A thermodynamically consistent discontinuous Galerkin formulation for interface separation
Versino, Daniele; Mourad, Hashem M.; Dávila, Carlos G.; ...
2015-07-31
Our paper describes the formulation of an interface damage model, based on the discontinuous Galerkin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. This proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical resultsmore » obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. The proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture because of the advantage. Furthermore, in explicit dynamic analysis, the stable time increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements.« less
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2004-01-01
An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.
General Pharmacokinetic Model for Topically Administered Ocular Drug Dosage Forms.
Deng, Feng; Ranta, Veli-Pekka; Kidron, Heidi; Urtti, Arto
2016-11-01
In ocular drug development, an early estimate of drug behavior before any in vivo experiments is important. The pharmacokinetics (PK) and bioavailability depend not only on active compound and excipients but also on physicochemical properties of the ocular drug formulation. We propose to utilize PK modelling to predict how drug and formulational properties affect drug bioavailability and pharmacokinetics. A physiologically relevant PK model based on the rabbit eye was built to simulate the effect of formulation and physicochemical properties on PK of pilocarpine solutions and fluorometholone suspensions. The model consists of four compartments: solid and dissolved drug in tear fluid, drug in corneal epithelium and aqueous humor. Parameter values and in vivo PK data in rabbits were taken from published literature. The model predicted the pilocarpine and fluorometholone concentrations in the corneal epithelium and aqueous humor with a reasonable accuracy for many different formulations. The model includes a graphical user interface that enables the user to modify parameters easily and thus simulate various formulations. The model is suitable for the development of ophthalmic formulations and the planning of bioequivalence studies.
2016-12-08
mesoscopic models of interfaces and interphases, and microstructure-resolved representative volume element simulations. Atomic simulations were...title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a...careful prediction of the pressure- volume -temperature equation of state, pressure- and temperature-dependent crystal and liquid thermal and transport
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Sen, S.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The evolution of cellular solid/liquid interfaces from an initially unstable planar front was studied by means of a two-dimensional computer simulation. The developed numerical model makes use of an interface tracking procedure and has the capability to describe the dynamics of the interface morphology based on local changes of the thermodynamic conditions. The fundamental physics of this formulation was validated against experimental microgravity results and the predictions of the analytical linear stability theory. The performed simulations revealed that in certain conditions, based on a competitive growth mechanism, an interface could become unstable to random perturbations of infinitesimal amplitude even at wavelengths smaller than the neutral wavelength, lambda(sub c), predicted by the linear stability theory. Furthermore, two main stages of spacing selection have been identified. In the first stage, at low perturbations amplitude, the selection mechanism is driven by the maximum growth rate of instabilities while in the second stage the selection is influenced by nonlinear phenomena caused by the interactions between the neighboring cells. Comparison of these predictions with other existing theories of pattern formation and experimental results will be discussed.
NASA Technical Reports Server (NTRS)
Langston, L. J.
1976-01-01
The formulation of Level C requirements for guidance software was reported. Requirements for a PEG supervisor which controls all input/output interfaces with other processors and determines which PEG mode is to be utilized were studied in detail. A description of the two guidance modes for which Level C requirements have been formulated was presented. Functions required for proper execution of the guidance software were defined. The requirements for a navigation function that is used in the prediction logic of PEG mode 4 were discussed. It is concluded that this function is extracted from the current navigation FSSR.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
NASA Astrophysics Data System (ADS)
Jung-Woon Yoo, John
2016-06-01
Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.
Bifurcation of elastic solids with sliding interfaces
NASA Astrophysics Data System (ADS)
Bigoni, D.; Bordignon, N.; Piccolroaz, A.; Stupkiewicz, S.
2018-01-01
Lubricated sliding contact between soft solids is an interesting topic in biomechanics and for the design of small-scale engineering devices. As a model of this mechanical set-up, two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so this formulation is the objective of the present paper. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or `spring-type' interfacial conditions are not able to predict bifurcations in tension, while experiments-one of which, ad hoc designed, is reported-show that these bifurcations are a reality and become possible when the correct sliding interface model is used. The presented results introduce a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact.
NASA Astrophysics Data System (ADS)
Máirtín, Éamonn Ó.; Parry, Guillaume; Beltz, Glenn E.; McGarry, J. Patrick
2014-02-01
This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu-Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model does not correctly penalise mixed-mode over-closure at the stent-coating interface, significantly altering the stress state in the coating and preventing the prediction of buckling. Case study 3: Application of a displacement to the base of a bi-layered composite arch results in a symmetric sinusoidal distribution of normal and tangential traction at the arch interface. The traction defined mode mixity at the interface ranges from pure mode II at the base of the arch to pure mode I at the top of the arch. It is demonstrated that predicted debonding patterns are highly sensitive to normal-tangential coupling terms in a CZM. The NP2, XN, and BSG models exhibit a strong bias towards mode I separation at the top of the arch, while the NP1 model exhibits a bias towards mode II debonding at the base of the arch. Only the SMC model provides mode-independent behaviour in the early stages of debonding. This case study provides a practical example of the importance of the behaviour of CZMs under conditions of traction controlled mode mixity, following from the theoretical analysis presented in Part I of this study.
An Irreversible Constitutive Law for Modeling the Delamination Process using Interface Elements
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Ambur, Damodar (Technical Monitor)
2002-01-01
An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.
An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.
Surfactant effects on heat transfer at gas/liquid interfaces
NASA Astrophysics Data System (ADS)
Lopez, J. M.; Hirsa, A. H.
2000-01-01
A formulation of a canonical model to elucidate the interplay and competition between three primary sources of heat and mass transfer in non-isothermal systems with gas/liquid interfaces is presented. The nonlinear interaction between (i) buoyancy driven flow in the bulk, (ii) thermal Marangoni flow at the gas/liquid interface, and (iii) surfactant Marangoni flow at the interface is considered. A numerical model of the Navier-Stokes and energy equations is being developed for a simple, axisymmetric flow geometry. The boundary conditions for the Navier-Stokes equations are functions of the intrinsic viscoelastic properties of the interface, specifically the surface tension and the surface viscosities. A flow geometry which is amenable to both experiments and computations for elucidating the separate effects of the three mechanisms consists of an annular region bounded by a stationary inner and an outer cylinder and floor, and a free surface. The flow is driven by the temperature difference between the inner and outer cylinder which are set independently, and the floor is insulated. The predictions of the model for earth-g can be compared to laboratory measurements of the velocity field, and the surface temperature distribution. The predictions of the model for arbitrary gravity may be subsequently tested in the microgravity environment. .
A generic interface element for COMET-AR
NASA Technical Reports Server (NTRS)
Mccleary, Susan L.; Aminpour, Mohammad A.
1995-01-01
The implementation of an interface element capability within the COMET-AR software system is described. The report is intended for use by both users of currently implemented interface elements and developers of new interface element formulations. Guidance on the use of COMET-AR is given. A glossary is provided as an Appendix to this report for readers unfamiliar with the jargon of COMET-AR. A summary of the currently implemented interface element formulation is presented in Section 7.3 of this report.
Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models
NASA Astrophysics Data System (ADS)
Liu, Haiying
This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed hydraulic device models are implemented in a multibody code and calibrated by comparing their predictions with test bench measurements for the UH-60 helicopter lead-lag damper. Predicted peak damping forces were found to be in good agreement with measurements, while the model did not predict the entire time history of damper force to the same level of accuracy. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airloads method is developed in a finite-element method based multibody dynamics formulation, DYMORE. To validate this aerodynamic interface, a CFD code, OVERFLOW-2, is loosely coupled with a CSD program, DYMORE, to compute the airloads of different flight conditions for Sikorsky UH-60 aircraft. This loose coupling approach has good convergence characteristics. The predicted airloads are found to be in good agreement with the experimental data, although not for all flight conditions. In addition, the tight coupling interface between the CFD program, OVERFLOW-2, and the CSD program, DYMORE, is also established. The ability to accurately capture the wake structure around a helicopter rotor is crucial for rotorcraft performance analysis. In the third part of this thesis, a new representation of the wake vortex structure based on Non-Uniform Rational B-Spline (NURBS) curves and surfaces is proposed to develop an efficient model for prescribed and free wakes. NURBS curves and surfaces are able to represent complex shapes with remarkably little data. The proposed formulation has the potential to reduce the computational cost associated with the use of Helmholtz's law and the Biot-Savart law when calculating the induced flow field around the rotor. An efficient free-wake analysis will considerably decrease the computational cost of comprehensive rotorcraft analysis, making the approach more attractive to routine use in industrial settings.
Juan, Pierre -Alexandre; Dingreville, Remi
2016-10-31
Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan, Pierre -Alexandre; Dingreville, Remi
Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less
NASA Technical Reports Server (NTRS)
Turon, Albert; Camanho, Pedro P.; Costa, Josep; Davila, Carlos G.
2004-01-01
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics (DM). The constitutive equations that result from the variation of the free energy with damage are used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. Interfacial penetration of two adjacent layers after complete decohesion is prevented by the formulation of the free energy. The model is implemented into the commercial finite element code ABAQUS by means of a user-written decohesion element. Finally, the numerical predictions given by the model are compared with experimental results.
de Moraes, Fábio R; Neshich, Izabella A P; Mazoni, Ivan; Yano, Inácio H; Pereira, José G C; Salim, José A; Jardine, José G; Neshich, Goran
2014-01-01
Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now integrated into the BlueStar STING suite of programs. Consequently, the prediction of protein-protein interfaces for all proteins available in the PDB is possible through STING_interfaces module, accessible at the following website: (http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.html).
de Moraes, Fábio R.; Neshich, Izabella A. P.; Mazoni, Ivan; Yano, Inácio H.; Pereira, José G. C.; Salim, José A.; Jardine, José G.; Neshich, Goran
2014-01-01
Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now integrated into the BlueStar STING suite of programs. Consequently, the prediction of protein-protein interfaces for all proteins available in the PDB is possible through STING_interfaces module, accessible at the following website: (http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.html). PMID:24489849
NASA Astrophysics Data System (ADS)
Wilson, Seth Robert
A mathematical model that results in an expression for the local acceleration of a network of sharp interfaces interacting with an ambient solute field is proposed. This expression comprises a first-order differential equation for the local velocity that, given the appropriate initial conditions, may be used to predict the subsequent time evolution of the system, including non-steady state absorption and desorption of solute. Evolution equations for both interfaces and the junction of interfaces are derived by maximizing a functional approximating the rate at which the local Gibbs free energy density decreases, as a function of the local solute content and the instantaneous velocity. The model has been formulated in three dimensions, and non-equilibrium effects such as grain boundary diffusion, solute gradients, and time-dependant segregation are taken into account. As a consequence of this model, it is shown that both interfaces and the junctions between interfaces obey evolution equations that closely resemble Newton's second law. In particular, the concept of "thrust" in variable-mass systems is shown to have a direct analog in solute-interface interaction. Numerical analysis of the equations that result reveals that a double cusp catastrophe governs the behavior of the solute-interface system, for which trajectories that include hysteresis, slip-stick motion, and jerky motion are all conceivable. The geometry of the cusp catastrophe is quantified, and a number of relations between physical parameters and system behavior are consequently predicted.
NASA Technical Reports Server (NTRS)
Lyons, J. T.; Borchers, William R.
1993-01-01
Documentation for the User Interface Program for the Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) is provided. The User Interface Program is a separate software package designed to ease the user input requirements when using the MASTRE Trajectory Program. This document supplements documentation on the MASTRE Program that consists of the MASTRE Engineering Manual and the MASTRE Programmers Guide. The User Interface Program provides a series of menus and tables using the VAX Screen Management Guideline (SMG) software. These menus and tables allow the user to modify the MASTRE Program input without the need for learning the various program dependent mnemonics. In addition, the User Interface Program allows the user to modify and/or review additional input Namelist and data files, to build and review command files, to formulate and calculate mass properties related data, and to have a plotting capability.
A Diffuse Interface Model with Immiscibility Preservation
Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos
2013-01-01
A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207
Modeling NAPL dissolution from pendular rings in idealized porous media
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.
2015-10-01
The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
NASA Astrophysics Data System (ADS)
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
NASA Technical Reports Server (NTRS)
Lee, C. H.
1978-01-01
A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.
A novel approach in formulation of special transition elements: Mesh interface elements
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1991-01-01
The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.
The intelligent user interface for NASA's advanced information management systems
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.
1987-01-01
NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
NASA Astrophysics Data System (ADS)
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-12-01
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-08-19
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu 2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less
Protein aggregation and particle formation in prefilled glass syringes.
Gerhardt, Alana; Mcgraw, Nicole R; Schwartz, Daniel K; Bee, Jared S; Carpenter, John F; Randolph, Theodore W
2014-06-01
The stability of therapeutic proteins formulated in prefilled syringes (PFS) may be negatively impacted by the exposure of protein molecules to silicone oil-water interfaces and air-water interfaces. In addition, agitation, such as that experienced during transportation, may increase the detrimental effects (i.e., protein aggregation and particle formation) of protein interactions with interfaces. In this study, surfactant-free formulations containing either a monoclonal antibody or lysozyme were incubated in PFS, where they were exposed to silicone oil-water interfaces (siliconized syringe walls), air-water interfaces (air bubbles), and agitation stress (occurring during end-over-end rotation). Using flow microscopy, particles (≥2 μm diameter) were detected under all conditions. The highest particle concentrations were found in agitated, siliconized syringes containing an air bubble. The particles formed in this condition consisted of silicone oil droplets and aggregated protein, as well as agglomerates of protein aggregates and silicone oil. We propose an interfacial mechanism of particle generation in PFS in which capillary forces at the three-phase (silicone oil-water-air) contact line remove silicone oil and gelled protein aggregates from the interface and transport them into the bulk. This mechanism explains the synergistic effects of silicone oil-water interfaces, air-water interfaces, and agitation in the generation of particles in protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.
2009-10-01
On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.
NASA Astrophysics Data System (ADS)
Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.
2010-02-01
On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.
NASA Astrophysics Data System (ADS)
Ma, Ronghui; Zhang, Hui; Larson, David J.; Mandal, Krishna C.
2004-05-01
The growth process of potassium bromide (KBr) single crystals in a vertical Bridgman furnace has been studied numerically using an integrated model that combines formulation of global heat transfer and thermal elastic stresses. The global heat transfer sub-model accounts for conduction, convection and interface movement in the multiphase system. Using the elastic stress sub-model, thermal stresses in the growing crystal caused by the non-uniform temperature distribution is predicted. Special attention is directed to the interaction between the crystal and the ampoule. The global temperature distribution in the furnace, the flow pattern in the melt and the interface shapes are presented. We also investigate the effects of the natural convection and rotational forced convection on the shape of the growth fronts. Furthermore, the state of the thermal stresses in the crystal is studied to understand the plastic deformation mechanisms during the cooling process. The influence of the wall contact on thermal stresses is also addressed.
Numerical simulation of CdTe vertical Bridgman growth
NASA Astrophysics Data System (ADS)
Ouyang, Hong; Shyy, Wei
1997-04-01
Numerical simulation has been conducted for steady-state Bridgman growth of the CdTe crystal with two ampoule configurations, namely, flat base and semi-spherical base. The present model accounts for conduction, convection and radiation, as well as phase change dynamics. The enthalpy formulation for phase change has been incorporated into a pressure-based algorithm with multi-zone curvilinear grid systems. The entire system which consists of the furnace enclosure wall, the encapsulated gas and the ampoule, contains irregularly configured domains. To meet the competing needs of producing accurate solutions with reasonable computing resources, a two-level approach is employed. The present study reveals that although the two ampoule configurations are quite different, their influence on the melt-solid interface shape is modest, and the undesirable concave interface appears in both cases. Since the interface shape strongly depends on thermal conductivities between the melt and the crystal, as well as ampoule wall temperature, accurate prescriptions of materials transport properties and operating environment are crucial for successful numerical predictions.
Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny
2013-01-01
The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.
The StarView intelligent query mechanism
NASA Technical Reports Server (NTRS)
Semmel, R. D.; Silberberg, D. P.
1993-01-01
The StarView interface is being developed to facilitate the retrieval of scientific and engineering data produced by the Hubble Space Telescope. While predefined screens in the interface can be used to specify many common requests, ad hoc requests require a dynamic query formulation capability. Unfortunately, logical level knowledge is too sparse to support this capability. In particular, essential formulation knowledge is lost when the domain of interest is mapped to a set of database relation schemas. Thus, a system known as QUICK has been developed that uses conceptual design knowledge to facilitate query formulation. By heuristically determining strongly associated objects at the conceptual level, QUICK is able to formulate semantically reasonable queries in response to high-level requests that specify only attributes of interest. Moreover, by exploiting constraint knowledge in the conceptual design, QUICK assures that queries are formulated quickly and will execute efficiently.
Implications of interfacial characteristics of food foaming agents in foam formulations.
Rodríguez Patino, Juan M; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario
2008-08-05
The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
Guess, Trent M; Liu, Hongzeng; Bhashyam, Sampath; Thiagarajan, Ganesh
2013-01-01
Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.
Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G
2007-08-01
A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.
NASA Astrophysics Data System (ADS)
Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.
2006-12-01
order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.
Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S
2016-09-29
We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.
Numerical solution of the Hele-Shaw equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, N.
1987-04-01
An algorithm is presented for approximating the motion of the interface between two immiscible fluids in a Hele-Shaw cell. The interface is represented by a set of volume fractions. We use the Simple Line Interface Calculation method along with the method of fractional steps to transport the interface. The equation of continuity leads to a Poisson equation for the pressure. The Poisson equation is discretized. Near the interface where the velocity field is discontinuous, the discretization is based on a weak formulation of the continuity equation. Interpolation is used on each side of the interface to increase the accuracy ofmore » the algorithm. The weak formulation as well as the interpolation are based on the computed volume fractions. This treatment of the interface is new. The discretized equations are solved by a modified conjugate gradient method. Surface tension is included and the curvature is computed through the use of osculating circles. For perturbations of small amplitude, a surprisingly good agreement is found between the numerical results and linearized perturbation theory. Numerical results are presented for the finite amplitude growth of unstable fingers. 62 refs., 13 figs.« less
Energy-level alignment at organic heterointerfaces
Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg
2015-01-01
Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447
Local control of globally competing patterns in coupled Swift-Hohenberg equations
NASA Astrophysics Data System (ADS)
Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus
2018-04-01
We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.
Nitsche’s Method For Helmholtz Problems with Embedded Interfaces
Zou, Zilong; Aquino, Wilkins; Harari, Isaac
2016-01-01
SUMMARY In this work, we use Nitsche’s formulation to weakly enforce kinematic constraints at an embedded interface in Helmholtz problems. Allowing embedded interfaces in a mesh provides significant ease for discretization, especially when material interfaces have complex geometries. We provide analytical results that establish the well-posedness of Helmholtz variational problems and convergence of the corresponding finite element discretizations when Nitsche’s method is used to enforce kinematic constraints. As in the analysis of conventional Helmholtz problems, we show that the inf-sup constant remains positive provided that the Nitsche’s stabilization parameter is judiciously chosen. We then apply our formulation to several 2D plane-wave examples that confirm our analytical findings. Doing so, we demonstrate the asymptotic convergence of the proposed method and show that numerical results are in accordance with the theoretical analysis. PMID:28713177
Interface Technology for Geometrically Nonlinear Analysis of Multiple Connected Subdomains
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
1997-01-01
Interface technology for geometrically nonlinear analysis is presented and demonstrated. This technology is based on an interface element which makes use of a hybrid variational formulation to provide for compatibility between independently modeled connected subdomains. The interface element developed herein extends previous work to include geometric nonlinearity and to use standard linear and nonlinear solution procedures. Several benchmark nonlinear applications of the interface technology are presented and aspects of the implementation are discussed.
Evaluation of Maltose-Induced Chemical Degradation at the Interface of Bilayer Tablets.
Matsuzaki, Naoya; Yamamoto, Yousuke; Murayama, Daisuke; Katakawa, Yoshifumi; Mimura, Hisashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-01-01
Fixed dose combination tablets consisting of mirabegron (MB) and solifenacin succinate (SS) were developed and formulated into bilayer tablets in the current study. The results of a chemical stability study showed that the original formulation for the tablets led to a significant increase of unknown degradants in the SS layer. Two compatibility studies were conducted to simulate the interface between the MB and SS layers, and the results revealed that the degradants only formed in the presence of both active pharmaceutical ingredients (APIs), and that the presence of maltose in the SS layer was critical to inducing degradation. High resolution mass spectroscopy coupled with high performance liquid chromatography was used to determine the chemical structures of the degradants, which were identified to MB derivatives bearing one or two sugar units. These findings therefore suggested that the degradation of the API could be attributed to the addition of sugar units from maltose to MB under the acidic conditions caused by SS. With this in mind, we developed a new formulation by replacing maltose with hydroxypropyl cellulose as a polymer-type binder. The results showed that this formulation suppressed the formation of the degradants. The results of this study have shown that chemical degradation can occur at the interface of bilayer tablets and that an alternative strategy is available to formulate more stable MB/SS bilayer tablets.
A damage mechanics based general purpose interface/contact element
NASA Astrophysics Data System (ADS)
Yan, Chengyong
Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against laboratory test data presented in the literature. The results demonstrate that the proposed element and the damage law perform very well. The most important scientific contribution of this dissertation is the proposed damage criterion based on second law of thermodynamic and entropy of the system. The proposed general purpose interface/contact element is another contribution of this research. Compared to the previous adhoc interface elements proposed in the literature, the new one is, much more powerful and includes creep, plastic deformations, sliding, temperature, damage, cyclic behavior and fatigue life in a unified formulation.
Salar-Behzadi, Sharareh; Wu, Shengqian; Mercuri, Annalisa; Meindl, Claudia; Stranzinger, Sandra; Fröhlich, Eleonore
2017-10-30
The growing interest in the inhalable pharmaceutical products requires advanced approaches to safe and fast product development, such as in silico tools that can be used for estimating the bioavailability and toxicity of developed formulation. GastroPlus™ is one of the few available software packages for in silico simulation of PBPK profile of inhalable products. It contains a complementary module for calculating the lung deposition, the permeability and the systemic absorption of inhalable products. Experimental values of lung deposition and permeability can also be used. This study aims to assess the efficiency of simulation by applying experimental permeability and deposition values, using budesonide as a model substance. The lung deposition values were obtained from the literature, the lung permeability data were experimentally determined by culturing Calu-3 cells under air-liquid interface and submersed conditions to morphologically resemble bronchial and alveolar epithelial cells, respectively. A two-compartment PK model was created for i.v. administration and used as a background for the in silico simulation of the plasma profile of budesonide after inhalation. The predicted plasma profile was compared with the in vivo data from the literature and the effects of experimental lung deposition and permeability on prediction were assessed. The developed model was significantly improved by using realistic lung deposition data combined with experimental data for peripheral permeability. Copyright © 2017 Elsevier B.V. All rights reserved.
