar cells obtained by chemical bath technique, based on CdS as window layer and PbS and PbS-Li+-doped as the active layer. We report open-circuit-voltage Voc values of ∼392 meV for PbS and ∼630 meV for PbSLi+-doped, a remarkable enhanced in the open circuit voltage is shown for solar cells with doped active layer. Li+ ion passivate the dangling bonds in PbS-metal layer interface in consequence reducing the recombination centers.
Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.
Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun
2018-01-01
Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of SiO{sub 2}/4H-SiC interface nitridation by post-oxidation annealing in pure nitrogen gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanthaphan, Atthawut, E-mail: chanthaphan@asf.mls.eng.osaka-u.ac.jp; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi
An alternative and effective method to perform interface nitridation for 4H-SiC metal-oxide-semiconductor (MOS) devices was developed. We found that the high-temperature post-oxidation annealing (POA) in N{sub 2} ambient was beneficial to incorporate a sufficient amount of nitrogen atoms directly into thermal SiO{sub 2}/SiC interfaces. Although N{sub 2}-POA was ineffective for samples with thick thermal oxide layers, interface nitridation using N{sub 2}-POA was achieved under certain conditions, i.e., thin SiO{sub 2} layers (< 15 nm) and high annealing temperatures (>1350°C). Electrical characterizations of SiC-MOS capacitors treated with high-temperature N{sub 2}-POA revealed the same evidence of slow trap passivation and fast trapmore » generation that occurred in NO-treated devices fabricated with the optimized nitridation conditions.« less
NASA Astrophysics Data System (ADS)
Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul
2014-11-01
We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.
NASA Astrophysics Data System (ADS)
Gandhi, Darshan Dinesh
Future generation silicon integrated circuits requires new materials with low dielectric permittivity kappa < 2.0 and ultra-thin barrier layers (e.g., <3 nm) to create high-reliability, high-performance wiring. Preserving the structural and functional integrity of interfaces is a crucial aspect of realizing reliable integrated circuits with nanodevice components. Molecular nanolayers (MNLs) provide the unique ability to tailor interface properties by adjusting molecular termini, layering, branching or length, thereby making them attractive alternatives to conventional barrier materials. Developing a fundamental understanding of the stability and properties of MNLs at thin film interfaces, and their correlation with parameters such as terminal group chemistries molecular length and surface coverage are key to utilizing them in nanodevice applications. This work addresses some of the key challenges pertaining to modifying Cu-silica interfaces with MNLs with appropriate terminal groups. The resultant effects on, and the inter-relationships between, the chemical, mechanical and electrical properties are investigated. Modifying Cu-silica interface with MNLs results in increased Cu diffusioninduced time-to-failure when subject to electrothermal stresses. The extent of enhancement depends on the terminal chemistry of the MNLs interacting with the overlying Cu. Upon annealing, it is found that MNLs form strong covalent linkages at both Cu-MNL and MNL-silica interfaces resulting in unprecedented values of interface toughness, values exceeding 20 Jm-2. Although strong bonding at Cu-MNL and MNL-dielectric interfaces may be sufficient for blocking copper transport across polyelectrolyte MNL bilayers, strong interlayer molecular bonding is a necessary condition for interface toughening. Exposing MNLs to UV light, results in photo-oxidation of the terminal mercaptan groups. These photo-oxidized termini form strong complexes with Cu that results in enhancement by a factor-of-10 in device failure times. Using a combination of UV-exposure prior to Cu metallization and annealing after Cu metallization should result in enhanced device failure times and interface toughness, resulting in chemically isolated and mechanically strong interfaces. This work also shows that passivating Cu surfaces with MNLs can decrease surface leakage currents due to curtailed in-plane Cu transport (low voltages). Formation of strong complexes with Cu can immobilize Cu and reduce the leakage currents and result in higher breakdown voltages. Moreover, the strategy of using MNLs can be applied to passivate pore surfaces in mesoporous silica (MPS) films to suppress water uptake and Cu penetration. The molecularly passivated dielectrics (S-MPS) exhibit 50% lower fracture toughness than unfunctionalized films, and fracture closer to the Cu/S-MPS interface. Electron spectroscopy analyses show that the fracture pathway is governed by the Cu penetration depth into the MPS. Our results show that molecular passivation of porous films not only inhibit metal penetration and water uptake, but also can be used to tune the fracture pathway. The results from this thesis are of importance for harnessing MNLs for the use in future device wiring applications.
Energy and water vapor transport across a simplified cloud-clear air interface
NASA Astrophysics Data System (ADS)
Gallana, L.; Di Savino, S.; De Santi, F.; Iovieno, M.; Tordella, D.
2014-11-01
We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers.
The interaction of evaporative and convective instabilities
NASA Astrophysics Data System (ADS)
Ozen, O.
Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.
NASA Astrophysics Data System (ADS)
Xu, Hao; Yang, Hong; Luo, Wei-Chun; Xu, Ye-Feng; Wang, Yan-Rong; Tang, Bo; Wang, Wen-Wu; Qi, Lu-Wei; Li, Jun-Feng; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun
2016-08-01
The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it/N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.
The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Xiangzhi; Luo, Wei; Shen, Jun; Wang, Yuefeng; Wei, Dapeng
2018-03-01
Polyethylenimine ethoxylated (PEIE) and polyethyl-enimine (PEI), the two kinds of interface buffer layer, are widely used in the organic light-emitting diodes and solar cells for band alignment adjustment. In this report, we carefully studied the influence of the inserting organic layer on the graphene nanowalls(GNWS)/Si junction quality and the photoresponse of the Schottky devices. We found that thinner layers of PEI could decrease the dark current and improve the photo-to-dark ratio to 105 for n-Si devices. The s-kink effect and degradation of open circuit voltage could be observed for thicker thickness and excessive doping. Relatively, PEIE with stable thin layer not only improve the rectifying characteristics of p-Si devices but also the incident photon conversion efficiency. The maximus IPCE could reach 44% and be adjusted to zero by the reverse bias. The tunneling inhibition for electrons can be alleviated by increasing the barrier height. Our results provide an attractive method to improve the efficiency of pristine GNWs/Si junction with interface doping and passivation.
The atomic level structure of the TiO(2)-NiTi interface.
Nolan, M; Tofail, S A M
2010-09-07
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.
n-MoS2/p-Si Solar Cells with Al2O3 Passivation for Enhanced Photogeneration.
Rehman, Atteq Ur; Khan, Muhammad Farooq; Shehzad, Muhammad Arslan; Hussain, Sajjad; Bhopal, Muhammad Fahad; Lee, Sang Hee; Eom, Jonghwa; Seo, Yongho; Jung, Jongwan; Lee, Soo Hong
2016-11-02
Molybdenum disulfide (MoS 2 ) has recently emerged as a promising candidate for fabricating ultrathin-film photovoltaic devices. These devices exhibit excellent photovoltaic performance, superior flexibility, and low production cost. Layered MoS 2 deposited on p-Si establishes a built-in electric field at MoS 2 /Si interface that helps in photogenerated carrier separation for photovoltaic operation. We propose an Al 2 O 3 -based passivation at the MoS 2 surface to improve the photovoltaic performance of bulklike MoS 2 /Si solar cells. Interestingly, it was observed that Al 2 O 3 passivation enhances the built-in field by reduction of interface trap density at surface. Our device exhibits an improved power conversion efficiency (PCE) of 5.6%, which to our knowledge is the highest efficiency among all bulklike MoS 2 -based photovoltaic cells. The demonstrated results hold the promise for integration of bulklike MoS 2 films with Si-based electronics to develop highly efficient photovoltaic cells.
2011-04-01
glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p...NiO films grown on glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels...carrier transport characteristics. II. EXPERIMENTAL SECTION Substrate Preparation. ITO-coated glass (11 Ω/0) was pur- chased from Delta Technologies
NASA Astrophysics Data System (ADS)
Oh, Sejoon; Jang, Han-Soo; Choi, Chel-Jong; Cho, Jaehee
2018-04-01
Dielectric layers prepared by different deposition methods were used for the surface passivation of AlGaN/GaN heterostructure field-effect transistors (HFETs) and the corresponding electrical characteristics were examined. Increases in the sheet charge density and the maximum drain current by approximately 45% and 28%, respectively, were observed after the deposition of a 100 nm-thick SiO2 layer by plasma-enhanced chemical vapor deposition (PECVD) on the top of the AlGaN/GaN HFETs. However, SiO2 deposited by a radio frequency (rf) sputter system had the opposite effect. As the strain applied to AlGaN was influenced by the deposition methods used for the dielectric layers, the carrier transport in the two-dimensional electron gas formed at the interface between AlGaN and GaN was affected accordingly.
Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors
NASA Astrophysics Data System (ADS)
Kao, Wei-Chieh
Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, T., E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, N.; Osada, T.
2014-07-21
Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap ofmore » less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.« less
Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation
NASA Astrophysics Data System (ADS)
Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere
2016-12-01
Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.
Shih, Yen-Chen; Wang, Leeyih; Hsieh, Hsiao-Chi; Lin, King-Fu
2018-04-11
Ion accumulation of organometal halide perovskites (OHPs) induced by electrode polarization of perovskite solar cells (PSCs) under illumination has been intensely studied and associated with a widely observed current-voltage hysteresis behavior. This work is dedicated to the investigation of the behavior of charged species at the compact TiO 2 /OHP interface with respect to electrode polarization in PSC devices. By providing a comprehensive discussion of open-circuit voltage ( V OC ) buildup and V OC decay under illumination and in the dark for the PSCs modified with [6,6]-phenyl-C 61 butyric acid methyl ester (PCBM) at the TiO 2 /OHP interface and their corresponding electrochemical impedance spectroscopies (EISs), a justified mechanism is proposed attempting to elucidate the dynamics of interfacial species with respect to the time and frequency domains. Our results demonstrate that the retarded V OC buildup and decay observed in PSC devices are related to the formation of bound charges in TiO 2 , which is essential to neutralize the oppositely charged ions accumulating at the OHP side. Besides, inserting a thicker PCBM at the TiO 2 /OHP interface as a passivation layer can alleviate the electrode polarization more efficiently as verified by the low dielectric constant measured from EIS. Moreover, photoluminescence measurements indicate that PCBM at the TiO 2 /OHP interface is capable of passivating a trap state and improving charge transfer. However, with respect to the time scale investigated in this work, the reduction of the hysteresis behavior on a millisecond scale is more likely due to less bound charge formation at the interface rather than shallow trap-state passivation by PCBM. After all, this work comprehensively demonstrates the interfacial properties of PSCs associated with PCBM passivation and helps to further understand its impact on charging/discharging as well as device performance.
NASA Astrophysics Data System (ADS)
Zhou, Guoqing; Tang, Guoqiang; Li, Tian; Pan, Guoxing; Deng, Zanhong; Zhang, Fapei
2017-03-01
The ferromagnetic electrode on which a clean high-quality electrode/interlayer interface is formed, is critical to achieve efficient injection of spin-dependent electrons in spintronic devices. In this work, we report on the preparation of graphene-passivated cobalt electrodes for application in vertical spin valves (SVs). In this strategy, high-quality monolayer and bi-layer graphene sheets have been grown directly on the crystal Co film substrates in a controllable process by chemical vapor deposition. The electrode is oxidation resistant and ensures a clean crystalline graphene/Co interface. The AlO x -based magnetic junction devices using such bottom electrodes, exhibit a negative tunnel magneto-resistance (TMR) of ca. 1.0% in the range of 5 K-300 K. Furthermore, we have also fabricated organic-based SVs employing a thin layer of fullerene C60 or an N-type polymeric semiconductor as the interlayer. The devices of both materials show a tunneling behavior of spin-polarized electron transport as well as appreciable TMR effect, demonstrating the high potential of such graphene-coated Co electrodes for organic-based spintronics.
Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; ...
2016-08-17
Both tin oxide (SnO 2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO 2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO 2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO 2/perovskite interface and perovskite grain boundaries. With careful device optimization, themore » best-performing planar perovskite solar cell using a fullerene passivated SnO 2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm -2, and a fill factor of 75.8% when measured under reverse voltage scanning. In conclusion, we find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.« less
Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon
2014-05-28
The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.
Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong
2018-03-28
Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir
2015-06-15
The effect of deposition temperature (T{sub dep}) and subsequent annealing time (t{sub anl}) of atomic layer deposited aluminum oxide (Al{sub 2}O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, Q{sub F}. The interface defect density (D{sub it}) decreases with increase in T{sub dep} which further decreases with t{sub anl} up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for T{sub dep} ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized bymore » high thermal budget process (t{sub anl} between 10 to 30 min)« less
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro
2011-09-01
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.
Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer
NASA Astrophysics Data System (ADS)
Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge
2012-12-01
The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.
Moriya, Masahiro; Hirotani, Daisuke; Ohta, Tsuyoshi; Ogomi, Yuhei; Shen, Qing; Ripolles, Teresa S; Yoshino, Kenji; Toyoda, Taro; Minemoto, Takashi; Hayase, Shuzi
2016-09-22
The interface between the perovskite (PVK, CH 3 NH 3 PbI 3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO 2 /mesoporous TiO 2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 μsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sulfur passivation techniques for III-V wafer bonding
NASA Astrophysics Data System (ADS)
Jackson, Michael James
The use of direct wafer bonding in a multijunction III-V solar cell structure requires the formation of a low resistance bonded interface with minimal thermal treatment. A wafer bonded interface behaves as two independent surfaces in close proximity, hence a major source of resistance is Fermi level pinning common in III-V surfaces. This study demonstrates the use of sulfur passivation in III-V wafer bonding to reduce the energy barrier at the interface. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native oxide etch treatments. Through the addition of a sulfur desorption step in vacuum, the UV-S treatment achieves bondable surfaces free of particles contamination or surface roughening. X-ray photoelectron spectroscopy measurements of the sulfur treated GaAs surfaces find lower levels of oxide and the appearance of sulfide species. After 4 hrs of air exposure, the UV-S treated GaAs actually showed an increase in the amount of sulfide bonded to the semiconductor, resulting in less oxidation compared to the aqueous sulfide treatment. Large area bonding is achieved for sulfur treated GaAs / GaAs and InP / InP with bulk fracture strength achieved after annealing at 400 °C and 300 °C respectively, without large compressive forces. The electrical conductivity across a sulfur treated 400 °C bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 minutes) at elevated temperatures (50--600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is less than 0.03 O·cm 2 at room temperature. These results emphasize that sulfur passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high efficiency solar cells and other devices.
Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide
NASA Astrophysics Data System (ADS)
Cui, Jie; Wan, Yimao; Cui, Yanfeng; Chen, Yifeng; Verlinden, Pierre; Cuevas, Andres
2017-01-01
This paper investigates the application of hafnium oxide (HfO2) thin films to crystalline silicon (c-Si) solar cells. Excellent passivation of both n- and p-type crystalline silicon surfaces has been achieved by the application of thin HfO2 films prepared by atomic layer deposition. Effective surface recombination velocities as low as 3.3 and 9.9 cm s-1 have been recorded with 15 nm thick films on n- and p-type 1 Ω cm c-Si, respectively. The surface passivation by HfO2 is activated at 350 °C by a forming gas anneal. Capacitance voltage measurement shows an interface state density of 3.6 × 1010 cm-2 eV-1 and a positive charge density of 5 × 1011 cm-2 on annealed p-type 1 Ω cm c-Si. X-ray diffraction unveils a positive correlation between surface recombination and crystallinity of the HfO2 and a dependence of the crystallinity on both annealing temperature and film thickness. In summary, HfO2 is demonstrated to be an excellent candidate for surface passivation of crystalline silicon solar cells.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh
2012-03-01
This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.
Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes
NASA Astrophysics Data System (ADS)
Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne
2007-02-01
Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.
NASA Astrophysics Data System (ADS)
Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin
2017-02-01
Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.
Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.
Doubaji, Siham; Philippe, Bertrand; Saadoune, Ismael; Gorgoi, Mihaela; Gustafsson, Torbjorn; Solhy, Abderrahim; Valvo, Mario; Rensmo, Håkan; Edström, Kristina
2016-01-08
The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protecting the surface of a light absorber in a photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shu; Lewis, Nathan S.
A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie
2018-04-01
In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured R on- A values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Passive Mode Carbon Nanotube Underwater Acoustic Transducer
2016-09-20
Acoustical transducer arrays can reflect a sound signal in reverse to the sender which can be used for echo location devices. [0008] In Jiang...of this layer of the medium determines the amplitude of the resulting sound waves. [0005] Recently, there has been development of underwater...structures. The energy is partially reflected from interfaces between the geologic structure and is detected with geophone or hydrophone sensors
Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi
2017-08-09
Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.
Nonlinear conductivity in silicon nitride
NASA Astrophysics Data System (ADS)
Tuncer, Enis
2017-08-01
To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.
Trapped charge densities in Al{sub 2}O{sub 3}-based silicon surface passivation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Paul M., E-mail: Paul.Jordan@namlab.com; Simon, Daniel K.; Dirnstorfer, Ingo
2016-06-07
In Al{sub 2}O{sub 3}-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al{sub 2}O{sub 3} layers are grown by atomic layer deposition with very thin (∼1 nm) SiO{sub 2} or HfO{sub 2} interlayers or interface layers. In SiO{sub 2}/Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured inmore » pure Al{sub 2}O{sub 3}. In Al{sub 2}O{sub 3}/SiO{sub 2}/Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/HfO{sub 2}/Al{sub 2}O{sub 3} stacks, very high total charge densities of up to 9 × 10{sup 12} cm{sup −2} are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al{sub 2}O{sub 3} layer thickness between silicon and the HfO{sub 2} or the SiO{sub 2} interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al{sub 2}O{sub 3} layers opens the possibility to engineer the field-effect passivation in the solar cells.« less
NASA Astrophysics Data System (ADS)
Ryzhov, Eugene
2015-11-01
Vortex motion in shear flows is of great interest from the point of view of nonlinear science, and also as an applied problem to predict the evolution of vortices in nature. Considering applications to the ocean and atmosphere, it is well-known that these media are significantly stratified. The simplest way to take stratification into account is to deal with a two-layer flow. In this case, vortices perturb the interface, and consequently, the perturbed interface transits the vortex influences from one layer to another. Our aim is to investigate the dynamics of two point vortices in an unbounded domain where a shear and rotation are imposed as the leading order influence from some generalized perturbation. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Point vortices induce singular velocity fields in the layer they belong to, however, in the other layers of a multi-layer flow, they induce regular velocity fields. The main feature is that singular velocity fields prohibit irregular dynamics in the vicinity of the singular points, but regular velocity fields, provided optimal conditions, permit irregular dynamics to extend almost in every point of the corresponding phase space.
Liu, Wenzhu; Meng, Fanying; Zhang, Xiaoyu; Liu, Zhengxin
2015-12-09
The interface microstructure of a silicon heterojunction (SHJ) solar cell was investigated. We found an ultrathin native oxide layer (NOL) with a thickness of several angstroms was formed on the crystalline silicon (c-Si) surface in a very short time (∼30 s) after being etched by HF solution. Although the NOL had a loose structure with defects that are detrimental for surface passivation, it acted as a barrier to restrain the epitaxial growth of hydrogenated amorphous silicon (a-Si:H) during the plasma-enhanced chemical vapor deposition (PECVD). The microstructure change of the NOL during the PECVD deposition of a-Si:H layers with different conditions and under different H2 plasma treatments were systemically investigated in detail. When a brief H2 plasma was applied to treat the a-Si:H layer after the PECVD deposition, interstitial oxygen and small-size SiO2 precipitates were transformed to hydrogenated amorphous silicon suboxide alloy (a-SiO(x):H, x ∼ 1.5). In the meantime, the interface defect density was reduced by about 50%, and the parameters of the SHJ solar cell were improved due to the post H2 plasma treatment.
Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Breton, J.-C., E-mail: jean-christophe.lebreton@univ-rennes1.fr; Tricot, S.; Delhaye, G.
2016-08-01
The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron–graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that themore » hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.« less
Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.
2016-08-01
The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.
Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John
2014-03-01
The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Yukio; Otani, Yohei; Okamoto, Hiroshi
2011-09-26
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeN{sub x}/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeN{sub x}/Ge interface properties. The GeN{sub x}/Ge formed at room temperature and treated by PMA at 400 deg. C exhibits the best interface properties with an interface trap density of 1 x 10{sup 11 }cm{sup -2 }eV{sup -1}. The GeN{sub x}/Ge interface is unpinned and the Fermi level at the Ge surfacemore » can move from the valence band edge to the conduction band edge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.-Y., E-mail: cychang@mosfet.t.u-tokyo.ac.jp; Takenaka, M.; Takagi, S.
We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectivenessmore » of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.« less
Turbulent transport across an interface between dry and humid air in a stratified environment
NASA Astrophysics Data System (ADS)
Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela
2014-11-01
The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).
NASA Astrophysics Data System (ADS)
Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren
2018-02-01
In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.
2010-01-01
Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium
NASA Astrophysics Data System (ADS)
Nawaz, Ali; de, Cristiane, , Col; Cruz-Cruz, Isidro; Kumar, Anshu; Kumar, Anil; Hümmelgen, Ivo A.
2015-08-01
We report on enhanced performance in poly(3-hexylthiophene-2,5-diyl) (P3HT) based organic field effect transistors (OFETs) achieved by improvement in hole transport along the channel near the insulator/semiconductor (I/S) interface. The improvement in hole transport is demonstrated to occur very close to the I/S interface, after treatment of the insulator layer with sodium dodecyl sulfate (SDS). SDS is an anionic surfactant, with negatively charged heads, known for formation of micelles above critical micelle concentration (CMC), which contribute to the passivation of positively charged traps. Investigation of field-effect mobility (μFET) as a function of channel bottleneck thickness in OFETs reveals the favorable gate voltage regime where mobility is the highest. In addition, it shows that the gate dielectric surface treatment not only leads to an increase in mobility in that regime, but also displaces charge transport closer to the interface, hence pointing toward passivation of the charge traps at I/S interface. OFETs with SDS treatment were compared with untreated and vitamin C or hexadecyltrimethylammonium bromide (CTAB) treated OFETs. All the treatments resulted in significant improvements in specific dielectric capacitance, μFET, on/off current ratio and transconductance.
2015-09-24
kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their
Acoustic explorations of the upper ocean boundary layer
NASA Astrophysics Data System (ADS)
Vagle, Svein
2005-04-01
The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.
NASA Astrophysics Data System (ADS)
Choi, Donghun
Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre-annealing at 400 °C. A 100 nm thick aluminum layer was deposited to form the gate contact for a MOS device fabrication. C-V measurement results show very small frequency dispersion and 200-300 mV hysteresis, comparable to our best results for InGaAs/GaAs MOS structures on GaAs substrate. Most notably, the quasi-static C-V curve demonstrates clear inversion layer formation. I-V curves show a reasonable leakage current level. The inferred midgap interface state density, Dit, of 2.4 x 1012 eV-1cm-2 was calculated by combined high-low frequency capacitance method. In addition, we investigated the interface properties of amorphous LaAlO 3/GaAs MOS capacitors fabricated on GaAs substrate. The surface was protected during sample transfer between III-V and oxide molecular beam deposition (MBD) chambers by a thick arsenic-capping layer. An annealing method, a low temperature-short time RTA followed by a high temperature RTA, was developed, yielding extremely small hysteresis (˜ 30 mV), frequency dispersion (˜ 60 mV), and interface trap density (mid 1010 eV-1cm -2). We used capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization of MOS devices, tapping-mode AFM for surface morphology analysis, X-ray photoelectron spectroscopy (XPS) for chemical elements analysis of interface, cross section transmission-electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and photoluminescence (PL) measurement for film quality characterization. This successful growth and appropriate surface treatments of III-V materials provides a first step for the fabrication of III-V optical and electrical devices on the same Si-based electronic circuits.