Interface equation and viscosity contrast in Hele-Shaw flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casademunt, J.; Jasnow, D.; Hernandez-Machado, A.
1992-05-20
In this paper, the authors derive an integro-differential equation for the evolution of the interface separating two immiscible viscous fluids in a Hele-Shaw cell with a channel geometry, for arbitrary viscosity contrast. The authors' equation differs from a previous one obtained by a vortex-sheet formulation of the problem, in that the normal component of the interface velocity is formally decoupled from the gauge-dependent tangential part. The result is thus a closed integral equation for the normal velocity. The authors briefly comment on the advantages of such a formulation and implement an alternative computational algorithm based on it. Preliminary numerical resultsmore » confirm a highly inefficient finger competition in the zero viscosity contrast limit.« less
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
Nonadditivity of van der Waals forces on liquid surfaces
NASA Astrophysics Data System (ADS)
Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.
2016-09-01
We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.
NASA Technical Reports Server (NTRS)
Torian, J. G.
1977-01-01
Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.
Reliability of emerging bonded interface materials for large-area attachments
Paret, Paul P.; DeVoto, Douglas J.; Narumanchi, Sreekant
2015-12-30
In this study, conventional thermal interface materials (TIMs), such as greases, gels, and phase change materials, pose bottlenecks to heat removal and have long caused reliability issues in automotive power electronics packages. Bonded interface materials (BIMs) with superior thermal performance have the potential to be a replacement to the conventional TIMs. However, due to coefficient of thermal expansion mismatches between different components in a package and resultant thermomechanical stresses, fractures or delamination could occur, causing serious reliability concerns. These defects manifest themselves in increased thermal resistance in the package. In this paper, the results of reliability evaluation of emerging BIMsmore » for large-area attachments in power electronics packaging are reported. Thermoplastic (polyamide) adhesive with embedded near-vertical-aligned carbon fibers, sintered silver, and conventional lead solder (Sn 63Pb 37) materials were bonded between 50.8 mm x 50.8 mm cross-sectional footprint silicon nitride substrates and copper base plate samples, and were subjected to accelerated thermal cycling until failure or 2500 cycles. Damage in the BIMs was monitored every 100 cycles by scanning acoustic microscopy. Thermoplastic with embedded carbon fibers performed the best with no defects, whereas sintered silver and lead solder failed at 2300 and 1400 thermal cycles, respectively. Besides thermal cycling, additional lead solder samples were subjected to thermal shock and thermal cycling with extended dwell periods. A finite element method (FEM)-based model was developed to simulate the behavior of lead solder under thermomechanical loading. Strain energy density per cycle results were calculated from the FEM simulations. A predictive lifetime model was formulated for lead solder by correlating strain energy density results extracted from modeling with cycles-to-failure obtained from experimental accelerated tests. A power-law-based approach was used to formulate the - redictive lifetime model.« less
NASA Technical Reports Server (NTRS)
Spence, Peter L.
1987-01-01
This paper addresses recently completed work on using Farassat's Formulation 3 noise prediction code with the Aircraft Noise Prediction Program (ANOPP). Software was written to link aerodynamic loading generated by the Propeller Loading (PLD) module within ANOPP with formulation 3. Included are results of comparisons between Formulation 3 with ANOPP's existing noise prediction modules, Subsonic Propeller Noise (SPN) and Transonic Propeller Noise (TPN). Four case studies are investigated. Results of the comparison studies show excellent agreement for the subsonic cases. Differences found in the comparisons made under transonic conditions are strictly numerical and can be explained by the way in which the time derivative is calculated in Formulation 3. Also included is a section on how to execute Formulation 3 with ANOPP.
On the Theory of Reactive Mixtures for Modeling Biological Growth
Ateshian, Gerard A.
2013-01-01
Mixture theory, which can combine continuum theories for the motion and deformation of solids and fluids with general principles of chemistry, is well suited for modeling the complex responses of biological tissues, including tissue growth and remodeling, tissue engineering, mechanobiology of cells and a variety of other active processes. A comprehensive presentation of the equations of reactive mixtures of charged solid and fluid constituents is lacking in the biomechanics literature. This study provides the conservation laws and entropy inequality, as well as interface jump conditions, for reactive mixtures consisting of a constrained solid mixture and multiple fluid constituents. The constituents are intrinsically incompressible and may carry an electrical charge. The interface jump condition on the mass flux of individual constituents is shown to define a surface growth equation, which predicts deposition or removal of material points from the solid matrix, complementing the description of volume growth described by the conservation of mass. A formu-lation is proposed for the reference configuration of a body whose material point set varies with time. State variables are defined which can account for solid matrix volume growth and remodeling. Constitutive constraints are provided on the stresses and momentum supplies of the various constituents, as well as the interface jump conditions for the electrochem cal potential of the fluids. Simplifications appropriate for biological tissues are also proposed, which help reduce the governing equations into a more practical format. It is shown that explicit mechanisms of growth-induced residual stresses can be predicted in this framework. PMID:17206407
Blind predictions of protein interfaces by docking calculations in CAPRI.
Lensink, Marc F; Wodak, Shoshana J
2010-11-15
Reliable prediction of the amino acid residues involved in protein-protein interfaces can provide valuable insight into protein function, and inform mutagenesis studies, and drug design applications. A fast-growing number of methods are being proposed for predicting protein interfaces, using structural information, energetic criteria, or sequence conservation or by integrating multiple criteria and approaches. Overall however, their performance remains limited, especially when applied to nonobligate protein complexes, where the individual components are also stable on their own. Here, we evaluate interface predictions derived from protein-protein docking calculations. To this end we measure the overlap between the interfaces in models of protein complexes submitted by 76 participants in CAPRI (Critical Assessment of Predicted Interactions) and those of 46 observed interfaces in 20 CAPRI targets corresponding to nonobligate complexes. Our evaluation considers multiple models for each target interface, submitted by different participants, using a variety of docking methods. Although this results in a substantial variability in the prediction performance across participants and targets, clear trends emerge. Docking methods that perform best in our evaluation predict interfaces with average recall and precision levels of about 60%, for a small majority (60%) of the analyzed interfaces. These levels are significantly higher than those obtained for nonobligate complexes by most extant interface prediction methods. We find furthermore that a sizable fraction (24%) of the interfaces in models ranked as incorrect in the CAPRI assessment are actually correctly predicted (recall and precision ≥50%), and that these models contribute to 70% of the correct docking-based interface predictions overall. Our analysis proves that docking methods are much more successful in identifying interfaces than in predicting complexes, and suggests that these methods have an excellent potential of addressing the interface prediction challenge. © 2010 Wiley-Liss, Inc.
Fluid-structure interaction modeling of wind turbines: simulating the full machine
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Bazilevs, Yuri
2012-12-01
In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.
NASA Technical Reports Server (NTRS)
Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; ...
2017-08-09
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less
NASA Astrophysics Data System (ADS)
Suzuki, Yukihito
2018-03-01
A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn-Hilliard and Allen-Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.
Numerical formulation for the prediction of solid/liquid change of a binary alloy
NASA Technical Reports Server (NTRS)
Schneider, G. E.; Tiwari, S. N.
1990-01-01
A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Olivares-Morales, Andrés; Ghosh, Avijit; Aarons, Leon; Rostami-Hodjegan, Amin
2016-11-01
A new minimal Segmented Transit and Absorption model (mSAT) model has been recently proposed and combined with intrinsic intestinal effective permeability (P eff,int ) to predict the regional gastrointestinal (GI) absorption (f abs ) of several drugs. Herein, this model was extended and applied for the prediction of oral bioavailability and pharmacokinetics of oxybutynin and its enantiomers to provide a mechanistic explanation of the higher relative bioavailability observed for oxybutynin's modified-release OROS® formulation compared to its immediate-release (IR) counterpart. The expansion of the model involved the incorporation of mechanistic equations for the prediction of release, transit, dissolution, permeation and first-pass metabolism. The predicted pharmacokinetics of oxybutynin enantiomers after oral administration for both the IR and OROS® formulations were in close agreement with the observed data. The predicted absolute bioavailability for the IR formulation was within 5% of the observed value, and the model adequately predicted the higher relative bioavailability observed for the OROS® formulation vs. the IR counterpart. From the model predictions, it can be noticed that the higher bioavailability observed for the OROS® formulation was mainly attributable to differences in the intestinal availability (F G ) rather than due to a higher colonic f abs , thus confirming previous hypotheses. The predicted f abs was almost 70% lower for the OROS® formulation compared to the IR formulation, whereas the F G was almost eightfold higher than in the IR formulation. These results provide further support to the hypothesis of an increased F G as the main factor responsible for the higher bioavailability of oxybutynin's OROS® formulation vs. the IR.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Kelly, N; Cawley, D T; Shannon, F J; McGarry, J P
2013-11-01
The stress distribution and plastic deformation of peri-prosthetic trabecular bone during press-fit tibial component implantation in total knee arthroplasty is investigated using experimental and finite element techniques. It is revealed that the computed stress distribution, implantation force and plastic deformation in the trabecular bone is highly dependent on the plasticity formulation implemented. By incorporating pressure dependent yielding using a crushable foam plasticity formulation to simulate the trabecular bone during implantation, highly localised stress concentrations and plastic deformation are computed at the bone-implant interface. If the pressure dependent yield is neglected using a traditional von Mises plasticity formulation, a significantly different stress distribution and implantation force is computed in the peri-prosthetic trabecular bone. The results of the study highlight the importance of: (i) simulating the insertion process of press-fit stem implantation; (ii) implementing a pressure dependent plasticity formulation, such as the crushable foam plasticity formulation, for the trabecular bone; (iii) incorporating friction at the implant-bone interface during stem insertion. Simulation of the press-fit implantation process with an appropriate pressure dependent plasticity formulation should be implemented in the design and assessment of arthroplasty prostheses. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Kam, Chee Zhou; Kueh, Ahmad Beng Hong
2013-01-01
A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
NASA Astrophysics Data System (ADS)
Garwood, T.; Modine, N. A.; Krishna, S.
2017-03-01
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garwood, Tristan; Modine, Normand A.; Krishna, S.
2016-12-18
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
An Enriched Shell Element for Delamination Simulation in Composite Laminates
NASA Technical Reports Server (NTRS)
McElroy, Mark
2015-01-01
A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.
Diffuse-Interface Methods in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Rough Interface Effects on N-S Proximity-Contact Systems
NASA Astrophysics Data System (ADS)
Nagato, Yasushi; Nagai, Katsuhiko
2003-03-01
We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic d
NASA Technical Reports Server (NTRS)
Zamora, M. A.
1977-01-01
Consumables analysis/crew training simulator interface requirements were defined. Two aspects were investigated: consumables analysis support techniques to crew training simulator for advanced spacecraft programs, and the applicability of the above techniques to the crew training simulator for the space shuttle program in particular.
Beyond local effective material properties for metamaterials
NASA Astrophysics Data System (ADS)
Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
2018-02-01
To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.
Progressive Failure And Life Prediction of Ceramic and Textile Composites
NASA Technical Reports Server (NTRS)
Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.
1998-01-01
An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.
Formulation of consumables management models. Consumables flight planning worksheet utilization
NASA Technical Reports Server (NTRS)
Newman, C. M.
1977-01-01
The updated and reformatted consumables flight planning worksheet is documented. An instruction set for applying the worksheet, and a sample application of the worksheet is disclosed. The particular application is for the STS interfacing with sortie payloads and typifies the interfacing of the delivery system and payloads.
Ion Structure Near a Core-Shell Dielectric Nanoparticle
NASA Astrophysics Data System (ADS)
Ma, Manman; Gan, Zecheng; Xu, Zhenli
2017-02-01
A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia, Kelin; Wei, Guo-Wei
2014-01-01
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038
Lattice Boltzmann simulations of multiple-droplet interaction dynamics.
Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G; Degertekin, F Levent; Rosen, David W
2014-03-01
A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface phenomena.
Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
Chen, Duan; Chen, Zhan; Wei, Guo-Wei
2012-01-01
Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
NASA Astrophysics Data System (ADS)
Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.
2015-12-01
Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.
Interface definition for the Far Ultraviolet Spectrometer Experiment S169
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1971-01-01
A final contract for development, fabrication, test and flight of the ultraviolet spectrometer experiment on an Apollo space mission is reported. Two interface control documents were completed and signed off and three more were essentially completed. Supporting preliminary concepts formulation, design study and component investigation, specification and subcontract negotiation were accomplished.
NASA Astrophysics Data System (ADS)
Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Elder, Ken R.
2017-08-01
One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.
Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent
2016-10-01
In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.
NASA Astrophysics Data System (ADS)
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; Datta, Sujoy; Johnson, Duane D.; Mookerjee, Abhijit
2017-08-01
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique [Mookerjee, J. Phys. C 6, 1340 (1973), 10.1088/0022-3719/6/8/003] formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen-Baerends corrected exchange potential [Singh, Harbola, Hemanadhan, Mookerjee, and Johnson, Phys. Rev. B 93, 085204 (2016), 10.1103/PhysRevB.93.085204]. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene SixC1 -x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussed in the light of the available experimental and other theoretical data. Our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.
[Application of an artificial neural network in the design of sustained-release dosage forms].
Wei, X H; Wu, J J; Liang, W Q
2001-09-01
To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.
ERIC Educational Resources Information Center
Brown-Schmidt, Sarah; Konopka, Agnieszka E.
2008-01-01
During unscripted speech, speakers coordinate the formulation of pre-linguistic messages with the linguistic processes that implement those messages into speech. We examine the process of constructing a contextually appropriate message and interfacing that message with utterance planning in English ("the small butterfly") and Spanish ("la mariposa…
HomPPI: a class of sequence homology based protein-protein interface prediction methods
2011-01-01
Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/. Conclusions Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners. PMID:21682895
A Prize-Collecting Steiner Tree Approach for Transduction Network Inference
NASA Astrophysics Data System (ADS)
Bailly-Bechet, Marc; Braunstein, Alfredo; Zecchina, Riccardo
Into the cell, information from the environment is mainly propagated via signaling pathways which form a transduction network. Here we propose a new algorithm to infer transduction networks from heterogeneous data, using both the protein interaction network and expression datasets. We formulate the inference problem as an optimization task, and develop a message-passing, probabilistic and distributed formalism to solve it. We apply our algorithm to the pheromone response in the baker’s yeast S. cerevisiae. We are able to find the backbone of the known structure of the MAPK cascade of pheromone response, validating our algorithm. More importantly, we make biological predictions about some proteins whose role could be at the interface between pheromone response and other cellular functions.
A contact stress model for multifingered grasps of rough objects
NASA Technical Reports Server (NTRS)
Sinha, Pramath Raj; Abel, Jacob M.
1990-01-01
The model developed utilizes a contact-stress analysis of an arbitrarily shaped object in a multifingered grasp. The fingers and the object are all treated as elastic bodies, and the region of contact is modeled as a deformable surface patch. The relationship between the friction and normal forces is nonlocal and nonlinear in nature and departs from the Coulomb approximation. The nature of the constraints arising out of conditions for compatibility and static equilibrium motivated the formulation of the model as a nonlinear constrained minimization problem. The model is able to predict the magnitude of the inwardly directed normal forces and both the magnitude and direction of the tangential (friction) forces at each finger-object interface for grasped objects in static equilibrium.
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418
Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.
Durandau, Guillaume; Farina, Dario; Sartori, Massimo
2018-03-01
Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.
Protein docking prediction using predicted protein-protein interface.
Li, Bin; Kihara, Daisuke
2012-01-10
Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.
Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E
2017-02-01
Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.
Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew
2018-01-01
Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300
Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.
2017-01-01
Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957
Settivari, Raja S; Gehen, Sean C; Amado, Ricardo Acosta; Visconti, Nicolo R; Boverhof, Darrell R; Carney, Edward W
2015-07-01
Assessment of skin sensitization potential is an important component of the safety evaluation process for agrochemical products. Recently, non-animal approaches including the KeratinoSens™ assay have been developed for predicting skin sensitization potential. Assessing the utility of the KeratinoSens™ assay for use with multi-component mixtures such as agrochemical formulations has not been previously evaluated and is a significant need. This study was undertaken to evaluate the KeratinoSens™ assay prediction potential for agrochemical formulations. The assay was conducted for 8 agrochemical active ingredients (AIs) including 3 sensitizers (acetochlor, meptyldinocap, triclopyr), 5 non-sensitizers (aminopyralid, clopyralid, florasulam, methoxyfenozide, oxyfluorfen) and 10 formulations for which in vivo sensitization data were available. The KeratinoSens™ correctly predicted the sensitization potential of all the AIs. For agrochemical formulations it was necessary to modify the standard assay procedure whereby the formulation was assumed to have a common molecular weight. The resultant approach correctly predicted the sensitization potential for 3 of 4 sensitizing formulations and all 6 non-sensitizing formulations when compared to in vivo data. Only the meptyldinocap-containing formulation was misclassified, as a result of high cytotoxicity. These results demonstrate the promising utility of the KeratinoSens™ assay for evaluating the skin sensitization potential of agrochemical AIs and formulations. Copyright © 2015 Elsevier Inc. All rights reserved.
Inelastic deformation of metal matrix composites
NASA Technical Reports Server (NTRS)
Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.
1993-01-01
A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.
Protein-Protein Interface Predictions by Data-Driven Methods: A Review
Xue, Li C; Dobbs, Drena; Bonvin, Alexandre M.J.J.; Honavar, Vasant
2015-01-01
Reliably pinpointing which specific amino acid residues form the interface(s) between a protein and its binding partner(s) is critical for understanding the structural and physicochemical determinants of protein recognition and binding affinity, and has wide applications in modeling and validating protein interactions predicted by high-throughput methods, in engineering proteins, and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances in computational approaches to the analysis and prediction of protein-protein interfaces. We point out caveats for objectively evaluating interface predictors, and discuss various applications of data-driven interface predictors for improving energy model-driven protein-protein docking. Finally, we stress the importance of exploiting binding partner information in reliably predicting interfaces and highlight recent advances in this emerging direction. PMID:26460190
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
A contact layer element for large deformations
NASA Astrophysics Data System (ADS)
Weißenfels, C.; Wriggers, P.
2015-05-01
In many contact situations the material behavior of one contact member strongly influences the force acting between the two bodies. Unfortunately standard friction models cannot reproduce all of these material effects at the contact layer and often continuum interface elements are used instead. These elements are intrinsically tied to the fixed grid and hence cannot be used in large sliding simulations. Due to the shortcomings of the standard contact formulations and of the interface elements a new type of a contact layer element is developed in this work. The advantages of this element are the direct implementation of continuum models into the contact formulation and the application to arbitrary large deformations. Showing a relation between continuum and contact kinematics based on the solid-shell concept the new contact element is at the end a natural extension of the standard contact formulations into 3D. Two examples show that the continuum behavior can be exactly reproduced at the contact surface even in large sliding situations using this contact layer element. For the discretization of the new contact element the Mortar method is chosen exemplary, but it can be combined with all kinds of contact formulations.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun
2007-01-01
The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.
JDFTx: Software for joint density-functional theory
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...
2017-11-14
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
NASA Technical Reports Server (NTRS)
Grossman, B.; Moretti, G.
1973-01-01
A computer program to predict the inviscid, transonic flow field about isolated nacelles was developed. The problem was to be formulated to solve Euler's equations without any approximation (such as small disturbances) and hence the terminology exact solution. The flow field was complicated by the presence of imbedded shock waves, an engine-inlet interface, and exhaust plumes. Furthermore, the transonic nacelles of interest had a very slender but blunt cowl lip. This created two distinct length scales, the length of the nacelle and the cowl lip radius that can differ by several orders of magnitude. These aspects of the flow field presented many numerical difficulties. The approach to the problem was to calculate the nacelle flow field using the method of time-dependent computations (TDC). Although at the time of the issuance of this contract, other approaches to transonic flow calculations existed, it was felt that TDC offered the most effective means of meeting the goals of the contract.
Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit; Zikry, M. A.
2014-01-01
A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.
JDFTx: Software for joint density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
Xue, Li C.; Jordan, Rafael A.; EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2015-01-01
Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. Dock-Rank uses interface residues predicted by partner-specific sequence homology-based protein–protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. PMID:23873600
Xue, Li C; Jordan, Rafael A; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2014-02-01
Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner-specific sequence homology-based protein-protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. Copyright © 2013 Wiley Periodicals, Inc.
Interactome INSIDER: a structural interactome browser for genomic studies.
Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan
2018-01-01
We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.
Written case formulations in the treatment of anorexia nervosa: Evidence for therapeutic benefits.
Allen, Karina L; O'Hara, Caitlin B; Bartholdy, Savani; Renwick, Beth; Keyes, Alexandra; Lose, Anna; Kenyon, Martha; DeJong, Hannah; Broadbent, Hannah; Loomes, Rachel; McClelland, Jessica; Serpell, Lucy; Richards, Lorna; Johnson-Sabine, Eric; Boughton, Nicky; Whitehead, Linette; Treasure, Janet; Wade, Tracey; Schmidt, Ulrike
2016-09-01
Case formulation is a core component of many psychotherapies and formulation letters may provide an opportunity to enhance the therapeutic alliance and improve treatment outcomes. This study aimed to determine if formulation letters predict treatment satisfaction, session attendance, and symptom reductions in anorexia nervosa (AN). It was hypothesized that higher quality formulation letters would predict greater treatment satisfaction, a greater number of attended sessions, and greater improvement in eating disorder symptoms. Patients were adult outpatients with AN (n = 46) who received Maudsley Anorexia Nervosa Treatment for Adults (MANTRA) in the context of a clinical trial. A Case Formulation Rating Scheme was used to rate letters for adherence to the MANTRA model and use of a collaborative, reflective, affirming stance. Analyses included linear regression and mixed models. Formulation letters that paid attention to the development of the AN predicted greater treatment acceptability ratings (p = 0.002). More reflective and respectful letters predicted greater reductions in Eating Disorder Examination scores (p = 0.003). Results highlight the potential significance of a particular style of written formulation as part of treatment for AN. Future research should examine applicability to other psychiatric disorders. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:874-882). © 2016 Wiley Periodicals, Inc.