Amorphous and crystalline silicon based heterojunction solar cells
NASA Astrophysics Data System (ADS)
Schüttauf, J. A.
2011-10-01
In this thesis, research on amorphous and crystalline silicon heterojunction (SHJ) solar cells is described. Probably the most important feature of SHJ solar cells is a thin intrinsic amorphous silicion (a-Si:H) layer that is deposited before depositing the doped emitter and back surface field. The passivation properties of such intrinsic layers made by three different chemical vapor deposition (CVD) techniques have been investigated. For layers deposited at 130°C, all techniques show a strong reduction in surface recombination velocity (SRV) after annealing. Modelling indicates that dangling bond saturation by atomic hydrogen is the predominant mechanism. We obtain outstanding carrier lifetimes of 10.3 ms, corresponding to SRVs of 0.56 cm/s. For a-Si:H films made at 250°C, an as-deposited minority carrier lifetime of 2.0 ms is observed. In contrast to a-Si:H films fabricated at 130°C, however, no change in passivation quality upon thermal annealing is observed. These films were fabricated for the first time using a continuous in-line HWCVD mode. Wafer cleaning before a-Si:H deposition is a crucial step for c-Si surface passivation. We tested the influence of an atomic hydrogen treatment before a-Si:H deposition on the c-Si surface. The treatments were performed in a new virgin chamber to exclude Si deposition from the chamber walls. Subsequently, we deposited a-Si:H layers onto the c-Si wafers and measured the lifetime for different H treatment times. We found that increasing hydrogen treatment times led to lower effective lifetimes. Modelling of the measured minority carrier lifetime data shows that the decreased passivation quality is caused by an increased defect density at the amorphous-crystalline interface. Furtheremore, the passivation of different a-Si:H containing layers have been tested. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation up to 255°C and 270°C is observed. This improvement is attributed to dangling bond saturation by H, whereas the decrease at higher temperatures is caused by H effusion. For intrinsic/n-type a-Si:H layer stacks, a record minority carrier lifetime of 13.3 ms is obtained. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed over the whole temperature range, due to the asymmetric Fermi-level dependent defect formation enthalpy in n- and p-type a-Si:H. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is observed that the intrinsic/p-layer stack is limiting device performance. Based on these findings, the solar cells were prepared in a modified order, reaching an efficiency of 16.7% (VOC = 681 mV), versus 15.8% (VOC = 659 mV) in the ‘standard’ order. Finally, transparent conductive oxide (TCO) layers are studied for application into solar cells. It is observed that both types of TCO deposition have no significant influence on the passivation properties of standard a-Si:H layer stacks forming the emitter structure in the used SHJ cells. On flat wafers, a conversion efficiency of 16.7% has been obtained when ITO is used as TCO, versus an efficiency of 16.3% for ZnO:Al; slightly lower due to increased electrical losses.
Passivation coating for flexible substrate mirrors
Tracy, C. Edwin; Benson, David K.
1990-01-01
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.
NASA Astrophysics Data System (ADS)
Edmonds, Mary; Sardashti, Kasra; Wolf, Steven; Chagarov, Evgueni; Clemons, Max; Kent, Tyler; Park, Jun Hong; Tang, Kechao; McIntyre, Paul C.; Yoshida, Naomi; Dong, Lin; Holmes, Russell; Alvarez, Daniel; Kummel, Andrew C.
2017-02-01
Atomic layer deposition of a silicon rich SiNx layer on Si0.7Ge0.3(001), Si0.5Ge0.5(001), and Si0.5Ge0.5(110) surfaces has been achieved by sequential pulsing of Si2Cl6 and N2H4 precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiOxNyClz bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiOxNy on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiNx interfacial layer forms an electrically passive surface on p-type Si0.70Ge0.30(001), Si0.50Ge0.50(110), and Si0.50Ge0.50(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO0.4N0,4 interlayer can produce lower interfacial defect density than stoichiometric a-SiO0.8N0.8, substoichiometric a-Si3N2, or stoichiometric a-Si3N4 interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si0.7Ge0.3(001) and Si0.5Ge0.5(001) substrates with and without the insertion of an ALD SiOxNy interfacial layer, and the SiOxNy layer resulted in a decrease in interface state density near midgap with a comparable Cmax value.
Type-II Superlattice Avalanche Photodiodes
NASA Astrophysics Data System (ADS)
Huang, Jun
Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most critical parameter determining the device performance.
Surface and Interface Chemistry for Gate Stacks on Silicon
NASA Astrophysics Data System (ADS)
Frank, M. M.; Chabal, Y. J.
This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.
Photoacoustic spectroscopy and the in situ characterization of the electrochemical interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallet, C.E.
1988-01-01
Photoacoustics is a new spectroscopic method which has been used for in situ characterization of the electrochemical interface during the past ten years. The basic principles of the photoacoustic effect and the principal results of the Rosencwaig-Gersho theory are discussed in light of the usefulness of the method in electrochemical studies. Different experimental arrangements suitable for in situ electrode studies are presented. A review of the use to date of photoacoustics in electrochemistry includes studies of electrochromic systems, semiconductor electrodes, passivation layers, and of electrocatalytic mixed oxides. These works demonstrated that, with relatively simple apparatus, it was possible to detectmore » and to characterize very thin layers formed on electrodes. It is still not clear whether in most cases photoacoustic spectroscopy has an overwhelming advantage over well-established optical methods for adsorption measurements; however, all the potentialities of the method have yet to be explored. 73 refs., 6 figs.« less
NASA Astrophysics Data System (ADS)
Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa
2016-11-01
In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.
Jia, Endong; Zhou, Chunlan; Wang, Wenjing
2015-01-01
Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.
NASA Astrophysics Data System (ADS)
Y Chou, H.; Afanas'ev, V. V.; Thoan, N. H.; Adelmann, C.; Lin, H. C.; Houssa, M.; Stesmans, A.
2012-10-01
Electrical analysis of interfaces of (100)Si, (100)InP, and (100)In0.53Ga0.47As with TaSiOx (Ta/Si≈1) films atomic-layer deposited using SiCl4, TaCl5, and H2O precursors suggests Ta silicate as a good insulating and surface passivating layer on all three semiconductors. However, when a positive voltage is applied to the top metal electrode in a metal/ TaSiOx /semiconductor configuration, considerable hysteresis of the capacitance-voltage curves, both at 300 and 77 K, is universally observed indicating electron injection and trapping in the insulator. To shed some light on the origin of this charge instability, we analyzed interface band alignment of the studied interfaces using the spectroscopies of internal photoemission and photoconductivity measurements. The latter reveals that independently of the semiconductor substrate material, TaSiOx layers exhibit a bandgap of only 4.5±0.1 eV, typical for a Ta2O5 network. The density of electron states associated with this narrow-gap network may account for the enhanced electron injection and trapping. Furthermore, while a sufficiently high energy barrier for electrons between Si and TaSiOx (3.1±0.1 eV) is found, much lower IPE thresholds are encountered at the (100)InP/TaSiOx and (100) In0.53Ga0.47As/TaSiOx interfaces, i.e., 2.4 and 2.0 eV, respectively. The lower barrier may be related by the formation of narrow-gap In-rich interlayers between AIIIBV semiconductors and TaSiOx.
NASA Astrophysics Data System (ADS)
Högström, Jonas; Fredriksson, Wendy; Edstrom, Kristina; Björefors, Fredrik; Nyholm, Leif; Olsson, Claes-Olof A.
2013-11-01
An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H2SO4 and acetic acid diluted with 0.02 M Na2B4O7 · 10H2O and 1 M H2O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.
A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.
Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang
2016-09-20
This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.
A Novel Passive Wireless Sensor for Concrete Humidity Monitoring
Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang
2016-01-01
This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070
NASA Astrophysics Data System (ADS)
Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang
2014-12-01
The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.
NASA Astrophysics Data System (ADS)
Shu, Zhan
With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and the carrier capture cross sections of interface defect states were extracted. Additionally, anti-reflection properties of the stack structure were optimized and optical losses were analyzed. The Voc over 700 mV and Jsc over 38 mA/cm2 were achieved in IBC-SHJ solar cells using the stack structure for front surface passivation. Direct comparison shows that such low temperature deposited stack structure developed in this work achieves comparable device performance to the high temperature processed front surface passivation structure used in other high efficiency IBC solar cells. However, the lower fill factor (FF) of IBC-SHJ solar cell as compared with traditional front a-Si:H/c-Si heterojunction cell (HIT cell) greatly limits the overall performance of these devices. Two-dimensional (2D) simulations were used to comparatively model the HIT and IBC-SHJ solar cells to understand the underlying device physics which controls cell performance. The effects of a wide range of device parameters were investigated in the simulation, and pathways to improve the FF of IBC-SHJ solar cell were suggested.
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.
Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface
NASA Astrophysics Data System (ADS)
Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John
2016-11-01
Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.
NASA Astrophysics Data System (ADS)
Lu, Wenjuan; Dai, Yuehua; Wang, Feifei; Yang, Fei; Ma, Chengzhi; Zhang, Xu; Jiang, Xianwei
2017-12-01
With the growing application of high-k dielectrics, the interface between HfO2 and Al2O3 play a crucial role in CTM devices. To clearly understand the interaction of the HfO-AlO interface at the atomic and electronic scale, the bonding feature, electronic properties and charge localized character of c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has been investigated by first principle calculations. The c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has adhesive energy about -1.754 J/m2, suggesting that this interface can exist stably. Through analysis of Bader charge and charge density difference, the intrinsic interfacial gap states are mainly originated from the OII and OIII types oxygen atoms at the interface, and only OIII type oxygen atoms can localized electrons effectively and are provided with good reliability during P/E cycles, which theoretically validate the experimental results that HfO2/Al2O3 multi-layered charge trapping layer can generate more effective traps in memory device. Furthermore, the influence of interfacial gap states during P/E cycles in the defective interface system have also been studied, and the results imply that defective system displays the degradation on the reliability during P/E cycles, while, the charge localized ability of interfacial states is stronger than intrinsic oxygen vacancy in the trapping layer. Besides, these charge localized characters are further explained by the analysis of the density of states correspondingly. In sum, our results compare well with similar experimental observations in other literatures, and the study of the interfacial gap states in this work would facilitate further development of interface passivation.
Shape changing thin films powered by DNA hybridization
NASA Astrophysics Data System (ADS)
Shim, Tae Soup; Estephan, Zaki G.; Qian, Zhaoxia; Prosser, Jacob H.; Lee, Su Yeon; Chenoweth, David M.; Lee, Daeyeon; Park, So-Jung; Crocker, John C.
2017-01-01
Active materials that respond to physical and chemical stimuli can be used to build dynamic micromachines that lie at the interface between biological systems and engineered devices. In principle, the specific hybridization of DNA can be used to form a library of independent, chemically driven actuators for use in such microrobotic applications and could lead to device capabilities that are not possible with polymer- or metal-layer-based approaches. Here, we report shape changing films that are powered by DNA strand exchange reactions with two different domains that can respond to distinct chemical signals. The films are formed from DNA-grafted gold nanoparticles using a layer-by-layer deposition process. Films consisting of an active and a passive layer show rapid, reversible curling in response to stimulus DNA strands added to solution. Films consisting of two independently addressable active layers display a complex suite of repeatable transformations, involving eight mechanochemical states and incorporating self-righting behaviour.
Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; Gorman, Brian P; Ye, Jichun; Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, Mowafak M
2017-11-08
Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO 2 -based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; (2) cells with an intrinsic SnO 2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO 2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2 -ESL < SnO 2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (V oc ). The improvement of the FF from the FTO to SnO 2 -ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO 2 -based ESL material quality and the ESL/PS interface.
Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; ...
2017-10-13
Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun
Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less
Using TiO2 as a conductive protective layer for photocathodic H2 evolution.
Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib
2013-01-23
Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.
Radiograph and passive data analysis using mixed variable optimization
Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.
2015-06-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.
Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies
NASA Astrophysics Data System (ADS)
Winarski, D. J.; Anwand, W.; Wagner, A.; Saadatkia, P.; Selim, F. A.; Allen, M.; Wenner, B.; Leedy, K.; Allen, J.; Tetlak, S.; Look, D. C.
2016-09-01
Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM), optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (˜10-2 Ω .cm) in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal-oxide-semiconductor (CMOS) devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.
Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong
2014-10-08
One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.
Baez-Cazull, S.; McGuire, J.T.; Cozzarelli, I.M.; Raymond, A.; Welsh, L.
2007-01-01
Steep biogeochemical gradients were measured at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within a reworked alluvial plain and is characterized by layered low hydraulic conductivity wetland sediments interbedded with sandy aquifer material. Using cm-scale passive diffusion samplers, "peepers", water samples were collected in a depth profile to span interfaces between surface water and a sequence of deeper sedimentary layers. Geochemical indicators including electron acceptors, low-molecular-weight organic acids, base cations, and NH4+ were analyzed by capillary electrophoresis (CE) and field techniques to maximize the small sample volumes available from the centimeter-scale peepers. Steep concentration gradients of biogeochemical indicators were observed at various interfaces including those created at sedimentary boundaries and boundaries created by heterogeneities in organic C and available electron acceptors. At the sediment-water interface, chemical profiles with depth suggest that SO42 - and Fe reduction dominate driven by inputs of organic C from the wetland and availability of electron acceptors. Deeper in the sediments (not associated with a lithologic boundary), a steep gradient of organic acids (acetate maximum 8.8 mM) and NH4+ (maximum 36 mM) is observed due to a localized source of organic matter coupled with the lack of electron acceptor inputs. These findings highlight the importance of quantifying the redox reactions occurring in small interface zones and assessing their role on biogeochemical cycling at the system scale. ?? 2007 Elsevier Ltd. All rights reserved.
Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Yeong, Sai Hooi; Troadec, Cedric; Srinivasan, M P
2013-05-02
Oxide-free Si and Ge surfaces have been passivated and modified with organic molecules by forming covalent bonds between the surfaces and reactive end groups of linear alkanes and aromatic species using single-step deposition in supercritical carbon dioxide (SCCO2). The process is suitable for large-scale manufacturing due to short processing times, simplicity, and high resistance to oxidation. It also allows the formation of monolayers with varying reactive terminal groups, thus enabling formation of nanostructures engineered at the molecular level. Ballistic electron emission microscopy (BEEM) spectra performed on the organic monolayer on oxide-free silicon capped by a thin gold layer reveals for the first time an increase in transmission of the ballistic current through the interface of up to three times compared to a control device, in contrast to similar studies reported in the literature suggestive of oxide-free passivation in SCCO2. The SCCO2 process combined with the preliminary BEEM results opens up new avenues for interface engineering, leading to molecular electronic devices.
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
NASA Astrophysics Data System (ADS)
Yoshiba, Shuhei; Tanitsu, Katsuya; Suda, Yoshiyuki; Kamisako, Koichi
2017-06-01
Passivation films or antireflection coatings are generally prepared using costly vacuum or high-temperature processes. Thus, we report the preparation of TiO x -SiO x composite films by novel spin coatable solutions for the synthesis of low-cost passivation coating materials. The desired films were formed by varying the mixing ratios of TiO x and SiO x , and the resulting films exhibited excellent surface passivation properties. For the p-type wafer, an optimal effective surface recombination velocity (S eff) of 93 cm/s was achieved at \\text{TiO}x:\\text{SiO}x = 6:4, while a surface recombination current density (J 0s) of 195 fA/cm2 was obtained. In contrast, for the n-type wafer, an S eff of 27 cm/s and a J 0s of 38 fA/cm2 were achieved at \\text{TiO}x:\\text{SiO}x = 8:2. This excellent surface passivation effect could be attributed to the low interface state density and high positive fixed charge density. Furthermore, the thickness of the interfacial SiO x layer was determined to be important for obtaining the desired surface passivation effect.
Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD
NASA Technical Reports Server (NTRS)
Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.
2011-01-01
Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors
An IoT Reader for Wireless Passive Electromagnetic Sensors.
Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier
2017-03-28
In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain.
An IoT Reader for Wireless Passive Electromagnetic Sensors
Galindo-Romera, Gabriel; Carnerero-Cano, Javier; Martínez-Martínez, José Juan; Herraiz-Martínez, Francisco Javier
2017-01-01
In the last years, many passive electromagnetic sensors have been reported. Some of these sensors are used for measuring harmful substances. Moreover, the response of these sensors is usually obtained with laboratory equipment. This approach highly increases the total cost and complexity of the sensing system. In this work, a novel low-cost and portable Internet-of-Things (IoT) reader for passive wireless electromagnetic sensors is proposed. The reader is used to interrogate the sensors within a short-range wireless link avoiding the direct contact with the substances under test. The IoT functionalities of the reader allows remote sensing from computers and handheld devices. For that purpose, the proposed design is based on four functional layers: the radiating layer, the RF interface, the IoT mini-computer and the power unit. In this paper a demonstrator of the proposed reader is designed and manufactured. The demonstrator shows, through the remote measurement of different substances, that the proposed system can estimate the dielectric permittivity. It has been demonstrated that a linear approximation with a small error can be extracted from the reader measurements. It is remarkable that the proposed reader can be used with other type of electromagnetic sensors, which transduce the magnitude variations in the frequency domain. PMID:28350356
NASA Astrophysics Data System (ADS)
Chou, H. Y.; Afanas'ev, V. V.; Thoan, N. H.; Adelmann, C.; Lin, H. C.; Houssa, M.; Stesmans, A.
2012-12-01
Electrical analysis of interfaces of (100)Si, (100)InP, and (100)In0.53Ga0.47As with TaSiOx (Ta/Si≈1) films atomic-layer deposited using SiCl4, TaCl5, and H2O precursors suggests Ta silicate as a good insulating and surface passivating layer on all three semiconductors. However, when a positive voltage is applied to the top metal electrode in a metal/ TaSiOx /semiconductor configuration, considerable hysteresis of the capacitance-voltage curves, both at 300 and 77 K, is universally observed indicating electron injection and trapping in the insulator. To shed some light on the origin of this charge instability, we analyzed interface band alignment of the studied interfaces using the spectroscopies of internal photoemission and photoconductivity measurements. The latter reveals that independently of the semiconductor substrate material, TaSiOx layers exhibit a bandgap of only 4.5±0.1 eV, typical for a Ta2O5 network. The density of electron states associated with this narrow-gap network may account for the enhanced electron injection and trapping. Furthermore, while a sufficiently high energy barrier for electrons between Si and TaSiOx (3.1±0.1 eV) is found, much lower IPE thresholds are encountered at the (100)InP/TaSiOx and (100) In0.53Ga0.47As/TaSiOx interfaces, i.e., 2.4 and 2.0 eV, respectively. The lower barrier may be related by the formation of narrow-gap In-rich interlayers between AIIIBV semiconductors and TaSiOx.
NASA Astrophysics Data System (ADS)
Böttger, U.; Waser, R.
2017-07-01
The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.
NASA Technical Reports Server (NTRS)
Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.
1992-01-01
Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum, and onto sapphire surfaces, and their behavior at different temperatures was studied using X-ray photoelectron spectroscopy and temperature desorption spectroscopy (TDS). The interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on the clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. The native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At higher temperatures (150 C), degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formation of a debris layer.
Nolan, Michael; Tofail, Syed A M
2010-05-01
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.
Selforganized Structure Formation in Organized Microstructuring by Laser-Jet Etching
NASA Astrophysics Data System (ADS)
Rabbow, T. J.; Plath, P. J.; Mora, A.; Haase, M.
Laser-jet induced wet etching of stainless steel in 5M H3PO4 has been investigated. By this method, it is possible to cut and microstructure metals and alloys that form passive layers in strong etchants. Due to the laser heating of the metal and the adjacent layers of the etchant, the passive layer is removed and an active dissolution of the base metal together with the formation of hydrogen is observed. The reactions are limited by the transport of fresh acid and the removal of dissolved metal. A jet of etchant reduces the transport limitations. For definite ranges of the laser power, the feed velocity and the etchant jet velocity, a regime of periodic structure formation of the kerf, often called ripples, has been found. The ripple length depends on all three parameters. The ripple formation can be brought into correlation with a periodic change of the intensity of the reflected light as well as oscillations of the potential workpiece. It could be shown that the periodic structure formation is connected to a spreading of an etching front from the laser activated area, that temporarily moves ahead to the laser. This leads to modulations of the interface for the laser absorption, which results, for example, in oscillations of the intensity of the reflected light. This means the laser induced etching reaction attracts a feedback based on the conditions of absorption for the laser. For those parameters of feed velocity, laser power and etchant jet velocity, without ripple formation the laser induced etching front is of a constant distance to the laser which results in steady conditions at the interface for the absorption of the laser.
Inertial particles in a shearless mixing layer: direct numerical simulations
NASA Astrophysics Data System (ADS)
Ireland, Peter; Collins, Lance
2010-11-01
Entrainment, the drawing in of external fluid by a turbulent flow, is present in nearly all turbulent processes, from exhaust plumes to oceanic thermoclines to cumulus clouds. While the entrainment of fluid and of passive scalars in turbulent flows has been studied extensively, comparatively little research has been undertaken on inertial particle entrainment. We explore entrainment of inertial particles in a shearless mixing layer across a turbulent-non-turbulent interface (TNI) and a turbulent-turbulent interface (TTI) through direct numerical simulation (DNS). Particles are initially placed on one side of the interface and are advanced in time in decaying turbulence. Our results show that the TTI is more efficient in mixing droplets than the TNI. We also find that without the influence of gravity, over the range of Stokes numbers present in cumulus clouds, particle concentration statistics are essentially independent of the dissipation scale Stokes number. The DNS data agrees with results from experiments performed in a wind tunnel with close parametric overlap. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions and more accurate climate models. Sponsored by the U.S. NSF.
Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Watanabe, T.; Zhang, X.; Nagata, K.
2018-03-01
The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.
Highly improved passivation of c-Si surfaces using a gradient i a-Si:H layer
NASA Astrophysics Data System (ADS)
Lee, Soonil; Ahn, Jaehyun; Mathew, Leo; Rao, Rajesh; Zhang, Zhongjian; Kim, Jae Hyun; Banerjee, Sanjay K.; Yu, Edward T.
2018-04-01
Surface passivation using intrinsic a-Si:H (i a-Si:H) films plays a key role in high efficiency c-Si heterojunction solar cells. In this study, we demonstrate improved passivation quality using i a-Si:H films with a gradient-layered structure consisting of interfacial, transition, and capping layers deposited on c-Si surfaces. The H2 dilution ratio (R) during deposition was optimized individually for the interfacial and capping layers, which were separated by a transition layer for which R changed gradually between its values for the interfacial and capping layers. This approach yielded a significant reduction in surface carrier recombination, resulting in improvement of the minority carrier lifetime from 1480 μs for mono-layered i a-Si:H passivation to 2550 μs for the gradient-layered passivation approach.