Zhai, Jiali; Wooster, Tim J; Hoffmann, Søren V; Lee, Tzong-Hsien; Augustin, Mary Ann; Aguilar, Marie-Isabel
2011-08-02
Understanding the factors that control protein structure and stability at the oil-water interface continues to be a major focus to optimize the formulation of protein-stabilized emulsions. In this study, a combination of synchrotron radiation circular dichroism spectroscopy, front-face fluorescence spectroscopy, and dual polarization interferometry (DPI) was used to characterize the conformation and geometric structure of β-lactoglobulin (β-Lg) upon adsorption to two oil-water interfaces: a hexadecane-water interface and a tricaprylin-water interface. The results show that, upon adsorption to both oil-water interfaces, β-Lg went through a β-sheet to α-helix transition with a corresponding loss of its globular tertiary structure. The degree of conformational change was also a function of the oil phase polarity. The hexadecane oil induced a much higher degree of non-native α-helix compared to the tricaprylin oil. In contrast to the β-Lg conformation in solution, the non-native α-helical-rich conformation of β-Lg at the interface was resistant to further conformational change upon heating. DPI measurements suggest that β-Lg formed a thin dense layer at emulsion droplet surfaces. The effects of high temperature and the presence of salt on these β-Lg emulsions were then investigated by monitoring changes in the ζ-potential and particle size. In the absence of salt, high electrostatic repulsion meant β-Lg-stabilized emulsions were resistant to heating to 90 °C. Adding salt (120 mM NaCl) before or after heating led to emulsion flocculation due to the screening of the electrostatic repulsion between colloidal particles. This study has provided insight into the structural properties of proteins adsorbed at the oil-water interface and has implications in the formulation and production of emulsions stabilized by globular proteins.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.
NASA Astrophysics Data System (ADS)
Ye, Wei; Liu, Yifei
2018-04-01
This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.
Cauchy integral method for two-dimensional solidification interface shapes
NASA Astrophysics Data System (ADS)
Siegel, R.; Sosoka, D. J.
1982-07-01
A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.
Computational prediction of formulation strategies for beyond-rule-of-5 compounds.
Bergström, Christel A S; Charman, William N; Porter, Christopher J H
2016-06-01
The physicochemical properties of some contemporary drug candidates are moving towards higher molecular weight, and coincidentally also higher lipophilicity in the quest for biological selectivity and specificity. These physicochemical properties move the compounds towards beyond rule-of-5 (B-r-o-5) chemical space and often result in lower water solubility. For such B-r-o-5 compounds non-traditional delivery strategies (i.e. those other than conventional tablet and capsule formulations) typically are required to achieve adequate exposure after oral administration. In this review, we present the current status of computational tools for prediction of intestinal drug absorption, models for prediction of the most suitable formulation strategies for B-r-o-5 compounds and models to obtain an enhanced understanding of the interplay between drug, formulation and physiological environment. In silico models are able to identify the likely molecular basis for low solubility in physiologically relevant fluids such as gastric and intestinal fluids. With this baseline information, a formulation scientist can, at an early stage, evaluate different orally administered, enabling formulation strategies. Recent computational models have emerged that predict glass-forming ability and crystallisation tendency and therefore the potential utility of amorphous solid dispersion formulations. Further, computational models of loading capacity in lipids, and therefore the potential for formulation as a lipid-based formulation, are now available. Whilst such tools are useful for rapid identification of suitable formulation strategies, they do not reveal drug localisation and molecular interaction patterns between drug and excipients. For the latter, Molecular Dynamics simulations provide an insight into the interplay between drug, formulation and intestinal fluid. These different computational approaches are reviewed. Additionally, we analyse the molecular requirements of different targets, since these can provide an early signal that enabling formulation strategies will be required. Based on the analysis we conclude that computational biopharmaceutical profiling can be used to identify where non-conventional gateways, such as prediction of 'formulate-ability' during lead optimisation and early development stages, are important and may ultimately increase the number of orally tractable contemporary targets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Numerical Algorithms for Acoustic Integrals - The Devil is in the Details
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.
Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang
2018-07-01
The tendency of protein pharmaceuticals to form aggregates is a major challenge during formulation development, as aggregation affects quality and safety of the product. In particular, the formation of large native-like particles in the context of liquid-air interfacial stress is a well-known but not fully understood problem. Focusing on the two most fundamental criteria of protein formulation affecting protein-protein interaction, the impact of pH and ionic strength on the interaction parameter A ∗ 2 and its link to aggregation upon mechanical stress was investigated. A ∗ 2 of two monoclonal antibodies (mABs) and a polyclonal IgG was determined using dynamic light scattering and was correlated to the number of particles formed upon shaking in vials analyzed by visual inspection, turbidity analysis, light obscuration and micro-flow imaging. A good correlation between aggregation induced by interfacial stress and formulation pH was given. It could be shown that A ∗ 2 was highest for mAB 1 and lowest for IgG, what was in good accordance with the number of particles formed. Shaking of IgG resulted in overall higher numbers of particles compared to the two mABs. A ∗ 2 decreased and particle numbers increased with increasing pH. Different to pH, ionic strength only slightly affected A ∗ 2 . Nevertheless, at high ionic (100 mM) strength the samples exhibited more pronounced particle formation, particularly of large particles >25 µm, which was most pronounced at high pH. Protein solutions were identified to form continuous films with an inhomogeneous protein distribution at the liquid-air interface. These areas of agglomerated, native-like protein material can be transferred into the bulk solution by compression-decompression of the interface. Whether or not those clusters lead to the appearance of large protein aggregates or fall apart depends on the attractive or repulsive forces between protein molecules. Thus, protein aggregation due to interfacial stress is correlated with the protein-protein interactions as determined by A ∗ 2 . This enables to differentiate different antibodies according to their propensity to form particles upon mechanical stress and to identify optimum formulation conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.
2015-09-26
An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.
An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less
Processing effects on physicochemical properties of creams formulated with modified milk fat.
Bolling, J C; Duncan, S E; Eigel, W N; Waterman, K M
2005-04-01
Type of thermal process [high temperature, short time pasteurization (HTST) or ultra-high temperature pasteurization (UHT)] and homogenization sequence (before or after pasteurization) were examined for influence on the physicochemical properties of natural cream (20% milk fat) and creams formulated with 20% low-melt, fractionated butteroil emulsified with skim milk, or buttermilk and butter-derived aqueous phase. Homogenization sequence influenced physicochemical makeup of the creams. Creams homogenized before pasteurization contained more milk fat surface material, higher phospholipid levels, and less protein at the milk fat interface than creams homogenized after pasteurization. Phosphodiesterase I activity was higher (relative to protein on lipid globule surface) when cream was homogenized before pasteurization. Creams formulated with skim milk and modified milk fat had relatively more phospholipid adsorbed at the milk fat interface. Ultra-high-temperature-pasteurized natural and reformulated creams were higher in viscosity at all shear rates investigated compared with HTST-pasteurized creams. High-temperature, short time-pasteurized natural cream was more viscous than HTST-pasteurized reformulated creams at most shear rates investigated. High-temperature, short time-pasteurized creams had better emulsion stability than UHT-pasteurized creams. Cream formulated with buttermilk had creaming stability most comparable to natural cream, and cream formulated with skim milk and modified butteroil was least stable to creaming. Most creams feathered in a pH range of 5.00 to 5.20, indicating that they were moderately stable to slightly unstable emulsions. All processing sequences yielded creams within sensory specifications with the exception of treatments homogenized before UHT pasteurization and skim milk formulations homogenized after UHT pasteurization.
Towards a sharp-interface volume-of-fluid methodology for modeling evaporation
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2017-11-01
In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.
Broadband Noise Predictions Based on a New Aeroacoustic Formulation
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.
2002-01-01
A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far-field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is specified analytically from a result that is based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B, and to demonstrate its equivalence to Formulation 1A, of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. The predicted results also agree very well with those of Paterson and Amiet, who used a frequency-domain approach. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.
Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.
Karani, Hamid; Huber, Christian
2015-02-01
In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics in complex geometries.
Moisture-induced phase separation and recrystallization in amorphous solid dispersions.
Luebbert, Christian; Sadowski, Gabriele
2017-10-30
Active Pharmaceutical Ingredients (APIs) are often dissolved in polymeric matrices to control the gastrointestinal dissolution and to stabilize the amorphous state of the API. During the pharmaceutical development of new formulations, stability studies via storage at certain temperature and relative humidity (RH) have to be carried out to verify the long-term thermodynamic stability of these formulations against unwanted recrystallization and moisture-induced amorphous-amorphous phase separation (MIAPS). This study focuses on predicting the MIAPS of API/polymer formulations at elevated RH. In a first step, the phase behavior of water-free formulations of ibuprofen (IBU) and felodipine (FEL) combined with the polymers poly(vinyl pyrrolidone) (PVP), poly(vinyl acetate) (PVAC) and poly (vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) was determined experimentally by differential scanning calorimetry (DSC). The phase behavior of these water-free formulations was modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). Based on this, the API solubility and MIAPS in the above-mentioned formulations at humid conditions was predicted in perfect agreement with the results of two-year lasting stability studies at 25°C/0% RH and 40°C/75% RH. MIAPS was predicted and also experimentally found for the FEL/PVP, FEL/PVPVA64 and IBU/PVP formulations, whereas MIAPS was neither predicted nor measured for the IBU/PVPVA64 system and PVAC-containing formulations. It was thus shown that the results of time-consuming long-term stability tests can be correctly predicted via thermodynamic modeling with PC-SAFT. Copyright © 2017 Elsevier B.V. All rights reserved.
Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John
2016-05-01
Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings. © The Author(s) 2016.
Hybrid method for moving interface problems with application to the Hele-Shaw flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, T.Y.; Li, Zhilin; Osher, S.
In this paper, a hybrid approach which combines the immersed interface method with the level set approach is presented. The fast version of the immersed interface method is used to solve the differential equations whose solutions and their derivatives may be discontinuous across the interfaces due to the discontinuity of the coefficients or/and singular sources along the interfaces. The moving interfaces then are updated using the newly developed fast level set formulation which involves computation only inside some small tubes containing the interfaces. This method combines the advantage of the two approaches and gives a second-order Eulerian discretization for interfacemore » problems. Several key steps in the implementation are addressed in detail. This new approach is then applied to Hele-Shaw flow, an unstable flow involving two fluids with very different viscosity. 40 refs., 10 figs., 3 tabs.« less
On the theory of dielectric spectroscopy of protein solutions
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2012-08-01
We present a theory of the dielectric response of solutions containing large solutes, of the nanometer size, in a molecular solvent. It combines the molecular dipole moment of the solute with the polarization of a large subensemble of solvent molecules at the solute-solvent interface. The goal of the theory is two-fold: (i) to formulate the problem of the dielectric response avoiding the reliance on the cavity-field susceptibility of dielectric theories and (ii) to separate the non-additive polarization of the interface, jointly produced by the external field of the laboratory experiment and the solute, from specific solute-solvent interactions contributing to the dielectric signal. The theory is applied to experimentally reported frequency-dependent dielectric spectra of lysozyme in solution. The analysis of the data in the broad range of frequencies up to 700 GHz shows that the cavity-field susceptibility, critical for the theory formulation, is consistent with the prediction of Maxwell’s electrostatics in the frequency range of 10-200 GHz, but deviates from it outside this range. In particular, it becomes much smaller than the Maxwell result, and shifts to negative values, at small frequencies. The latter observation implies a dia-electric response, or negative dielectrophoresis, of hydrated lysozyme. It also implies that the effective protein dipole recorded by dielectric spectroscopy is much smaller than the value calculated from the protein’s charge distribution. We suggest an empirical equation that describes both the increment of the static dielectric constant and the decrement of the Debye water peak with increasing protein concentration. It gives fair agreement with broad-band dispersion and loss spectra of protein solutions, but misses the δ-dispersion region.
NASA Astrophysics Data System (ADS)
Xie, Xiang; Zheng, Hui; Qu, Yegao
2016-07-01
A weak form variational based method is developed to study the vibro-acoustic responses of coupled structural-acoustic system consisting of an irregular acoustic cavity with general wall impedance and a flexible panel subjected to arbitrary edge-supporting conditions. The structural and acoustical models of the coupled system are formulated on the basis of a modified variational method combined with multi-segment partitioning strategy. Meanwhile, the continuity constraints on the sub-segment interfaces are further incorporated into the system stiffness matrix by means of least-squares weighted residual method. Orthogonal polynomials, such as Chebyshev polynomials of the first kind, are employed as the wholly admissible unknown displacement and sound pressure field variables functions for separate components without meshing, and hence mapping the irregular physical domain into a square spectral domain is necessary. The effects of weighted parameter together with the number of truncated polynomial terms and divided partitions on the accuracy of present theoretical solutions are investigated. It is observed that applying this methodology, accurate and efficient predictions can be obtained for various types of coupled panel-cavity problems; and in weak or strong coupling cases for a panel surrounded by a light or heavy fluid, the inherent principle of velocity continuity on the panel-cavity contacting interface can all be handled satisfactorily. Key parametric studies concerning the influences of the geometrical properties as well as impedance boundary are performed. Finally, by performing the vibro-acoustic analyses of 3D car-like coupled miniature, we demonstrate that the present method seems to be an excellent way to obtain accurate mid-frequency solution with an acceptable CPU time.
Micromechanics and Piezo Enhancements of HyperSizer
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.
2006-01-01
The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.
Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny
2014-01-01
We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818
Extending Halogen-based Medicinal Chemistry to Proteins
El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B.; Smith, Brian J.; Menting, John G.; Whittaker, Jonathan; Lawrence, Michael C.; Meuwly, Markus; Weiss, Michael A.
2016-01-01
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24–B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a “micro-receptor” complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such “halogen engineering” promises to extend principles of medicinal chemistry to proteins. PMID:27875310
Boersen, Nathan; Carvajal, M Teresa; Morris, Kenneth R; Peck, Garnet E; Pinal, Rodolfo
2015-01-01
While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API. Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data. Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength. Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.
2016-08-01
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Integrated Model for E-Learning Acceptance
NASA Astrophysics Data System (ADS)
Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.
2016-01-01
E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.
Discontinuous Finite Element Quasidiffusion Methods
Anistratov, Dmitriy Yurievich; Warsa, James S.
2018-05-21
Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less
Discontinuous Finite Element Quasidiffusion Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anistratov, Dmitriy Yurievich; Warsa, James S.
Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less
Pan, Yuanjie; Nitin, N
2015-11-01
Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
Glass Fibre/Epoxy Resin Interface Life-Time Prediction.
1983-04-01
RD-Ai32 26 GLASS FIBRE /POXY RESIN INTERFACE LIFE-TIME PREDICTION 1/1 (U) BRISTOL UNIV (ENGLAND) H H WILLS PHYSICS LAB K H RSHBEE ET AL. APR 83...D 3005-MS GLASS FIBRE /EPOXY RESIN INTERFACE LIFE-TIME PREDICTION - Final Report by K H G Ashbee, Principal Investigator R Ho~l J P Sargent Elizabeth...REPORT h PERIOD COVERED. Glass Fibre /Epoxy Resin Interface Life-time F-inal Technical 11’ port PreictonApril 1981 - A:’ril 1983 6. PERFORMING ORG. REPORT
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2004-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2001-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
NASA Technical Reports Server (NTRS)
Lu, M.-C.; Erdogan, F.
1983-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429
Scattering by multiple cylinders located on both sides of an interface
NASA Astrophysics Data System (ADS)
Lee, Siu-Chun
2018-07-01
The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.
Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2016-01-01
Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.
New approach to analyzing soil-building systems
Safak, E.
1998-01-01
A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.
Trailing Edge Noise Prediction Based on a New Acoustic Formulation
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.
2002-01-01
A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.
In vitro models for the prediction of in vivo performance of oral dosage forms.
Kostewicz, Edmund S; Abrahamsson, Bertil; Brewster, Marcus; Brouwers, Joachim; Butler, James; Carlert, Sara; Dickinson, Paul A; Dressman, Jennifer; Holm, René; Klein, Sandra; Mann, James; McAllister, Mark; Minekus, Mans; Muenster, Uwe; Müllertz, Anette; Verwei, Miriam; Vertzoni, Maria; Weitschies, Werner; Augustijns, Patrick
2014-06-16
Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract. Copyright © 2013 Elsevier B.V. All rights reserved.
Broadband Trailing Edge Noise Predictions in the Time Domain. Revised
NASA Technical Reports Server (NTRS)
Casper, Jay; Farassat, Fereidoun
2003-01-01
A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.
NASA Technical Reports Server (NTRS)
Shbeeh, N. I.; Binienda, W. K.
1999-01-01
The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.
Nuclear Dynamics at Molecule–Metal Interfaces: A Pseudoparticle Perspective
Galperin, Michael; Nitzan, Abraham
2015-11-20
We discuss nuclear dynamics at molecule-metal interfaces including nonequilibrium molecular junctions. Starting from the many-body states (pseudoparticle) formulation of the molecule-metal system in the molecular vibronic basis, we introduce gradient expansion to reduce the adiabatic nuclear dynamics (that is, nuclear dynamics on a single molecular potential surface) into its semiclassical form while maintaining the effect of the nonadiabatic electronic transitions between different molecular charge states. Finally, this yields a set of equations for the nuclear dynamics in the presence of these nonadiabatic transitions, which reproduce the surface-hopping formulation in the limit of small metal-molecule coupling (where broadening of the molecularmore » energy levels can be disregarded) and Ehrenfest dynamics (motion on the potential of mean force) when information on the different charging states is traced out.« less
A numerical method for interface problems in elastodynamics
NASA Technical Reports Server (NTRS)
Mcghee, D. S.
1984-01-01
The numerical implementation of a formulation for a class of interface problems in elastodynamics is discussed. This formulation combines the use of the finite element and boundary integral methods to represent the interior and the exteriro regions, respectively. In particular, the response of a semicylindrical alluvial valley in a homogeneous halfspace to incident antiplane SH waves is considered to determine the accuracy and convergence of the numerical procedure. Numerical results are obtained from several combinations of the incidence angle, frequency of excitation, and relative stiffness between the inclusion and the surrounding halfspace. The results tend to confirm the theoretical estimates that the convergence is of the order H(2) for the piecewise linear elements used. It was also observed that the accuracy descreases as the frequency of excitation increases or as the relative stiffness of the inclusion decreases.
Finite-element lattice Boltzmann simulations of contact line dynamics
NASA Astrophysics Data System (ADS)
Matin, Rastin; Krzysztof Misztal, Marek; Hernández-García, Anier; Mathiesen, Joachim
2018-01-01
The lattice Boltzmann method has become one of the standard techniques for simulating a wide range of fluid flows. However, the intrinsic coupling of momentum and space discretization restricts the traditional lattice Boltzmann method to regular lattices. Alternative off-lattice Boltzmann schemes exist for both single- and multiphase flows that decouple the velocity discretization from the underlying spatial grid. The current study extends the applicability of these off-lattice methods by introducing a finite element formulation that enables simulating contact line dynamics for partially wetting fluids. This work exemplifies the implementation of the scheme and furthermore presents benchmark experiments that show the scheme reduces spurious currents at the liquid-vapor interface by at least two orders of magnitude compared to a nodal implementation and allows for predicting the equilibrium states accurately in the range of moderate contact angles.
Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators
NASA Technical Reports Server (NTRS)
Baker, Karl W.; Lund, Kurt O.
1991-01-01
Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.
Finite element analysis of time-independent superconductivity. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Schuler, James J.
1993-01-01
The development of electromagnetic (EM) finite elements based upon a generalized four-potential variational principle is presented. The use of the four-potential variational principle allows for downstream coupling of EM fields with the thermal, mechanical, and quantum effects exhibited by superconducting materials. The use of variational methods to model an EM system allows for a greater range of applications than just the superconducting problem. The four-potential variational principle can be used to solve a broader range of EM problems than any of the currently available formulations. It also reduces the number of independent variables from six to four while easily dealing with conductor/insulator interfaces. This methodology was applied to a range of EM field problems. Results from all these problems predict EM quantities exceptionally well and are consistent with the expected physical behavior.
A rapid boundary integral equation technique for protein electrostatics
NASA Astrophysics Data System (ADS)
Grandison, Scott; Penfold, Robert; Vanden-Broeck, Jean-Marc
2007-06-01
A new boundary integral formulation is proposed for the solution of electrostatic field problems involving piecewise uniform dielectric continua. Direct Coulomb contributions to the total potential are treated exactly and Green's theorem is applied only to the residual reaction field generated by surface polarisation charge induced at dielectric boundaries. The implementation shows significantly improved numerical stability over alternative schemes involving the total field or its surface normal derivatives. Although strictly respecting the electrostatic boundary conditions, the partitioned scheme does introduce a jump artefact at the interface. Comparison against analytic results in canonical geometries, however, demonstrates that simple interpolation near the boundary is a cheap and effective way to circumvent this characteristic in typical applications. The new scheme is tested in a naive model to successfully predict the ground state orientation of biomolecular aggregates comprising the soybean storage protein, glycinin.
Steepest entropy ascent quantum thermodynamic model of electron and phonon transport
NASA Astrophysics Data System (ADS)
Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine
2018-01-01
An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.
Hybrid finite element/waveguide mode analysis of passive RF devices
NASA Astrophysics Data System (ADS)
McGrath, Daniel T.
1993-07-01
A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.
Banerjee, Sourav; Kundu, Tribikram
2008-03-01
Multilayered solid structures made of isotropic, transversely isotropic, or general anisotropic materials are frequently used in aerospace, mechanical, and civil structures. Ultrasonic fields developed in such structures by finite size transducers simulating actual experiments in laboratories or in the field have not been rigorously studied. Several attempts to compute the ultrasonic field inside solid media have been made based on approximate paraxial methods like the classical ray tracing and multi-Gaussian beam models. These approximate methods have several limitations. A new semianalytical method is adopted in this article to model elastic wave field in multilayered solid structures with planar or nonplanar interfaces generated by finite size transducers. A general formulation good for both isotropic and anisotropic solids is presented in this article. A variety of conditions have been incorporated in the formulation including irregularities at the interfaces. The method presented here requires frequency domain displacement and stress Green's functions. Due to the presence of different materials in the problem geometry various elastodynamic Green's functions for different materials are used in the formulation. Expressions of displacement and stress Green's functions for isotropic and anisotropic solids as well as for the fluid media are presented. Computed results are verified by checking the stress and displacement continuity conditions across the interface of two different solids of a bimetal plate and investigating if the results for a corrugated plate with very small corrugation match with the flat plate results.
Damage assessment and progression in a polyisocyanurate-based continuous swirl mat composite
NASA Astrophysics Data System (ADS)
Worley, Darwell Carlton, II
This research conducted in conjunction with Oak Ridge National Laboratories and the Automotive Composite Consortium, ACC, was motivated by the desire to reduce vehicle weight for increased efficiency. At present, there are no databases of failure mechanisms, experimental procedures to study failure, mathematical expressions for empirical or theoretical prediction of properties of a continuous swirl mat composite, CSMC. Therefore, to contribute to the increased utilization of this class of materials the following research was performed. This research enabled the failure mechanism to be formulated, development of a method to quantify failure based on ultrasonic attenuation maps, and the prediction of the fracture toughness parameter KIC. The use of scanning electron microscopy, light microscopy, and real-time tensile loading showed that the CSMC failed in a brittle mode. These techniques also provided imaging information as to how a dominant crack propagates in the presence of a continuously swirled E-glass mat reinforcement and voids. This evaluation enabled a reconstruction of failure in order to demonstrate a possible failure mechanism. The aforementioned techniques revealed that the dominant crack follows the fiber/matrix interface, but may be influenced by the presence of voids. Voids have the tendency of luring the growing crack away from the interface. A growing crack would, however, return to a fiber/matrix interface until complete failure occurred. Another aspect of this work was the quantification of progressive damage using ultrasound. Comparisons were made between ultrasonic attenuation maps for unloaded and sequentially loaded specimens. The sequential loads were applied at different percentages of the ultimate tensile strength, UTS. This technique provided attenuation maps for a series of specimens with a controlled degree of damage, which showed an increase in attenuation with an increase in percent UTS. Fracture toughness experiments yielded an average KIC value of 17.1 MPa√m, while the prediction of the fracture toughness parameter, KIC, was achieved by combining K-solution expressions for in-line and parallel crack configurations while evaluating the needed stress, sigma, using of the "Rule of Mixtures". The average void length was used as the crack length, which was obtained by light microscopy in conjunction with NIHTM software. The predicted KIC value at 40% glass fiber and void orientations of 45°, 30° and 25° was 11.4 MPa√m, 17.0 MPa√m and 18.6 MPa√m, respectively.
A New Time Domain Formulation for Broadband Noise Predictions
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.
2002-01-01
A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specified from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.
A New Time Domain Formulation for Broadband Noise Predictions
NASA Technical Reports Server (NTRS)
Casper, Jay H.; Farassat, Fereidoun
2002-01-01
A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specied from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.
Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction
NASA Technical Reports Server (NTRS)
Liu, Frank C.
1987-01-01
An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.
Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction
NASA Technical Reports Server (NTRS)
Liu, Frank C.
1986-01-01
An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.
Definition and Formulation of Scientific Prediction and Its Role in Inquiry-Based Laboratories
ERIC Educational Resources Information Center
Mauldin, Robert F.
2011-01-01
The formulation of a scientific prediction by students in college-level laboratories is proposed. This activity will develop the students' ability to apply abstract concepts via deductive reasoning. For instances in which a hypothesis will be tested by an experiment, students should develop a prediction that states what sort of experimental…
Semantic interpretation of search engine resultant
NASA Astrophysics Data System (ADS)
Nasution, M. K. M.
2018-01-01
In semantic, logical language can be interpreted in various forms, but the certainty of meaning is included in the uncertainty, which directly always influences the role of technology. One results of this uncertainty applies to search engines as user interfaces with information spaces such as the Web. Therefore, the behaviour of search engine results should be interpreted with certainty through semantic formulation as interpretation. Behaviour formulation shows there are various interpretations that can be done semantically either temporary, inclusion, or repeat.
2016-09-07
approach in co simulation with fluid-dynamics solvers is used. An original variational formulation is developed for the inverse problem of...by the inverse solution meshing. The same approach is used to map the structural and fluid interface kinematics and loads during the fluid structure...co-simulation. The inverse analysis is verified by reconstructing the deformed solution obtained with a corresponding direct formulation, based on
Leroy, Frédéric; Müller-Plathe, Florian
2015-08-04
We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.
Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning
2016-06-01
The development of highly concentrated protein formulations is more demanding than for conventional concentrations due to an elevated protein aggregation tendency. Predictive protein-protein interaction parameters, such as the second virial coefficient B22 or the interaction parameter kD, have already been used to predict aggregation tendency and optimize protein formulations. However, these parameters can only be determined in diluted solutions, up to 20 mg/mL. And their validity at high concentrations is currently controversially discussed. This work presents a μ-scale screening approach which has been adapted to early industrial project needs. The procedure is based on static light scattering to directly determine protein-protein interactions at concentrations up to 100 mg/mL. Three different therapeutic molecules were formulated, varying in pH, salt content, and addition of excipients (e.g., sugars, amino acids, polysorbates, or other macromolecules). Validity of the predicted aggregation tendency was confirmed by stability data of selected formulations. Based on the results obtained, the new prediction method is a promising screening tool for fast and easy formulation development of highly concentrated protein solutions, consuming only microliter of sample volumes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei
2005-06-01
We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.
Physics, mathematics and numerics of particle adsorption on fluid interfaces
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim
2012-11-01
We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.
Interface-induced localization in AlSb/InAs heterostructures
NASA Astrophysics Data System (ADS)
Shaw, M. J.; Briddon, P. R.; Jaros, M.
1995-12-01
The existence of localized states at perfect InSb-like interfaces in AlSb/InAs superlattices is predicted from ab initio pseudopotential calculations. Localized states are predicted in both the valence and conduction bands, the former being identifiable with the interface states proposed by Kroemer, Nguyen, and Brar [J. Vac. Sci. Technol. 10, 1769 (1990)]. The existence of these interface localized states is invoked to explain the reported experimental dependence of the band gap upon interface types in such superlattices.
Modeling Thin Film Oxide Growth
NASA Astrophysics Data System (ADS)
Sherman, Quentin
Thin film oxidation is investigated using two modeling techniques in the interest of better understanding the roles of space charge and non-equilibrium effects. An electrochemical phase-field model of an oxide-metal interface is formulated in one dimension and studied at equilibrium and during growth. An analogous sharp interface model is developed to validate the phase-field model in the thick film limit. Electrochemical profiles across the oxide are shown to deviate from the sharp interface prediction when the oxide film is thin compared to the Debye length, however no effect on the oxidation kinetics is found. This is attributed to the simple thermodynamic and kinetic models used therein. The phase-field model provides a framework onto to which additional physics can be added to better model thin film oxidation. A model for solute trapping during the oxidation of binary alloys is developed to study non-equilibrium effects during the early stages of oxide growth. The model is applied to NiCr alloys, and steady-state interfacial composition maps are presented for the growth of an oxide with the rock salt structure. No detailed experimental data is available to verify the predictions of the solute trapping model, however it is shown to be consistent with the trends observed during the early stages of NiCr oxidation. Lastly, experimental studies of the wet infiltration technique for decorating solid oxide fuel cell anodes with nickel nanoparticles are presented. The effect of nickel nitrate calcination parameters on the resulting nickel oxide microstructures are studied on both porous and planar substrates. Decreasing the calcination temperature and dwell time, as well as a dehydration step after nickel nitrate infiltration, are all shown to decrease the initial nickel oxide particle size, but other factors such as geometry and nickel loading per unit area also affected the final nickel particle size and morphology upon reduction.
Coupled variational formulations of linear elasticity and the DPG methodology
NASA Astrophysics Data System (ADS)
Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Le Tallec, Patrick
2017-11-01
This article presents a general approach akin to domain-decomposition methods to solve a single linear PDE, but where each subdomain of a partitioned domain is associated to a distinct variational formulation coming from a mutually well-posed family of broken variational formulations of the original PDE. It can be exploited to solve challenging problems in a variety of physical scenarios where stability or a particular mode of convergence is desired in a part of the domain. The linear elasticity equations are solved in this work, but the approach can be applied to other equations as well. The broken variational formulations, which are essentially extensions of more standard formulations, are characterized by the presence of mesh-dependent broken test spaces and interface trial variables at the boundaries of the elements of the mesh. This allows necessary information to be naturally transmitted between adjacent subdomains, resulting in coupled variational formulations which are then proved to be globally well-posed. They are solved numerically using the DPG methodology, which is especially crafted to produce stable discretizations of broken formulations. Finally, expected convergence rates are verified in two different and illustrative examples.
Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan
2018-02-01
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.
An inverse model for a free-boundary problem with a contact line: Steady case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Oleg; Protas, Bartosz
2009-07-20
This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less
NASA Astrophysics Data System (ADS)
Westphal, T.; Nijssen, R. P. L.
2014-12-01
The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.
NASA Astrophysics Data System (ADS)
Beecham, Jonathan; Bruggeman, Jorn; Aldridge, John; Mackinson, Steven
2016-03-01
End-to-end modelling is a rapidly developing strategy for modelling in marine systems science and management. However, problems remain in the area of data matching and sub-model compatibility. A mechanism and novel interfacing system (Couplerlib) is presented whereby a physical-biogeochemical model (General Ocean Turbulence Model-European Regional Seas Ecosystem Model, GOTM-ERSEM) that predicts dynamics of the lower trophic level (LTL) organisms in marine ecosystems is coupled to a dynamic ecosystem model (Ecosim), which predicts food-web interactions among higher trophic level (HTL) organisms. Coupling is achieved by means of a bespoke interface, which handles the system incompatibilities between the models and a more generic Couplerlib library, which uses metadata descriptions in extensible mark-up language (XML) to marshal data between groups, paying attention to functional group mappings and compatibility of units between models. In addition, within Couplerlib, models can be coupled across networks by means of socket mechanisms. As a demonstration of this approach, a food-web model (Ecopath with Ecosim, EwE) and a physical-biogeochemical model (GOTM-ERSEM) representing the North Sea ecosystem were joined with Couplerlib. The output from GOTM-ERSEM varies between years, depending on oceanographic and meteorological conditions. Although inter-annual variability was clearly present, there was always the tendency for an annual cycle consisting of a peak of diatoms in spring, followed by (less nutritious) flagellates and dinoflagellates through the summer, resulting in an early summer peak in the mesozooplankton biomass. Pelagic productivity, predicted by the LTL model, was highly seasonal with little winter food for the higher trophic levels. The Ecosim model was originally based on the assumption of constant annual inputs of energy and, consequently, when coupled, pelagic species suffered population losses over the winter months. By contrast, benthic populations were more stable (although the benthic linkage modelled was purely at the detritus level, so this stability reflects the stability of the Ecosim model). The coupled model was used to examine long-term effects of environmental change, and showed the system to be nutrient limited and relatively unaffected by forecast climate change, especially in the benthos. The stability of an Ecosim formulation for large higher tropic level food webs is discussed and it is concluded that this kind of coupled model formulation is better for examining the effects of long-term environmental change than short-term perturbations.
The artificial membrane insert system as predictive tool for formulation performance evaluation.
Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick
2018-02-15
In view of the increasing interest of pharmaceutical companies for cell- and tissue-free models to implement permeation into formulation testing, this study explored the capability of an artificial membrane insert system (AMI-system) as predictive tool to evaluate the performance of absorption-enabling formulations. Firstly, to explore the usefulness of the AMI-system in supersaturation assessment, permeation was monitored after induction of different degrees of loviride supersaturation. Secondly, to explore the usefulness of the AMI-system in formulation evaluation, a two-stage dissolution test was performed prior to permeation assessment. Different case examples were selected based on the availability of in vivo (intraluminal and systemic) data: (i) a suspension of posaconazole (Noxafil ® ), (ii) a cyclodextrin-based formulation of itraconazole (Sporanox ® ), and (iii) a micronized (Lipanthyl ® ) and nanosized (Lipanthylnano ® ) formulation of fenofibrate. The obtained results demonstrate that the AMI-system is able to capture the impact of loviride supersaturation on permeation. Furthermore, the AMI-system correctly predicted the effects of (i) formulation pH on posaconazole absorption, (ii) dilution on cyclodextrin-based itraconazole absorption, and (iii) food intake on fenofibrate absorption. Based on the applied in vivo/in vitro approach, the AMI-system combined with simple dissolution testing appears to be a time- and cost-effective tool for the early-stage evaluation of absorption-enabling formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface
NASA Astrophysics Data System (ADS)
Onopriienko, Oleg; Loboda, Volodymyr; Sheveleva, Alla; Lapusta, Yuri
2018-06-01
The interaction of a conductive crack and an electrode at a piezoelectric bi-material interface is studied. The bimaterial is subjected to an in-plane electrical field parallel to the interface and an anti-plane mechanical loading. The problem is formulated and reduced, via the application of sectionally analytic vector functions, to a combined Dirichlet-Riemann boundary value problem. Simple analytical expressions for the stress, the electric field, and their intensity factors as well as for the crack faces' displacement jump are derived. Our numerical results illustrate the proposed approach and permit to draw some conclusions on the crack-electrode interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn
Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less
A Finite Element Method for Simulation of Compressible Cavitating Flows
NASA Astrophysics Data System (ADS)
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Prediction of parenteral nutrition osmolarity by digital refractometry.
Chang, Wei-Kuo; Yeh, Ming-Kung
2011-05-01
Infusion of high-osmolarity parenteral nutrition (PN) formulations into a peripheral vein will damage the vessel. In this study, the authors developed a refractometric method to predict PN formulation osmolarity for patients receiving PN. Nutrients in PN formulations were prepared for Brix value and osmolality measurement. Brix value and osmolality measurement of the dextrose, amino acids, and electrolytes were used to evaluate the limiting factor of PN osmolarity prediction. A best-fit equation was generated to predict PN osmolarity (mOsm/L): 81.05 × Brix value--116.33 (R(2) > 0.99). To validate the PN osmolarity prediction by these 4 equations, a total of 500 PN admixtures were tested. The authors found strong linear relationships between the Brix values and the osmolality measurement of dextrose (R(2) = 0.97), amino acids (R(2) = 0.99), and electrolytes (R(2) > 0.96). When PN-measured osmolality was between 600 and 900 mOsm/kg, approximately 43%, 29%, 43%, and 0% of the predicted osmolarity obtained by equations 1, 2, 3, and 4 were outside the acceptable 90% to 110% confidence interval range, respectively. When measured osmolality was between 900 and 1,500 mOsm/kg, 31%, 100%, 85%, and 15% of the predicted osmolarity by equations 1, 2, 3, and 4 were outside the acceptable 90% to 110% confidence interval range, respectively. The refractive method permits accurate PN osmolarity prediction and reasonable quality assurance before PN formulation administration.
Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho
2016-09-01
In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Level set immersed boundary method for gas-liquid-solid interactions with phase-change
NASA Astrophysics Data System (ADS)
Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho
2017-11-01
We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.
NASA Technical Reports Server (NTRS)
Brentner, K. S.
1986-01-01
A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
Advanced computational techniques for incompressible/compressible fluid-structure interactions
NASA Astrophysics Data System (ADS)
Kumar, Vinod
2005-07-01
Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less
Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.
Daberdaku, Sebastian; Ferrari, Carlo
2018-02-06
The correct determination of protein-protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein-Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class.
Frauen, M; Steinhart, H; Rapp, C; Hintze, U
2001-07-01
A simple, rapid and reproducible method for identification and quantification of iodopropynyl butylcarbamate (IPBC) in different cosmetic formulations is presented. The determination was carried out using a high-performance liquid chromatography (HPLC) procedure on a reversed phase column coupled to a single quadrupole mass spectrometer (MS) via an electrospray ionization (ESI) interface. Detection was performed in the positive selected ion-monitoring mode. In methanol/water extracts from different cosmetic formulations a detection limit between 50 and 100 ng/g could be achieved. A routine analytical procedure could be set up with good quantification reliability (relative standard deviation between 0.9 and 2.9%).
Peña-Tapia, Elena; Martín-Barrio, Andrés; Olivares-Méndez, Miguel A.
2017-01-01
Multi-robot missions are a challenge for operators in terms of workload and situational awareness. These operators have to receive data from the robots, extract information, understand the situation properly, make decisions, generate the adequate commands, and send them to the robots. The consequences of excessive workload and lack of awareness can vary from inefficiencies to accidents. This work focuses on the study of future operator interfaces of multi-robot systems, taking into account relevant issues such as multimodal interactions, immersive devices, predictive capabilities and adaptive displays. Specifically, four interfaces have been designed and developed: a conventional, a predictive conventional, a virtual reality and a predictive virtual reality interface. The four interfaces have been validated by the performance of twenty-four operators that supervised eight multi-robot missions of fire surveillance and extinguishing. The results of the workload and situational awareness tests show that virtual reality improves the situational awareness without increasing the workload of operators, whereas the effects of predictive components are not significant and depend on their implementation. PMID:28749407
Maynard, Samuel K; Edwards, Peter; Wheeler, James R
2014-07-01
Environmental safety assessments for exposure of birds require the provision of acute avian toxicity data for both the pesticidal active substance and formulated products. As an example, testing on the formulated product is waived in Europe using an assessment of data for the constituent active substance(s). This is often not the case globally, because some countries require acute toxicity tests with every formulated product, thereby triggering animal welfare concerns through unnecessary testing. A database of 383 formulated products was compiled from acute toxicity studies conducted with northern bobwhite (Colinus virginianus) or Japanese quail (Coturnix japonica) (unpublished regulatory literature). Of the 383 formulated products studied, 159 contained only active substances considered functionally nontoxic (median lethal dose [LD50] > highest dose tested). Of these, 97% had formulated product LD50 values of >2000 mg formulated product/kg (limit dose), indicating that no new information was obtained in the formulated product study. Furthermore, defined (point estimated) LD50 values for formulated products were compared with LD50 values predicted from toxicity of the active substance(s). This demonstrated that predicted LD50 values were within 2-fold and 5-fold of the measured formulated product LD50 values in 90% and 98% of cases, respectively. This analysis demonstrates that avian acute toxicity testing of formulated products is largely unnecessary and should not be routinely required to assess avian acute toxicity. In particular, when active substances are known to be functionally nontoxic, further formulated product testing adds no further information and unnecessarily increases bird usage in testing. A further analysis highlights the fact that significant reductions (61% in this dataset) could be achieved by using a sequential testing design (Organisation for Economic Co-operation and Development test guideline 223), as opposed to established single-stage designs. © 2014 The Authors.
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Baliga, G.
1982-01-01
A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.
Lopes, Pedro; Carvalho, Rita F; Leandro, Jorge
2017-05-01
Numerical studies regarding the influence of entrapped air on the hydraulic performance of gullies are nonexistent. This is due to the lack of a model that simulates the air-entrainment phenomena and consequently the entrapped air. In this work, we used experimental data to validate an air-entrainment model that uses a Volume-of-Fluid based method to detect the interface and the Shear-stress transport k-ω turbulence model. The air is detected in a sub-grid scale, generated by a source term and transported using a slip velocity formulation. Results are shown in terms of free-surface elevation, velocity profiles, turbulent kinetic energy and discharge coefficients. The air-entrainment model allied to the turbulence model showed a good accuracy in the prediction of the zones of the gully where the air is more concentrated.
Byron, O
1997-01-01
Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627
Predicting tensorial electrophoretic effects in asymmetric colloids
NASA Astrophysics Data System (ADS)
Mowitz, Aaron J.; Witten, T. A.
2017-12-01
We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).
Surface conservation laws at microscopically diffuse interfaces.
Chu, Kevin T; Bazant, Martin Z
2007-11-01
In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.
Formulation of image quality prediction criteria for the Viking lander camera
NASA Technical Reports Server (NTRS)
Huck, F. O.; Jobson, D. J.; Taylor, E. J.; Wall, S. D.
1973-01-01
Image quality criteria are defined and mathematically formulated for the prediction computer program which is to be developed for the Viking lander imaging experiment. The general objective of broad-band (black and white) imagery to resolve small spatial details and slopes is formulated as the detectability of a right-circular cone with surface properties of the surrounding terrain. The general objective of narrow-band (color and near-infrared) imagery to observe spectral characteristics if formulated as the minimum detectable albedo variation. The general goal to encompass, but not exceed, the range of the scene radiance distribution within single, commandable, camera dynamic range setting is also considered.
Partsch, Hugo; Clark, Michael; Bassez, Sophie; Benigni, Jean-Patrick; Becker, Francis; Blazek, Vladimir; Caprini, Joseph; Cornu-Thénard, André; Hafner, Jürg; Flour, Mieke; Jünger, Michael; Moffatt, Christine; Neumann, Martino
2006-02-01
Interface pressure and stiffness characterizing the elastic properties of the material are the parameters determining the dosage of compression treatment and should therefore be measured in future clinical trials. To provide some recommendations regarding the use of suitable methods for this indication. This article was formulated based on the results of an international consensus meeting between a group of medical experts and representatives from the industry held in January 2005 in Vienna, Austria. Proposals are made concerning methods for measuring the interface pressure and for assessing the stiffness of a compression device in an individual patient. In vivo measurement of interface pressure is encouraged when clinical and experimental outcomes of compression treatment are to be evaluated.
Numerical Analysis of Projectile Impact and Deep Penetration into Earth Media
1975-08-01
Soil ) :ind ?.vr2 (Shai h.) SECTION III COMPII1TAT IONAL METIIOD 3.1 lAVF-L CODlP The NA \\VL code was employed for these calculations. WAV.-L is a...8217,gh the computational grid. For these calculations, the prtjectile/target interface *a- assumed to be frictionless. A lithostatic field in the soil was...generated by pre’scribing initially compressed soil states. .3.2 GRID DECOUPLiN; The sliding interface formulation in WAVE-L includes the capability
Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface
NASA Astrophysics Data System (ADS)
Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.
2018-01-01
The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.
Computing interface motion in compressible gas dynamics
NASA Technical Reports Server (NTRS)
Mulder, W.; Osher, S.; Sethan, James A.
1992-01-01
An analysis is conducted of the coupling of Osher and Sethian's (1988) 'Hamilton-Jacobi' level set formulation of the equations of motion for propagating interfaces to a system of conservation laws for compressible gas dynamics, giving attention to both the conservative and nonconservative differencing of the level set function. The capabilities of the method are illustrated in view of the results of numerical convergence studies of the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and air-helium boundaries.
NASA Astrophysics Data System (ADS)
Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif
2018-04-01
Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.
XML Translator for Interface Descriptions
NASA Technical Reports Server (NTRS)
Boroson, Elizabeth R.
2009-01-01
A computer program defines an XML schema for specifying the interface to a generic FPGA from the perspective of software that will interact with the device. This XML interface description is then translated into header files for C, Verilog, and VHDL. User interface definition input is checked via both the provided XML schema and the translator module to ensure consistency and accuracy. Currently, programming used on both sides of an interface is inconsistent. This makes it hard to find and fix errors. By using a common schema, both sides are forced to use the same structure by using the same framework and toolset. This makes for easy identification of problems, which leads to the ability to formulate a solution. The toolset contains constants that allow a programmer to use each register, and to access each field in the register. Once programming is complete, the translator is run as part of the make process, which ensures that whenever an interface is changed, all of the code that uses the header files describing it is recompiled.
Recent developments on the Kardar-Parisi-Zhang surface-growth equation.
Wio, Horacio S; Escudero, Carlos; Revelli, Jorge A; Deza, Roberto R; de la Lama, Marta S
2011-01-28
The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here--among other topics--we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation.
Effect of adsorption on the surface tensions of solid-fluid interfaces.