NASA Astrophysics Data System (ADS)
Bae, Choelhwyi; Lucovsky, Gerald
2004-11-01
Low-temperature remote plasma-assisted oxidation and nitridation processes for interface formation and passivation have been extended from Si and SiC to GaN. The initial oxidation kinetics and chemical composition of thin interfacial oxide were determined from analysis of on-line Auger electron spectroscopy features associated with Ga, N, and O. The plasma-assisted oxidation process is self-limiting with power-law kinetics similar to those for the plasma-assisted oxidation of Si and SiC. Oxidation using O2/He plasma forms nearly pure GaOx, and oxidation using 1% N2O in N2 forms GaOxNy with small nitrogen content, ~4-7 at. %. The interface and dielectric layer quality was investigated using fabricated GaN metal-oxide-semiconductor capacitors. The lowest density of interface states was achieved with a two-step plasma-assisted oxidation and nitridation process before SiO2 deposition.
NASA Astrophysics Data System (ADS)
Bai, Zhiyuan; Du, Jiangfeng; Liu, Yong; Xin, Qi; Liu, Yang; Yu, Qi
2017-07-01
In this paper, we report a new phenomenon in C-V measurement of different gate length MIS-HEMTs, which can be associated with traps character of the AlGaN/GaN interface. The analysis of DC measurement, frequency dependent capacitance-voltage measurements and simulation show that the stress from passivation layer may induce a decrease of drain output current Ids, an increase of on-resistance, serious nonlinearity of transconductance gm, and a new peak of C-V curve. The value of the peak is reduced to zero while the gate length and measure frequency are increasing to 21 μm and 1 MHz, respectively. By using conductance method, the SiNx/GaN interface traps with energy level of EC-0.42 eV to EC-0.45 eV and density of 3.2 × 1012 ∼ 5.0 × 1012 eV-1 cm-2 is obtained after passivation. According to the experimental and simulation results, formation of the acceptor-like traps with concentration of 3 × 1011 cm-2 and energy level of EC-0.37 eV under the gate on AlGaN barrier side of AlGaN/GaN interface is the main reason for the degradation after the passivation. He is currently an Associate Professor with State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, UESTC. He is the author of over 30 peer-reviewed journal papers and more than 20 conference papers. He has also hold over 20 patents. His research interests include Gallium Nitride based high-voltage power switching devices, microwave and millimeter-wave power devices and integrated technologies. Dr. Yu was a recipient of the prestigious Award of Science and Technology of China
A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications
Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui
2015-01-01
This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868
A CMOS pressure sensor tag chip for passive wireless applications.
Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui
2015-03-23
This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.
2013-01-01
SiOxNy films with a low nitrogen concentration (< 4%) have been prepared on Si substrates at 400°C by atmospheric-pressure plasma oxidation-nitridation process using O2 and N2 as gaseous precursors diluted in He. Interface properties of SiOxNy films have been investigated by analyzing high-frequency and quasistatic capacitance-voltage characteristics of metal-oxide-semiconductor capacitors. It is found that addition of N into the oxide increases both interface state density (Dit) and positive fixed charge density (Qf). After forming gas anneal, Dit decreases largely with decreasing N2/O2 flow ratio from 1 to 0.01 while the change of Qf is insignificant. These results suggest that low N2/O2 flow ratio is a key parameter to achieve a low Dit and relatively high Qf, which is effective for field effect passivation of n-type Si surfaces. PMID:23634872
NASA Astrophysics Data System (ADS)
Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.
2017-12-01
The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program.
Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner
For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conductionmore » band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.« less
Passivating Window/First Layer AR Coating for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.
2004-01-01
Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.
Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping
2013-09-09
GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.
Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi
2018-03-01
The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.
Numerical Simulations for Turbulent Drag Reduction Using Liquid Infused Surfaces
NASA Astrophysics Data System (ADS)
Arenas-Navarro, Isnardo
Numerical simulations of the turbulent flow over Super Hydrophobic and Liquid Infused Surfaces have been performed in this work. Three different textured surfaces have been considered: longitudinal square bars, transversal square bars and staggered cubes. The numerical code combines an immersed boundary method to mimic the substrate and a level set method to track the interface. Liquid Infused Surfaces reduce the drag by locking a lubricant within structured roughness to facilitate a slip velocity at the surface interface. The conceptual idea is similar to Super Hydrophobic Surfaces, which rely on a lubricant air layer, whereas liquid-infused surfaces use a preferentially wetting liquid lubricant to create a fluid-fluid interface. This slipping interface has been shown to be an effective method of passively reducing skin friction drag in turbulent flows. Details are given on the effect of the viscosity ratio between the two fluids and the dynamics of the interface on drag reduction. An attempt has been made to reconcile Super-Hydrophobic, Liquid Infused and rough wall under the same framework by correlating the drag to the wall normal velocity fluctuations.
Uranium passivation by C + implantation: A photoemission and secondary ion mass spectrometry study
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Felter, T. E.; Wu, K. J.; Evans, C.; Ferreira, J. L.; Siekhaus, W. J.; McLean, W.
2006-03-01
Implantation of 33 keV C + ions into polycrystalline U 238 with a dose of 4.3 × 10 17 cm -2 produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C + ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.
NASA Technical Reports Server (NTRS)
Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila
1995-01-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.
NASA Technical Reports Server (NTRS)
Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.
1995-01-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.
Novel Approach to Front Contact Passivation for CdTe Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Jason M.
2018-02-18
The goal of this project was to study the use of sputter-deposited oxide materials for interface passivation of CdTe-based photovoltaics. Several candidate materials were chosen based on their promise in passivating the CdTe and CdSeTe semiconductor interface, chemical and thermal stability to device processing, and ability to be deposited by sputter deposition.
Structure for implementation of back-illuminated CMOS or CCD imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)
2009-01-01
A structure for implementation of back-illuminated CMOS or CCD imagers. An epitaxial silicon layer is connected with a passivation layer, acting as a junction anode. The epitaxial silicon layer converts light passing through the passivation layer and collected by the imaging structure to photoelectrons. A semiconductor well is also provided, located opposite the passivation layer with respect to the epitaxial silicon layer, acting as a junction cathode. Prior to detection, light does not pass through a dielectric separating interconnection metal layers.
Heterojunction solar cell with passivated emitter surface
Olson, Jerry M.; Kurtz, Sarah R.
1994-01-01
A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.
Heterojunction solar cell with passivated emitter surface
Olson, J.M.; Kurtz, S.R.
1994-05-31
A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulot, J.; Faur, M.; Faur, M.
1995-10-01
It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause amore » significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, the authors demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface.« less
Copepod Behavior Response in an Internal Wave Apparatus
NASA Astrophysics Data System (ADS)
Webster, D. R.; Jung, S.; Haas, K. A.
2017-11-01
This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.
NASA Astrophysics Data System (ADS)
Chagarov, Evgueni A.; Kavrik, Mahmut S.; Fang, Ziwei; Tsai, Wilman; Kummel, Andrew C.
2018-06-01
Comprehensive Density-Functional Theory (DFT) Molecular Dynamics (MD) simulations were performed to investigate interfaces between a-HfO2 and SiGe or Ge semiconductors with fully-stoichiometric a-SiO2 or sub-oxide SiO interlayers. The electronic structure of the selected stacks was calculated with a HSE06 hybrid functional. Simulations were performed before and after hydrogen passivation of residual interlayer defects. For the SiGe substrate with Ge termination prior to H passivation, the stacks with a-SiO suboxide interlayer (a-HfO2/a-SiO/SiGe) demonstrate superior electronic properties and wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/SiGe). After H passivation, most of the a-HfO2/a-SiO2/SiGe defects are passivated. To investigate effect of random placement of Si and Ge atoms additional simulations with a randomized SiGe slab were performed demonstrating improvement of electronic structure. For Ge substrates, before H passivation, the stacks with a SiO suboxide interlayer (a-HfO2/a-SiO/Ge) also demonstrate wider band-gaps than the stacks with fully coordinated a-SiO2 interlayers (a-HfO2/a-SiO2/Ge). However, even for a-HfO2/a-SiO/Ge, the Fermi level is shifted close to the conduction band edge (CBM) consistent with Fermi level pinning. Again, after H passivation, most of the a-HfO2/a-SiO2/Ge defects are passivated. The stacks with fully coordinated a-SiO2 interlayers have much stronger deformation and irregularity in the semiconductor (SiGe or Ge) upper layers leading to multiple under-coordinated atoms which create band-edge states and decrease the band-gap prior to H passivation.
Chen, Zhizhang; Rohatgi, Ajeet
1995-01-01
A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.
The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer
NASA Astrophysics Data System (ADS)
Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.
2011-12-01
In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as
2013-01-01
Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343
NASA Astrophysics Data System (ADS)
Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.
2006-11-01
In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).
NASA Astrophysics Data System (ADS)
O'Connor, É.; Brennan, B.; Djara, V.; Cherkaoui, K.; Monaghan, S.; Newcomb, S. B.; Contreras, R.; Milojevic, M.; Hughes, G.; Pemble, M. E.; Wallace, R. M.; Hurley, P. K.
2011-01-01
In this work, we present the results of an investigation into the effectiveness of varying ammonium sulphide (NH4)2S concentrations in the passivation of n-type and p-type In0.53Ga0.47As. Samples were degreased and immersed in aqueous (NH4)2S solutions of concentrations 22%, 10%, 5%, or 1% for 20 min at 295 K, immediately prior to atomic layer deposition of Al2O3. Multi-frequency capacitance-voltage (C-V) results on capacitor structures indicate that the lowest frequency dispersion over the bias range examined occurs for n-type and p-type devices treated with the 10%(NH4)2S solution. The deleterious effect on device behavior of increased ambient exposure time after removal from 10%(NH4)2S solution is also presented. Estimations of the interface state defect density (Dit) for the optimum 10%(NH4)2S passivated In0.53Ga0.47As devices extracted using an approximation to the conductance method, and also extracted using the temperature-modified high-low frequency C-V method, indicate that the same defect is present over n-type and p-type devices having an integrated Dit of ˜2.5×1012 cm-2 (±1×1012 cm-2) with the peak density positioned in the middle of the In0.53Ga0.47As band gap at approximately 0.37 eV (±0.03 eV) from the valence band edge. Both methods used for extracting Dit show very good agreement, providing evidence to support that the conductance method can be applied to devices incorporating high-k oxides on In0.53Ga0.47As.
Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.
Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja
2016-05-01
The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Jadli, I.; Aouassa, M.
2018-05-04
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less
Seo, Seongrok; Jeong, Seonghwa; Bae, Changdeuck; Park, Nam-Gyu; Shin, Hyunjung
2018-05-22
Despite the high power conversion efficiency (PCE) of perovskite solar cells (PSCs), poor long-term stability is one of the main obstacles preventing their commercialization. Several approaches to enhance the stability of PSCs have been proposed. However, an accelerating stability test of PSCs at high temperature under the operating conditions in ambient air remains still to be demonstrated. Herein, interface-engineered stable PSCs with inorganic charge-transport layers are shown. The highly conductive Al-doped ZnO films act as efficient electron-transporting layers as well as dense passivation layers. This layer prevents underneath perovskite from moisture contact, evaporation of components, and reaction with a metal electrode. Finally, inverted-type PSCs with inorganic charge-transport layers exhibit a PCE of 18.45% and retain 86.7% of the initial efficiency for 500 h under continuous 1 Sun illumination at 85 °C in ambient air with electrical biases (at maximum power point tracking). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer.
Sin, Dong Hun; Jo, Sae Byeok; Lee, Seung Goo; Ko, Hyomin; Kim, Min; Lee, Hansol; Cho, Kilwon
2017-05-31
A mechanically and thermally stable and electron-selective ZnO/CH 3 NH 3 PbI 3 interface is created via hybridization of a polar insulating polymer, poly(ethylene glycol) (PEG), into ZnO nanoparticles (NPs). PEG successfully passivates the oxygen defects on ZnO and prevents direct contact between CH 3 NH 3 PbI 3 and defects on ZnO. A uniform CH 3 NH 3 PbI 3 film is formed on a soft ZnO:PEG layer after dispersion of the residual stress from the volume expansion during CH 3 NH 3 PbI 3 conversion. PEG also increases the work of adhesion of the CH 3 NH 3 PbI 3 film on the ZnO:PEG layer and holds the CH 3 NH 3 PbI 3 film with hydrogen bonding. Furthermore, PEG tailors the interfacial electronic structure of ZnO, reducing the electron affinity of ZnO. As a result, a selective electron-collection cathode is formed with a reduced electron affinity and a deep-lying valence band of ZnO, which significantly enhances the carrier lifetime (473 μs) and photovoltaic performance (15.5%). The mechanically and electrically durable ZnO:PEG/CH 3 NH 3 PbI 3 interface maintains the sustainable performance of the solar cells over 1 year. A soft and durable cathodic interface via PEG hybridization in a ZnO layer is an effective strategy toward flexible electronics and commercialization of the perovskite solar cells.
Kim, Won-Jun; Debnath, Pulak C; Lee, Junsu; Lee, Ju Han; Lim, Dae-Soon; Song, Yong-Won
2013-09-13
Multilayer graphene is synthesized by a simplified process employing an evaporator in which a target substrate is deposited with a Ni catalyst layer before being heated to grow graphene directly. Carbon atoms adsorbed onto the surface of the Ni source as impurities from the atmosphere are incorporated into the catalyst layer during the deposition, and diffuse toward the catalyst/substrate interface, where they crystallize as graphene with a thickness of less than 2 nm. The need for a transfer process and external carbon supply is eliminated. The graphene is characterized by conventional analysis approaches, including nano-scale visualization and Raman spectroscopy, and utilizing photonics, graphene-functionalized passive laser mode-locking is demonstrated to confirm the successful synthesis of the graphene layer, resulting in an operating center wavelength of 1569.4 nm, a pulse duration of 1.35 ps, and a repetition rate of 31.6 MHz.
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
NASA Astrophysics Data System (ADS)
Du, Jiangfeng; Li, Zhenchao; Liu, Dong; Bai, Zhiyuan; Liu, Yang; Yu, Qi
2017-11-01
In this work, a vertical GaN p-n diode with a high-K/low-K compound dielectric structure (GaN CD-VGD) is proposed and designed to achieve a record high breakdown voltage (BV) with a low specific on-resistance (Ron,sp). By introducing compound dielectric structure, the electric field near the p-n junction interface is suppressed due to the effects of high-K passivation layer, and a new electric field peak is induced into the n-type drift region, because of a discontinuity of electrical field at the interface of high-K and low-K layer. Therefore the distribution of electric field in GaN p-n diode becomes more uniform and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN CD-VGD with a BV of 10650 V and a Ron,sp of 14.3 mΩ cm2, resulting in a record high figure-of-merit of 8 GW/cm2.
NASA Technical Reports Server (NTRS)
Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.
1991-01-01
Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum and sapphire surfaces, and their behavior at different temperatures was studied using x ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). It was found that the interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. Our conclusion is that the native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At high temperatures (150 C) degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formulation of a debris layer.
Method to grow group III-nitrides on copper using passivation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiming; Wang, George T; Figiel, Jeffrey T
Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke
We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less
Sicard, François; Striolo, Alberto
2017-06-29
The buckling mechanism in droplets stabilized by solid particles (armored droplets) is tackled at a mesoscopic level using dissipative particle dynamics simulations. We consider one spherical water droplet in a decane solvent coated with nanoparticle monolayers of two different types: Janus (particles whose surface shows two regions with different wetting properties) and homogeneous. The chosen particles yield comparable initial three-phase contact angles, selected to maximize the adsorption energy at the interface. We study the interplay between the evolution of droplet shape, layering of the particles, and their distribution at the interface when the volume of the droplets is reduced. We show that Janus particles affect strongly the shape of the droplet with the formation of a crater-like depression. This evolution is actively controlled by a close-packed particle monolayer at the curved interface. In contrast, homogeneous particles follow passively the volume reduction of the droplet, whose shape does not deviate too much from spherical, even when a nanoparticle monolayer/bilayer transition is detected at the interface. We discuss how these buckled armored droplets might be of relevance in various applications including potential drug delivery systems and biomimetic design of functional surfaces.
NASA Astrophysics Data System (ADS)
Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro
2017-02-01
In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.
Krzywiecki, Maciej; Grządziel, Lucyna; Powroźnik, Paulina; Kwoka, Monika; Rechmann, Julian; Erbe, Andreas
2018-06-13
Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting surface sensitive photoelectron spectroscopy techniques, angle dependent X-ray and UV photoelectron spectroscopy (ADXPS and UPS, respectively), supported by semi-empirical simulations, the role of carbon from adventitious organic adsorbates directly at the SnOx/CuPc interface was investigated. The adventitious organic adsorbates were blocking electronic interactions between the environment and surface, hence pinning energy levels. A significant interface dipole of 0.4 eV was detected, compensating for the difference in work functions of the materials in contact, however, without full alignment of the energy levels. From the ADXPS and UPS results, a detailed diagram of the interfacial electronic structure was constructed, giving insight into how to tailor SnOx/CuPc heterojunctions towards specific applications. On the one hand, parasitic surface contamination could be utilized in technology for passivation-like processes. On the other hand, if one needs to keep the oxide's surficial interactions fully accessible, like in the case of stacked electronic systems or gas sensor applications, carbon contamination must be carefully avoided at each processing step.
NASA Astrophysics Data System (ADS)
Kim, Hyoungsub
With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.
Reactive metal-oxide interfaces: A microscopic view
NASA Astrophysics Data System (ADS)
Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.
2016-03-01
Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.
Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.
Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun
2018-01-17
We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.
NASA Astrophysics Data System (ADS)
Corre, B.; Boulvais, P.; Boiron, M. C.; Lagabrielle, Y.; Marasi, L.; Clerc, C.
2018-02-01
Sub-continental lithospheric mantle rocks are exhumed in the distal part of magma-poor passive margins. Remnants of the North Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and offers a field analogue to study the processes of continental crust thinning, subcontinental mantle exhumation and associated fluid circulations. The Saraillé Massif which belongs to the `Chaînons Béarnais' range (Western Pyrenees), displays field, petrographic and stable isotopic evidence of syn-kinematic fluid circulations. Using electron probe micro-analyses on minerals, O, C, Sr isotopes compositions and micro thermometry/Raman spectrometry of fluid inclusions, we investigate the history of fluid circulations along and in the surroundings of the Saraillé detachment fault. The tectonic interface between the pre-rift Mesozoic sedimentary cover and the mantle rocks is marked by a metasomatic talc-chlorite layer. This layer formed through the infiltration of a fluid enriched in chemical elements like Cr leached from the exhuming serpentinized mantle rocks. In the overlying sediments (dolomitic and calcitic marbles of Jurassic to Aptian age), a network of calcitic veins, locally with quartz, formed as a consequence of the infiltration of aqueous saline fluids (salinities up to 34 wt% NaCl are recorded in quartz-hosted fluid inclusions) at moderate temperatures ( 220 °C). These brines likely derived from the dissolution of the local Triassic evaporites. In the upper part of the metasomatic system, upward movement of fluids is limited by the Albian metasediments, which likely acted as an impermeable layer. The model of fluid circulation in the Saraillé Massif sheds light onto other synchronous metasomatic systems in the Pyrenean realm.
NASA Astrophysics Data System (ADS)
Saxena, Vibha; Aswal, D. K.
2015-06-01
In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using additives which provides surface passivation as well as positive movement of the nc-SC Fermi level owing to negative charge at the surface and hence improves light harvesting and reduced recombination. Finally, we discuss the advantages and disadvantages of various approaches towards high-efficiency DSSCs.
Interface Si donor control to improve dynamic performance of AlGaN/GaN MIS-HEMTs
NASA Astrophysics Data System (ADS)
Song, Liang; Fu, Kai; Zhang, Zhili; Sun, Shichuang; Li, Weiyi; Yu, Guohao; Hao, Ronghui; Fan, Yaming; Shi, Wenhua; Cai, Yong; Zhang, Baoshun
2017-12-01
In this letter, we have studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) with different interface Si donor incorporation which is tuned during the deposition process of LPCVD-SiNx which is adopted as gate dielectric and passivation layer. Current collapse of the MIS-HEMTs without field plate is suppressed more effectively by increasing the SiH2Cl2/NH3 flow ratio and the normalized dynamic on-resistance (RON) is reduced two orders magnitude after off-state VDS stress of 600 V for 10 ms. Through interface characterization, we have found that the interface deep-level traps distribution with high Si donor incorporation by increasing the SiH2Cl2/NH3 flow ratio is lowered. It's indicated that the Si donors are most likely to fill and screen the deep-level traps at the interface resulting in the suppression of slow trapping process and the virtual gate effect. Although the Si donor incorporation brings about the increase of gate leakage current (IGS), no clear degradation of breakdown voltage can be seen by choosing appropriate SiH2Cl2/NH3 flow ratio.
Solar cells and methods of fabrication thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumate, Seth Daniel; Hutchings, Douglas Arthur; Mohammed, Hafeezuddin
A passivation layer is deposited on a first portion of a region of the solar cell. A grid line is deposited on a second portion of the region. The passivation layer is annealed to drive chemical species from the passivation layer to deactivate an electrical activity of a dopant in the first portion of the region of the solar cell.
Amato, Elvio D; Covaci, Adrian; Town, Raewyn M; Hereijgers, Jonas; Bellekens, Ben; Giacometti, Valentina; Breugelmans, Tom; Weyn, Maarten; Dardenne, Freddy; Bervoets, Lieven; Blust, Ronny
2018-06-14
Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface.
Hwang, Suhwan; Larina, Liudmila; Lee, Hojin; Kim, Suncheul; Choi, Kyoung Soon; Jeon, Cheolho; Ahn, Byung Tae; Shin, Byungha
2018-06-20
We report a novel Cd-free ZnTiO buffer layer deposited by atomic layer deposition for Cu(In,Ga)Se 2 (CIGS) solar cells. Wet pretreatments of the CIGS absorbers with NH 4 OH, H 2 O, and/or aqueous solution of Cd 2+ ions were explored to improve the quality of the CIGS/ZnTiO interface, and their effects on the chemical state of the absorber and the final performance of Cd-free CIGS devices were investigated. X-ray photoelectron spectroscopy (XPS) analysis revealed that the aqueous solution etched away sodium compounds accumulated on the CIGS surface, which was found to be detrimental for solar cell operation. Wet treatment with NH 4 OH solution led to a reduced photocurrent, which was attributed to the thinning (or removal) of an ordered vacancy compound (OVC) layer on the CIGS surface as evidenced by an increased Cu XPS peak intensity after the NH 4 OH treatment. However, the addition of Cd 2+ ions to the NH 4 OH aqueous solution suppressed the etching of the OVC by NH 4 OH, explaining why such a negative effect of NH 4 OH is not present in the conventional chemical bath deposition of CdS. The band alignment at the CIGS/ZnTiO interface was quantified using XPS depth profile measurements. A small cliff-like conduction band offset of -0.11 eV was identified at the interface, which indicates room for further improvement of efficiency of the CIGS/ZnTiO solar cells once the band alignment is altered to a slight spike by inserting a passivation layer with a higher conduction band edge than ZnTiO. Combination of the small cliff conduction band offset at the interface, removal of the Na compound via water, and surface doping by Cd ions allowed the application of ZnTiO buffer to CIGS treated with Cd solutions, exhibiting an efficiency of 80% compared to that of a reference CIGS solar cell treated with the CdS.
Techniques for active passivation
Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.
2016-12-20
In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.
Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee
2018-03-14
An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.