Ward, C A; Wu, Jiyu
2007-04-12
A method is proposed for determining the surface tensions of a solid in contact with either a liquid or a vapor. Only an equilibrium adsorption isotherm at the solid-vapor interface needs to be added to Gibbsian thermodynamics to obtain the expressions for the solid-vapor and the solid-liquid surface tensions, gamma[1](SV) and gamma[1](SL), respectively. An equilibrium adsorption isotherm relation is formulated that has the essential property of not predicting an infinite amount adsorbed when the pressure is equal to the saturation-vapor pressure. Five different solid-vapor systems from the literature are examined, and found to be well described by the new isotherm relation. The surface-tension expressions obtained from the isotherm relation are examined by determining the surface tension of the solid in the absence of adsorption, gamma[1](S0), a material property of a solid surface. The value of gamma[1](S0) can be determined by adsorbing different vapors on the same solid, determining the isotherm parameters in each case, and then from the expression for gamma[1](SV) taking the limit of the pressure vanishing to determine gamma[1](S0). From previously reported measurements of benzene and of n-hexane adsorbing on graphitized carbon, the same value of gamma[1](S0) is obtained.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S.
Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximationmore » commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.« less
Automatic Figure Ranking and User Interfacing for Intelligent Figure Search
Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli
2010-01-01
Background Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. Methodology/Findings We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. Conclusion/Significance The evaluation results conclude that automatic figure ranking and user interfacing as we reported in this study can be fully implemented in online publishing. The novel user interface integrated with the automatic figure ranking system provides a more efficient and robust way to access scientific information in the biomedical domain, which will further enhance our existing figure search engine to better facilitate accessing figures of interest for bioscientists. PMID:20949102
Nine formulations of quantum mechanics
NASA Astrophysics Data System (ADS)
Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.
2002-03-01
Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.
WEPP FuME Analysis for a North Idaho Site
William Elliot; Ina Sue Miller; David Hall
2007-01-01
A computer interface has been developed to assist with analyzing soil erosion rates associated with fuel management activities. This interface uses the Water Erosion Prediction Project (WEPP) model to predict sediment yields from hillslopes and road segments to the stream network. The simple interface has a large database of climates, vegetation files and forest soil...
Shao, Q; Rowe, R C; York, P
2007-06-01
This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.
Nourani, Esmaeil; Khunjush, Farshad; Durmuş, Saliha
2016-05-24
Pathogenic microorganisms exploit host cellular mechanisms and evade host defense mechanisms through molecular pathogen-host interactions (PHIs). Therefore, comprehensive analysis of these PHI networks should be an initial step for developing effective therapeutics against infectious diseases. Computational prediction of PHI data is gaining increasing demand because of scarcity of experimental data. Prediction of protein-protein interactions (PPIs) within PHI systems can be formulated as a classification problem, which requires the knowledge of non-interacting protein pairs. This is a restricting requirement since we lack datasets that report non-interacting protein pairs. In this study, we formulated the "computational prediction of PHI data" problem using kernel embedding of heterogeneous data. This eliminates the abovementioned requirement and enables us to predict new interactions without randomly labeling protein pairs as non-interacting. Domain-domain associations are used to filter the predicted results leading to 175 novel PHIs between 170 human proteins and 105 viral proteins. To compare our results with the state-of-the-art studies that use a binary classification formulation, we modified our settings to consider the same formulation. Detailed evaluations are conducted and our results provide more than 10 percent improvements for accuracy and AUC (area under the receiving operating curve) results in comparison with state-of-the-art methods.
The effect of weak interface on transverse properties of a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Shimansky, R. A.; Hahn, H. T.; Salamon, N. J.
1990-01-01
Experimental studies conducted at NASA Lewis on SiC reaction-bonded Si3N4 composite system showed that transverse stiffness and strength were much lower than those predicted from existing analytical models based on good interfacial bonding. It was believed that weakened interfaces were responsible for the decrease in tranverse properties. To support this claim, a two-dimensional FEM analysis was performed for a transverse representative volume element. Specifically, the effect of fiber/matrix displacement compatibility at the interface was studied under both tensile and compressive transverse loadings. Interface debonding was represented using active gap elements connecting the fiber and matrix. The analyses show that the transverse tensile strength and stiffness are best predicted when a debonded interface is assumed for the composite. In fact, the measured properties can be predicted by simply replacing the fibers by voids. Thus, it is found that little or no interfacial bonding exists in the composite, and that an elastic analysis can predict the transverse stiffness and strength.
Optimization of formulation variables of benzocaine liposomes using experimental design.
Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra
2008-01-01
This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Casper, Jay H.
2012-01-01
We show that a simple modification of Formulation 1 of Farassat results in a new analytic expression that is highly suitable for broadband noise prediction when extensive turbulence simulation is available. This result satisfies all the stringent requirements, such as permitting the use of the exact geometry and kinematics of the moving body, that we have set as our goal in the derivation of useful acoustic formulas for the prediction of rotating blade and airframe noise. We also derive a simple analytic expression for the autocorrelation of the acoustic pressure that is valid in the near and far fields. Our analysis is based on the time integral of the acoustic pressure that can easily be obtained at any resolution for any observer time interval and digitally analyzed for broadband noise prediction. We have named this result as Formulation 2B of Farassat. One significant consequence of Formulation 2B is the derivation of the acoustic velocity potential for the thickness and loading terms of the Ffowcs Williams-Hawkings (FW-H) equation. This will greatly enhance the usefulness of the Fast Scattering Code (FSC) by providing a high fidelity boundary condition input for scattering predictions.
Modeling of autocatalytic hydrolysis of adefovir dipivoxil in solid formulations.
Dong, Ying; Zhang, Yan; Xiang, Bingren; Deng, Haishan; Wu, Jingfang
2011-04-01
The stability and hydrolysis kinetics of a phosphate prodrug, adefovir dipivoxil, in solid formulations were studied. The stability relationship between five solid formulations was explored. An autocatalytic mechanism for hydrolysis could be proposed according to the kinetic behavior which fits the Prout-Tompkins model well. For the classical kinetic models could hardly describe and predict the hydrolysis kinetics of adefovir dipivoxil in solid formulations accurately when the temperature is high, a feedforward multilayer perceptron (MLP) neural network was constructed to model the hydrolysis kinetics. The build-in approaches in Weka, such as lazy classifiers and rule-based learners (IBk, KStar, DecisionTable and M5Rules), were used to verify the performance of MLP. The predictability of the models was evaluated by 10-fold cross-validation and an external test set. It reveals that MLP should be of general applicability proposing an alternative efficient way to model and predict autocatalytic hydrolysis kinetics for phosphate prodrugs.
Computer Series, 67: Bits and Pieces, 27.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1986-01-01
Discusses a computer interfacing course using Commodore 64 microcomputers; a computer program for radioactive equilibrium; analysis of near infrared spectrum of hydrochloric acid molecules using Apple II microcomputers; microcomputer approach to conductivity titrations; balancing equations with Commodore 64's; formulation of mathematical…
Mittapalli, Rajendar K; Marroum, Patrick; Qiu, Yihong; Apfelbaum, Kathleen; Xiong, Hao
2017-07-01
To develop and validate a Level A in vitro-in vivo correlation (IVIVC) for potassium chloride extended-release (ER) formulations. Three prototype ER formulations of potassium chloride with different in vitro release rates were developed and their urinary pharmacokinetic profiles were evaluated in healthy subjects. A mathematical model between in vitro dissolution and in vivo urinary excretion, a surrogate for measuring in vivo absorption, was developed using time-scale and time-shift parameters. The IVIVC model was then validated based on internal and external predictability. With the established IVIVC model, there was a good correlation between the observed fraction of dose excreted in urine and the time-scaled and time-shifted fraction of the drug dissolved, and between the in vitro dissolution time and the in vivo urinary excretion time for the ER formulations. The percent prediction error (%PE) on cumulative urinary excretion over the 24 h interval (A e0-24h ) and maximum urinary excretion rate (R max ) was less than 15% for the individual formulations and less than 10% for the average of the two formulations used to develop the model. Further, the %PE values using external predictability were below 10%. A novel Level A IVIVC was successfully developed and validated for the new potassium chloride ER formulations using urinary pharmacokinetic data. This successful IVIVC may facilitate future development or manufacturing changes to the potassium chloride ER formulation.
NASA Astrophysics Data System (ADS)
Ginzburg, Irina; Vikhansky, Alexander
2018-05-01
The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.
Singh, Vinay K; Behera, Baikuntha; Pramanik, Krishna; Pal, Kunal
2015-03-01
The current study describes the use of ultrasonication for the preparation of biphasic emulsions and emulsion gels for topical drug delivery. Sorbitan monostearate (SMS) was used as the surfactant for stabilizing the interface of sesame oil (apolar phase) and water (polar phase). Emulsions were formed at lower concentrations of SMS, whereas emulsion gels were formed at higher concentrations of SMS. The formulations were characterized by fluorescent microscopy, X-ray diffraction, viscosity, stress relaxation, spreadability, and differential scanning calorimetry studies. Fluorescence microscopy suggested formation of oil-in-water type of formulations. There was an increase in the viscosity, bulk resistance, and firmness of the formulations as the proportions of SMS was increased. The emulsion gels were viscoelastic in nature. Thermal studies suggested higher thermodynamic stability at higher proportions of either SMS or water. Metronidazole, a model antimicrobial drug, was incorporated within the formulations. The release of the drug from the formulations was found to be diffusion mediated. The drug-loaded formulations showed sufficient antimicrobial efficiency to be used as carriers for topical antimicrobial drug delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kolle, Susanne N; Van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert
2017-04-01
In vitro methods have gained regulatory acceptance for the prediction of serious eye damage (UN GHS Cat 1). However, the majority of in vitro methods do not state whether they are applicable to agrochemical formulations. This manuscript presents a study of up to 27 agrochemical formulations tested in three in vitro assays (three versions of the bovine corneal opacity and permeability test (BCOP, OECD TG 437) assay, the isolated chicken eye test (ICE, OECD TG 438) and the EpiOcular™ ET-50 assay). The results were compared with already-available in vivo data. In the BCOP only one of the four, one of five in the ICE and six of eleven tested formulations in the EpiOcular™ ET-50 Neat Protocol resulted in the correct UN GHS Cat 1 prediction. Overpredictions occurred in all assays. These data indicate a lack of applicability of the three in vitro methods to reliably predict UN GHS Cat 1 of agrochemical formulations. In order to ensure animal-free identification of seriously eye damaging agrochemical formulations testing protocols and/or prediction models need to be modified or classification rules should be tailored to in vitro testing rather than using in vivo Draize data as a standard. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Compact Assumption Applied to the Monopole Term of Farassat's Formulations
NASA Technical Reports Server (NTRS)
Lopes, Leonard V.
2015-01-01
Farassat's formulations provide an acoustic prediction at an observer location provided a source surface, including motion and flow conditions. This paper presents compact forms for the monopole term of several of Farassat's formulations. When the physical surface is elongated, such as the case of a high aspect ratio rotorcraft blade, compact forms can be derived which are shown to be a function of the blade cross sectional area by reducing the computation from a surface integral to a line integral. The compact forms of all formulations are applied to two example cases: a short span wing with constant airfoil cross section moving at three forward flight Mach numbers and a rotor at two advance ratios. Acoustic pressure time histories and power spectral densities of monopole noise predicted from the compact forms of all the formulations at several observer positions are shown to compare very closely to the predictions from their non-compact counterparts. A study on the influence of rotorcraft blade shape on the high frequency portion of the power spectral density shows that there is a direct correlation between the aspect ratio of the airfoil and the error incurred by using the compact form. Finally, a prediction of pressure gradient from the non-compact and compact forms of the thickness term of Formulation G1A shows that using the compact forms results in a 99.6% improvement in computation time, which will be critical when noise is incorporated into a design environment.
NASA Technical Reports Server (NTRS)
Farassat, F.; Farris, Mark
1999-01-01
There are several approaches to the prediction of the noise from sources on high speed surfaces. Two of these are the Kirchhoff and the Ffowcs williams-Hawkings methods. It can be shown that both of these methods depend on the solution of the wave equation with mathematically similar inhomogeneous source terms. Two subsonic solutions known as Formulation 1 and 1A of Langley are simple and efficient for noise prediction. The supersonic solution known as Formulation 3 is very complicated and difficult to code. Because of the complexity of the result, the computation time is longer than the subsonic formulas. Furthermore, it is difficult to assess the accuracy of noise prediction. We have been searching for a new and simpler supersonic formulation without these shortcomings. In the last AIAA Aeroacoustics Conference in Toulouse, Farassat, Dunn and Brentner presented a paper in which such a result was presented and called Formulation 4 of Langley. In this paper we will present two analytic tests of the validity this Formulation: 1) the noise from dipole distribution on the unit circle whose strength varies radially with the square of the distance from the center and 2) the noise from dipole distribution on the unit sphere whose strength varies with the cosine of the angle from the polar axis. We will discuss the question of singularities of Formulation 4.
The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites
Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn; ...
2017-03-15
Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less
The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites
NASA Astrophysics Data System (ADS)
Yeager, John D.; Watkins, Erik B.; Higginbotham Duque, Amanda L.; Majewski, Jaroslaw
2018-01-01
Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, the HMX-binder interface and phase transition were studied for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions-pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. This effect increased with NC content.
Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.
Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T
2016-10-01
Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
An efficient and robust method for predicting helicopter rotor high-speed impulsive noise
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
A new formulation for the Ffowcs Williams-Hawkings quadrupole source, which is valid for a far-field in-plane observer, is presented. The far-field approximation is new and unique in that no further approximation of the quadrupole source strength is made and integrands with r(exp -2) and r(exp -3) dependence are retained. This paper focuses on the development of a retarded-time formulation in which time derivatives are analytically taken inside the integrals to avoid unnecessary computational work when the observer moves with the rotor. The new quadrupole formulation is similar to Farassat's thickness and loading formulation 1A. Quadrupole noise prediction is carried out in two parts: a preprocessing stage in which the previously computed flow field is integrated in the direction normal to the rotor disk, and a noise computation stage in which quadrupole surface integrals are evaluated for a particular observer position. Preliminary predictions for hover and forward flight agree well with experimental data. The method is robust and requires computer resources comparable to thickness and loading noise prediction.
NASA Astrophysics Data System (ADS)
Lamnawar, Khalid; Maazouz, Abderrahim
2008-07-01
Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.
Exploiting three kinds of interface propensities to identify protein binding sites.
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2009-08-01
Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Wang, Jin
2012-12-01
Under the Predictive Engineering effort, PNNL developed linear and nonlinear property prediction models for long-fiber thermoplastics (LFTs). These models were implemented in PNNL’s EMTA and EMTA-NLA codes. While EMTA is a standalone software for the computation of the composites thermoelastic properties, EMTA-NLA presents a series of nonlinear models implemented in ABAQUS® via user subroutines for structural analyses. In all these models, it is assumed that the fibers are linear elastic while the matrix material can exhibit a linear or typical nonlinear behavior depending on the loading prescribed to the composite. The key idea is to model the constitutive behavior ofmore » the matrix material and then to use an Eshelby-Mori-Tanaka approach (EMTA) combined with numerical techniques for fiber length and orientation distributions to determine the behavior of the as-formed composite. The basic property prediction models of EMTA and EMTA-NLA have been subject for implementation in the Autodesk® Moldflow® software packages. These models are the elastic stiffness model accounting for fiber length and orientation distributions, the fiber/matrix interface debonding model, and the elastic-plastic models. The PNNL elastic-plastic models for LFTs describes the composite nonlinear stress-strain response up to failure by an elastic-plastic formulation associated with either a micromechanical criterion to predict failure or a continuum damage mechanics formulation coupling damage to plasticity. All the models account for fiber length and orientation distributions as well as fiber/matrix debonding that can occur at any stage of loading. In an effort to transfer the technologies developed under the Predictive Engineering project to the American automotive and plastics industries, PNNL has obtained the approval of the DOE Office of Vehicle Technologies to provide Autodesk, Inc. with the technical support for the implementation of the basic property prediction models of EMTA and EMTA-NLA in the Autodesk® Moldflow® packages. This report summarizes the recent results from Autodesk Simulation Moldlow Insight (ASMI) analyses using the EMTA models and EMTA-NLA/ABAQUS® analyses for further assessment of the EMTA-NLA models to support their implementation in Autodesk Moldflow Structural Alliance (AMSA). PNNL’s technical support to Autodesk, Inc. included (i) providing the theoretical property prediction models as described in published journal articles and reports, (ii) providing explanations of these models and computational procedure, (iii) providing the necessary LFT data for process simulations and property predictions, and (iv) performing ABAQUS/EMTA-NLA analyses to further assess and illustrate the models for selected LFT materials.« less
NASA Astrophysics Data System (ADS)
Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier
2017-03-01
This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.
Amplifying Electrochemical Indicators
NASA Technical Reports Server (NTRS)
Fan, Wenhong; Li, Jun; Han, Jie
2004-01-01
Dendrimeric reporter compounds have been invented for use in sensing and amplifying electrochemical signals from molecular recognition events that involve many chemical and biological entities. These reporter compounds can be formulated to target specific molecules or molecular recognition events. They can also be formulated to be, variously, hydrophilic or amphiphilic so that they are suitable for use at interfaces between (1) aqueous solutions and (2) electrodes connected to external signal-processing electronic circuits. The invention of these reporter compounds is expected to enable the development of highly miniaturized, low-power-consumption, relatively inexpensive, mass-producible sensor units for diverse applications.
HotRegion: a database of predicted hot spot clusters.
Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem
2012-01-01
Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Forsythe, L.; Riley, W. J.; Bisht, G.
2016-12-01
Land Surface Models (LSMs) are used to predict heat, energy, and momentum fluxesoccurring at the land surface and the resulting effects in the soil and atmosphere at various scales.Evaporation from bare soil is an integral component of the water balance that is very difficult toaccurately predict since it is complexly affected by the coupled effects of atmospheric conditions andsoil properties. Inaccurate or simplifying assumptions can have drastic effects on regional and globalLSM predictions and cause available LSMs to predict conflicting values for the soil moistureconditions and surface fluxes (e.g. evapotranspiration, infiltration, run off). The goal of this work isto see how heterogeneities in soil properties can be properly represented with a soil resistance termthat accounts for physically based parameters of the soil system at the land-atmosphere interface.Utilizing a comprehensive, experimental dataset generated from a soil with known, heterogeneousproperties under highly controlled atmospheric conditions, we are able to compare the effectivenessof various parameterizations in two different models. The first being a multiphase, non-equilibrium,and non-isothermal model that minimizes the dependence on fitting parameters. The effects ofcertain mechanisms are better understood at this fine scale and incorporated into the land surfacecomponent of the Accelerated Climate Modeling for Energy project (ALM), which is focused oncapturing the interactions between the surface and the atmosphere at larger scales. The formulationsof the resistance parameter, soil water retention curve (SWRC), and diffusivity through partiallysaturated porous media are of particular interest. The fine scale model was used in conjunction withthe experimental data to test formulations before implementing them into the ACME Land Model(ALM). Effects of these alterations were compared to the existing mechanisms in ALM and thentested against lab and field scale data sets. Initial findings suggest the Tang and Riley (2013a) soilresistance more accurately reproduces results lab and field results on multiple scales whereheterogeneity is present. Further understanding of soil resistance will lead to more robust landsurface models which decrease the reliance on such empirical relationships.
NASA Technical Reports Server (NTRS)
Torian, J. G.
1976-01-01
Formulation of models required for the mission planning and scheduling function and establishment of the relation of those models to prelaunch, onboard, ground support, and postmission functions for the development phase of space transportation systems (STS) was conducted. The preoperational space shuttle is used as the design baseline for the subject model formulations. Analytical models were developed which consist of a mission planning processor with appropriate consumables data base and a method of recognizing potential constraint violations in both the planning and flight operations functions. A flight data file for storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights was examined.
NASA Technical Reports Server (NTRS)
Hoewer, Daniel; Lerch, Bradley A.; Bednarcyk, Brett A.; Pineda, Evan Jorge; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
A new cohesive zone traction-separation law, which includes the effects of fiber bridging, has been developed, implemented with a finite element (FE) model, and applied to simulate the delamination between the facesheet and core of a composite honeycomb sandwich panel. The proposed traction-separation law includes a standard initial cohesive component, which accounts for the initial interfacial stiffness and energy release rate, along with a new component to account for the fiber bridging contribution to the delamination process. Single cantilever beam tests on aluminum honeycomb sandwich panels with carbon fiber reinforced polymer facesheets were used to characterize and evaluate the new formulation and its finite element implementation. These tests, designed to evaluate the mode I toughness of the facesheet to core interface, exhibited significant fiber bridging and large crack process zones, giving rise to a concave downward concave upward pre-peak shape in the load-displacement curve. Unlike standard cohesive formulations, the proposed formulation captures this observed shape, and its results have been shown to be in excellent quantitative agreement with experimental load-displacement and apparent critical energy release rate results, representative of a payload fairing structure, as well as local strain fields measured with digital image correlation.
A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant
NASA Astrophysics Data System (ADS)
Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.
2018-04-01
A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.
Goossens, Spencer; Mehdizadeh Rahimi, Ali
2017-01-01
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.
NASA Astrophysics Data System (ADS)
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.
2017-03-01
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.
An automated decision-tree approach to predicting protein interaction hot spots.
Darnell, Steven J; Page, David; Mitchell, Julie C
2007-09-01
Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. 2007 Wiley-Liss, Inc.
A numerical method for electro-kinetic flow with deformable fluid interfaces
NASA Astrophysics Data System (ADS)
Booty, Michael; Ma, Manman; Siegel, Michael
2013-11-01
We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.
Dynamics modeling for parallel haptic interfaces with force sensing and control.
Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy
2013-01-01
Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos
This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.
Reactive transport in a partially molten system with binary solid solution
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2017-12-01
Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.
Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.
El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A
2016-12-30
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr B26 ) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr B26 ]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr B16 , Phe B24 , Phe B25 , 3-I-Tyr B26 , and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr B26 ]insulin analog (determined as an R 6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr B26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr B26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Surface tension and long range corrections of cylindrical interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourasseau, E.; Malfreyt, P.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr
2015-12-21
The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential,more » (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.« less
Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices
NASA Technical Reports Server (NTRS)
Smith, A. W.; Brennan, K. F.
1996-01-01
Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.
Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area.
Göke, Katrin; Bunjes, Heike
2017-08-30
Amongst other strategies for the formulation of poorly water-soluble drugs, solubilization of these drugs in lipid-based formulations is a promising option. Most screening methods for the identification of a suitable lipid-based formulation fail to elucidate the role interfacial effects play for drug solubility in disperse systems. In a novel screening approach called passive drug loading, different preformed lipid nanocarrier dispersions are incubated with drug powder. Afterwards, undissolved drug is filtered off and the amount of solubilized drug is determined. The aim of this study was to identify parameters for drug solubility in pure lipids as well as for drug loading to the lipid-water interface of lipid nanoparticles. Using passive loading, the solubility of eight poorly water-soluble drugs in seven lipid nanocarriers varying in particle size or lipid matrix was investigated. Drug solubility in the nanocarriers did not follow any apparent trend and different drugs dissolved best in different carriers. Drugs with a melting point below approximately 150°C displayed distinctly better solubility than higher melting drugs. Additionally, relating the specific lipid nanocarrier surface area to the drug solubility allowed drawing conclusions on the drug localization. Fenofibrate, dibucaine and, less distinctly also clotrimazole, which all melt below 150°C, were predominantly located in the lipid droplet core of the nanoparticles. In contrast, the five remaining drugs (betamethasone valerate, flufenamic acid, itraconazole, ketoconazole, mefenamic acid) were also located at the lipid-water interface to different, but substantial degrees. The ability to account for drug loading to the lipid-water interface is thus a major advantage of passive loading. Copyright © 2017 Elsevier B.V. All rights reserved.
First-principles based calculation of the macroscopic α/β interface in titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongdong; Key Lab of Nonferrous Materials of Ministry of Education, Central South University, Changsha 410083; Zhu, Lvqi
2016-06-14
The macroscopic α/β interface in titanium and titanium alloys consists of a ledge interface (112){sub β}/(01-10){sub α} and a side interface (11-1){sub β}/(2-1-10){sub α} in a zig-zag arrangement. Here, we report a first-principles study for predicting the atomic structure and the formation energy of the α/β-Ti interface. Both component interfaces were calculated using supercell models within a restrictive relaxation approach, with various staking sequences and high-symmetry parallel translations being considered. The ledge interface energy was predicted as 0.098 J/m{sup 2} and the side interface energy as 0.811 J/m{sup 2}. By projecting the zig-zag interface area onto the macroscopic broad face, the macroscopicmore » α/β interface energy was estimated to be as low as ∼0.12 J/m{sup 2}, which, however, is almost double the ad hoc value used in previous phase-field simulations.« less
NASA Astrophysics Data System (ADS)
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
Differential geometry based solvation model. III. Quantum formulation
Chen, Zhan; Wei, Guo-Wei
2011-01-01
Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067
An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre
NASA Astrophysics Data System (ADS)
Tang, H.; Barthelat, F.; Espinosa, H. D.
2007-07-01
In order to better understand the strengthening mechanism observed in nacre, we have developed an interface computational model to simulate the behavior of the organic present at the interface between aragonite tablets. In the model, the single polymer-chain behavior is characterized by the worm-like-chain (WLC) model, which is in turn incorporated into the eight-chain cell model developed by Arruda and Boyce [Arruda, E.M., Boyce, M.C., 1993a. A three-dimensional constitutive model for the large stretches, with application to polymeric glasses. Int. J. Solids Struct. 40, 389-412] to achieve a continuum interface constitutive description. The interface model is formulated within a finite-deformation framework. A fully implicit time-integration algorithm is used for solving the discretized governing equations. Finite element simulations were performed on a representative volume element (RVE) to investigate the tensile response of nacre. The staggered arrangement of tablets and interface waviness obtained experimentally by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M., Espinosa, H.D., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55 (2), 306-337] was included in the RVE simulations. The simulations showed that both the rate-dependence of the tensile response and hysteresis loops during loading, unloading and reloading cycles were captured by the model. Through a parametric study, the effect of the polymer constitutive response during tablet-climbing and its relation to interface hardening was investigated. It is shown that stiffening of the organic material is not required to achieve the experimentally observed strain hardening of nacre during tension. In fact, when ratios of contour length/persistent length experimentally identified are employed in the simulations, the predicted stress-strain behavior exhibits a deformation hardening consistent with the one measured experimentally and also captured by the phenomenological cohesive model used in the study carried out by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M., Espinosa, H.D., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55 (2), 306-337]. The simulation results also reveal that the bulk modulus of the polymer controls the rate of hardening, feature not captured by more simple cohesive laws.
1963 Vajont rock slide: a comparison between 3D DEM and 3D FEM
NASA Astrophysics Data System (ADS)
Crosta, Giovanni; Utili, Stefano; Castellanza, Riccardo; Agliardi, Federico; Bistacchi, Andrea; Weng Boon, Chia
2013-04-01
Data on the exact location of the failure surface of the landslide have been used as the starting point for the modelling of the landslide. 3 dimensional numerical analyses were run employing both the discrete element method (DEM) and a Finite Element Method (FEM) code. In this work the focus is on the prediction of the movement of the landlside during its initial phase of detachment from Mount Toc. The results obtained by the two methods are compared and conjectures on the observed discrepancies of the predictions between the two methods are formulated. In the DEM simulations the internal interaction of the sliding blocks and the expansion of the debris is obtained as a result of the kinematic interaction among the rock blocks resulting from the jointing of the rock mass involved in the slide. In the FEM analyses, the c-phi reduction technique was employed along the predefine failure surface until the onset of the landslide occurred. In particular, two major blocks of the landslide were identified and the stress, strain and displacement fields at the interface between the two blocks were analysed in detail.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander
2018-07-01
For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of < 112> dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in < 110> \\{100\\} slip systems and < 112> \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.
KFC Server: interactive forecasting of protein interaction hot spots.
Darnell, Steven J; LeGault, Laura; Mitchell, Julie C
2008-07-01
The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.
KFC Server: interactive forecasting of protein interaction hot spots
Darnell, Steven J.; LeGault, Laura; Mitchell, Julie C.
2008-01-01
The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611
Várnai, Csilla; Burkoff, Nikolas S; Wild, David L
2017-01-01
Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.
Near-Resonant Thermomechanics of Energetic and Mock Energetic Composite Materials
2016-11-01
munition design . 15. SUBJECT TERMS Energetic Materials; Explosives; Mechanical Vibration; Thermomechanics; Damping; Plasticity 16. SECURITY...preliminary computational modeling tools, which can be used to predict material response during energetic material formulation and munition design . Key...which can be used to predict material response during energetic material formulation and munition design . More specifically, Task Order 0001
Effects of surfaces and leachables on the stability of biopharmaceuticals.
Bee, Jared S; Randolph, Theodore W; Carpenter, John F; Bishop, Steven M; Dimitrova, Mariana N
2011-10-01
Therapeutic proteins are exposed to various potential contact surfaces, particles, and leachables during manufacturing, shipping, storage, and delivery. In this review, we present published examples of interfacial- or leachable-induced aggregation or particle formation, and discuss the mitigation strategies that were successfully utilized. Adsorption to interfaces or interactions with leachables and/or particles in some cases has been reported to cause protein aggregation or particle formation. Identification of the cause(s) of particle formation involving minute amounts of protein over extended periods of time can be challenging. Various formulation strategies such as addition of a nonionic surfactant (e.g., polysorbate) have been demonstrated to effectively mitigate adsorption-induced protein aggregation. However, not all stability problems associated with interfaces or leachables are best resolved by formulation optimization. Detectable leachables do not necessarily have any adverse impact on the protein but control of the leachable source is preferred when there is a concern. In other cases, preventing protein aggregation and particle formation may require manufacturing process and/or equipment changes, use of compatible materials at contact interfaces, and so on. This review summarizes approaches that have been used to minimize protein aggregation and particle formation during manufacturing and fill-finish operations, product storage and transportation, and delivery of protein therapeutics. Copyright © 2011 Wiley-Liss, Inc.
Users' manual for the Langley high speed propeller noise prediction program (DFP-ATP)
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tarkenton, G. M.
1989-01-01
The use of the Dunn-Farassat-Padula Advanced Technology Propeller (DFP-ATP) noise prediction program which computes the periodic acoustic pressure signature and spectrum generated by propellers moving with supersonic helical tip speeds is described. The program has the capacity of predicting noise produced by a single-rotation propeller (SRP) or a counter-rotation propeller (CRP) system with steady or unsteady blade loading. The computational method is based on two theoretical formulations developed by Farassat. One formulation is appropriate for subsonic sources, and the other for transonic or supersonic sources. Detailed descriptions of user input, program output, and two test cases are presented, as well as brief discussions of the theoretical formulations and computational algorithms employed.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.
2002-01-01
The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.
Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam
2011-11-01
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CAD-Based Modeling of Advanced Rotary Wing Structures for Integrated 3-D Aeromechanics Analysis
NASA Astrophysics Data System (ADS)
Staruk, William
This dissertation describes the first comprehensive use of integrated 3-D aeromechanics modeling, defined as the coupling of 3-D solid finite element method (FEM) structural dynamics with 3-D computational fluid dynamics (CFD), for the analysis of a real helicopter rotor. The development of this new methodology (a departure from how rotor aeroelastic analysis has been performed for 40 years), its execution on a real rotor, and the fundamental understanding of aeromechanics gained from it, are the key contributions of this dissertation. This work also presents the first CFD/CSD analysis of a tiltrotor in edgewise flight, revealing many of its unique loading mechanisms. The use of 3-D FEM, integrated with a trim solver and aerodynamics modeling, has the potential to enhance the design of advanced rotors by overcoming fundamental limitations of current generation beam-based analysis tools and offering integrated internal dynamic stress and strain predictions for design. Two primary goals drove this research effort: 1) developing a methodology to create 3-D CAD-based brick finite element models of rotors including multibody joints, controls, and aerodynamic interfaces, and 2) refining X3D, the US Army's next generation rotor structural dynamics solver featuring 3-D FEM within a multibody formulation with integrated aerodynamics, to model a tiltrotor in the edgewise conversion flight regime, which drives critical proprotor structural loads. Prior tiltrotor analysis has primarily focused on hover aerodynamics with rigid blades or forward flight whirl-flutter stability with simplified aerodynamics. The first goal was met with the development of a detailed methodology for generating multibody 3-D structural models, starting from CAD geometry, continuing to higher-order hexahedral finite element meshing, to final assembly of the multibody model by creating joints, assigning material properties, and defining the aerodynamic interface. Several levels of verification and validation were carried out systematically, covering formulation, model accuracy, and accuracy of the physics of the problem and the many complex coupled aeromechanical phenomena that characterize the behavior of a tiltrotor in the conversion corridor. Compatibility of the new structural analysis models with X3D is demonstrated using analytical test cases, including 90° twisted beams and thick composite plates, and a notional bearingless rotor. Prediction of deformations and stresses in composite beams and plates is validated and verified against experimental measurements, theory, and state-of-the-art beam models. The second goal was met through integrated analysis of the Tilt Rotor Aeroacoustic Model (TRAM) proprotor using X3D coupled to Helios--the US Army's next generation CFD framework featuring a high fidelity Reynolds-average Navier-Stokes (RANS) structured/unstructured overset solver--as well as low order aerodynamic models. Although development of CFD was not part of this work, coupling X3D with Helios was, including establishing consistent interface definitions for blade deformations (for CFD mesh motion), aerodynamic interfaces (for loads transfer), and rotor control angles (for trim). It is expected that this method and solver will henceforth be an integral part of the Helios framework, providing an equal fidelity of representation for fluids and structures in the development of future advanced rotor systems. Structural dynamics analysis of the TRAM model show accurate prediction of the lower natural frequencies, demonstrating the ability to model advanced rotors from first principles using 3-D structural dynamics, and a study of how joint properties affect these frequencies reveals how X3D can be used as a detailed design tool. The CFD/CSD analysis reveals accurate prediction of rotor performance and airloads in edgewise flight when compared to wind tunnel test data. Structural blade loads trends are well predicted at low thrust, but a 3/rev component of flap and lag bending moment appearing in test data at high thrust remains a mystery. Efficiently simulating a gimbaled rotor is not trivial; a time-domain method with only a single blade model is proposed and tested. The internal stress in the blade, particularly at its root where the gimbal action has major influence, is carefully examined, revealing complex localized loading patterns.
Polymer-induced forces at interfaces
NASA Astrophysics Data System (ADS)
Rangarajan, Murali
This dissertation concerns studies of forces generated by confined and physisorbed flexible polymers using lattice mean-field theories, and those generated by confined and clamped semiflexible polymers modeled as slender elastic rods. Lattice mean-field theories have been used in understanding and predicting the behavior of polymeric interfacial systems. In order to efficiently tailor such systems for various applications of interest, one has to understand the forces generated in the interface due to the polymer molecules. The present work examines the abilities and limitations of lattice mean-field theories in predicting the structure of physisorbed polymer layers and the resultant forces. Within the lattice mean-field theory, a definition of normal force of compression as the negative derivative of the partition-function-based excess free energy with surface separation gives misleading results because the theory does not explicitly account for the normal stresses involved in the system. Correct expressions for normal and tangential forces are obtained from a continuum-mechanics-based formulation. Preliminary comparisons with lattice Monte Carlo simulations show that mean-field theories fail to predict significant attractive forces when the surfaces are undersaturated, as one would expect. The corrections to the excluded volume (non-reversal chains) and the mean-field (anisotropic field) approximations improve the predictions of layer structure, but not the forces. Bending of semiflexible polymer chains (elastic rods) is considered for two boundary conditions---where the chain is hinged on both ends and where the chain is clamped on one end and hinged on the other. For the former case, the compressive forces and chain shapes obtained are consistent with the inflexional elastica published by Love. For the latter, multiple and higher-order solutions are observed for the hinged-end position for a given force. Preliminary studies are conducted on actin-based motility of Listeria monocytogenes by treating actin filaments as elastic rods, using the actoclampin model. The results show qualitative agreement with calculations where the filaments are modeled as Hookean springs. The feasibility of the actoclampin model to address long length-scale rotation of Listeria during actin-based motility is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Zongrui; Stocks, George Malcolm
The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Berrocal, Eduardo; Cappello, Franck
The silent data corruption (SDC) problem is attracting more and more attentions because it is expected to have a great impact on exascale HPC applications. SDC faults are hazardous in that they pass unnoticed by hardware and can lead to wrong computation results. In this work, we formulate SDC detection as a runtime one-step-ahead prediction method, leveraging multiple linear prediction methods in order to improve the detection results. The contributions are twofold: (1) we propose an error feedback control model that can reduce the prediction errors for different linear prediction methods, and (2) we propose a spatial-data-based even-sampling method tomore » minimize the detection overheads (including memory and computation cost). We implement our algorithms in the fault tolerance interface, a fault tolerance library with multiple checkpoint levels, such that users can conveniently protect their HPC applications against both SDC errors and fail-stop errors. We evaluate our approach by using large-scale traces from well-known, large-scale HPC applications, as well as by running those HPC applications on a real cluster environment. Experiments show that our error feedback control model can improve detection sensitivity by 34-189% for bit-flip memory errors injected with the bit positions in the range [20,30], without any degradation on detection accuracy. Furthermore, memory size can be reduced by 33% with our spatial-data even-sampling method, with only a slight and graceful degradation in the detection sensitivity.« less
An unsteady aerodynamic formulation for efficient rotor tonal noise prediction
NASA Astrophysics Data System (ADS)
Gennaretti, M.; Testa, C.; Bernardini, G.
2013-12-01
An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.
Epitaxy of semiconductor-superconductor nanowires
NASA Astrophysics Data System (ADS)
Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.
2015-04-01
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.
Experimental setup for evaluating an adaptive user interface for teleoperation control
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.
2017-05-01
A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.
Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface
NASA Astrophysics Data System (ADS)
Keitzl, T.; Mellado, J. P.; Notz, D.
2016-12-01
The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.
Modeling and measuring non-Newtonian shear flows of soft interfaces
NASA Astrophysics Data System (ADS)
Lopez, Juan; Raghunandan, Aditya; Underhill, Patrick; Hirsa, Amir
2017-11-01
Soft interfaces of polymers, particles, and proteins between fluid phases are ubiquitous in industrial and natural processes. The flow response of such systems to deformation is often not linear, as one would expect for Newtonian interfaces. The resistance to (pure shear) flow of interfaces is generally characterized by a single intrinsic material property, the surface shear viscosity. Predicted shear responses of Newtonian interfaces have achieved consensus across a wide range of flow conditions and measurement devices, when the nonlinear hydrodynamic coupling to the bulk phase is correctly accounted for. However, predicting the flows of sheared non-Newtonian interfaces remains a challenge. Here, we introduce a computational model that incorporates a non-Newtonian constitutive equation for the sheared interface and properly accounts for the coupled interfacial and bulk phase flows. We compare predictions to experiments performed with a model phospholipid system, DPPC - the main constituent of mammalian lung surfactant. Densely packed films of DPPC are directly sheared in a knife-edge surface viscometer. Yield-stress and shear thinning behaviors are shown to be accurately captured across hydrodynamic regimes straddling the Stokes flow limit to inertia dominated flows. Supported by NASA Grant NNX13AQ22G.
Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.
1997-01-01
High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.
Active Control of Interface Shape During the Crystal Growth of Lead Bromide
NASA Technical Reports Server (NTRS)
Duval, W. M. B.; Batur, C.; Singh, N. B.
2003-01-01
A thermal model for predicting and designing the furnace temperature profile was developed and used for the crystal growth of lead bromide. The model gives the ampoule temperature as a function of the furnace temperature, thermal conductivity, heat transfer coefficients, and ampoule dimensions as variable parameters. Crystal interface curvature was derived from the model and it was compared with the predicted curvature for a particular furnace temperature and growth parameters. Large crystals of lead bromide were grown and it was observed that interface shape was in agreement with the shape predicted by this model.
Voids at the tunnel-soil interface for calculation of ground vibration from underground railways
NASA Astrophysics Data System (ADS)
Jones, Simon; Hunt, Hugh
2011-01-01
Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.
Quantifying data worth toward reducing predictive uncertainty
Dausman, A.M.; Doherty, J.; Langevin, C.D.; Sukop, M.C.
2010-01-01
The present study demonstrates a methodology for optimization of environmental data acquisition. Based on the premise that the worth of data increases in proportion to its ability to reduce the uncertainty of key model predictions, the methodology can be used to compare the worth of different data types, gathered at different locations within study areas of arbitrary complexity. The method is applied to a hypothetical nonlinear, variable density numerical model of salt and heat transport. The relative utilities of temperature and concentration measurements at different locations within the model domain are assessed in terms of their ability to reduce the uncertainty associated with predictions of movement of the salt water interface in response to a decrease in fresh water recharge. In order to test the sensitivity of the method to nonlinear model behavior, analyses were repeated for multiple realizations of system properties. Rankings of observation worth were similar for all realizations, indicating robust performance of the methodology when employed in conjunction with a highly nonlinear model. The analysis showed that while concentration and temperature measurements can both aid in the prediction of interface movement, concentration measurements, especially when taken in proximity to the interface at locations where the interface is expected to move, are of greater worth than temperature measurements. Nevertheless, it was also demonstrated that pairs of temperature measurements, taken in strategic locations with respect to the interface, can also lead to more precise predictions of interface movement. Journal compilation ?? 2010 National Ground Water Association.
NASA Astrophysics Data System (ADS)
Wulansari, I. H.; Wibowo, W. E.; Pawiro, S. A.
2017-05-01
In lung cancer cases, there exists a difficulty for the Treatment Planning System (TPS) to predict the dose at or near the mass interface. This error prediction might influence the minimum or maximum dose received by lung cancer. In addition to target motion, the target dose prediction error also contributes in the combined error during the course of treatment. The objective of this work was to verify dose plan calculated by adaptive convolution algorithm in Pinnacle3 at the mass interface against a set of measurement. The measurement was performed using Gafchromic EBT 3 film in static and dynamic CIRS phantom with amplitudes of 5 mm, 10 mm, and 20 mm in superior-inferior motion direction. Static and dynamic phantom were scanned with fast CT and slow CT before planned. The results showed that adaptive convolution algorithm mostly predicted mass interface dose lower than the measured dose in a range of -0,63% to 8,37% for static phantom in fast CT scanning and -0,27% to 15,9% for static phantom in slow CT scanning. In dynamic phantom, this algorithm was predicted mass interface dose higher than measured dose up to -89% for fast CT and varied from -17% until 37% for slow CT. This interface of dose differences caused the dose mass decreased in fast CT, except for 10 mm motion amplitude, and increased in slow CT for the greater amplitude of motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Rizzo, F.J.
1997-08-01
In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less
A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sheldon, Jason P.; Miller, Scott T.; Pitt, Jonathan S.
2016-12-01
This work presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid-structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian-Eulerian Navier-Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modeling is coupling together their disparate mathematics on the fluid-solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.
A hybridizable discontinuous Galerkin method for modeling fluid–structure interaction
Sheldon, Jason P.; Miller, Scott T.; Pitt, Jonathan S.
2016-08-31
This study presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid–structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian–Eulerian Navier–Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modelingmore » is coupling together their disparate mathematics on the fluid–solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased.« less
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad
1995-01-01
The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2002-01-01
An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.
NASA Technical Reports Server (NTRS)
Wang, J. C.
1982-01-01
Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tarkenton, G. M.
1992-01-01
This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.
Proof of concept: performance testing in models.
Craig, W A
2004-04-01
Pharmacokinetic (PK) and pharmacodynamic (PD) principles that predict antimicrobial efficacy can be used to set targets for antimicrobial design and optimisation. Although current formulations of amoxicillin and amoxicillin/clavulanate have retained their efficacy against many, but not all, penicillin-nonsusceptible Streptococcus pneumoniae, additional coverage is required to address the growing problem of drug-resistant strains. Accordingly, two new oral formulations of amoxicillin/clavulanate, a paediatric formulation at 90/6.4 mg/kg/day and a pharmacokinetically enhanced formulation at 2000/125 mg twice daily for adults, were designed using PK/PD principles. These principles indicate that for amoxicillin and amoxicillin/clavulanate, a time above MIC of 35-40% of the dosing interval is predictive of high bacterial efficacy. In line with PK/PD predictions, simulation of human pharmacokinetics in in-vitro kinetic models and in a rat model of pneumonia, amoxicillin/clavulanate 2000/125 mg twice daily was highly effective against S. pneumoniae strains with amoxicillin MICs of 4 or 8 mg/L. Against strains with amoxicillin MICs of 4 mg/L, amoxicillin/clavulanate 2000/125 mg twice daily was significantly more effective than the conventional 875/125 mg twice daily formulation, azithromycin and levofloxacin, even though all levofloxacin MICs were < or = 1 mg/L. Following infection with S. pneumoniae strains with amoxicillin MICs of 8 mg/L, the amoxicillin/clavulanate 2000/125 mg twice daily formulation was more effective than the conventional amoxicillin/clavulanate formulations of 875/125 mg twice daily and three times daily and 1000/125 mg three times daily, and had similar or better efficacy than azithromycin and levofloxacin, depending on the strain. These data indicate the potential benefit of therapy with amoxicillin/clavulanate 2000/125 mg twice daily compared with conventional formulations and other marketed antimicrobials in the treatment of respiratory tract infection.