NASA Astrophysics Data System (ADS)
Dong, Peng; Lei, Dong; Yu, Xuegong; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian; Yang, Deren
2018-01-01
In this work, we present a detailed study on the interface and passivation properties of the hydrogenated silicon oxynitride (SiOxNy:H) on the crystalline silicon (c-Si) and their correlations with the film composition. The SiOxNy:H films were synthesized by plasma enhanced chemical vapor deposition (PECVD) at various N2O flow rates, which results in different film composition, in particular the different H-related bonds, such as Sisbnd H and Nsbnd H bonds. Fourier transform infrared spectroscopy measurements show that the concentration of Nsbnd H bonds increases with the N2O flows from 0 to 30 sccm, while drops below the detection limit at N2O flows above 30 sccm. This changing trend of Nsbnd H bonds correlates well with the evolution of carrier lifetime of silicon substrate passivated by SiOxNy:H film, indicating the crucial role of Nsbnd H bonds in surface passivation. It is inferred that during the film deposition and forming gas anneal (FGA) a considerable amount of hydrogen atoms are liberated from the weak type of Nsbnd H bonds rather than Sisbnd H bonds, and then passivate the dangling bonds at the interface, thus resulting in the significant reduction of interface state density and the improved passivation quality. In detail, the interface state density is reduced from ∼5 × 1012 to ∼2 × 1012 cm-2 eV-1 after the FGA, as derived from the high frequency capacitance-voltage (Csbnd V) measurements.
Surface Passivation by Quantum Exclusion Using Multiple Layers
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor)
2013-01-01
A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.
NASA Astrophysics Data System (ADS)
Kim, Yun Ji; Kim, Seung Mo; Heo, Sunwoo; Lee, Hyeji; In Lee, Ho; Chang, Kyoung Eun; Lee, Byoung Hun
2018-02-01
High-pressure annealing in oxygen ambient at low temperatures (∼300 °C) was effective in improving the performance of graphene field-effect transistors. The field-effect mobility was improved by 45% and 83% for holes and electrons, respectively. The improvement in the quality of Al2O3 and the reduction in oxygen-related charge generation at the Al2O3-graphene interface, are suggested as the reasons for this improvement. This process can be useful for the commercial implementation of graphene-based electronic devices.
NASA Astrophysics Data System (ADS)
Gin, S.; Jollivet, P.; Barba Rossa, G.; Tribet, M.; Mougnaud, S.; Collin, M.; Fournier, M.; Cadel, E.; Cabie, M.; Dupuy, L.
2017-04-01
Significant efforts have been made into understanding the dissolution of silicate glasses and minerals, but there is still debate about the formation processes and the properties of surface layers. Here, we investigate glass coupons of ISG glass - a 6 oxide borosilicate glass of nuclear interest - altered at 90 °C in conditions close to saturation and for durations ranging from 1 to 875 days. Altered glass coupons were characterized from atomic to macroscopic levels to better understand how surface layers become protective. With this approach, it was shown that a rough interface, whose physical characteristics have been modeled, formed in a few days and then propagated into the pristine material at a rate controlled by the reactive transport of water within the growing alteration layer. Several observations such as stiff interfacial B, Na, and Ca profiles and damped profiles within the rest of the alteration layer are not consistent with the classical inter-diffusion model, or with the interfacial dissolution-precipitation model. A new paradigm is proposed to explain these features. Inter-diffusion, a process based on water ingress into the glass and ion-exchange, may only explain the formation of the rough interface in the early stage of glass corrosion. A thin layer of altered glass is formed by this process, and as the layer grows, the accessibility of water to the reactive interface becomes rate-limiting. As a consequence, only the most easily accessible species are dissolved. The others remain undissolved in the alteration layer, probably fixed in highly hydrolysis resistant clusters. A new estimation of water diffusivity in the glass when covered by the passivating layer was determined from the shift between B and H profiles, and was 10-23 m2.s-1, i.e. approximately 3 orders of magnitude lower than water diffusivity in the pristine material. Overall, in the absence of secondary crystalline phases that could consume the major components of the alteration layer (Si, Al), it is assumed that the glass dissolution rate continuously decreases due to the growth of the transport limiting alteration layer, in good agreement with residual rates reported in the literature for this glass. According to our results it can be expected that new kinetic models should emerge from an accurate time dependent budget of water within the nanoporous alteration layer.
Passivation Of High-Temperature Superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P.
1991-01-01
Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.
Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
NASA Astrophysics Data System (ADS)
Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.
2018-03-01
Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
Maximizing and stabilizing luminescence from halide perovskites with potassium passivation.
Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M; Alsari, Mejd; Booker, Edward P; Hutter, Eline M; Pearson, Andrew J; Lilliu, Samuele; Savenije, Tom J; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H; Stranks, Samuel D
2018-03-21
Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface
NASA Astrophysics Data System (ADS)
Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.
2015-10-01
Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-03-01
We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to +0.2 V and -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.
Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying
2014-10-07
In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.
Chang, Yin-Jung
2014-11-17
Transverse-electric (TE) resonant optical tunneling through an asymmetric, single-barrier potential system consisting of all passive materials in two-dimensional (2-D) glass/silver/TiO₂/air configuration is quantified at a silver thickness of 35 nm. Resonant tunneling occurs when the incident condition corresponds to the excitation of a radiation mode. Lasing-like transmission occurring at resonance is carefully qualified in terms of power conservation, resonance condition, and identification of the gain medium equivalent. In particular, effective gain (geff) and threshold gain (gth) coefficients, both of which are strong functions of the forward reflection coefficient at the silver-TiO₂ interface, are analytically obtained and the angular span over which geff > gth is further verified rigorously electromagnetically. The results show that the present configuration may be treated as a cascade of the gain equivalent (i.e. the silver film) and the TiO₂resonator that is of Fabry-Perot type, giving rise to negative gth when resonant tunneling occurs. The transmittance spectrum exhibiting a gain-curve-like envelope is shown to be a direct consequence of the competition of the resonator loss at the silver-TiO₂interface and the forward tunneling probability through the silver barrier, all controlled by the effective silver barrier thickness.
Passive Isolators for use on the International Space Station
NASA Technical Reports Server (NTRS)
Houston, Janice; Gattis, Christy
2003-01-01
The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae
2018-04-01
We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran
2015-04-13
This study proposes a two-photomask process for fabricating amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO₂ combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO₂ deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won Lee, Sang; Suh, Dongseok, E-mail: energy.suh@skku.edu; Department of Energy Science and Department of Physics, Sungkyunkwan University, Suwon 440-746
A prior requirement of any developed transistor for practical use is the stability test. Random network carbon nanotube-thin film transistor (CNT-TFT) was fabricated on SiO{sub 2}/Si. Gate bias stress stability was investigated with various passivation layers of HfO{sub 2} and Al{sub 2}O{sub 3}. Compared to the threshold voltage shift without passivation layer, the measured values in the presence of passivation layers were reduced independent of gate bias polarity except HfO{sub 2} under positive gate bias stress (PGBS). Al{sub 2}O{sub 3} capping layer was found to be the best passivation layer to prevent ambient gas adsorption, while gas adsorption on HfO{submore » 2} layer was unavoidable, inducing surface charges to increase threshold voltage shift in particular for PGBS. This high performance in the gate bias stress test of CNT-TFT even superior to that of amorphous silicon opens potential applications to active TFT industry for soft electronics.« less
X-Ray Photoelectron Spectroscopy Study of the Heating Effects on Pd/6H-SiC Schottky Structure
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak
1998-01-01
X-ray photoelectron spectroscopy is used to study the effects of heat treatment on the Pd/6H-SiC Schottky diode structure. After heating the structure at 425 C for 140 h, a very thin surface layer of PdO mixed with SiO(x) formed on the palladium surface of the Schottky structure. Heat treatment promoted interfacial diffusion and reaction which significantly broadened the interfacial region. In the interfacial region, the palladium concentration decreases with depth, and the interfacial products are Pd(x)Si (x = 1,2,3,4). In the high Pd concentration regions, Pd4Si is the major silicide component while gr and Pd2Si are major components in the low Pd concentration region. At the center of the interface, where the total palladium concentration equals that of silicon, the concentrations of palladium associated with various palladium silicides (Pd(x)Si, x= 1,2,3,4) are approximately equal. The surface passivation layer composed of PdO and SiO, may significantly affect the electronic and catalytic properties of the surface of the Schottky diode which plays a major role in gas detection. The electronic properties of the Schottky structure may be dominated by a (Pd+Pd(x)Si)/SiC interface. In order to stabilize the properties of the Schottky structure the surface and interface diffusion and reactions must be controlled.
Boundary-layer-ingesting inlet flow control system
NASA Technical Reports Server (NTRS)
Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)
2010-01-01
A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org
2016-01-14
The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trapmore » density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W. F.; Nishimula, T.; Nagashio, K.
2013-03-11
We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5more » eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.« less
Passive micromixer using by convection and surface tension effects with air-liquid interface.
Ju, Jongil; Warrick, Jay
2013-12-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.
Passive micromixer using by convection and surface tension effects with air-liquid interface
Ju, Jongil; Warrick, Jay
2014-01-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979
In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics
NASA Astrophysics Data System (ADS)
Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.
2014-07-01
Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.
Method for producing highly reflective metal surfaces
Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.
1983-01-01
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki
2011-01-01
The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499
Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu
2017-01-01
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.
Hollerer, Michael; Lüftner, Daniel; Hurdax, Philipp; Ules, Thomas; Soubatch, Serguei; Tautz, Frank Stefan; Koller, Georg; Puschnig, Peter; Sterrer, Martin; Ramsey, Michael G
2017-06-27
It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.
NASA Astrophysics Data System (ADS)
Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.
2016-09-01
The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements
Fei, Yanhan; Ai, Taotao; Niu, Qunfei; Li, Wenhu; Yuan, Xinqiang; Jing, Ran; Dong, Hongfeng
2017-01-01
TiC–Ti–Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti3Al, Ti2AlC, and Ti3AlC2 phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti2AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m1/2, respectively. PMID:29027949
Fei, Yanhan; Ai, Taotao; Niu, Qunfei; Li, Wenhu; Yuan, Xinqiang; Jing, Ran; Dong, Hongfeng
2017-10-13
TiC-Ti-Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti₃Al, Ti₂AlC, and Ti₃AlC₂ phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti₂AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m 1/2 , respectively.
NASA Technical Reports Server (NTRS)
Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)
1999-01-01
A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.
NASA Astrophysics Data System (ADS)
Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu
2015-07-01
We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.
NASA Astrophysics Data System (ADS)
Good, Garrett; Gerashchenko, Sergiy; Warhaft, Zellman
2010-11-01
Water droplets of sub-Kolmogorov size are sprayed into the turbulence side of a shearless turbulent-non-turbulent interface (TNI) as well as a turbulent-turbulent interface (TTI). An active grid is used to form the mixing layer and a splitter plate separates the droplet-non droplet interface near the origin. Particle concentration, size and velocity are determined by Phase Doppler Particle Analyzer, the velocity field by hot wires, and the droplet accelerations by particle tracking. As for a passive scalar, for the TTI, the concentration profiles are described by an error function. For the TNI, the concentration profiles fall off more rapidly than for the TTI due to the large-scale intermittency. The profile evolution and effects of initial conditions are discussed, as are the relative importance of the large and small scales in the transport process. It is shown that the concentration statistics are better described in terms of the Stokes number based on the large scales than the small, but some features of the mixing are determined by the small scales, and these will be discussed. Sponsored by the U.S. NSF.
Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material
NASA Astrophysics Data System (ADS)
Brown, Alexander Earl
Modern detector materials used for infrared (IR) imaging purposes contain complex multi-layered architectures, making more robust characterization techniques necessary. In order to determine mutli-carrier transport properties in the presence of mixed conduction, variable-field Hall characterization can be performed and then analyzed using mobility spectrum analysis to extract parameters of interest. Transport parameters are expected to aid in modeling and simulation of materials and can be used in optimization of particular problem areas. The performances of infrared devices ultimately depend on transport mechanisms, so an accurate determination becomes paramount. This work focuses on the characterization of two materials at the forefront of IR detectors; incumbent, tried and true, HgCdTe technologies and emergent III-V based superlattice structures holding much promise for future detector purposes. Ex-situ doped long-wave planar devices and in-situ doped mid-wave dual-layer heterojunctions (P+/n architecture) HgCdTe structures are explored with regards to substrate choice, namely lattice-matched CdZnTe and lattice-mismatched Si or GaAs. A detailed study of scattering mechanisms reveal that growth on lattice-mismatched substrates leads to dislocation scattering limited mobility at low temperature, correlating with extrinsically limited minority carrier lifetime and excesses diode tunneling current, resulting in overall lower performance. Mobility spectrum analysis proves to be an effective diagnostic on performance as well as providing insight in surface, substrate-interface, and minority carrier transport. Two main issues limiting performance of III-V based superlattices are addressed; high residual doping backgrounds and surface passivation. Mobility spectrum analysis proves to be a reliable method of determining background doping levels. Modest improvements are obtained via post-growth thermal annealing, but results suggest future efforts should be placed upon growth improvements. Passivation efforts using charged electret dielectric show promise but further refinements would be needed. Thiol passivation is identified as a successful passivant of Be-doped p-type InAs/GaSb long-wave absorbers using mobility spectrum analysis, correlating with fabricated device dark current. Mobility spectrum analysis demonstrates it will be indispensable in future development of III-V material.
NASA Astrophysics Data System (ADS)
Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi
2017-11-01
In this paper, a novel high-K/low-K compound passivation AlGaN/GaN Schottky Barrier Diode (CPG-SBD) is proposed to improve the off-state characteristics of AlGaN/GaN schottky barrier diode with gated edge termination (GET-SBD) by adding low-K blocks in to the high-K passivation layer. The reverse leakage current of CPG-SBD can be reduced to 1.6 nA/mm by reducing the thickness of high-K dielectric under GET region to 5 nm, while the forward voltage and on-state resistance keep 1 V and 3.8 Ω mm, respectively. Breakdown voltage of CPG-SBDs can be improved by inducing discontinuity of the electric field at the high-K/low-K interface. The breakdown voltage of the optimized CPG-SBD with 4 blocks of low-K can reach 1084 V with anode to cathode distance of 5 μm yielding a high FOM of 5.9 GW/cm2. From the C-V simulation results, CPG-SBDs induce no parasitic capacitance by comparison of the GET-SBDs.
Qin, Dong-Dong; He, Cai-Hua; Li, Yang; Trammel, Antonio C; Gu, Jing; Chen, Jing; Yan, Yong; Shan, Duo-Liang; Wang, Qiu-Hong; Quan, Jing-Jing; Tao, Chun-Lan; Lu, Xiao-Quan
2017-07-10
Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe 2 O 3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm -2 ), a maximal photocurrent of 1.0 mA cm -2 is achieved with ZnO/Fe 2 O 3 core-shell NWs and 2.3 mA cm -2 was achieved for the PH 3 -treated NWs at 1.23 V versus RHE. The PH 3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe 2 PO 5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R
2015-03-01
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.
2015-03-15
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less
Interfacial chemistry of a perfluoropolyether lubricant studied by XPS and TDS
NASA Technical Reports Server (NTRS)
Herrera-Fierro, Pilar C.; Jones, William R., Jr.; Pepper, Stephen V.
1992-01-01
The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications, with different metallic surfaces: 440C steel, gold and aluminum was studied. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates and the interfacial chemistry studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 degree C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Hung, Bohr-Ran
2015-01-01
This study proposes a two-photomask process for fabricating amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene (Teflon) and SiO2 combination layer for improving the electrical reliability of the fabricated TFTs. Teflon was deposited as a buffer layer through thermal evaporation. The Teflon layer exhibited favorable compatibility with the underlying IGZO channel layer and effectively protected the a-IGZO TFTs from plasma damage during SiO2 deposition, resulting in a negligible initial performance drop in the a-IGZO TFTs. Compared with passivation-free a-IGZO TFTs, passivated TFTs exhibited superior stability even after 168 h of aging under ambient air at 95% relative humidity. PMID:28788026
Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-05-01
Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.
Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
Elsharkawy, Mohamed; Tortorella, Domenico; Kapatral, Shreyas; Megaridis, Constantine M
2016-05-03
Frost formation is omnipresent when suitable environmental conditions are met. A good portion of research on combating frost formation has revolved around the passive properties of superhydrophobic (SHPO) and slippery lubricant-impregnated porous (SLIP) surfaces. Despite much progress, the need for surfaces that can effectively combat frost formation over prolonged periods still remains. In this work, we report, for the first time, the use of electrically conductive SHPO/SLIP surfaces for active mitigation of frost formation. First, we demonstrate the failure of these surfaces to passively avert prolonged (several hours) frosting. Next, we make use of their electroconductive property for active Joule heating, which results in the removal of any formed frost. We study the role of the impregnating lubricant in the heat transfer across the interface, the surface, and the ambient. We show that, even though the thermal properties of the impregnating lubricant may vary drastically, the lubricant type does not noticeably affect the defrosting behavior of the surface. We attribute this outcome to the dominant thermal resistance of the thick frost layer formed on the cooled surface. We support this claim by drawing parallels between the present system and heat transfer through a one-dimensional (1D) composite medium, and solving the appropriate transient transport equations. Lastly, we propose periodic thermal defrosting for averting frost formation altogether. This methodology utilizes the coating's passive repellent capabilities, while eliminating the dominant effect of thick deposited frost layers. The periodic heating approach takes advantage of lubricants with higher thermal conductivities, which effectively enhance heat transfer through the porous multiphase surface that forms the first line of defense against frosting.
NASA Astrophysics Data System (ADS)
Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan
2018-01-01
A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.
Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun
2016-05-01
Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.
NASA Astrophysics Data System (ADS)
Bahrani, Babak
The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known as SDT). For each coating type and weathering period, three different radiative heat flux levels were used in the combustibility tests. Data obtained from the tests, including flammability and thermal properties, were gathered, analyzed, and compared to non-weathered specimens. The results revealed visible effects of weathering on pre (and up to)-ignition flammability and intumescent properties, especially decreases in Time-to-Ignition (TTI), Time-to-Intumescence (tintu.), and (maximum) Intumescence Height (Hintu.) values in weathered specimens. These results showed that the ignition resistance of the coating layers decreased after weathering exposure. On the other hand, the obtained results from weathered specimens for the post-ignition flammability properties, especially Peak Heat Release Rate (PHRR) and Effective Heat of Combustion (EHC) did not show a significant difference in comparison to the non-weathered samples. These results demonstrated that the weathered coating layer would not likely to act as an additional combustible fuel to increase fire spread.
Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
García-Tecedor, M.; Karazhanov, S. Zh; Vásquez, G. C.; Haug, H.; Maestre, D.; Cremades, A.; Taeño, M.; Ramírez-Castellanos, J.; González-Calbet, J. M.; Piqueras, J.; You, C. C.; Marstein, E. S.
2018-01-01
In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO2 and SnO2). The hybrid compound was deposited at room temperature by spin coating—a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.
Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles.
García-Tecedor, M; Karazhanov, S Zh; Vásquez, G C; Haug, H; Maestre, D; Cremades, A; Taeño, M; Ramírez-Castellanos, J; González-Calbet, J M; Piqueras, J; You, C C; Marstein, E S
2018-01-19
In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO 2 and SnO 2 ). The hybrid compound was deposited at room temperature by spin coating-a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO 2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.
Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents.
Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios
2015-09-11
The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages.
Thermal stability of photovoltaic a-Si:H determined by neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qviller, A. J., E-mail: atlejq@ife.no; Haug, H.; You, C. C.
2014-12-08
Neutron and X-ray reflectometry were used to determine the layer structure and hydrogen content of thin films of amorphous silicon (a-Si:H) deposited onto crystalline silicon (Si) wafers for surface passivation in solar cells. The combination of these two reflectometry techniques is well suited for non-destructive probing of the structure of a-Si:H due to being able to probe buried interfaces and having sub-nanometer resolution. Neutron reflectometry is also unique in its ability to allow determination of density gradients of light elements such as hydrogen (H). The neutron scattering contrast between Si and H is strong, making it possible to determine themore » H concentration in the deposited a-Si:H. In order to correlate the surface passivation properties supplied by the a-Si:H thin films, as quantified by obtainable effective minority carrier lifetime, photoconductance measurements were also performed. It is shown that the minority carrier lifetime falls sharply when H has been desorbed from a-Si:H by annealing.« less
Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents
Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios
2015-01-01
The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages. PMID:28793554
Nitrided SrTiO3 as charge-trapping layer for nonvolatile memory applications
NASA Astrophysics Data System (ADS)
Huang, X. D.; Lai, P. T.; Liu, L.; Xu, J. P.
2011-06-01
Charge-trapping characteristics of SrTiO3 with and without nitrogen incorporation were investigated based on Al/Al2O3/SrTiO3/SiO2/Si (MONOS) capacitors. A Ti-silicate interlayer at the SrTiO3/SiO2 interface was confirmed by x-ray photoelectron spectroscopy and transmission electron microscopy. Compared with the MONOS capacitor with SrTiO3 as charge-trapping layer (CTL), the one with nitrided SrTiO3 showed a larger memory window (8.4 V at ±10 V sweeping voltage), higher P/E speeds (1.8 V at 1 ms +8 V) and better retention properties (charge loss of 38% after 104 s), due to the nitrided SrTiO3 film exhibiting higher dielectric constant, higher deep-level traps induced by nitrogen incorporation, and suppressed formation of Ti silicate between the CTL and SiO2 by nitrogen passivation.
NASA Astrophysics Data System (ADS)
Bostater, Charles R.
2016-05-01
In-situ sampling, characterization and quantification of colloidal aggregates and flocs in ambient water is complex but needed in order to understand their role in development and maintenance of moving fluid muds, muck, bottom boundary lutocline layers and nephelometric interfaces in aquatic systems. These bottom boundary interfaces and associated processes contribute to sedimentation, particle deposition and resuspension of total particulate matter and associated nutrients. Increasing the scientific understanding of the above requires advances in environmental sensing instrumentation (passive and active) to successfully understand these aquatic interfaces. Standalone in-situ sensors that automatically perform multiple steps including sampling, separation, and detection have the potential to greatly advance analytical science. A new in-situ multispectral optical camera system for environmental monitoring and surveillance of delicate flocs and related aggregate structures is described. Results of the system show that flocs - 0.1 mm -10.2 mm diameter (mean diameter of 2.77 mm), with a variance of 5.952 mm and a median effective cross-section area of 30 mm2 can be measured using the passive multispectral optical imaging system. The system is lightweight, compact and suitable for shallow or deep water deployment. When combined with fixed station acoustic echogram instruments, nephelometric (turbidity) waves can be easily observed. Time sequential analysis of imagery allows the system to be used as an optical particle velocimetry system (OPVS). Initial shallow water testing resulted in Lagrangian particle velocities of 0.3 to 3 cm sec-1 to be measured. Similar results were obtained from an acoustic velocity current meter (MAVS3) and a Marsh McBirney 201D electromagnetic current meters. When combined with results from direct methods using sondes for estimating sediment mass fluxes, the combined systems provide data necessary for sediment and water quality modeling. The new optical sensor system will help address analytical needs reported in past studies and provides a new standard method and protocol for measuring the movement of sediment and particulates in the aquatic bottom boundary layers.