NASA Astrophysics Data System (ADS)
Jones, Adam; Utyuzhnikov, Sergey
2017-08-01
Turbulent flow in a ribbed channel is studied using an efficient near-wall domain decomposition (NDD) method. The NDD approach is formulated by splitting the computational domain into an inner and outer region, with an interface boundary between the two. The computational mesh covers the outer region, and the flow in this region is solved using the open-source CFD code Code_Saturne with special boundary conditions on the interface boundary, called interface boundary conditions (IBCs). The IBCs are of Robin type and incorporate the effect of the inner region on the flow in the outer region. IBCs are formulated in terms of the distance from the interface boundary to the wall in the inner region. It is demonstrated that up to 90% of the region between the ribs in the ribbed passage can be removed from the computational mesh with an error on the friction factor within 2.5%. In addition, computations with NDD are faster than computations based on low Reynolds number (LRN) models by a factor of five. Different rib heights can be studied with the same mesh in the outer region without affecting the accuracy of the friction factor. This is tested with six different rib heights in an example of a design optimisation study. It is found that the friction factors computed with NDD are almost identical to the fully-resolved results. When used for inverse problems, NDD is considerably more efficient than LRN computations because only one computation needs to be performed and only one mesh needs to be generated.
Zahabi, Maryam; Kaber, David B; Swangnetr, Manida
2015-08-01
The objectives of this study were to (a) review electronic medical record (EMR) and related electronic health record (EHR) interface usability issues, (b) review how EMRs have been evaluated with safety analysis techniques along with any hazard recognition, and (c) formulate design guidelines and a concept for enhanced EMR interfaces with a focus on diagnosis and documentation processes. A major impact of information technology in health care has been the introduction of EMRs. Although numerous studies indicate use of EMRs to increase health care quality, there remain concerns with usability issues and safety. A literature search was conducted using Compendex, PubMed, CINAHL, and Web of Science databases to find EMR research published since 2000. Inclusion criteria included relevant English-language papers with subsets of keywords and any studies (manually) identified with a focus on EMR usability. Fifty studies met the inclusion criteria. Results revealed EMR and EHR usability problems to include violations of natural dialog, control consistency, effective use of language, effective information presentation, and customization principles as well as a lack of error prevention, minimization of cognitive load, and feedback. Studies focusing on EMR system safety made no objective assessments and applied only inductive reasoning methods for hazard recognition. On the basis of the identified usability problems and structure of safety analysis techniques, we provide EMR design guidelines and a design concept focused on the diagnosis process and documentation. The design guidelines and new interface concept can be used for prototyping and testing enhanced EMRs. © 2015, Human Factors and Ergonomics Society.
InterProSurf: a web server for predicting interacting sites on protein surfaces
Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner
2009-01-01
Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
NASA Technical Reports Server (NTRS)
Dilley, Arthur D.; McClinton, Charles R. (Technical Monitor)
2001-01-01
Results from a study to assess the accuracy of turbulent heating and skin friction prediction techniques for hypersonic applications are presented. The study uses the original and a modified Baldwin-Lomax turbulence model with a space marching code. Grid converged turbulent predictions using the wall damping formulation (original model) and local damping formulation (modified model) are compared with experimental data for several flat plates. The wall damping and local damping results are similar for hot wall conditions, but differ significantly for cold walls, i.e., T(sub w) / T(sub t) < 0.3, with the wall damping heating and skin friction 10-30% above the local damping results. Furthermore, the local damping predictions have reasonable or good agreement with the experimental heating data for all cases. The impact of the two formulations on the van Driest damping function and the turbulent eddy viscosity distribution for a cold wall case indicate the importance of including temperature gradient effects. Grid requirements for accurate turbulent heating predictions are also studied. These results indicate that a cell Reynolds number of 1 is required for grid converged heating predictions, but coarser grids with a y(sup +) less than 2 are adequate for design of hypersonic vehicles. Based on the results of this study, it is recommended that the local damping formulation be used with the Baldwin-Lomax and Cebeci-Smith turbulence models in design and analysis of Hyper-X and future hypersonic vehicles.
Origin of the sensitivity in modeling the glide behaviour of dislocations
Pei, Zongrui; Stocks, George Malcolm
2018-03-26
The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.
El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant
2016-01-01
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.
Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments
Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke
2016-01-01
Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909
DocCube: Multi-Dimensional Visualization and Exploration of Large Document Sets.
ERIC Educational Resources Information Center
Mothe, Josiane; Chrisment, Claude; Dousset, Bernard; Alaux, Joel
2003-01-01
Describes a user interface that provides global visualizations of large document sets to help users formulate the query that corresponds to their information needs. Highlights include concept hierarchies that users can browse to specify and refine information needs; knowledge discovery in databases and texts; and multidimensional modeling.…
Indigenous Autoethnography: Formulating Our Knowledge, Our Way
ERIC Educational Resources Information Center
Houston, Jennifer
2007-01-01
This paper seeks to engage the cultural interface where Indigenous knowledge meets Western academia, by questioning the validity of traditional research methods. Firstly, it is a response to the challenges facing Indigenous people confronted with the ethical and methodological issues arising from academic research. Secondly, it is a journey "into"…
39 CFR 3002.12 - Office of Accountability and Compliance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... analysis and the formulation of policy recommendations for the Commission in both domestic and... Commission.” The functional areas of expertise within this office are: (1) The economic analysis of the... service; (2) The analysis of the operational characteristics of the postal system and its interface with...
A moving medium formulation for prediction of propeller noise at incidence
NASA Astrophysics Data System (ADS)
Ghorbaniasl, Ghader; Lacor, Chris
2012-01-01
This paper presents a time domain formulation for the sound field radiated by moving bodies in a uniform steady flow with arbitrary orientation. The aim is to provide a formulation for prediction of noise from body so that effects of crossflow on a propeller can be modeled in the time domain. An established theory of noise generation by a moving source is combined with the moving medium Green's function for derivation of the formulation. A formula with Doppler factor is developed because it is more easily interpreted and is more helpful in examining the physic of systems. Based on the technique presented, the source of asymmetry of the sound field can be explained in terms of physics of a moving source. It is shown that the derived formulation can be interpreted as an extension of formulation 1 and 1A of Farassat based on the Ffowcs Williams and Hawkings (FW-H) equation for moving medium problems. Computational results for a stationary monopole and dipole point source in moving medium, a rotating point force in crossflow, a model of helicopter blade at incidence and a propeller case with subsonic tips at incidence verify the formulation.
Nouraei, Mehdi; Acosta, Edgar J
2017-06-01
Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rohrer, Jochen; Hyldgaard, Per
2010-12-01
We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) (Rohrer and Hyldgaard 2010 Phys. Rev. B 82 045415). A previous study of this system (Rohrer et al 2010 J. Phys.: Condens. Matter 22 015004) found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite its industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extend the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.
Steady-state and dynamic models for particle engulfment during solidification
NASA Astrophysics Data System (ADS)
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Cazelle, Elodie; Eskes, Chantra; Hermann, Martina; Jones, Penny; McNamee, Pauline; Prinsen, Menk; Taylor, Hannah; Wijnands, Marcel V W
2015-04-01
A.I.S.E. investigated the suitability of the regulatory adopted ICE in vitro test method (OECD TG 438) with or without histopathology to identify detergent and cleaning formulations having extreme pH that require classification as EU CLP/UN GHS Category 1. To this aim, 18 extreme pH detergent and cleaning formulations were tested covering both alkaline and acidic extreme pHs. The ICE standard test method following OECD Test Guideline 438 showed good concordance with in vivo classification (83%) and good and balanced specificity and sensitivity values (83%) which are in line with the performances of currently adopted in vitro test guidelines, confirming its suitability to identify Category 1 extreme pH detergent and cleaning products. In contrast to previous findings obtained with non-extreme pH formulations, the use of histopathology did not improve the sensitivity of the assay whilst it strongly decreased its specificity for the extreme pH formulations. Furthermore, use of non-testing prediction rules for classification showed poor concordance values (33% for the extreme pH rule and 61% for the EU CLP additivity approach) with high rates of over-prediction (100% for the extreme pH rule and 50% for the additivity approach), indicating that these non-testing prediction rules are not suitable to predict Category 1 hazards of extreme pH detergent and cleaning formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
ConKit: a python interface to contact predictions.
Simkovic, Felix; Thomas, Jens M H; Rigden, Daniel J
2017-07-15
Recent advances in protein residue contact prediction algorithms have led to the emergence of many new methods and a variety of file formats. We present ConKit , an open source, modular and extensible Python interface which allows facile conversion between formats and provides an interface to analyses of sequence alignments and sets of contact predictions. ConKit is available via the Python Package Index. The documentation can be found at http://www.conkit.org . ConKit is licensed under the BSD 3-Clause. hlfsimko@liverpool.ac.uk or drigden@liverpool.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-01-01
Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-12-27
Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.
NASA Astrophysics Data System (ADS)
Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.
2017-02-01
Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.
RNAstructure: software for RNA secondary structure prediction and analysis.
Reuter, Jessica S; Mathews, David H
2010-03-15
To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.
Stress-free end problem in layered materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Bakioglu, M.
1977-01-01
In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.
Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading
NASA Technical Reports Server (NTRS)
Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.
A sophisticated simulation for the fracture behavior of concrete material using XFEM
NASA Astrophysics Data System (ADS)
Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili
2017-10-01
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.
Method for transition prediction in high-speed boundary layers, phase 2
NASA Astrophysics Data System (ADS)
Herbert, T.; Stuckert, G. K.; Lin, N.
1993-09-01
The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.
Emergent Momentum-Space Skyrmion Texture on the Surface of Topological Insulators
NASA Astrophysics Data System (ADS)
Mohanta, Narayan; Kampf, Arno P.; Kopp, Thilo
The quantum anomalous Hall effect has been theoretically predicted and experimentally verified in magnetic topological insulators. In addition, the surface states of these materials exhibit a hedgehog-like ``spin'' texture in momentum space. Here, we apply the previously formulated low-energy model for Bi2Se3, a parent compound for magnetic topological insulators, to a slab geometry in which an exchange field acts only within one of the surface layers. In this sample set up, the hedgehog transforms into a skyrmion texture beyond a critical exchange field. This critical field marks a transition between two topologically distinct phases. The topological phase transition takes place without energy gap closing at the Fermi level and leaves the transverse Hall conductance unchanged and quantized to e2 / 2 h . The momentum-space skyrmion texture persists in a finite field range. It may find its realization in hybrid heterostructures with an interface between a three-dimensional topological insulator and a ferromagnetic insulator. The work was supported by the Deutsche Forschungsgemeinschaft through TRR 80.
Study on the extrusion of nickel-based spark plug electrodes by numerical simulation
NASA Astrophysics Data System (ADS)
Saby, Q.; Courbon, C.; Salvatore, F.; Fabre, D.; Romeyer, F.
2018-05-01
Interest in metal forming simulation has grown rapidly during the last decades and is now well established even in industry. It provides a flexible and relatively cheap method to perform sensitivity analyses, getting a better insight into the forming process and use it as an optimisation tool. As far as wear is concerned, numerical simulation can be seen as a relevant approach to assess the thermomechanical loadings applied to the active die surface and therefore predict their wear behaviour. In this study, a Finite-Element (FE) based model has been developed in order to investigate the cold forming process of a nickel-based sparkplug electrode. A fully thermo-mechanically coupled implicit formulation has been used in order to model the forward extrusion step with a special emphasis on the contact conditions at the workpiece-die interface. Contact pressure, relative sliding velocity and temperature profiles have been extracted versus time and qualitatively compared to the wear phenomena observed on the worn production dies.
NASA Astrophysics Data System (ADS)
Hizumi, Yuka; Omori, Takeshi; Yamaguchi, Yasutaka; Kajisima, Takeo
2014-11-01
For reliable prediction of multiphase flows in micro- and nano-scales, continuum models are expected to account for small scale physics near the contact line (CL) region. Some existing works (for example the series of papers by the group of Qian and Ren) have been successful in deriving continuum models and corresponding boundary conditions which reproduce well the molecular dynamics (MD) simulation results. Their studies, however, did not fully address the issue of adsorption layer especially in the CL region, and it is still not clear if general conclusion can be deduced from their results. In the present study we investigate in detail the local viscosity and the corresponding stress tensor formulation in the solid-liquid interface and in the CL region of immiscible two-phase Couette flows by means of MD simulation. The application limit of the generalized Navier boundary condition and the continuum model with uniform viscosity is addressed by systematic coarse-graining of sampling bins.
Improvements to Wire Bundle Thermal Modeling for Ampacity Determination
NASA Technical Reports Server (NTRS)
Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah
2017-01-01
Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu
2015-09-28
The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less
NASA Astrophysics Data System (ADS)
Qu, Yegao; Shi, Ruchao; Batra, Romesh C.
2018-02-01
We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.
Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal
NASA Astrophysics Data System (ADS)
Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert; Oberst, Sebastian
2018-07-01
Friction-induced vibrations are of major concern in the design of reliable, efficient and comfortable technical systems. Well-known examples for systems susceptible to self-excitation can be found in fluid structure interaction, disk brake squeal, rotor dynamics, hip implants noise and many more. While damping elements and amplitude reduction are well-understood in linear systems, nonlinear systems and especially self-excited dynamics still constitute a challenge for damping element design. Additionally, complex dynamical systems exhibit deterministic chaotic cores which add severe sensitivity to initial conditions to the system response. Especially the complex friction interface dynamics remain a challenging task for measurements and modeling. Today, mostly simple and regular friction models are investigated in the field of self-excited brake system vibrations. This work aims at investigating the effect of high-frequency irregular interface dynamics on the nonlinear dynamical response of a self-excited structure. Special focus is put on the characterization of the system response time series. A low-dimensional minimal model is studied which features self-excitation, gyroscopic effects and friction-induced damping. Additionally, the employed friction formulation exhibits temperature as inner variable and superposed chaotic fluctuations governed by a Lorenz attractor. The time scale of the irregular fluctuations is chosen one order smaller than the overall system dynamics. The influence of those fluctuations on the structural response is studied in various ways, i.e. in time domain and by means of recurrence analysis. The separate time scales are studied in detail and regimes of dynamic interactions are identified. The results of the irregular friction formulation indicate dynamic interactions on multiple time scales, which trigger larger vibration amplitudes as compared to regular friction formulations conventionally studied in the field of friction-induced vibrations.
A hybrid formulation for the numerical simulation of condensed phase explosives
NASA Astrophysics Data System (ADS)
Michael, L.; Nikiforakis, N.
2016-07-01
In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.
NASA Astrophysics Data System (ADS)
Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.
2017-11-01
In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.
2017-11-01
In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.
Guided wave propagation and spectral element method for debonding damage assessment in RC structures
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping
2009-07-01
A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.
Influence of gas compressibility on a burning accident in a mining passage
NASA Astrophysics Data System (ADS)
Demir, Sinan; Calavay, Anish Raman; Akkerman, V'yacheslav
2018-03-01
A recent predictive scenario of a methane/air/coal dust fire in a mining passage is extended by incorporating the effect of gas compressibility into the analysis. The compressible and incompressible formulations are compared, qualitatively and quantitatively, in both the two-dimensional planar and cylindrical-axisymmetric geometries, and a detailed parametric study accounting for coal-dust combustion is performed. It is shown that gas compression moderates flame acceleration, and its impact depends on the type of the fuel, its various thermal-chemical parameters as well as on the geometry of the problem. While the effect of gas compression is relatively minor for the lean and rich flames, providing 5-25% reduction in the burning velocity and thereby justifying the incompressible formulation in that case, such a reduction appears significant, up to 70% for near-stoichiometric methane-air combustion, and therefore it should be incorporated into a rigorous formulation. It is demonstrated that the flame tip velocity remains noticeably subsonic in all the cases considered, which is opposite to the prediction of the incompressible formulation, but qualitatively agrees with the experimental predictions from the literature.
NASA Astrophysics Data System (ADS)
Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga
2018-06-01
This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term 'unstructured' in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.
A Detailed Analysis of End-User Search Behaviors.
ERIC Educational Resources Information Center
Wildemuth, Barbara M.; And Others
1991-01-01
Discussion of search strategy formulation focuses on a study at the University of North Carolina at Chapel Hill that analyzed how medical students developed and revised search strategies for microbiology database searches. Implications for future research on search behavior, for system interface design, and for end user training are suggested. (16…
The Religious-Secular Interface and Representations of Islam in Phenomenological Religious Education
ERIC Educational Resources Information Center
Thobani, Shiraz
2017-01-01
Alongside community-based education, a principal agency which has contributed to defining multi-faith identities in England and Wales over the past five decades has been the subject of religious education in state maintained schools. Over this period, formulations of the social category of "Muslims" and the curricular concept of…
Virtual Classroom for Business Planning Formulation.
ERIC Educational Resources Information Center
Osorio, J.; Rubio-Royo, E.; Ocon, A.
One of the most promising possibilities of the World Wide Web resides in its potential to support distance education. In 1996, the University of Las Palmas de Gran Canaria developed the "INNOVA Project" in order to promote Web-based training and learning. As a result, the Virtual Classroom Interface (IVA) was created. Several software…
Pereira, Thulio C; Conceição, Carlos A F; Khan, Alamgir; Fernandes, Raquel M T; Ferreira, Maira S; Marques, Edmar P; Marques, Aldaléa L B
2016-11-05
Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pereira, Thulio C.; Conceição, Carlos A. F.; Khan, Alamgir; Fernandes, Raquel M. T.; Ferreira, Maira S.; Marques, Edmar P.; Marques, Aldaléa L. B.
2016-11-01
Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique.
Dynamical Modeling of Surface Tension
NASA Technical Reports Server (NTRS)
Brackbill, Jeremiah U.; Kothe, Douglas B.
1996-01-01
In a recent review it is said that free-surface flows 'represent some of the difficult remaining challenges in computational fluid dynamics'. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF formulation might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin (1996). This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated. For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin (1996), are discussed.
Numerical Simulation of Bow Waves and Transom-Stern Flows
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.
1997-11-01
A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.
NASA Astrophysics Data System (ADS)
Virozub, Alexander; Brandon, Simon
1998-10-01
Internal radiative heat transport in oxide crystals during their growth via the vertical Bridgman technique is known to promote severely deflected melt/crystal interface shapes. These highly curved interfaces are likely to encourage unwanted phenomena such as inhomogeneous distribution of impurities in the solidified crystalline material. Past computational analyses of oxide growth systems have mostly been confined to cylindrical geometries. In this letter a two-dimensional finite-element model, describing the growth of slab-shaped oxide crystals via the vertical Bridgman technique, is presented; internal radiative heat transport through the transparent crystalline phase is accounted for in the formulation. Comparison with calculations of cylindrical-shaped crystal growth systems shows a strong dependence of thermal fields and of melt/crystal interface shapes on the crystal geometry. Specifically, the interface position is strongly shifted toward the hot zone and its curvature dramatically increases in slab-shaped systems compared to what is observed in cylindrical geometries. This significant qualitative difference in interface shapes is shown to be linked to large quantitative differences in values of the viewing angle between the hot melt/crystal interface and the cold part of the crucible.
Isotretinoin Oil-Based Capsule Formulation Optimization
Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu
2013-01-01
The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886
Water permeation and electrical properties of pottants, backings, and pottant/backing composites
NASA Technical Reports Server (NTRS)
Orehotsky, J.
1986-01-01
It is reported that the interface between plastic film back covers and ethylene vinyl acetates (EVA) or polyvinyl butyral (PVB) in photovoltaic modules can influence water permeation, and electrial properties of the composites such as leakage current and dielectric constant. The interface can either be one of two dissimilar materials in physical contact with no intermixing, or the interface can constitute a thin zone which is an interphase of the two materials having a gradient composition from one material to the other. The former condition is described as a discrete interface. A discrete interface model was developed to predict water permeation, dielectric strength, and leakage current for EVA, ethylene methyl acrylate (EMA), and PVB coupled to Tedlar and mylar films. Experimental data was compared with predicted data.
Transport properties at fluids interfaces: a molecular study for a macroscopic modelling
NASA Astrophysics Data System (ADS)
Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim
2017-11-01
Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
Modular Approach to Structural Simulation for Vehicle Crashworthiness Prediction
DOT National Transportation Integrated Search
1975-03-01
A modular formulation for simulation of the structural deformation and deceleration of a vehicle for crashworthiness and collision compatibility is presented. This formulation includes three dimensional beam elements, various spring elements, rigid b...
Bordner, Andrew J; Gorin, Andrey A
2008-05-12
Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB). We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section). Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.
Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick
2015-11-01
The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6-8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC(0-24 h)) was shown, although a tendency towards an increased oral exposure could be observed as the AUC(0-24 h) was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. © 2015 The British Pharmacological Society.
Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick
2015-01-01
Aims The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. Methods A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6–8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. Results After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC0–24 h) was shown, although a tendency towards an increased oral exposure could be observed as the AUC0–24 h was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. Conclusions The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. PMID:25917170
Li, Chaodi; Kotha, Shiva; Mason, James
2003-01-01
The exothermic polymerization of bone cement may induce thermal necrosis of bone in cemented hip arthroplasty. A finite element formulation was developed to predict the evolution of the temperature with time in the cemented hip replacement system. The developed method is capable of taking into account both the chemical reaction that generates heat during bone cement polymerization (through a kinetic model) and the physical process of heat conduction (with an energy balance equation). The possibility of thermal necrosis of bone was then evaluated based on the temperature history in the bone and an appropriate damage criterion. Specifically, we evaluate the role of implant materials and designs on the thermal response of the system. Results indicated that the peak temperature at the bone/cement interface with a metal prosthesis was lower than that with a polymer or a composite prosthesis in hip replacement systems. Necrosis of bone was predicted to occur with a polymer or a composite prosthesis while no necrosis was predicted with a metal prosthesis in the simulated conditions. When reinforcing osteoporotic hips with injected bone cement in the cancellous core of the femur, the volume of bone cement implanted is increased which may increase the risk of thermal necrosis of bone. We evaluate whether this risk can be decreased through the use of an insulator to contain the bone cement. No thermal necrosis of bone was predicted with a 3 mm thick polyurethane insulator while more damage is predicted for the use of bone cement without the insulator. This method provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs and for examining and refining new designs computationally.
The crystallography of hydride formation in zirconium: II. the δ → ɛ transformation
NASA Astrophysics Data System (ADS)
Cassidy, M. P.; Wayman, C. M.
1980-12-01
The phenomenological crystallographic theory of martensitic transformations has been applied to the transformation from δ (fcc) to ɛ (fct) zirconium hydride, using published lattice parameters. The habit plane, orientation relationship, lattice invariant shear, and interface characteristics were determined by transmission electron microscopy and diffraction. The shape strain was observed by interference microscopy. Good agreement between the predictions of the theory and the measured crystallography was obtained. The predicted and observed lattice invariant shear was twinning on 101. These twins which are found within alternating bands of hydride variants produce a herringbone morphology, and the bands produce a roof gable type of surface relief. For a given plate, the measured habit plane, twin plane, unique Bain contraction axis, and orientation relationship were mutually consistent with the respective predictions for a single variant. The magnitude of the lattice invariant shear was in excellent agreement with the predicted value. The interfaces separating the e hydride bands were found to be of two types, which alternated, often filling an entire grain. One of these, termed a spear interface, was found to be a twin plane, across which the twinned regions of the two bands “matched-up”. The other, termed an impingement interface, was found to have twin regions which did not “match-up”. This morphology can be explained as a pair of ɛ-hydride plates which share a spear interface. When two growing spears impinge, the resulting impingement interface is of the second type.