Ahoughalandari, Bahar; Cabral, Alexandre R
2017-05-01
The efficiency of methane oxidation in passive methane oxidation biosystems (PMOBs) is influenced by, among other things, the intensity and distribution of the CH 4 loading at the base of the methane oxidation layer (MOL). Both the intensity and distribution are affected by the capillary barrier that results from the superposition of the two materials constituting the PMOB, namely the MOL and the gas distribution layer (GDL). The effect of capillary barriers on the unsaturated flow of water has been well documented in the literature. However, its effect on gas flow through PMOBs is still poorly documented. In this study, sets of numerical simulations were performed to evaluate the effect of unsaturated hydraulic characteristics of the MOL material on the value and distribution of moisture and hence, the ease and uniformity in the distribution of the upward flow of biogas along the GDL-MOL interface. The unsaturated hydraulic parameters of the materials used to construct the experimental field plot at the St-Nicephore landfill (Quebec, Canada) were adopted to build the reference simulation of the parametric study. The behavior of the upward flow of biogas for this particular material was analyzed based on its gas intrinsic permeability function, which was obtained in the laboratory. The parameters that most influenced the distribution and the ease of biogas flow at the base of the MOL were the saturated hydraulic conductivity and pore size distribution of the MOL material, whose effects were intensified as the slope of the interface increased. The effect of initial dry density was also assessed herein. Selection of the MOL material must be made bearing in mind that these three parameters are key in the effort to prevent unwanted restriction in the upward flow of biogas, which may result in the redirection of biogas towards the top of the slope, leading to high CH 4 fluxes (hotspots). In a well-designed PMOB, upward flow of biogas across the GDL-MOL interface is unrestricted and moisture distribution is uniform. This paper tries to show how to obtain this. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.
2004-05-01
Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .
Stable High-Performance Perovskite Solar Cells Based on Inorganic Electron Transporting Bi-layers.
Gu, Hao; Zhao, Chen; Zhang, Yiqiang; Shao, Guosheng
2018-06-27
As one of the significant electron transporting materials (ETM) in efficient planar heterojunction perovskite solar cells (PSCs), SnO<sub>2</sub> can collect/transfer photo-generated carriers produced in perovskite active absorbers and suppress the carrier recombination at interfaces. In this study, we demonstrate that mild solution-processed SnO<sub>2</sub> compact layer can be an eminent ETM for planar heterojunction PSCs. Here, the device based on chemical-bath-deposited SnO<sub>2</sub> electron transporting layer (ETL) exhibits a power conversion efficiency (PCE) of 16.10% and with obvious hysteresis effect (hysteresis index=19.5%), owing to the accumulation and recombination of charge carriers at SnO<sub>2</sub>/perovskite interface. In order to improve the carrier dissociation and transport process, an ultrathin TiO<sub>2</sub> film was deposited on the top of SnO<sub>2</sub> ETL passivating nonradiative recombination center. The corresponding device based on TiO<sub>2</sub>@SnO<sub>2</sub> electron transporting bi-layer (ETBL) exhibited a high PCE (17.45%) and a negligible hysteresis effect (hysteresis index=1.5%). These findings indicate that this facile solution-processed TiO<sub>2</sub>@SnO<sub>2</sub> ETBL paves a scalable and inexpensive way for fabricating hysteresis-less and high-performance PSCs. © 2018 IOP Publishing Ltd.
Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers
NASA Astrophysics Data System (ADS)
Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won
2017-11-01
Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.
Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.
Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won
2017-11-24
Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.
Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.
Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E
2018-01-18
Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.
Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae
2017-11-24
We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.
Optimization of Integrative Passive Sampling Approaches for Use in the Epibenthic Environment
2016-12-23
Passive sampler, POCIS, Integrative, Sediment , Benthic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...Unexploded ordnance, Passive sampler, POCIS, Integrative, Sediment , Benthic v Acknowledgements Dr. Shane Morrison and Ms. Ingrid...flow and turbulence near the sampler. In complex environments at the sediment – water interface, this may limit the utility of passive sampling
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Liu, Yan; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao
2017-11-01
A method to determine the strain distribution of the AlGaN barrier layer after the device fabrication and the passivation process has been presented. By fitting the calculated parasitic source access resistance with the measured ones for the AlGaN/AlN/GaN HFETs and using the polarization Coulomb field scattering theory, the strain variation of the AlGaN barrier layer after the passivation process has been quantitatively studied. The results show that the tensile strain in the access regions of the AlGaN barrier layer has been increased by 4.62% for the 250 nm-Si3N4 passivated device, and has been decreased by 2.0% for the 400 nm-Si3N4 passivated device, compared to that of before the passivation, respectively. For the gate region of the two devices, the tensile strain has been decreased by 60.77% and increased by 3.60% after the passivation of different thicknesses, oppositely.
Semiconductor laser having a non-absorbing passive region with beam guiding
NASA Technical Reports Server (NTRS)
Botez, Dan (Inventor)
1986-01-01
A laser comprises a semiconductor body having a pair of end faces and including an active region comprising adjacent active and guide layers which is spaced a distance from the end face and a passive region comprising adjacent non-absorbing guide and mode control layers which extends between the active region and the end face. The combination of the guide and mode control layers provides a weak positive index waveguide in the lateral direction thereby providing lateral mode control in the passive region between the active region and the end face.
The Li-ion rechargeable battery: a perspective.
Goodenough, John B; Park, Kyu-Sung
2013-01-30
Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation
NASA Astrophysics Data System (ADS)
Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang
2008-07-01
This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.
NASA Astrophysics Data System (ADS)
Xu, Shenzhen
Metal oxide materials are ubiquitous in nature and in our daily lives. For example, the Earth's mantle layer that makes up about 80% of our Earth's volume is composed of metal oxide materials, the cathode materials in the lithium-ion batteries that provide power for most of our mobile electronic devices are composed of metal oxides, the chemical components of the passivation layers on many kinds of metal materials that protect the metal from further corrosion are metal oxides. This thesis is composed of two major topics about the metal oxide materials in nature. The first topic is about our computational study of the iron chemistry in the Earth's lower mantle metal oxide materials, i.e. the bridgmanite (Fe-bearing MgSiO3 where iron is the substitution impurity element) and the ferropericlase (Fe-bearing MgO where iron is the substitution impurity element). The second topic is about our multiscale modeling works for understanding the nanoscale kinetic and thermodynamic properties of the metal oxide cathode interfaces in Li-ion batteries, including the intrinsic cathode interfaces (intergrowth of multiple types of cathode materials, compositional gradient cathode materials, etc.), the cathode/coating interface systems and the cathode/electrolyte interface systems. This thesis uses models based on density functional theory quantum mechanical calculations to explore the underlying physics behind several types of metal oxide materials existing in the interior of the Earth or used in the applications of lithium-ion batteries. The exploration of this physics can help us better understand the geochemical and seismic properties of our Earth and inspire us to engineer the next generation of electrochemical technologies.
NASA Astrophysics Data System (ADS)
Awasthi, Reena; Abraham, Geogy; Kumar, Santosh; Bhattacharyya, Kaustava; Keskar, Nachiket; Kushwaha, R. P.; Rao, Ramana; Tewari, R.; Srivastava, D.; Dey, G. K.
2017-06-01
In this study, corrosion characteristics of a nickel-based Ni-Mo-Cr-Si hardfacing alloy having 32Mo, 15Cr, and 3Si (wt pct) as alloying elements, deposited on stainless steel SS316L substrate by laser cladding, have been presented. Corrosion behavior of the laser clad layer was evaluated in reducing (0.1 M HCl) and oxidizing (0.5 M HNO3) environments, in comparison with the reference substrate SS316L, using electrochemical potentiodynamic technique at room temperature. The corrosion mechanisms have been evaluated on the basis of microstructural and microchemical analysis using scanning electron microscopy attached with energy-dispersive spectrometry. Passivity behavior of the laser clad layer was studied in 0.5 M H2SO4, using the potentiostatic technique and analyzing the passive layer by X-ray photoelectron spectroscopy. Laser clad layer of Ni-Mo-Cr-Si exhibited higher pitting corrosion resistance in chloride (reducing) environment, indicated by much higher breakdown potential ( 0.8 VSCE) and the absence of pitting as compared to substrate SS316L ( 0.3 VSCE). However, in oxidizing (0.5 M HNO3) environment, both the laser clad layer and substrate SS316L showed excellent and similar corrosion resistance exhibiting high breakdown potential ( 0.85 VSCE) and wide passivation range ( 0.8 VSCE) with low passive current density ( 4 to 7 × 10-6 A/cm2). The stable passive layer formed on laser clad layer of Ni-Mo-Cr-Si after exposure in 0.5 M H2SO4 solution at constant potential 0.6 VSCE (within the passive range), consisted oxides of Mo as Mo+4 (MoO2) and Mo+6 (MoO4)-2, Cr as Cr3+ (mixture of both Cr2O3 and Cr (OH)3), and Si as Si4+(SiO2), which have contributed to passivation and repassivation and therefore excellent corrosion behavior.
Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun
2016-12-01
Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.
Protective capping and surface passivation of III-V nanowires by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko
2016-01-15
Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less
Passivation on High Q Acoustic Strain Sensor for Accelerometer.
1984-11-01
selection of passivation layers. Preliminary results indicated that V203 , (yttrium oxide ) and AIN (aluminum nitride) were the best materials for...thickness selection of passivation layers. Preliminary results indicated that Y203 (yttrium oxide ) and AIN (aluminum nitride) were the best materials...crystal, in this case a parabolic temperature characteristic. Several circuits were designed using varactor diode phase shifting networks. FOjcTl Ta tor
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.
2003-01-01
Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.
Molecular tailoring of interfaces for thin film on substrate systems
NASA Astrophysics Data System (ADS)
Grady, Martha Elizabeth
Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult to use more conventional interfacial fracture testing techniques. Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface in an on-demand fashion. The SAM end-group functionality is systematically varied and the corresponding effect on interfacial adhesion between a transfer printed gold (Au) film and a fused silica substrate is measured. SAMs with four different end groups are investigated: methyl, amine, bromine and thiol. In addition to these four end groups, mixed monolayers of increasing molar ratio of thiol to methyl SAMs in solution are investigated. There is a strong dependence of interfacial chemistry on the adhesion strength of Au films. In addition to the chemical functionality of the SAM, surface roughness of the underlying substrate also has a significant impact on the interfacial strength. Thin films of mechanochemically active polymer are subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produces large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain-rates (ca. 107-108 s -1). The polymer system, spiropyran (SP)- linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP is evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions. In addition to SP-linked polymer films, the activation of spiropyran interfacial molecules with different side groups is characterized as they adsorb onto a SAM platform with preferential amine terminating chemistry. The reactivity of SP monolayers due to UV irradiation is evaluated by water contact angle goniometry and fluorescence spectroscopy. Side groups on the interfacial spiropyran molecule affect the reactivity and the proximity of neighboring spiropyrans can prevent efficient mobility.
Process and design considerations for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Rohati, A.; Rai-Choudhury, P.
1985-01-01
This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.
Air-annealing of Cu(In, Ga)Se2/CdS and performances of CIGS solar cells
NASA Astrophysics Data System (ADS)
Niu, X.; Zhu, H.; Liang, X.; Guo, Y.; Li, Z.; Mai, Y.
2017-12-01
In this study, the annealing treatment on Cu(In, Ga)Se2 (CIGS)/CdS interface in air is systematically investigated under different annealing temperatures from room temperature to 150 °C and different durations. It is found that when CIGS/CdS interface is annealed for a proper duration the corresponding CIGS thin film solar cells show enhanced open circuit voltage (Voc) and fill factor (FF) as well as corresponding conversion efficiency. The capacitance-voltage (C-V) and time-resolved photoluminescence (TR-PL) measurement results indicate that the CIGS thin film solar cells exhibit an increase in net defect density (NCV) and long lifetime for the carriers, respectively, after the annealing treatment of CIGS/CdS at a mediate annealing temperature here. Moreover, the net defect density of annealed solar cells at higher annealing temperatures for a long duration is reduced. All the variations in the solar cell performances, NCV and carrier lifetime would be related to the passivation of Se vacancies and InCu defects, surface (interface) states as well as positive interface discharges and Cu migration etc. A high efficiency CIGS solar cell of 14.4% is achieved. The optimized solar cell of 17.2% with a MgF2 anti-reflective layer has been obtained.
A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennett, William R.
2007-01-01
The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.
NASA Astrophysics Data System (ADS)
Sun, Bing; Chang, Hudong; Wang, Shengkai; Niu, Jiebin; Liu, Honggang
2017-12-01
In0.52Al0.48As/In0.7Ga0.3As metamorphic high-electron-mobility transistors (mHEMTs) on GaAs substrates have been demonstrated. The devices feature an epitaxial structure with Si-doped InP/In0.52Al0.48As Schottky layers, together with an atomic layer deposition (ALD) Al2O3 passivation process. In comparison to the GaAs mHEMTs with plasma enhanced chemical vapor deposition (PECVD) SiN passivation, the devices with ALD Al2O3 passivation exhibit more than one order of magnitude lower gate leakage current (Jg) and much lower contact resistance (RC) and specific contact resistivity (ρC). 100-nm gate length (Lg) In0.52Al0.48As/In0.7Ga0.3As mHEMTs with Si-doped InP/In0.52Al0.48As Schottky layers and ALD Al2O3 passivation exhibit excellent DC and RF characteristics, such as a maximum oscillation frequency (fmax) of 388.2 GHz.
NASA Astrophysics Data System (ADS)
Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong
2017-08-01
We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.
AlGaN/GaN HEMT grown on large size silicon substrates by MOVPE capped with in-situ deposited Si 3N 4
NASA Astrophysics Data System (ADS)
Cheng, Kai; Leys, M.; Derluyn, J.; Degroote, S.; Xiao, D. P.; Lorenz, A.; Boeykens, S.; Germain, M.; Borghs, G.
2007-01-01
AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on 4 and 6 in Si(1 1 1) substrates by metal organic vapor phase epitaxy (MOVPE). A record sheet resistance of 256 Ω/□ has been measured by contactless eddy current mapping on 4 in silicon substrates. The wafer also shows an excellent uniformity and the standard variation is 3.6 Ω/□ over the whole wafer. These values were confirmed by Hall-Van der Pauw measurements. In the 2DEG at the AlGaN/GaN interface, the electron mobility is in the range of 1500-1800 cm 2/Vs and the electron density is between 1.3×10 13 and 1.7×10 13 cm -2. The key step in obtaining these results is an in-situ deposited Si 3N 4 passivation layer. This in-situ Si 3N 4, deposited directly after AlGaN top layer growth in the MOVPE reactor chamber, not only prevents the stress relaxation in AlGaN/GaN hetero-structures but also passivates the surface states of the AlGaN cap layer. HEMT transistors have been processed on the epitaxial structures and the maximum source-drain current density is 1.1 A/mm for a gate-source voltage of 2 V. The current collapse is minimized thanks to in-situ Si 3N 4. First results on AlGaN/GaN structures grown on 6 in Si(1 1 1) are also presented.
Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks
NASA Astrophysics Data System (ADS)
van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.
2017-06-01
Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.
Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors
NASA Astrophysics Data System (ADS)
Liu, Dong; Fu, Yong-Qi; Yang, Le-Chen; Zhang, Bao-Shun; Li, Hai-Jun; Fu, Kai; Xiong, Min
2012-06-01
To improve absorption of quantum well infrared photodetectors (QWIPs), a coupling layer with metallic grating is designed and fabricated above the quantum well. The metal grating is composed of 100 nm Au film on top, and a 20-nm Ti thin layer between the Au film and the sapphire substrate is coated as an adhesion/buffer layer. To protect the photodetector from oxidation and to decrease leakage, a SiO2 film is deposited by means of plasma-enhanced chemical vapor deposition. A value of about 800 nm is an optimized thickness for the SiO2 applied in the metallic grating-based mid-infrared QWIP. In addition, a QWIP passivation layer is studied experimentally. The results demonstrate that the contribution from the layer is positive for metal grating coupling with the quantum well. The closer the permittivity of the two dielectric layers (SiO2 and the passivation layers), and the closer the two transmission peaks, the greater the QWIP enhancement will be.
Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P
2018-08-15
Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
SUN, D.; TONG, L.
2002-05-01
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.
NASA Astrophysics Data System (ADS)
Chen, Jinsuo; Xia, Yunfei; Yang, Jin; Chen, Beibei
2018-06-01
The extremely low friction between incommensurate two-dimensional (2D) atomic layers has recently attracted a great interest. Here, we demonstrated a promising surfactant-assisted strategy for the synthesis of MoS2/reduced graphene oxide (MoS2/rGO) hybrid materials with monolayer MoS2 and rGO, which exhibited excellent tribological metrics with a friction coefficient of ˜ 0.09 and a wear rate of ˜ 2.08 × 10-5 mm3/Nm in the ethanol dispersion. The incommensurate 2D atomic layer interface formed due to intrinsic lattice mismatch between MoS2 and graphene was thought to be responsible for the excellent lubricating performances. In addition to the benefits of unique hybrid structure, MoS2/rGO hybrids could also adsorb on metal surfaces and screen the metal-metal interaction to passivate the metal surfaces with a consequent reduction of corrosion wear during sliding. This work could pave a new pathway to design novel materials for pursuing excellent tribological properties by hybridizing different 2D atomic-layered materials.
Aspects of Turbulent / Non-Turbulent Interfaces
NASA Technical Reports Server (NTRS)
Bisset, D. K.; Hunt, J. C. R.; Rogers, M. M.; Koen, Dennis (Technical Monitor)
1999-01-01
A distinct boundary between turbulent and non-turbulent regions in a fluid of otherwise constant properties is found in many laboratory and engineering turbulent flows, including jets, mixing layers, boundary layers and wakes. Generally, the flow has mean shear in at least one direction within t he turbulent zone, but the non-turbulent zones have no shear (adjacent laminar shear is a different case, e.g. transition in a boundary layer). There may be purely passive differences between the turbulent and non-turbulent zones, e.g. small variations in temperature or scalar concentration, for which turbulent mixing is an important issue. The boundary has several major characteristics of interest for the present study. Firstly, the boundary advances into the non-turbulent fluid, or in other words, nonturbulent fluid is entrained. Secondly, the change in turbulence properties across the boundary is remarkably abrupt; strong turbulent motions come close to the nonturbulent fluid, promoting entrainment. Thirdly, the boundary is irregular with a continually changing convoluted shape, which produces statistical intermittency. Its shape is contorted at all scales of the turbulent motion.
Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction
NASA Astrophysics Data System (ADS)
Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong
2016-06-01
ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.
The long-term corrosion performance of Alloy 22 in heated brine solutions
Enos, D. G.; Bryan, C. R.
2015-02-13
Long-term corrosion experiments have been performed on Alloy 22 (UNS N06022), in a series of heated brines formulated to represent evaporatively concentrated ground water, to evaluate the long-term corrosion performance of the material. These solutions included 0.5 M NaCl, in addition to two simulated concentrated ground water solutions. Under conditions where Alloy 22 was anticipated to be passive, the corrosion rate was found to be vanishingly small (i.e., below the resolution of the weight-loss technique used to quantify corrosion in this study). However, under low pH conditions where Alloy 22 was anticipated to be active, or more specifically, where themore » chromium oxide passive film was not thermodynamically stable, the corrosion rate was appreciable. Furthermore, under such conditions the corrosion rate was observed to be a strong function of temperature, with an activation energy of 72.9±1.8 kJ/mol. Time of Flight-Secondary Ion Mass Spectroscopy analysis of the oxide layer revealed that, while sulfur was present within the oxide for all test conditions, no accumulation was observed at or near the metal/oxide interface. Furthermore, these observations confirm that inhibition of passive film formation via sulfur accumulation does not occur during the corrosion of Alloy 22.« less
Park, Sang Wook; Choi, Jong Youn; Siddiqui, Shariq; Sahu, Bhagawan; Galatage, Rohit; Yoshida, Naomi; Kachian, Jessica; Kummel, Andrew C
2017-02-07
Si 0.5 Ge 0.5 (110) surfaces were passivated and functionalized using atomic H, hydrogen peroxide (H 2 O 2 ), and either tetrakis(dimethylamino)titanium (TDMAT) or titanium tetrachloride (TiCl 4 ) and studied in situ with multiple spectroscopic techniques. To passivate the dangling bonds, atomic H and H 2 O 2 (g) were utilized and scanning tunneling spectroscopy (STS) demonstrated unpinning of the surface Fermi level. The H 2 O 2 (g) could also be used to functionalize the surface for metal atomic layer deposition. After subsequent TDMAT or TiCl 4 dosing followed by a post-deposition annealing, scanning tunneling microscopy demonstrated that a thermally stable and well-ordered monolayer of TiO x was deposited on Si 0.5 Ge 0.5 (110), and X-ray photoelectron spectroscopy verified that the interfaces only contained Si-O-Ti bonds and a complete absence of GeO x . STS measurements confirmed a TiO x monolayer without mid-gap and conduction band edge states, which should be an ideal ultrathin insulating layer in a metal-insulator-semiconductor structure. Regardless of the Ti precursors, the final Ti density and electronic structure were identical since the Ti bonding is limited by the high coordination of Ti to O.
NASA Astrophysics Data System (ADS)
Lachab, M.; Sultana, M.; Fatima, H.; Adivarahan, V.; Fareed, Q.; Khan, M. A.
2012-12-01
This work reports on the dc performance of AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) grown on Si (1 1 1) substrate and the study of current dispersion in these devices using various widely adopted methods. The MOSHEMTs were fabricated using a very thin (4.2 nm) SiO2 film as the gate insulator and were subsequently passivated with about 30 nm thick Si3N4 layer. For devices with 2.5 µm long gates and a 4 µm drain-to-source spacing, the maximum saturation drain current density was 822 mA mm-1 at + 4 V gate bias and the peak external transconductance was ˜100 mS mm-1. Furthermore, the oxide layer successfully suppressed the drain and gate leakage currents with the subthreshold current and the gate diode current levels exceeding by more than three orders of magnitude the levels found in their Schottky gate counterparts. Capacitance-voltage and dynamic current-voltage measurements were carried out to assess the oxide quality as well as the devices’ surface properties after passivation. The efficacy of each of these characterization techniques to probe the presence of interface traps and oxide charge in the nitride-based transistors is also discussed.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.
Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas
2014-11-26
Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.
NASA Technical Reports Server (NTRS)
Herrera-Fierro, Pilar; Jones, William R., Jr.; Pepper, Stephen V.
1993-01-01
The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications was studied with different metallic surfaces: 440C steel, gold, and aluminum. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates, and the interfacial chemistry was studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).
Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime
2017-09-13
We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.
New PCBM/carbon based electron transport layer for perovskite solar cells.
Mamun, Abdullah Al; Ava, Tanzila Tasnim; Zhang, Kai; Baumgart, Helmut; Namkoong, Gon
2017-07-21
Carbon is inherently abundant in nature and relatively inexpensive, which can potentially reduce the manufacturing cost of solar cells. In recent years, carbon has been used as a hole transport layer or counter electrode in perovskite solar cells. Herein, we demonstrate that carbon can also be used as a charge transport layer capable of enhancing the energy conversion efficiency of a CH 3 NH 3 PbI 3-x Cl x solar cell when carbon is combined with PCBM. Particularly, we have been able to deposit an ultra-flat carbon layer using an e-beam irradiation method, which exhibited much better conductivity than the competitive PCBM/C60 layer. In addition, quantitative analysis of interfacial charge dynamics shows that the quenching efficiency of PCBM/carbon is comparable to that of PCBM/C60 but better interface defect passivation and improved series and shunt resistances were observed when PCBM/carbon was employed. For the photovoltaic performance, the reference perovskite solar cell fabricated from the widely used PCBM/C60 has a power conversion efficiency (PCE) of 14% while the perovskite solar cell with PCBM/carbon has an increased PCE of 16%. Our results demonstrate the potential of the use of cost-effective carbon for perovskite solar cells, which could reduce production costs.
Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene
NASA Astrophysics Data System (ADS)
Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel
Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.
NASA Astrophysics Data System (ADS)
Lin, Chunyan; Chen, Ping; Xiong, ZiYang; Liu, Debei; Wang, Gang; Meng, Yan; Song, Qunliang
2018-02-01
Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.
NASA Astrophysics Data System (ADS)
Zhe, Wang; Dong, Chaofang; Sefei, Yang; Dawei, Zhang; Kui, Xiao; Xiaogang, Li
2016-08-01
Inspired by the porous morphology of anodized Ti and the adhesive versatility of polydopamine (PDA), which can induce apatite mineralization, we fabricated a novel interface by coating a porous anodized TiO2 layer with PDA to rapidly immobilize HA on Ti-based substrates. It was found that the as-prepared PDA/anodized (HD) surface exhibited nanoscale roughness, which possessed an excellent ability to form apatite when immersed in 1.5× simulated body fluid (SBF), as observed by AFM and FE-SEM. The morphology and composition of each layer were further confirmed by XPS, XRD and FTIR. The corrosion resistance of the multilayer was investigated using potentiodynamic polarization curve and electrochemical impedance spectra (EIS) measurements in a 0.9 wt% NaCl solution, the results suggested that the HA/PDA/anodized (HDA) layer increased the corrosion resistance of pure Ti with higher corrosion potential and lower passive current, the surface wettability was also enhanced with the incorporation of HA. In vitro cellular assays showed that the HDA layer stimulated cell attachment and improved the alkaline phosphate (ALP) activity. Overall, the PDA/anodized treatment provided a viable method to quickly integrate HA, and the obtained HDA layer improved both corrosion resistance and biocompatibility of the Ti surface.
Li, Chengcheng; Luo, Zhibin; Wang, Tuo; Gong, Jinlong
2018-05-11
Collecting and storing solar energy to hydrogen fuel through a photo-electrochemical (PEC) cell provides a clean and renewable pathway for future energy demands. Having earth-abundance, low biotoxicity, robustness, and an ideal n-type band position, hematite (α-Fe 2 O 3 ), the most common natural form of iron oxide, has occupied the research hotspot for decades. Here, a close look into recent progress of hematite photoanodes for PEC water splitting is provided. Effective approaches are introduced, such as cocatalysts loading and surface passivation layer deposition, to improve the hematite surface reaction in thermodynamics and kinetics. Second, typical methods for enhancing light absorption and accelerating charge transport in hematite bulk are reviewed, concentrating upon doping and nanostructuring. Third, the back contact between hematite and substrate, which affects interface states and electron transfer, is deliberated. In addition, perspectives on the key challenges and future prospects for the development of hematite photoelectrodes for PEC water splitting are given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leinweber, Felix C; Tallarek, Ulrich
2005-11-24
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.
Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation
NASA Astrophysics Data System (ADS)
Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.
2008-09-01
In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.
Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P
2014-03-01
Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa
2018-06-01
Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.
A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices
NASA Astrophysics Data System (ADS)
Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.
2018-07-01
Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.
Metastability of a-SiOx:H thin films for c-Si surface passivation
NASA Astrophysics Data System (ADS)
Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.
2017-01-01
The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution of hydrogen in the film revealed by FTIR spectra, and we developed a model for the effect of both treatments on the Sisbnd H bonding and the metastability shown in the lifetime of a-SiOx:H/c-Si/a-SiOx:H structure. We found that, after UV exposure, thermal annealing steps can be used as a tool for the c-Si passivation recovery and enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research
Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less
Parylene-C passivation and effects on rectennas' wireless power transfer performance
NASA Astrophysics Data System (ADS)
Cooper, Camille; Eldridge, Keisharra; Kim, Min H.; Yoon, Hargsoon; Choi, Sang H.; Song, Kyo D.
2014-04-01
In this study, the effect of Parylene-C coated as a passivation layer on various rectennas is investigated in terms of their wireless power transfer performance. A passivation has been used for protection of rectenna circuits and their packaging in order for protection of the circuit elements and electrical insulation. Especially, wireless power receiving rectennas attached on sensors or on moving vehicles such as airship needs proper protection while they are exposed to harsh environment. In this research, a layer of Parylene-C thin film is used for passivation on rectennas and electromagnetic coupling by the coating is assessed by the measurement of receiving power levels. In this research, an electrochemical analysis method will also be introduced to measure the degree of water protection by a Parylene-C layer.
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias
2017-11-01
Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
A Novel Passive Robotic Tool Interface
NASA Astrophysics Data System (ADS)
Roberts, Paul
2013-09-01
The increased capability of space robotics has seen their uses increase from simple sample gathering and mechanical adjuncts to humans, to sophisticated multi- purpose investigative and maintenance tools that substitute for humans for many external space tasks. As with all space missions, reducing mass and system complexity is critical. A key component of robotic systems mass and complexity is the number of motors and actuators needed. MDA has developed a passive tool interface that, like a household power drill, permits a single tool actuator to be interfaced with many Tool Tips without requiring additional actuators to manage the changing and storage of these tools. MDA's Multifunction Tool interface permits a wide range of Tool Tips to be designed to a single interface that can be pre-qualified to torque and strength limits such that additional Tool Tips can be added to a mission's "tool kit" simply and quickly.
Selenium Interlayer for High-Efficiency Multijunction Solar Cell
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A (Inventor)
2015-01-01
A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.
Selenium Interlayer for High-Efficiency Multijunction Solar Cell
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2016-01-01
A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.
Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei
2015-10-07
Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.
Im, Ju-Hee; Kim, Hong-Rae; An, Byoung-Gi; Chang, Young Wook; Kang, Min-Jung; Lee, Tae-Geol; Son, Jin Gyeng; Park, Jae-Gwan; Pyun, Jae-Chul
2017-06-15
The direct in situ synthesis of cadmium sulfide (CdS) nanowires (NWs) was presented by direct synthesis of CdS NWs on the gold surface of an interdigitated electrode (IDE). In this work, we investigated the effect of a strong oxidant on the surfaces of the CdS NWs using X-ray photoelectron spectroscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. We also fabricated a parylene-C film as a surface passivation layer for in situ-synthesized CdS NW photosensors and investigated the influence of the parylene-C passivation layer on the photoresponse during the coating of parylene-C under vacuum using a quartz crystal microbalance and a photoanalyzer. Finally, we used the in situ-synthesized CdS NW photosensor with the parylene-C passivation layer to detect the chemiluminescence of horseradish peroxidase and luminol and applied it to medical detection of carcinoembryonic antigen. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of graphene inter layer on the formation of the MoS2-CZTS interface during growth
NASA Astrophysics Data System (ADS)
Vishwakarma, Manoj; Thota, Narayana; Karakulina, Olesia; Hadermann, Joke; Mehta, B. R.
2018-05-01
The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
Si{sub 3}N{sub 4} layers for the in-situ passivation of GaN-based HEMT structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.
2015-11-15
A method for the in situ passivation of GaN-based structures with silicon nitride in the growth chamber of a metal organic vapor phase epitaxy (MOVPE) reactor is described. The structural and electrical properties of the obtained layers are investigated. The in situ and ex situ passivation of transistor structures with silicon nitride in an electron-beam-evaporation device are compared. It is shown that ex situ passivation changes neither the initial carrier concentration nor the mobility. In situ passivation makes it possible to protect the structure surface against uncontrollable degradation upon the finishing of growth and extraction to atmosphere. In the inmore » situ passivated structure, the carrier concentration increases and the mobility decreases. This effect should be taken into account when manufacturing passivated GaN-based transistor structures.« less
Hebrew Verbal Passives in Later Language Development: The Interface of Register and Verb Morphology
ERIC Educational Resources Information Center
Ravid, Dorit; Vered, Lizzy
2017-01-01
The current study examined the production of Hebrew verbal passives across adolescence as mediated by linguistic register and verb morphology. Participants aged eight to sixteen years and a group of adults were asked to change written active-voice sentences into corresponding passive-voice forms, divided by verb register (neutral and high),…
Electrolyte and Electrode Passivation for Thin Film Batteries
NASA Technical Reports Server (NTRS)
West, W.; Whitacre, J.; Ratnakumar, B.; Brandon, E.; Blosiu, J.; Surampudi, S.
2000-01-01
Passivation films for thin film batteries have been prepared and the conductivity and voltage stability window have been measured. Thin films of Li2CO3 have a large voltage stability window of 4.8V, which facilitates the use of this film as a passivation at both the lithium anode-electrolyte interface at high cathodic potentials.
NASA Astrophysics Data System (ADS)
Asif, Muhammad; Chen, Chen; Peng, Ding; Xi, Wang; Zhi, Jin
2018-04-01
Owing to the great influence of surface passivation on DC and RF performance of InP-based HEMTs, the DC and RF performance of InAlAs/InGaAs InP HEMTs were studied before and after passivation, using an ultra-thin 15 nm atomic layer deposition Al2O3 layer. Increase in Cgs and Cgd was significantly limited by scaling the thickness of the Al2O3 layer. For verification, an analytical small-signal equivalent circuit model was developed. A significant increase in maximum transconductance (gm) up to 1150 mS/mm, drain current (IDS) up to 820 mA/mm and fmax up to 369.7 GHz was observed, after passivation. Good agreement was obtained between the measured and the simulated results. This shows that the RF performance of InP-based HEMTs can be improved by using an ultra-thin ALD-Al2O3 surface passivation.
Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.
Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung
2017-07-05
Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.
Simulating Lahars Using A Rotating Drum
NASA Astrophysics Data System (ADS)
Neather, Adam; Lube, Gert; Jones, Jim; Cronin, Shane
2014-05-01
A large (0.5 m in diameter, 0.15 m wide) rotating drum is used to investigate the erosion and deposition mechanics of lahars. To systematically simulate the conditions occurring in natural mass flows our experimental setup differs from the common rotating drum employed in industrial/engineering studies. Natural materials with their typical friction properties are used, as opposed to the frequently employed spherical glass beads; the drum is completely water-proof, so solid/air and solid/liquid mixtures can be investigated; the drum velocity and acceleration can be precisely controlled using a software interface to a micro-controller, allowing for the study of steady, unsteady and intermediate flow regimes. The drum has a toughened glass door, allowing high-resolution, high-speed video recording of the material inside. Vector maps of the velocities involved in the flows are obtained using particle image velocimetry (PIV). The changes in velocity direction and/or magnitude are used to locate the primary internal boundaries between layers of opposite flow direction, as well as secondary interfaces between shear layers. A range of variables can be measured: thickness and number of layers; the curvature of the free surface; frequency of avalanching; position of the centre of mass of the material; and the velocity profiles of the flowing material. Experiments to date have focussed on dry materials, and have had a fill factor of approximately 0.3. Combining these measured variables allows us to derive additional data of interest, such as mass and momentum flux. It is these fluxes that we propose will allow insight into the erosion/deposition mechanics of a lahar. A number of conclusions can be drawn to date. A primary interface separates flowing and passive region (this interface has been identified in previous studies). As well as the primary interface, the flowing layer separates into individual shear layers, with individual erosion/deposition and flow histories. This complex flow geometry and process of erosion and deposition seen in our high speed videos is more complicated than previously reported in the literature. We identify two layers only in the slowest flows (< 0.5 rad s-1), while faster ones (< 4 rad s-1) include between three and five. As the rotational velocity of the drum increases, the curvature of the free surface increases. In the central part of the drum, the primary interfaces occasionally merges into an elliptical zone rather than a linear shear boundary. Inside this zone is a complete circulation of material. These zones' size and number appears to be a function of the rotational velocity of the drum. These "Neather cells" (as we tentatively name these phenomena) can reach as large as 20 mm in thickness. The centre of mass' deflection from vertical is linearly dependent on rotational velocity, whilst the typical flow regimes as identified by Mellmann [2001] show no influence. The frequency of avalanches increases with velocity up to a critical velocity (approximately 1.1 rad s-1), after which the avalanche frequency remains constant. 1 References J Mellmann. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology, 118(3):251-270, 2001.
CDTE alloys and their application for increasing solar cell performance
NASA Astrophysics Data System (ADS)
Swanson, Drew E.
Cadmium Telluride (CdTe) thin film solar is the largest manufactured solar cell technology in the United States and is responsible for one of the lowest costs of utility scale solar electricity at a purchase agreement of $0.0387/kWh. However, this cost could be further reduced by increasing the cell efficiency. To bridge the gap between the high efficiency technology and low cost manufacturing, a research and development tool and process was built and tested. This fully automated single vacuum PV manufacturing tool utilizes multiple inline close space sublimation (CSS) sources with automated substrate control. This maintains the proven scalability of the CSS technology and CSS source design but with the added versatility of independent substrate motion. This combination of a scalable deposition technology with increased cell fabrication flexibility has allowed for high efficiency cells to be manufactured and studied. The record efficiency of CdTe solar cells is lower than fundamental limitations due to a significant deficit in voltage. It has been modeled that there are two potential methods of decreasing this voltage deficiency. The first method is the incorporation of a high band gap film at the back contact to induce a conduction-band barrier that can reduce recombination by reflecting electrons from the back surface. The addition of a Cd1-x MgxTe (CMT) layer at the back of a CdTe solar cell should induce this desired offset and reflect both photoelectrons and forward-current electrons away from the rear surface. Higher collection of photoelectrons will increase the cells current and the reduction of forward current will increase the cells voltage. To have the optimal effect, CdTe must have reasonable carrier lifetimes and be fully depleted. To achieve this experimentally, CdTe layers have been grown sufficiently thin to help produce a fully depleted cell. A variety of measurements including performance curves, transmission electron microscopy, x-ray photoelectron spectroscopy, and energy-dispersive x-ray spectroscopy were performed to characterize these cells. Voltage improvements on the order of 50 mV are presented at a thin (1 ?m) CdTe absorber condition. However an overall reduction in fill factor (FF) is seen, with a strong reduction in FF as the magnesium incorporation is increased. Detailed material characterization shows the formation of oxides at the back of CdMgTe during the passivation process. A CdTe capping layer is added to reduce oxidation and help maintain the uniformity of the CdMgTe layer. A tellurium back contact is also added in place of a carbon paint back contact, reducing the impact of the valance band offset (VBO) from the CMT. With the addition of the capping layer and tellurium back contact a consistent 50 mV increase is seen with improved FF. However this voltage increase is well below modeled Voc increases of 150 mV. CMT double hetero-structures are manufactured and analyzed to estimate the interface recombination at the CdTe/CMT interface. The CdTe/CMT interface is approximated at 2*105 cm s-1 and modeling is referenced predicting significant reduction in performance based on this interface quality. To improve interface quality by removing the need for a vacuum break, the deposition hardware is incorporated into the primary deposition system. Second, CdTe has a somewhat higher band gap than optimal for single-junction terrestrial solar-cell power generation. A reduction in the band gap could therefore result in an overall improvement in performance. To reduce the band gap, selenium was alloyed with CdTe using a novel co-sublimation extension of the close-space-sublimation process. Co-sublimated layers of CdSeTe with various selenium concentrations were characterized for optical absorption and atomic concentrations, as well as to track changes in their morphology and crystallinity. The lower band-gap CdSeTe films were then incorporated into the front of CdTe cells. This two-layer band-gap structure demonstrated higher current collection and increased quantum efficiency at longer wavelengths. Material characterization shows the diffusion of selenium through the CdTe during passivation resulting in improved in lifetime and a reduced voltage deficit at lower band gaps.
Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong
2017-01-01
Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I–V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later. PMID:28252106
NASA Astrophysics Data System (ADS)
Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong
2017-03-01
Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.
NASA Astrophysics Data System (ADS)
Luo, B.; Mehandru, R. M.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Fitch, R. C.; Gillespie, J.; Dellmer, R.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.
2002-12-01
The effect of layer structure (GaN versus AlGaN cap) and cleaning procedure prior to Sc 2O 3 or MgO deposition at 100 °C were examined for their effects on the long-term bias-stress stability of AlGaN/GaN high electron mobility transistors (HEMTs). Surface cleaning by itself was not sufficient to prevent current collapse in the devices. The forward and reverse gate leakage currents were decreased under most conditions upon deposition of the oxide passivation layers. After ≈13 h of bias-stressing, the MgO-passivated HEMTs retain ⩾90% their initial drain-source current. The Sc 2O 3-passivated devices retained ˜80% recovery of the current under the same conditions.
Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong
2017-03-02
Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO 2 /nanoporous-Si and the TiO 2 /nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO 2 /nanoporous Si are lower than that of the HfO 2 /nanoporous Si, the former is more stable than the later.
Comparative study on the passivation layers of copper sulphide minerals during bioleaching
NASA Astrophysics Data System (ADS)
Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long
2012-10-01
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.
Hydrogenation of passivated contacts
Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.
2018-03-06
Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.
Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M
2017-10-11
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer
2017-01-01
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032
Design of a Humidity Sensor Tag for Passive Wireless Applications.
Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua
2015-10-07
This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader.
Design of a Humidity Sensor Tag for Passive Wireless Applications
Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua
2015-01-01
This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader. PMID:26457707
Surface acceptor states in MBE-grown CdTe layers
NASA Astrophysics Data System (ADS)
Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz
2018-04-01
A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi
2015-02-16
We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with themore » 20-nm-thick GaSb layer.« less
Back-illuminated imager and method for making electrical and optical connections to same
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2010-01-01
Methods for bringing or exposing metal pads or traces to the backside of a backside-illuminated imager allow the pads or traces to reside on the illumination side for electrical connection. These methods provide a solution to a key packaging problem for backside thinned imagers. The methods also provide alignment marks for integrating color filters and microlenses to the imager pixels residing on the frontside of the wafer, enabling high performance multispectral and high sensitivity imagers, including those with extremely small pixel pitch. In addition, the methods incorporate a passivation layer for protection of devices against external contamination, and allow interface trap density reduction via thermal annealing. Backside-illuminated imagers with illumination side electrical connections are also disclosed.
García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; Del Prado, Álvaro; Mártil, Ignacio
2016-12-01
A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.
NASA Astrophysics Data System (ADS)
García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; del Prado, Álvaro; Mártil, Ignacio
2016-07-01
A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.
NASA Astrophysics Data System (ADS)
Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano
2017-10-01
The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhaylova, A. I., E-mail: m.aleksey.spb@gmail.com; Afanasyev, A. V.; Ilyin, V. A.
The effect of phosphorus implantation into a 4H-SiC epitaxial layer immediately before the thermal growth of a gate insulator in an atmosphere of dry oxygen on the reliability of the gate insulator is studied. It is found that, together with passivating surface states, the introduction of phosphorus ions leads to insignificant weakening of the dielectric breakdown field and to a decrease in the height of the energy barrier between silicon carbide and the insulator, which is due to the presence of phosphorus atoms at the 4H-SiC/SiO{sub 2} interface and in the bulk of silicon dioxide.
Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.
Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V
2014-04-18
We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.
Thin Films and Interfaces of AN Organic Semiconductor: Perylenetetracarboxylic Dianhydride
NASA Astrophysics Data System (ADS)
Hirose, Yutaka
Structural and electronic properties of thin films of an archetype organic molecular semiconductor, 3,4,9,10 -perylenetetracarboxylic dianhydride, (PTCDA) and of their interfaces are investigated. The first part of the thesis focuses on the growth of PTCDA thin films on graphite and GaAs. Molecular order in the direction parallel to the substrate is found to depend critically on the substrate surface properties, as revealed by marked differences in the crystallinity of films grown on graphite and Se-passivated GaAs surfaces (long range order), on the c(4 x 4) GaAs surface (medium range order), and on the (2 x 4)-c(2 x 8) GaAs surface (short range order). These results are discussed in terms of interface bonding between molecules and the substrate. The second part deals with the electronic and chemical structure of PTCDA thin films and the band lineup of the PTCDA/GaAs heterojunction investigated by Ultraviolet - and X-ray Photoemission Spectroscopies. A basic understanding of the valence band structure and chemical states is obtained with the help of a semi-empirical molecular orbital calculation. At the PTCDA/GaAs interface, the PTCDA highest occupied molecular orbital is found to be ~0.7 eV below the GaAs valence band maximum. This result is discussed in light of previous electrical measurements. Third, chemistry of metal deposition on PTCDA is investigated by synchrotron radiation photoemission spectroscopy. Al, Ti, In, and Sn are found to be highly reactive against PTCDA, yielding a considerable interfacial layer with a large density of states in the PTCDA gap. Ag and Au are found to be inert against PTCDA, producing abrupt interfaces. These results are found to be directly correlated with the electrical properties. Finally, chemistry of contacts formed by reversing the sequence of deposition, i.e. PTCDA on reactive metals (In, Sn, and Ti) is explored. The interfacial layers are found to be considerably smaller than for metals on PTCDA, in accordance with the reverse order of heats of adsorption of the two materials. The resulting interfaces are more abrupt presumably leading to more rectifying character of the electrical contacts.
Shih, Yen-Chen; Lan, Yu-Bing; Li, Chia-Shuo; Hsieh, Hsiao-Chi; Wang, Leeyih; Wu, Chih-I; Lin, King-Fu
2017-06-01
Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO 2 electron-transporting layer with various amino acids, which affects charge transfer efficiency at the TiO 2 /CH 3 NH 3 PbI 3 interface in PSC, among which the l-alanine-modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino-acid-modified TiO 2 as observed in grazing-incidence wide-angle X-ray scattering of thin CH 3 NH 3 PbI 3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO 2 /CH 3 NH 3 PbI 3 interface after being modified with amino acids, which is also supported by the lower intensity of steady-state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino-acid-modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap-passivation are the niche for better photovoltaic performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Embedded cluster metal-polymeric micro interface and process for producing the same
Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.
2002-01-29
A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.
Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua
2017-11-08
As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of <150 °C by solution processing. The power conversion efficiency (PCE) of the device fabricated by the novel annealing method increased from 15.5 to 17.5%. To enhance the thermal stability of CH 3 NH 3 PbI 3 (MAPbI 3 ) on the ZnO surface, a thin layer of small molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) was inserted between the ZnO layer and perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.
NASA Astrophysics Data System (ADS)
Loewe, H.; Picard, G.; Sandells, M. J.; Mätzler, C.; Kontu, A.; Dumont, M.; Maslanka, W.; Morin, S.; Essery, R.; Lemmetyinen, J.; Wiesmann, A.; Floury, N.; Kern, M.
2016-12-01
Forward modeling of snow-microwave interactions is widely used to interpret microwave remote sensing data from active and passive sensors. Though different models are yet available for that purpose, a joint effort has been undertaken in the past two years within the ESA Project "Microstructural origin of electromagnetic signatures in microwave remote sensing of snow". The new Snow Microwave Radiative Transfer (SMRT) model primarily facilitates a flexible treatment of snow microstructure as seen by X-ray tomography and seeks to unite respective advantages of existing models. In its main setting, SMRT considers radiation transfer in a plane-parallel snowpack consisting of homogeneous layers with a layer microstructure represented by an autocorrelation function. The electromagnetic model, which underlies permittivity, absorption and scattering calculations within a layer, is based on the improved Born approximation. The resulting vector-radiative transfer equation in the snowpack is solved using spectral decomposition of the discrete ordinates discretization. SMRT is implemented in Python and employs an object-oriented, modular design which intends to i) provide an intuitive and fail-safe API for basic users ii) enable efficient community developments for extensions (e.g. for improvements of sub-models for microstructure, permittivity, soil or interface reflectivity) from advanced users and iii) encapsulate the numerical core which is maintained by the developers. For cross-validation and inter-model comparison, SMRT implements various ingredients of existing models as selectable options (e.g. Rayleigh or DMRT-QCA phase functions) and shallow wrappers to invoke legacy model code directly (MEMLS, DMRT-QMS, HUT). In this paper we give an overview of the model components and show examples and results from different validation schemes.
Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide
NASA Astrophysics Data System (ADS)
Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin
2018-06-01
This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.
We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.
We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se){sub 2} (CIGS) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less
Varley, J. B.; Lordi, V.
2014-08-08
We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less
NASA Astrophysics Data System (ADS)
Lechaux, Y.; Fadjie, A.; Bollaert, S.; Talbo, V.; Mateos, J.; González, T.; Vasallo, B. G.; Wichmann, N.
2015-10-01
In this work, Metal - Oxide - Semiconductor Capacitors (MOSCaps) based on Al2O3/ n-Ga0.47In0.53As interface have been studied. In order to have high MOSFETs performance, it is necessary to improve the semiconductor - oxide interface quality. It is observed that the (NH4)2S passivation shows lower interface trap density in the order of 6×1011cm-2.eV-1. Also, it is observed that O2 plasma densification after a passivation in a NH4OH solution improves the electrical behaviour of the charge control. Low interface trap density in the order of 1×1012cm-2.eV-1 was obtained for different treatments presented in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegedus, Steven S.
An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegedus, Steven S.
2015-09-08
An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Wen, Peng; Hoxie, Adam
Colloidal semiconductor quantum dots-based (CQD) photocathodes for solar-driven hydrogen evolution have attracted significant attention due to their tunable size, nanostructured morphology, crystalline orientation, and band-gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM1.5G, 100 mW/cm 2) at a potential ofmore » 0 V vs. RHE (j 0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V vs. RHE and long-term stability with negligible degradation. In acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited due to photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared to 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge transfer rate, and faster reaction kinetics. In conclusion, we believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.« less
Li, Hui; Wen, Peng; Hoxie, Adam; ...
2018-04-30
Colloidal semiconductor quantum dots-based (CQD) photocathodes for solar-driven hydrogen evolution have attracted significant attention due to their tunable size, nanostructured morphology, crystalline orientation, and band-gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM1.5G, 100 mW/cm 2) at a potential ofmore » 0 V vs. RHE (j 0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V vs. RHE and long-term stability with negligible degradation. In acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited due to photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared to 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge transfer rate, and faster reaction kinetics. In conclusion, we believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.« less
Li, Hui; Wen, Peng; Hoxie, Adam; Dun, Chaochao; Adhikari, Shiba; Li, Qi; Lu, Chang; Itanze, Dominique S; Jiang, Lin; Carroll, David; Lachgar, Abdou; Qiu, Yejun; Geyer, Scott M
2018-05-23
Colloidal semiconductor quantum dot (CQD)-based photocathodes for solar-driven hydrogen evolution have attracted significant attention because of their tunable size, nanostructured morphology, crystalline orientation, and band gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM-1.5G, 100 mW/cm 2 ) at a potential of 0 V versus reversible hydrogen electrode (RHE) ( j 0 ) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V versus RHE and long-term stability with negligible degradation. In the acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited because of photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared with 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge-transfer rate, and faster reaction kinetics. We believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.
Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan
2017-05-24
In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device. In addition, the strong inversion layer in the surface of the n-Si substrate is tentatively correlated to the a-SiO x (In) interface layer as well.
Method for producing highly reflective metal surfaces
Arnold, J.B.; Steger, P.J.; Wright, R.R.
1982-03-04
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda
2017-06-08
In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.
Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness
NASA Astrophysics Data System (ADS)
Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti
2018-01-01
The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.
NASA Astrophysics Data System (ADS)
Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio
2008-07-01
The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.
Corrosion protected, multi-layer fuel cell interface
Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.
1986-01-01
An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.
Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications
NASA Astrophysics Data System (ADS)
Kim, Taeyun
Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv
2018-02-01
Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.
Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V
2014-05-01
Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.
NASA Astrophysics Data System (ADS)
Duan, G.; Zhao, X.; Seren, H. R.; Chen, C.; Li, A.; Zhang, X.
2016-12-01
A double layer spiral antenna with side length of 380 μm was fabricated by a multi-step electroplating process, and integrated with a commercialized passive RFID chip to realize the RF power harvesting and communication functions of a microsensor. To power up and communicate with the microchips, a single layer spiral reader antenna was fabricated on top of a glass substrate with side length of 1 mm. The microchips and the reader antenna were both optimized at the frequency of 915 MHz. Due to the small size of the reader antenna, the strength of the magnetic field decreased dramatically along the axial direction of the reader antenna, which limited the working distance to within 1 mm. To enclose the microchips within the reading range, a three-layer microfluidic channel was designed and fabricated. The channel and cover layers were fabricated by laser cutting of acrylic sheets, and bonded with the glass substrate to form the channel. To operate multiple microchips simultaneously, separation and focusing function units were also designed. Low loss pump oil was used to transport the microchips flowing inside the channel. Within the reading area, the microchips were powered up, and their ID information was retrieved and displayed on the computer interface successfully.
Multilayer Protective Coatings for High-Level Nuclear Waste Storage Containers
NASA Astrophysics Data System (ADS)
Fusco, Michael
Corrosion-based failures of high-level nuclear waste (HLW) storage containers are potentially hazardous due to a possible release of radionuclides through cracks in the canister due to corrosion, especially for above-ground storage (i.e. dry casks). Protective coatings have been proposed to combat these premature failures, which include stress-corrosion cracking and hydrogen-diffusion cracking, among others. The coatings are to be deposited in multiple thin layers as thin films on the outer surface of the stainless steel waste basket canister. Coating materials include: TiN, ZrO2, TiO2, Al 2O3, and MoS2, which together may provide increased resistances to corrosion and mechanical wear, as well as act as a barrier to hydrogen diffusion. The focus of this research is on the corrosion resistance and characterization of single layer coatings to determine the possible benefit from the use of the proposed coating materials. Experimental methods involve electrochemical polarization, both DC and AC techniques, and corrosion in circulating salt brines of varying pH. DC polarization allows for estimation of corrosion rates, passivation behavior, and a qualitative survey of localized corrosion, whereas AC electrochemistry has the benefit of revealing information about kinetics and interfacial reactions that is not obtainable using DC techniques. Circulation in salt brines for nearly 150 days revealed sustained adhesion of the coatings and minimal weight change of the steel samples. One-inch diameter steel coupons composed of stainless steel types 304 and 316 and A36 low alloy carbon steel were coated with single layers using magnetron sputtering with compound targets in an inert argon atmosphere. This resulted in very thin films for the metal-oxides based on low sputter rates. DC polarization showed that corrosion rates were very similar between bare and coated stainless steel samples, whereas a statistically significant decrease in uniform corrosion was measured on coated, as opposed to bare, mild steel. Passivation and passive breakdown was largely unaffected by the coating materials. Activation parameters were determined for corrosion rates and passive breakdown potential based on measurements performed between 20°C and 80°C to simulate elevated waste canister temperatures due to decay heat. Electrochemical impedance spectroscopy (EIS) was used to study the metal-electrolyte interface and the passive film formed on types 304 and 316 stainless steel. Capacitance values were calculated by utilizing the constant phase element and a conversion technique proposed in the literature. This method was shown to remove the frequency dependence of the capacitance that is often seen in electrochemical analysis. The dielectric constant was estimated from impedance and potentiostatic current measurements, and film defect densities were calculated to be on the order of 1020 cm-3, which is consistent with highly-doped semiconductive films. EIS was also employed to study reactively-sputtered TiO2 films on stainless steel type 304, which was substantially thicker than initial TiO2 coatings. The impedance spectra of TiO2-coated stainless steel exhibited several distinctions from its uncoated counterpart and were clearly dominated by the dielectric coating material. Film defect density was on the order of 1017 cm-3, which is several orders of magnitude lower than the bare steel and is more consistent with solid-state semiconductors. This research shows the potential of these coating materials to alter the corrosion behavior of the outer surface of a HLW storage canister. Although the initial single layered coatings had little effect on the corrosion and passivity of the stainless steel substrates, it is possible that with a thicker multi-layered coating system the substrate may be sufficiently isolated from the environment. Moreover, the thin single layer coatings were able to reduce corrosion of A36 steel, showing the promise of these coating materials in reducing uniform corrosion. Further optimization of deposition parameters and testing of multilayer coatings is necessary for serious consideration of these coatings in the future.
NASA Astrophysics Data System (ADS)
Qu, Yunxiu; Yang, Jia; Li, Yunpeng; Zhang, Jiawei; Wang, Qingpu; Song, Aimin; Xin, Qian
2018-07-01
Bottom gated thin-film transistors (TFTs) with various sputtered SnO active layer thicknesses ranging from 10 to 30 nm and different passivation layers have been investigated. The device with 20 nm SnO showed the highest on/off ratio of 1.7 × 104 and the smallest subthreshold swing of 8.43 V dec‑1, and the mobility (0.76 cm2 V‑1 s‑1) was only slightly lower than in TFTs with a thicker SnO layer. However, both the mobility and the on/off ratio of the 15 nm SnO TFT dropped significantly by one order of magnitude. This indicated a strong influence of the top surface on the carrier transport, and we thus applied an organic or an inorganic encapsulation material to passivate the top surface. In the 20 nm TFT, the on/off ratio was doubled after passivation. The performance of the 15 nm TFT was improved even more dramatically with the on/off ratio increased by one order of magnitude and the mobility increased also significantly. Our experiment shows that polymethyl methacrylate passivation is more effective to reduce the shallow trap states, and Al2O3 is more effective in reducing the deep traps in the SnO channel.
Advanced passivation techniques for Si solar cells with high-κ dielectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma
2014-09-22
Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al{sub 2}O{sub 3}, HfO{sub 2}) and their compounds H{sub (Hf)}A{sub (Al)}O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al{sub 2}O{sub 3} film has been found to provide negative fixed charge (−6.4 × 10{sup 11 }cm{sup −2}), whereas HfO{sub 2} film provides positivemore » fixed charge (3.2 × 10{sup 12 }cm{sup −2}). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO{sub 2} film would provide better passivation properties than that of the ALD-Al{sub 2}O{sub 3} film in this research work.« less
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
NASA Astrophysics Data System (ADS)
Chilcott, Terry; Guo, Chuan; Coster, Hans
2013-04-01
Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.
Passivation of long-wave infrared InAs/GaSb strained layer superlattice detectors
NASA Astrophysics Data System (ADS)
Plis, E.; Kutty, M. N.; Myers, S.; Kim, H. S.; Gautam, N.; Dawson, L. R.; Krishna, S.
2011-05-01
We have investigated various passivation techniques for type-II InAs/GaSb strained layer superlattice (SLS) detectors with p-i-n and PbIbN designs with a 100%-cut-off wavelength of ˜12 μm at 77 K. The passivation schemes include dielectric deposition (silicon nitride (SiN x), silicon dioxide (SiO 2), photoresist (SU-8)), chalcogenide treatments (zinc sulfide (ZnS), ammonium sulfide [(NH 4) 2S]), and electrochemical sulphur deposition. [(NH 4) 2S] passivation and electrochemical sulphur passivation (ECP) showed the better performances, improving the dark current density by factors of 200 and 25 (p-i-n detector) and ˜3 and 54 (PbIbN detector), respectively ( T = 77 K, -0.1 V of applied bias). The specific detectivity D* was improved by a factor of 2 and by an order of magnitude for (NH 4) 2S and ECP passivated PbIbN detectors, respectively.
A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER
We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...
Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong
2017-09-25
To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.
NASA Astrophysics Data System (ADS)
Das, Priyanka; Mondal, Biswanath; Mukherjee, Kalisadhan
2018-01-01
Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) ( η 1.09%) than micro-rod ZnO ( η 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE ( η 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.
Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment
NASA Astrophysics Data System (ADS)
Jiang, Ye; Shen, Honglie; Pu, Tian; Zheng, Chaofan
2018-04-01
Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.
Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro
2018-01-22
A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.
Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon
2017-08-09
Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.
Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino
2014-10-01
To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.
Zander, Thorsten O; Kothe, Christian
2011-04-01
Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.
Klem, John F; Kim, Jin K
2014-05-13
A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.
NASA Astrophysics Data System (ADS)
Lee, Changmin; An, Youngseo; Choi, Sungho; Kim, Hyoungsub
2018-06-01
The number of atomic layer deposition (ALD) cycles for ZnO treatment was changed to study its merits and demerits as a passivation layer prior to the deposition of a HfO2 film on a p-type In0.53Ga0.47As substrate. Even a few cycles of ZnO ALD treatment was effective in improving the capacitance–voltage (C–V) characteristics by suppressing strong Fermi-level pinning, which occurred because of a high interface state density near the lower half of the In0.53Ga0.47As band gap. Increases in the number of ZnO ALD cycles induced an increase in the minimum capacitance and response of minority carriers at higher frequencies in the inversion region of the C–V characteristics. According to various temperature- and frequency-dependent C–V analyses, these changes were explained by the shallow p-type doping effect of Zn atoms in the In0.53Ga0.47As substrate. As a disadvantage, ZnO ALD treatment caused a slight increase in the dielectric leakage current.
Thin film GaP for solar cell application
NASA Astrophysics Data System (ADS)
Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.
2016-08-01
A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure
Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel
NASA Astrophysics Data System (ADS)
Volz, Steven Michael
This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.
Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichel, Christian, E-mail: christian.reichel@ise.fraunhofer.de; National Renewable Energy Laboratory; Feldmann, Frank
Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells.more » Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.« less
Oda, Yoshiaki; Sadakata, Atsuo; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2016-04-01
By using I-V, EL-V, displacement current measurement (DCM) and time-resolved electric-field-induced optical second-harmonic generation (TR-EFISHG) measurement, we studied the influence of interface pentacene layer inserted between ITO and a-NPD layers in ITO/α-NPD/Alq3/Al OLEDs. All experiments were carried out for the OLEDs with and without a pentacene interface layer. The I-V and EL-V measurements showed the decrease of operating voltage of EL, the DCM showed the lowering of inception voltage of carrier injection by inserting a pentacene interface layer. The TR-EFISHG measurement showed the faster accumulation of holes at the interface between the a-NPD and Alq3 layers, which resulted in the relaxation of electric field of a-NPD layer accomplished by the increase of the conductivity and the increase of the electric field in the Alq3 layer. We conclude that TR-EFISHG measurement is helpful for understanding I-V and EL-V characteristics, and can be combined with other methods to give significant information which are impacted by the interface layer.
Effect of interface layer on the performance of high power diode laser arrays
NASA Astrophysics Data System (ADS)
Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng
2015-02-01
Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.
NASA Astrophysics Data System (ADS)
Yamada, Keisuke
2017-01-01
This paper describes passive technique for suppressing vibration in flexible structures using a multi-layered piezoelectric element, an inductor, and a resistor. The objective of using a multi-layered piezoelectric element is to increase its capacitance. A piezoelectric element with a large capacitance value does not require an active electrical circuit to simulate an inductor with a large inductance value. The effect of multi-layering of piezoelectric elements was theoretically analyzed through an equivalent transformation of a multi-layered piezoelectric element into a single-layered piezoelectric element. The governing equations were derived using this equivalent transformation. The effect of the resistances of the inductor and piezoelectric elements were considered because the sum of these resistances may exceed the optimum resistance. The performance of the passive vibration suppression using an LR circuit was compared to that of the method where a resistive circuit is used assuming that the sum of the resistances of the inductor and piezoelectric elements exceeds the optimum resistance. The effectiveness of the proposed method and theoretical analysis was verified through simulations and experiments.
NASA Technical Reports Server (NTRS)
Alberts, Thomas E.; Xia, Houchun; Chen, Yung
1992-01-01
The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Rafi; Lynn, D.; Pellegrini, G.
The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al 2O 3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al 2O 3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extractedmore » for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H 2O instead of O 3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H 2O-grown Al 2O 3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al 2O 3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O 3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less
Surface passivation for CdTe devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Matthew O.; Perkins, Craig L.; Burst, James M.
2017-08-01
In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.
Passivated p-type silicon: Hole injection tunable anode material for organic light emission
NASA Astrophysics Data System (ADS)
Zhao, W. Q.; Ran, G. Z.; Xu, W. J.; Qin, G. G.
2008-02-01
We find that hole injection can be enhanced simply by selecting a lower-resistivity p-Si anode to match an electron injection enhancement for organic light emitting diodes with ultrathin-SiO2-layer-passivated p-Si anode (Si-OLED). For a Si-OLED with ordinary AlQ electron transport layer, the optimized resistivity of the p-Si anode is 40Ωcm; for that with n-doped Bphen electron transport layer, it decreases to 5Ωcm. Correspondingly, the maximum power efficiency increases from 0.3to1.9lm /W, even higher than that of an indium tin oxide control device (1.4lm/W). This passivated p-type silicon is a hole injection tunable anode material for OLED.
Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping
NASA Technical Reports Server (NTRS)
Gibbs, Gary P.; Cabell, Randolph H.
2003-01-01
A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.
Discrete particle modeling and micromechanical characterization of bilayer tablet compaction.
Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M
2017-08-30
A mechanistic particle scale model is proposed for bilayer tablet compaction. Making bilayer tablets involves the application of first layer compaction pressure on the first layer powder and a second layer compaction pressure on entire powder bed. The bonding formed between the first layer and the second layer particles is crucial for the mechanical strength of the bilayer tablet. The bonding and the contact forces between particles of the first layer and second layer are affected by the deformation and rearrangement of particles due to the compaction pressures. Our model takes into consideration the elastic and plastic deformations of the first layer particles due to the first layer compaction pressure, in addition to the mechanical and physical properties of the particles. Using this model, bilayer tablets with layers of the same material and different materials, which are commonly used pharmaceutical powders, are tested. The simulations show that the strength of the layer interface becomes weaker than the strength of the two layers as the first layer compaction pressure is increased. The reduction of strength at the layer interface is related to reduction of the first layer surface roughness. The reduced roughness decreases the available bonding area and hence reduces the mechanical strength at the interface. In addition, the simulations show that at higher first layer compaction pressure the bonding area is significantly less than the total contact area at the layer interface. At the interface itself, there is a non-monotonic relationship between the bonding area and first layer force. The bonding area at the interface first increases and then decreases as the first layer pressure is increased. These results are in agreement with findings of previous experimental studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong
2017-01-01
To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view. PMID:28946690
Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films
Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...
2015-06-30
Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less
Recent advances and product enhancements in reflective cholesteric displays
NASA Astrophysics Data System (ADS)
Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.
2005-04-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.
NASA Astrophysics Data System (ADS)
Stesmans, A.
1996-01-01
The passivation with molecular hydrogen in the range 213-234°C of the interfacial Pb0 and Pb1 defects in {(100) Si}/{SiO 2}, thermally grown at low temperature (<750°C), has been analyzed by K-band electron spin resonance. The passivation kinetics are found to be well described by the same defect-H 2 reaction limited model applying to the interfacial Pb defect (∘SiSi 3) in {(111) Si}/{SiO 2} grown at 850°C. However, unlike Pb, that was typified by a single-valued activation energy for passivation Ea = 1.66 eV, both Pb0 and Pb1 are found to exhibit a Gaussian spread σEa ˜ 0.15 eV around their respective meanEa values, deduced as 1.51 and 1.57 ± 0.3 eV. The similar passivation kinetics are in line with assigning the Pb0 and Pb1 defects, like Pb, to an interfacial unpaired sp3 Si hybrid. However, as there is no fundamental difference between Pb0 and Pb1 regarding passivation in H 2, more specfic identification of Pb with either Pb0 or Pb1 , if any, cannot be concluded.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
NASA Astrophysics Data System (ADS)
Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.
2009-03-01
Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.
NASA Astrophysics Data System (ADS)
Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.
2012-04-01
The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(tAF)/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.
Method of transferring a thin crystalline semiconductor layer
Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ
2006-12-26
A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.
The Influence of the In-Situ Clad Staining on the Corrosion of Zircaloy in PWR Water Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammenzind, B.F., Eklund, K.L. and Bajaj, R.
Zircaloy cladding tubes strain in-situ during service life in the corrosive environment of a Pressurized Water Reactor for a variety of reasons. First, the tube undergoes stress free growth due to the preferential alignment of irradiation induced vacancy loops on basal planes. Positive strains develop in the textured tubes along prism orientations while negative strains develop along basal orientations (Reference (a)). Second, early in life, free standing tubes will often shrink by creep in the diametrical direction under the external pressure of the water environment, but potentially grow later in life in the diametrical direction once the expanding fuel pelletmore » contacts the cladding inner wall (Reference (b)). Finally, the Zircaloy cladding absorbs hydrogen as a by product of the corrosion reaction (Reference (c)). Once above the solubility limit in Zircaloy, the hydride precipitates as zirconium hydride (References (c) through (j)). Both hydrogen in solid solution and precipitated as Zirconium hydride cause a volume expansion of the Zircaloy metal (Reference (k)). Few studies are reported on that have investigated the influence that in-situ clad straining has on corrosion of Zircaloy. If Zircaloy corrosion rates are governed by diffusion of anions through a thin passivating boundary layer at the oxide-to-metal interface (References (l) through (n)), in-situ straining of the cladding could accelerate the corrosion process by prematurely breaking that passivating oxide boundary layer. References (o) through (q) investigated the influence that an applied tensile stress has on the corrosion resistance of Zircaloy. Knights and Perkins, Reference (o), reported that the applied tensile stress increased corrosion rates above a critical stress level in 400 C and 475 C steam, but not at lower temperatures nor in dry oxygen environments. This latter observation suggested that hydrogen either in the oxide or at the oxide-to-metal interface is involved in the observed stress effect. Kim et al. (Reference (p)) and Kim and Kim (Reference (q)) more recently investigated the influence that an applied hoop stress has on the corrosion resistance of Zircaloy tubes in a 400 C steam and in a 350 C concentrated lithia water environment. Both of these studies found the applied tensile hoop stress to have no effect on cladding corrosion rates in the 400 C steam environment but to have accelerated corrosion in the lithiated water environment. In both cases, the corrosion acceleration in the lithiated water environment was attributed to the accumulation of the increased hydrogen picked up in the lithiated environment into the tensile regions of the test specimen. Dense hydride rims have been shown, independent of clad strain, to accelerate the corrosion of Zirconium alloys (References (r) and (s)), suggesting that the primary effect of applied stresses on the corrosion of Zircaloy in the above studies is through the accumulation of hydrogen at the oxide-to-metal interface and not through a direct mechanical breakdown of the passivating boundary layer. To further investigate the potential role of in-situ clad straining (or stress) on Zircaloy corrosion rates, two experimental studies were performed. First, several samples that were irradiated with and without an applied stress were destructively examined for the extent of corrosion occurring in strained and nonstrained regions of the test samples. The extent of corrosion was determined, posttest, by metallographic examination. Second, the corrosion process was monitored in-situ using electrochemical impedance spectroscopy on samples exposed out-of-reactor with and without an applied stress. Post test, these autoclave samples were also metallographically examined.« less
The role of halide ions on the electrochemical behaviour of iron in alkali solutions
NASA Astrophysics Data System (ADS)
Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed
2008-02-01
Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.
Thermal Protection Supplement for Reducing Interface Thermal Mismatch
NASA Technical Reports Server (NTRS)
Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)
2017-01-01
A thermal protection system that reduces a mismatch of thermal expansion coefficients CTE between a first material layer (CTE1) and a second material layer (CTE2) at a first layer-second layer interface. A portion of aluminum borosilicate (abs) or another suitable additive (add), whose CTE value, CTE(add), satisfies (CTE(add)-CTE1)(CTE(add)-CTE2)<0, is distributed with variable additive density,.rho.(z;add), in the first material layer and/or in the second material layer, with.rho.(z;add) near the materials interface being relatively high (alternatively, relatively low) and.rho.(z;add) in a region spaced apart from the interface being relatively low (alternatively, relatively high).
ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs
NASA Astrophysics Data System (ADS)
Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.
2017-11-01
The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.
Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.
2015-07-20
Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystallinemore » II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less
Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius
2015-07-20
Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less
Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius
2015-07-20
Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less
Interface properties of the amorphous silicon/crystalline silicon heterojunction photovoltaic cell
NASA Astrophysics Data System (ADS)
Halliop, Basia
Amorphous-crystalline silicon (a-Si:H/c-Si) heterojunctions have the potential of being a very high efficiency silicon photovoltaic platform technology with accompanying cost and energy budget reductions. In this research a heterojunction cell structure based on a-Si:H deposited using a DC saddle field plasma enhanced vapour deposition (DCSF PECVD) technique is studied, and the a-Si:H/c-Si and indium tin oxide/a-Si:H interfaces are examined using several characterization methods. Photocarrier radiometry (PCR) is used for the first time to probe the a-Si:H/c-Si junction. PCR is demonstrated as a carrier lifetime measurement technique -- specifically, confirming carrier lifetimes above 1 ms for 1-5 Ocm phosphorous-doped c-Si wafers passivated on both sides with 30 nm of i-a-Si:H. PCR is also used to determine surface recombination velocity and mobility, and to probe recombination at the a-Si:H/c-Si interface, distinguishing interface recombination from recombination within the a-Si:H layer or at the a-Si:H surface. A complementary technique, lateral conductivity is applied over a temperature range of 140 K to 430 K to construct energy band diagrams of a-Si:H/c-Si junctions. Boron doped a-Si:H films on glass are shown to have activation energies of 0.3 to 0.35 eV, tuneable by adjusting the diborane to silane gas ratio during deposition. Heterojunction samples show evidence of a strong hole inversion layer and a valence band offset of approximately 0.4 eV; carrier concentration in the inversion layer is reduced in p-a-Si:H/i-a-Si:H/ c-Si structures as intrinsic layer thickness increases, while carrier lifetime is increased. The indium tin oxide/amorphous silicon interface is also examined. Optimal ITO films were prepared with a sheet resistance of 17.3 O/[special character omitted] and AM1.5 averaged transmittance of 92.1%., for a film thickness of approximately 85 nm, using temperatures below 200°C. Two different heat treatments are found to cause crystallization of ITO and to change the properties of the underlying a-Si:H film. Finally, an open circuit voltage of 699 mV was achieved using DCSF PECVD in the tetrode configuration to fabricate a metal/ITO/p-a-Si:H/ i-a-Si:H/n-c-Si/i-a-Si:H/ n+-a-Si:H/metal photovoltaic cell on a texturized wafer. The 4 cm2 cell had an efficiency of 16.5%, a short circuit current of 36.4 mA/cm2 and a fill factor of 64.7%.
Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography
Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.
1999-01-01
A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.
Multi-layer light-weight protective coating and method for application
NASA Technical Reports Server (NTRS)
Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)
1992-01-01
A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.
NASA Astrophysics Data System (ADS)
Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.
2016-09-01
Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.
NASA Astrophysics Data System (ADS)
Gadala, Ibrahim M.; Alfantazi, Akram
2015-12-01
The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.
Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li
2016-09-01
The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.
Reduced recombination in a surface-sulfurized Cu(InGa)Se2 thin-film solar cell
NASA Astrophysics Data System (ADS)
Kim, Shinho; Nishinaga, Jiro; Kamikawa, Yukiko; Ishizuka, Shogo; Nagai, Takehiko; Koida, Takashi; Tampo, Hitoshi; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru
2018-05-01
This study demonstrates surface sulfurization effects on Cu(InGa)Se2 (CIGSe) thin-film solar cells with a single back-graded band gap. Single back-graded CIGSe thin films were prepared via a three-stage process in a high-vacuum molecular beam epitaxial growth chamber and were subsequently annealed in a tube furnace under environmental conditions with H2S gas. After sulfurization, an ∼80- to ∼100-nm-thick CuIn(SSe)2 layer with significantly small Ga contents (CISSe:Ga) was formed on the CIGSe layer. The newly formed CISSe:Ga layer exhibited graded S contents from surface to bulk, thus resulting in a front-graded band gap. In addition, CISSe:Ga was covered with S-enriched CISSe region that was extended from the surface to a depth of a few nm and was depleted of Ga. A device with the sulfurized CIGSe showed reduced recombination at the buffer–absorber interface, in space-charge region and in bulk. Consequently, the open circuit voltage increased from 0.58 V (in the non-sulfurized case) to 0.66 V, and the conversion efficiency improved from 15.5 to 19.4%. This large improvement is caused by the front graded band gap at the surface and the hole-blocking barrier, which suppress recombination at the CdS/CISSe:Ga interface. In addition, sulfurization followed by KF post-deposition treatment (PDT) increased the efficiency to 20.1%. Compared to the untreated sulfurized device, the KF-PDT device delivered an increased carrier lifetime and reduced the recombination in bulk probably because the defects were passivated by the K, which penetrated into the bulk region.
Orion Passive Thermal Control Overview
NASA Technical Reports Server (NTRS)
Miller, Stephen W.
2007-01-01
An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing
Oh, Ji-Hoon; Kwak, Seung-Yeon; Yang, Seung-Cheol; Bae, Byeong-Soo
2010-03-01
Photocurable and highly condensed fluorinated methacrylate oligosiloxane, with a low dielectric constant (kappa = 2.54), was prepared by a nonhydrolytic sol-gel condensation reaction. The oligosiloxane resin was then spin-coated, photocured, and thermally baked in order to fabricate a fluorinated methacrylate hybrid material (FM hybrimer) thin film. This study investigated the application of this FM hybrimer film as a low-kappa passivation layer in LCD-based thin film transistors (TFT). It was found that a dielectric constant as low as kappa = 2.54 could be obtained, without introducing pores in the dense FM hybrimer films. This study compares FM hybrimer film characteristics with those required for passivation layers in LCD-TFTs, including thermal stability, optical transmittance, hydrophobicity, gap fill, and planarization effects as well as electrical insulation.
On relation between scalar interfaces and vorticity in inviscid flows
NASA Astrophysics Data System (ADS)
Ramesh, O. N.; Patwardhan, Saurabh
2013-11-01
A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.
The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS
Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming
2016-01-01
We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2− ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces. PMID:26972936
NASA Astrophysics Data System (ADS)
Oda, Yukinori; Fukumuro, Naoki; Yae, Shinji
2018-04-01
Using an electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish with a thick palladium-phosphorus (Pd-P) layer of 1 μm, the intermetallic compound (IMC) growth between the ENEPIG surface finish and lead-free solders Sn-3.5Ag (SA) or Sn-3.0Ag-0.5Cu (SAC) after reflow soldering and during solid-state aging at 150°C was investigated. After reflow soldering, in the SA/ENEPIG and SAC/ENEPIG interfaces, thick PdSn4 layers of about 2 μm to 3 μm formed on the residual Pd-P layers ( 0.5 μm thick). On the SA/ENEPIG interface, Sn was detected on the upper side of the residual Pd-P layer. On the SAC/ENEPIG interface, no Sn was detected in the residual Pd-P layer, and Cu was detected in the interface between the Pd-P and PdSn4 layers. After 300 h of aging at 150°C, the residual Pd-P layers had diffused completely into the solders. In the SA/ENEPIG interface, an IMC layer consisting of Ni3Sn4 and Ni3SnP formed between the PdSn4 layer and the nickel-phosphorus (Ni-P) layer, and a (Pd,Ni)Sn4 layer formed on the lower side of the PdSn4 layer. On the SAC/ENEPIG interface, a much thinner (Pd,Ni)Sn4 layer was observed, and a (Cu,Ni)6Sn5 layer was observed between the PdSn4 and Ni-P layers. These results indicate that Ni diffusion from the Ni-P layer to the PdSn4 layer produced a thick (Pd,Ni)Sn4 layer in the SA solder case, but was prevented by formation of (Cu,Ni)6Sn5 in the SAC solder case. This causes the difference in solder joint reliability between SA/ENEPIG and SAC/ENEPIG interfaces in common, thin Pd-P layer cases.
Symmetric and asymmetric instability of buried polymer interfaces
NASA Astrophysics Data System (ADS)
de Silva, J. P.; Cousin, F.; Wildes, A. R.; Geoghegan, M.; Sferrazza, M.
2012-09-01
We demonstrate using neutron reflectometry that the internal interfaces in a trilayer system of two identical thick polystyrene layers sandwiching a much thinner (deuterated) poly(methyl methacrylate) layer 15 nm thick (viscosity matched with the polystyrene layers) increase in roughness at the same rate. When the lower polystyrene layer is replaced with a layer of the same polymer of much greater molecular mass, two different growths of the interfaces are observed. From the growth of the interface for this asymmetric case in the solid regime using the theoretical prediction of the spinodal instability including slippage at the interface, a value of the Hamaker constant of the system has been extracted in agreement with the calculated value. For the symmetric case the rise time of the instability is much faster.
Structural and electronic properties of the transition layer at the SiO{sub 2}/4H-SiC interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenbo; Wang, Dejun, E-mail: dwang121@dlut.edu.cn; Zhao, Jijun
Using first-principles methods, we generate an amorphous SiO{sub 2}/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiC{sub x}O{sub y} species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC{sub x}O{sub y} structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO{sub 5} configurations, which lead tomore » the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO{sub 5} configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO{sub 2}/SiC interface.« less
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.
2018-01-01
Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.
Srirekha, A; Rashmi, K; Hegde, Jayshree; Lekha, S; Rupali, K; Reshmi, George
2013-09-01
This study evaluated the removal of debris and smear layer after post space preparation using different irrigations and passive ultrasonic agitation. Sixty human premolars were decoronated and post space prepared after endodontic therapy. The samples were then randomly divided into three experimental groups (Groups A, B, C) and one control group (Group D) with fifteen samples in each group. Groups A and B samples were treated with 10 % citric acid and 17 % ethylenediamintetraacetic acid (EDTA), respectively and passive ultrasonic agitation was done, rinsed with sodium hypochlorite and finally flushed with saline. Group C samples were conditioned with 36 % phosphoric acid and then rinsed with saline. The control group was treated with 3 % sodium hypochlorite, passive ultrasonic agitation done and flushed with saline. The samples were sectioned and evaluated for debris and smear layer removal under scanning electron microscope. 10 % citric acid showed the best removal of smear layer when compared with 17 % EDTA and 36 % phosphoric acid, but was not statistically significant (p > 0.05). The difference in scoring for debris and smear layer removal in the coronal, middle and apical third of post space of experimental groups in comparison with control group was statistically significant (p < 0.001).
Role of interface layers on Tunneling Magnetoresistance
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.
2002-03-01
Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.
Duval, Jérôme F L; Sorrenti, Estelle; Waldvogel, Yves; Görner, Tatiana; De Donato, Philippe
2007-04-14
The electrokinetic features of electron-conducting substrates, as measured in a conventional thin-layer electrokinetic cell, strongly depend on the extent of bipolar faradaic depolarisation of the interface formed with the adjacent electrolytic solution. Streaming potential versus applied pressure data obtained for metallic substrates must generally be interpreted on the basis of a modified Helmholtz-Smoluchowski equation corrected by an electronic conduction term-non linear with respect to the lateral potential and applied pressure gradient-that stems from the bipolar electrodic behavior of the metallic surface. In the current study, streaming potential measurements have been performed in KNO(3) solutions on porous plugs made of electron-conducting grains of pyrite (FeS(2)) covered by humic acids. For zero coverage, the extensive bipolar electronic conduction taking place in the plug-depolarized by concomitant and spatially distributed oxidation and reduction reactions of Fe(2+) and Fe(3+) species-leads to the complete extinction of the streaming potential over the entire range of applied pressure examined. For low to intermediate coverage, the local electron-transfer kinetics on the covered regions of the plug becomes more sluggish. The overall bipolar electronic conduction is then diminished which leads to an increase in the streaming potential with a non-linear dependence on the pressure. For significant coverage, a linear response is observed which basically reflects the interfacial double layer properties of the humics surface layer. A tractable, semi-analytical model is presented that reproduces the electrokinetic peculiarities of the complex and composite system FeS(2)/humics investigated. The study demonstrates that the streaming potential technique is a fast and valuable tool for establishing how well the electron transfer kinetics at a partially or completely depolarised bare electron-conducting substrate/electrolyte solution interface is either promoted (catalysis) or blocked (passivation) by the presence of a discontinuous surface layer.
Wang, Lei; Yan, Danhua; Shaffer, David W.; ...
2017-12-27
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Yan, Danhua; Shaffer, David W.
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
Preparation of SiO2 Passivation Thin Film for Improved the Organic Light-Emitting Device Life Time
NASA Astrophysics Data System (ADS)
Hong, Jeong Soo; Kim, Sang Mo; Kim, Kyung-Hwan
2011-08-01
To improve the organic light-emitting diode (OLED) lifetime, we prepared a SiO2 thin film for OLED passivation using a facing target sputtering (FTS) system as a function of oxygen gas flow rate and working pressure. The properties of the SiO2 thin film were examined by Fourier transform infrared (FT-IR), photoluminescence (PL) intensity measurement, field emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-vis) spectrometry that As a result, we found that a SiO2 thin film is formed at a 2 sccm oxygen gas flow rate and results the minimum damage to the organic layer is observed at a 1 mTorr working pressure. Also, from the water vapor transmission rate (WVTR), we observed that all of the as-deposited SiO2 thin films showed the ability of blocking moisture. After the properties were evaluated, an optimized SiO2 thin film was applied to OLED passivation. As a result, the property of the OLED fabricated by SiO2 passivation is similar to the OLED fabricated by glass passivation. However, the performance of OLED was degraded by enhancing of SiO2 passivation. This is the organic layer of the device is exposed to plasma for a prolonged period. Therefore, a method of minimizing damage to the organic layer and optimum conditions for what are important.
Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles
NASA Astrophysics Data System (ADS)
Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.
2011-12-01
We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.
Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.
Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C
2016-07-27
Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.
ACR/NEMA Digital Image Interface Standard (An Illustrated Protocol Overview)
NASA Astrophysics Data System (ADS)
Lawrence, G. Robert
1985-09-01
The American College of Radiologists (ACR) and the National Electrical Manufacturers Association (NEMA) have sponsored a joint standards committee mandated to develop a universal interface standard for the transfer of radiology images among a variety of PACS imaging devicesl. The resulting standard interface conforms to the ISO/OSI standard reference model for network protocol layering. The standard interface specifies the lower layers of the reference model (Physical, Data Link, Transport and Session) and implies a requirement of the Network Layer should a requirement for a network exist. The message content has been considered and a flexible message and image format specified. The following Imaging Equipment modalities are supported by the standard interface... CT Computed Tomograpy DS Digital Subtraction NM Nuclear Medicine US Ultrasound MR Magnetic Resonance DR Digital Radiology The following data types are standardized over the transmission interface media.... IMAGE DATA DIGITIZED VOICE HEADER DATA RAW DATA TEXT REPORTS GRAPHICS OTHERS This paper consists of text supporting the illustrated protocol data flow. Each layer will be individually treated. Particular emphasis will be given to the Data Link layer (Frames) and the Transport layer (Packets). The discussion utilizes a finite state sequential machine model for the protocol layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, A., E-mail: arupb@barc.gov.in; Bhattacharyya, D.; Sahoo, N. K.
2015-10-28
W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayermore » W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.« less
Physical-layer network coding for passive optical interconnect in datacenter networks.
Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia
2017-07-24
We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo
2016-01-01
The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494
NASA Astrophysics Data System (ADS)
Hodgkinson, Ian J.; Wu, Qi h.; Arnold, Matthew; McCall, Martin W.; Lakhtakia, Akhlesh
2002-09-01
A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry-Perot resonators, but the handed resonator is transparent to RCP light.
Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.
2014-09-14
A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less
Advanced Software Development Workstation Project
NASA Technical Reports Server (NTRS)
Lee, Daniel
1989-01-01
The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.
Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots
2014-01-01
The effect of Sb spray prior to the capping of a GaAs layer on the structure and properties of InAs/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) is studied by cross-sectional high-resolution transmission electron microscopy (HRTEM). Compared to the typical GaAs-capped InAs/GaAs QDs, Sb-sprayed QDs display a more uniform lens shape with a thickness of about 3 ~ 4 nm rather than the pyramidal shape of the non-Sb-sprayed QDs. Particularly, the dislocations were observed to be passivated in the InAs/GaAs interface region and even be suppressed to a large extent. There are almost no extended dislocations in the immediate vicinity of the QDs. This result is most likely related to the formation of graded GaAsSb immediately adjacent to the InAs QDs that provides strain relief for the dot/capping layer lattice mismatch. PACS 81.05.Ea; 81.07.-b; 81.07.Ta PMID:24948897
MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.
Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia
2017-09-01
Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.
Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J
2018-07-01
The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hybrid passive/active damping for robust multivariable acoustic control in composite plates
NASA Astrophysics Data System (ADS)
Veeramani, Sudha; Wereley, Norman M.
1996-05-01
Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.
Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn
2014-02-28
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn
2014-01-01
Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger
2015-09-02
In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.
Passivation of Plasmonic Colors on Bulk Silver by Atomic Layer Deposition of Aluminum Oxide.
Guay, Jean-Michel; Killaire, Graham; Gordon, Peter G; Barry, Sean T; Berini, Pierre; Weck, Arnaud
2018-05-01
We report the passivation of angle-independent plasmonic colors on bulk silver by atomic layer deposition (ALD) of thin films of aluminum oxide. The colors are rendered by silver nanoparticles produced by laser ablation and redeposition on silver. We then apply a two-step approach to aluminum oxide conformal film formation via ALD. In the first step, a low-density film is deposited at low temperature to preserve and pin the silver nanoparticles. In the second step, a second denser film is deposited at a higher temperature to provide tarnish protection. This approach successfully protects the silver and plasmonic colors against tarnishing, humidity, and temperature, as demonstrated by aggressive exposure trials. The processing time associated with deposition of the conformal passivation layers meets industry requirements, and the approach is compatible with mass manufacturing.
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-01-01
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416
A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.
Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo
2016-12-02
Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.
Passive scalar dynamics near the turbulent/nonturbulent interface in a jet
NASA Astrophysics Data System (ADS)
Taveira, Rodrigo R.; da Silva, Carlos
2011-11-01
The present work uses several direct numerical simulations (DNS) of turbulent planar jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 and Schmidt numbers raging from Sc = 0 . 7 to 7.0 to analyze the nature and properties of the ``scalar interface'' and to investigate the dynamics of turbulent mixing of a passive scalar. Specifically, we employ conditional statistics in relation to the distance from the T/NT interface in order to eliminate the intermittency that affects common turbulence statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces and their associated turbulent scales and topology are investigated. A sharp scalar interface exists separating the Turbulent and the irrotational flow regions. The thickness of this scalar interface δθ is also of the order of the Taylor micro-scale, λ. However, the thickness of the scalar gradient variance <θ2 >I (where Gj = ∂ θ / ∂xj) is much smaller. Very intense scalar gradient sheet structures along regions of intense strain, in particular at the T/NT interface. The scalar gradient transport equation is analyzed in order to further investigate the physical mechanism of scalar turbulent mixing at the jet edge. Almost all mixing takes place in a confined region close to the interface, beyond which they become reduced to an almost in perfect - balance between production and dissipation of scalar variance.
Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.
Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin
2015-10-01
High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.
Sarfaraz, Hasan; Paulose, Anoopa; Shenoy, K. Kamalakanth; Hussain, Akhter
2015-01-01
Aims: The aim of the study was to evaluate the stress distribution pattern in the implant and the surrounding bone for a passive and a friction fit implant abutment interface and to analyze the influence of occlusal table dimension on the stress generated. Materials and Methods: CAD models of two different types of implant abutment connections, the passive fit or the slip-fit represented by the Nobel Replace Tri-lobe connection and the friction fit or active fit represented by the Nobel active conical connection were made. The stress distribution pattern was studied at different occlusal dimension. Six models were constructed in PRO-ENGINEER 05 of the two implant abutment connection for three different occlusal dimensions each. The implant and abutment complex was placed in cortical and cancellous bone modeled using a computed tomography scan. This complex was subjected to a force of 100 N in the axial and oblique direction. The amount of stress and the pattern of stress generated were recorded on a color scale using ANSYS 13 software. Results: The results showed that overall maximum Von Misses stress on the bone is significantly less for friction fit than the passive fit in any loading conditions stresses on the implant were significantly higher for the friction fit than the passive fit. The narrow occlusal table models generated the least amount of stress on the implant abutment interface. Conclusion: It can thus be concluded that the conical connection distributes more stress to the implant body and dissipates less stress to the surrounding bone. A narrow occlusal table considerably reduces the occlusal overload. PMID:26929518
Electronic passivation of n- and p-type GaAs using chemical vapor deposited GaS
NASA Technical Reports Server (NTRS)
Tabib-Azar, Massood; Kang, Soon; Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.
1993-01-01
We report on the electronic passivation of n- and p-type GaAs using CVD cubic GaS. Au/GaS/GaAs-fabricated metal-insulator-semiconductor (MIS) structures exhibit classical high-frequency capacitor vs voltage (C-V) behavior with well-defined accumulation and inversion regions. Using high- and low-frequency C-V, the interface trap densities of about 10 exp 11/eV per sq cm on both n- and p-type GaAs are determined. The electronic condition of GaS/GaAs interface did not show any deterioration after a six week time period.
Kencana, Andy Prima; Heng, John
2008-11-01
This paper introduces a novel passive tongue control and tracking device. The device is intended to be used by the severely disabled or quadriplegic person. The main focus of this device when compared to the other existing tongue tracking devices is that the sensor employed is passive which means it requires no powered electrical sensor to be inserted into the user's mouth and hence no trailing wires. This haptic interface device employs the use of inductive sensors to track the position of the user's tongue. The device is able perform two main PC functions that of the keyboard and mouse function. The results show that this device allows the severely disabled person to have some control in his environment, such as to turn on and off or control daily electrical devices or appliances; or to be used as a viable PC Human Computer Interface (HCI) by tongue control. The operating principle and set-up of such a novel passive tongue HCI has been established with successful laboratory trials and experiments. Further clinical trials will be required to test out the device on disabled persons before it is ready for future commercial development.
NASA Astrophysics Data System (ADS)
Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-01
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen
2011-08-10
We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.
NASA Astrophysics Data System (ADS)
Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji
2017-12-01
In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al2O3-QDSL) passivation. By exploiting the passivation layer of Al2O3, the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc) of 4.77 mA cm-2 is very close to the experimentally measured 4.75 mA cm-2, which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD’s geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.
Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji
2017-12-01
In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al 2 O 3 -QDSL) passivation. By exploiting the passivation layer of Al 2 O 3 , the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc ) of 4.77 mA cm -2 is very close to the experimentally measured 4.75 mA cm -2 , which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD's geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.
A comparison between active and passive sensing of soil moisture from vegetated terrains
NASA Technical Reports Server (NTRS)
Fung, A. K.; Eom, H. J.
1985-01-01
A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self compensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.