Orbit targeting specialist function: Level C formulation requirements
NASA Technical Reports Server (NTRS)
Dupont, A.; Mcadoo, S.; Jones, H.; Jones, A. K.; Pearson, D.
1978-01-01
A definition of the level C requirements for onboard maneuver targeting software is provided. Included are revisions of the level C software requirements delineated in JSC IN 78-FM-27, Proximity Operations Software; Level C Requirements, dated May 1978. The software supports the terminal phase midcourse (TPM) maneuver, braking and close-in operations as well as supporting computation of the rendezvous corrective combination maneuver (NCC), and the terminal phase initiation (TPI). Specific formulation is contained here for the orbit targeting specialist function including the processing logic, linkage, and data base definitions for all modules. The crew interface with the software is through the keyboard and the ORBIT-TGT display.
NASA Astrophysics Data System (ADS)
Buchkremer, S.; Klocke, F.
2017-01-01
Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.
NASA Astrophysics Data System (ADS)
Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao
2018-02-01
Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.
A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation
NASA Astrophysics Data System (ADS)
Testa, C.; Ianniello, S.; Salvatore, F.
2018-01-01
A novel hydroacoustic formulation for the prediction of tonal noise emitted by marine propellers in presence of unsteady sheet cavitation, is presented. The approach is based on the standard Ffowcs Williams and Hawkings equation and the use of transpiration (velocity and acceleration) terms, accounting for the time evolution of the vapour cavity attached on the blade surface. Drawbacks and potentialities of the method are tested on a marine propeller operating in a nonhomogeneous onset flow, by exploiting the hydrodynamic data from a potential-based panel method equipped with a sheet cavitation model and comparing the noise predictions with those carried out by an alternative numerical approach, documented in literature. It is shown that the proposed formulation yields a one-to-one correlation between emitted noise and sheet cavitation dynamics, carrying out accurate predictions in terms of noise magnitude and directivity.
NASA Astrophysics Data System (ADS)
Verma, Rahul; Icardi, Matteo; Prodanović, Maša
2018-05-01
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimized for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry and dynamics, where usually many sources of errors are interplaying.
ERIC Educational Resources Information Center
Schuyler, Stanley TenEyck
2008-01-01
Problem solving can be thought of in two phases: the first phase is problem formulation and the second solution development. Problem formulation is the process of identifying a problem or opportunity in a situation. Problem Formulation Ability, or PFA, is the ability to perform this process. This research investigated a method to assess PFA and…
Spatial Competition: Roughening of an Experimental Interface.
Allstadt, Andrew J; Newman, Jonathan A; Walter, Jonathan A; Korniss, G; Caraco, Thomas
2016-07-28
Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader's lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover's growth morphology.
Spatial Competition: Roughening of an Experimental Interface
Allstadt, Andrew J.; Newman, Jonathan A.; Walter, Jonathan A.; Korniss, G.; Caraco, Thomas
2016-01-01
Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. PMID:27465518
NASA Astrophysics Data System (ADS)
Abd El Baky, Hussien
This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond--slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical analysis for 43 strengthened beams involving the five aforementioned variables. The response surface methodology (RSM) technique is employed to optimize the accuracy of the statistical models while minimizing the numbers of finite element runs. In particular, a face-centred design (FCD) is applied to evaluate the influence of the critical variables on the debonding load and debonding strain limits in the FRP laminates. Based on these statistical models, a nonlinear statistical regression analysis is used to propose design guidelines for the FRP flexural strengthening of reinforced concrete beams. (Abstract shortened by UMI.)
Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P
2016-02-09
The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.
Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
2000-01-01
A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.
Where does fitness fit in theories of perception?
Anderson, Barton L
2015-12-01
Interface theory asserts that neither our perceptual experience of the world nor the scientific constructs used to describe the world are veridical. The primary argument used to uphold this claim is that (1) evolution is driven by a process of natural selection that favors fitness over veridicality, and (2) payoffs do not vary monotonically with truth. I argue that both the arguments used to bolster this claim and the conclusions derived from it are flawed. Interface theory assumes that perception evolved to directly track fitness but fails to consider the role of adaptation on ontogenetic time scales. I argue that the ubiquity of nonmonotonic payoff functions requires that (1) perception tracks "truth" for species that adapt on ontogenetic time scales and (2) that perception should be distinct from utility. These conditions are required to pursue an adaptive strategy to mitigate homeostatic imbalances. I also discuss issues with the interface metaphor, the particular formulation of veridicality that is considered, and the relationship of interface theory to the history of ideas on these topics.
Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.
Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig
2016-01-01
Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. Copyright © 2015 Elsevier Inc. All rights reserved.
Ariizumi, Masahiro; Kubo, Megumi; Handa, Akihiro; Hayakawa, Takashi; Matsumiya, Kentaro; Matsumura, Yasuki
2017-04-01
Mayonnaise-like oil-in-water emulsions with different stabilities-evaluated from the degree of macroscopic defects, e.g., syneresis-were prepared by different formulations and processing conditions (egg yolk weight, homogenizer speed, and vegetable oil temperature). Emulsions prepared with lower egg yolk content were destabilized for shorter periods. The long-term stability of emulsions was weakly related to initial properties, e.g., oil droplet distribution and protein coverage at the interface. Protein aggregation between oil droplets was observed and would be responsible for the instability of emulsions exhibited by the appearance defects. SDS-PAGE results for adsorbed and unadsorbed proteins at the O/W interface suggested that predominant constituents adsorbed onto the interface were egg white proteins as compared with egg yolk components when the amount of added egg yolk was low. In present condition, egg white proteins adsorbed at the O/W interface could be a bridge of neighboring oil droplets thereby causing flocculation in emulsions.
In silico modelling of drug–polymer interactions for pharmaceutical formulations
Ahmad, Samina; Johnston, Blair F.; Mackay, Simon P.; Schatzlein, Andreas G.; Gellert, Paul; Sengupta, Durba; Uchegbu, Ijeoma F.
2010-01-01
Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer–drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = −1.1) in poly(l-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5–8% of the initial drug level) in 50 mg ml−1 PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml−1. However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4–9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ–propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles. PMID:20519214
NASA Astrophysics Data System (ADS)
Herrendoerfer, R.; van Dinther, Y.; Gerya, T.
2015-12-01
To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a fraction of characteristic slip distance over maximum slip velocity, we are able to resolve stick-slip events and increase computational speed. In this better resolved framework, we examine the role of aseismic slip on the megathrust cycle and its dependence on subduction velocity.
Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert
2017-01-01
Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
TSAFE Interface Control Document v 2.0
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
2013-01-01
This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Carl A., E-mail: bauerca@colorado.ed; Werner, Gregory R.; Cary, John R.
A new frequency-domain electromagnetics algorithm is developed for simulating curved interfaces between anisotropic dielectrics embedded in a Yee mesh with second-order error in resonant frequencies. The algorithm is systematically derived using the finite integration formulation of Maxwell's equations on the Yee mesh. Second-order convergence of the error in resonant frequencies is achieved by guaranteeing first-order error on dielectric boundaries and second-order error in bulk (possibly anisotropic) regions. Convergence studies, conducted for an analytically solvable problem and for a photonic crystal of ellipsoids with anisotropic dielectric constant, both show second-order convergence of frequency error; the convergence is sufficiently smooth that Richardsonmore » extrapolation yields roughly third-order convergence. The convergence of electric fields near the dielectric interface for the analytic problem is also presented.« less
Interface crack in a nonhomogeneous elastic medium
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1988-01-01
The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.
NASA Technical Reports Server (NTRS)
Schlegel, R. G.
1982-01-01
It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.
Wave-propagation formulation of seismic response of multistory buildings
Safak, E.
1999-01-01
This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.
Derivation of Formulations 1 and 1A of Farassat
NASA Technical Reports Server (NTRS)
Farassat, F.
2007-01-01
Formulations 1 and 1A are the solutions of the Ffowcs Williams-Hawkings (FW-H) equation with surface sources only when the surface moves at subsonic speed. Both formulations have been successfully used for helicopter rotor and propeller noise prediction for many years although we now recommend using Formulation 1A for this purpose. Formulation 1 has an observer time derivative that is taken numerically, and thus, increasing execution time on a computer and reducing the accuracy of the results. After some discussion of the Green's function of the wave equation, we derive Formulation 1 which is the basis of deriving Formulation 1A. We will then show how to take this observer time derivative analytically to get Formulation 1A. We give here the most detailed derivation of these formulations. Once you see the whole derivation, you will ask yourself why you did not do it yourself!
Laine, Elodie; Carbone, Alessandra
2015-01-01
Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684
On the stress calculation within phase-field approaches: a model for finite deformations
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta
2017-08-01
Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.
Disorder trapping by rapidly moving phase interface in an undercooled liquid
NASA Astrophysics Data System (ADS)
Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus
2017-08-01
Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.
Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations
NASA Technical Reports Server (NTRS)
Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.
1997-01-01
A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.
High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
Zhao, Shan
2011-08-15
This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America
Donahue, D A; Kaufman, L E; Avalos, J; Simion, F A; Cerven, D R
2011-03-01
The Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test are widely used to predict ocular irritation potential for consumer-use products. These in vitro assays do not require live animals, produce reliable predictive data for defined applicability domains compared to the Draize rabbit eye test, and are rapid and inexpensive. Data from 304 CAMVA and/or BCOP studies (319 formulations) were surveyed to determine the feasibility of predicting ocular irritation potential for various formulations. Hair shampoos, skin cleansers, and ethanol-based hair styling sprays were repeatedly predicted to be ocular irritants (accuracy rate=0.90-1.00), with skin cleanser and hair shampoo irritation largely dependent on surfactant species and concentration. Conversely, skin lotions/moisturizers and hair styling gels/lotions were repeatedly predicted to be non-irritants (accuracy rate=0.92 and 0.82, respectively). For hair shampoos, ethanol-based hair stylers, skin cleansers, and skin lotions/moisturizers, future ocular irritation testing (i.e., CAMVA/BCOP) can be nearly eliminated if new formulations are systematically compared to those previously tested using a defined decision tree. For other tested product categories, new formulations should continue to be evaluated in CAMVA/BCOP for ocular irritation potential because either the historical data exhibit significant variability (hair conditioners and mousses) or the historical sample size is too small to permit definitive conclusions (deodorants, make-up removers, massage oils, facial masks, body sprays, and other hair styling products). All decision tree conclusions should be made within a conservative weight-of-evidence context, considering the reported limitations of the BCOP test for alcohols, ketones, and solids. Copyright © 2010 Elsevier Ltd. All rights reserved.
White, Robin R; Capper, Judith L
2014-03-01
The objective of this study was to use a precision nutrition model to simulate the relationship between diet formulation frequency and dairy cattle performance across various climates. Agricultural Modeling and Training Systems (AMTS) CattlePro diet-balancing software (Cornell Research Foundation, Ithaca, NY) was used to compare 3 diet formulation frequencies (weekly, monthly, or seasonal) and 3 levels of climate variability (hot, cold, or variable). Predicted daily milk yield (MY), metabolizable energy (ME) balance, and dry matter intake (DMI) were recorded for each frequency-variability combination. Economic analysis was conducted to calculate the predicted revenue over feed and labor costs. Diet formulation frequency affected ME balance and MY but did not affect DMI. Climate variability affected ME balance and DMI but not MY. The interaction between climate variability and formulation frequency did not affect ME balance, MY, or DMI. Formulating diets more frequently increased MY, DMI, and ME balance. Economic analysis showed that formulating diets weekly rather than seasonally could improve returns over variable costs by $25,000 per year for a moderate-sized (300-cow) operation. To achieve this increase in returns, an entire feeding system margin of error of <1% was required. Formulating monthly, rather than seasonally, may be a more feasible alternative as this requires a margin of error of only 2.5% for the entire feeding system. Feeding systems with a low margin of error must be developed to better take advantage of the benefits of precision nutrition. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.
2014-01-01
MADS (Minimization Assistant for Dynamical Systems) is a trajectory optimization code in which a user-specified performance measure is directly minimized, subject to constraints placed on a low-order discretization of user-supplied plant ordinary differential equations. This document describes the mathematical formulation of the set of trajectory optimization problems for which MADS is suitable, and describes the user interface. Usage examples are provided.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.
Design for disassembly and sustainability assessment to support aircraft end-of-life treatment
NASA Astrophysics Data System (ADS)
Savaria, Christian
Gas turbine engine design is a multidisciplinary and iterative process. Many design iterations are necessary to address the challenges among the disciplines. In the creation of a new engine architecture, the design time is crucial in capturing new business opportunities. At the detail design phase, it was proven very difficult to correct an unsatisfactory design. To overcome this difficulty, the concept of Multi-Disciplinary Optimization (MDO) at the preliminary design phase (Preliminary MDO or PMDO) is used allowing more freedom to perform changes in the design. PMDO also reduces the design time at the preliminary design phase. The concept of PMDO was used was used to create parametric models, and new correlations for high pressure gas turbine housing and shroud segments towards a new design process. First, dedicated parametric models were created because of their reusability and versatility. Their ease of use compared to non-parameterized models allows more design iterations thus reduces set up and design time. Second, geometry correlations were created to minimize the number of parameters used in turbine housing and shroud segment design. Since the turbine housing and the shroud segment geometries are required in tip clearance analyses, care was taken as to not oversimplify the parametric formulation. In addition, a user interface was developed to interact with the parametric models and improve the design time. Third, the cooling flow predictions require many engine parameters (i.e. geometric and performance parameters and air properties) and a reference shroud segments. A second correlation study was conducted to minimize the number of engine parameters required in the cooling flow predictions and to facilitate the selection of a reference shroud segment. Finally, the parametric models, the geometry correlations, and the user interface resulted in a time saving of 50% and an increase in accuracy of 56% in the new design system compared to the existing design system. Also, regarding the cooling flow correlations, the number of engine parameters was reduced by a factor of 6 to create a simplified prediction model and hence a faster shroud segment selection process. None
Protein-Protein Docking with F2Dock 2.0 and GB-Rerank
Chowdhury, Rezaul; Rasheed, Muhibur; Keidel, Donald; Moussalem, Maysam; Olson, Arthur; Sanner, Michel; Bajaj, Chandrajit
2013-01-01
Motivation Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml. Client: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dockclient.shtml. PMID:23483883
Influence of humidity on the phase behavior of API/polymer formulations.
Prudic, Anke; Ji, Yuanhui; Luebbert, Christian; Sadowski, Gabriele
2015-08-01
Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25°C and at different values of relative humidity (RH=25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon-Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Prediction of interface residue based on the features of residue interaction network.
Jiao, Xiong; Ranganathan, Shoba
2017-11-07
Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
2017-01-01
This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.
A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Glen, E-mail: Glen.Hansen@inl.gov
2011-07-20
Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO{sub 2}) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less
A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glen Hansen
2011-07-01
Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less
Development of Room Temperature Stable Formulation of Formoterol Fumarate/Beclomethasone HFA pMDI
Purohit, D.; Trehan, A.; Arora, V.
2009-01-01
The primary aim of present investigation was to develop and formulate room temperature stable formulation of formoterol fumarate and beclomethasone dipropionate with extra fine part size of hydrofluoroalkane pressurized metered dose inhalers. Particle size distribution of hydrofluoroalkane pressurized metered dose inhalers was evaluated using Twin Stage Glass Impinger and Anderson Cascade Impactor. A tetrafluoroethane and/or heptafluoropropane were evaluated for preparation of hydrofluoroalkane pressurized metered dose inhalers. The fine particle fractions delivered from hydrofluoroalkane propellant suspension pressurized metered dose inhalers can be predicted on the basis of formulation parameters and is dependent of metering chamber of valve and orifice size of actuators. The results presented in investigation showed the importance of formulation excipients with formulation of pressurized metered dose inhalers viz, canister, valve and actuators used in formulations.
Studies on a novel doughnut-shaped minitablet for intraocular drug delivery.
Choonara, Yahya E; Pillay, Viness; Carmichael, Trevor; Danckwerts, Michael P
2007-12-28
The objective of this study was to evaluate the effect of 2 independent formulation variables on the drug release from a novel doughnut-shaped minitablet (DSMT) in order to optimize formulations for intraocular drug delivery. Formulations were based on a 3(2) full-factorial design. The 2 independent variables were the concentration of Resomer (% wt/wt) and the type of Resomer grade (RG502, RG503, and RG504), respectively. The evaluated response was the drug release rate constant computed from a referenced marketed product and in vitro drug release data obtained at pH 7.4 in simulated vitreous humor. DSMT devices were prepared containing either of 2 model drugs, ganciclovir or foscarnet, using a Manesty F3 tableting press fitted with a novel central-rod, punch, and die setup. Dissolution data revealed biphasic drug release behavior with 55% to 60% drug released over 120 days. The inherent viscosity of the various Resomer grades and the concentration were significant to achieve optimum release rate constants. Using the resultant statistical relationships with the release rate constant as a response, the optimum formulation predicted for devices formulated with foscarnet was 70% wt/wt of Resomer RG504, while 92% wt/wt of Resomer RG503 was ideal for devices formulated with ganciclovir. The results of this study revealed that the full-factorial design was a suitable tool to predict an optimized formulation for prolonged intraocular drug delivery.
Goldberg, Deborah S; Lewus, Rachael A; Esfandiary, Reza; Farkas, David C; Mody, Neil; Day, Katrina J; Mallik, Priyanka; Tracka, Malgorzata B; Sealey, Smita K; Samra, Hardeep S
2017-08-01
Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development. The utility of using accelerated stability compared to HTS techniques (differential scanning light scattering and differential scanning fluorescence) for early formulation screening was evaluated along with the impact of excipients of various types on aggregation of monoclonal antibodies from multiple IgG subtypes. The excipient rank order using quantitative HTS measures was found to correlate with accelerated stability aggregation rate ranking for only 33% (by differential scanning fluorescence) to 42% (by differential scanning light scattering) of the antibodies tested, due to the high intrinsic stability and minimal impact of excipients on aggregation rates and HTS data. Also explored was a case study of employing a platform formulation instead of broader formulation screening for early formulation development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Propagation of seismic waves in tall buildings
Safak, E.
1998-01-01
A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.
Determination of fiber-matrix interface failure parameters from off-axis tests
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1993-01-01
Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.
Tools for Early Prediction of Drug Loading in Lipid-Based Formulations
2015-01-01
Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134
Tools for Early Prediction of Drug Loading in Lipid-Based Formulations.
Alskär, Linda C; Porter, Christopher J H; Bergström, Christel A S
2016-01-04
Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R(2) 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R(2) 0.85; Polysorbate 80, R(2) 0.90; Cremophor EL, R(2) 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R(2) 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R(2) 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug.
Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P
2018-03-14
Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.
Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited.
Ninham, Barry W; Larsson, Kåre; Lo Nostro, Pierandrea
2017-04-01
Hofmeister, specific ion effects, hydration and van der Waals forces at and between interfaces are factors that determine curvature and microstructure in self assembled aggregates of surfactants and lipids; and in microemulsions. Lipid and surfactant head group interactions and between aggregates vary enormously and are highly specific. They act on the hydrophilic side of a bilayer, micelle or other self assembled aggregate. It is only over the last three decades that the origin of Hofmeister effects has become generally understood. Knowledge of their systematics now provides much flexibility in designing nanostructured fluids. The other side of the coin involves equally specific forces. These (opposing) forces work on the hydrophobic side of amphiphilic interfaces. They are due to the interaction of hydrocarbons and other "oils" with hydrophobic tails of surfactants and lipids. The specificity of oleophilic solutes in microemulsions and lipid membranes provides a counterpoint to Hofmeister effects and hydration. Together with global packing constraints these effects determine microstructure. Another factor that has hardly been recognised is the role of dissolved gas. This introduces further, qualitative changes in forces that prescribe microstructure. The systematics of these effects and their interplay are elucidated. Awareness of these competing factors facilitates formulation of self assembled nanostructured fluids. New and predictable geometries that emerge naturally provide insights into a variety of biological phenomena like anaesthetic and pheromone action and transmission of the nervous impulse (see Part 2). Copyright © 2017 Elsevier B.V. All rights reserved.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
Two-Fluid Models and Interfacial Area Transport in Microgravity Condition
NASA Technical Reports Server (NTRS)
Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp
2004-01-01
The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.
Advanced turboprop noise prediction based on recent theoretical results
NASA Technical Reports Server (NTRS)
Farassat, F.; Padula, S. L.; Dunn, M. H.
1987-01-01
The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.
NASA Technical Reports Server (NTRS)
Jones, J. E.; Richmond, J. H.
1974-01-01
An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.
Röhm, Martina; Carle, Stefan; Maigler, Frank; Flamm, Johannes; Kramer, Viktoria; Mavoungou, Chrystelle; Schmid, Otmar; Schindowski, Katharina
2017-10-30
Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Anton, Charis E; Lawrence, Carmen
2016-01-01
Wildfires are a common occurrence in many countries and are predicted to increase as we experience the effects of climate change. As more people are expected to be affected by fires, it is important to increase people's wildfire mitigation and preparation. Place attachment has been theorized to be related to mitigation and preparation. The present study examined place attachment and wildfire mitigation and preparation in two Australian samples, one rural and one on the wildland-urban interface. The study consisted of 300 participants who responded to questionnaires about their place attachment to their homes and local areas, as well as describing their socio-demographic characteristics and wildfire mitigation and preparedness. Hierarchical regression showed that place attachment to homes predicted wildfire mitigation and preparedness in the rural sample but not in the wildland-urban interface sample. The results suggest that place attachment is a motivator for mitigation and preparation only for people living rurally. Reminding rural residents of their attachment to home at the beginning of wildfire season may result in greater mitigation and preparedness. Further research focusing on why attachment does not predict mitigation and preparedness in the wildland-urban interface is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.
2015-03-05
A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less
Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food
NASA Astrophysics Data System (ADS)
Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.
2005-02-01
A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.
Turbulence and fire-spotting effects into wild-land fire simulators
NASA Astrophysics Data System (ADS)
Kaur, Inderpreet; Mentrelli, Andrea; Bosseur, Frédéric; Filippi, Jean-Baptiste; Pagnini, Gianni
2016-10-01
This paper presents a mathematical approach to model the effects and the role of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of a drifting component (obtained from an existing wildfire simulator without turbulence and fire-spotting) and a random fluctuating component. The modelling of the random effects is embodied in a probability density function accounting for the fluctuations around the fire perimeter which is given by the drifting component. In past, this formulation has been applied to include these random effects into a wildfire simulator based on an Eulerian moving interface method, namely the Level Set Method (LSM), but in this paper the same formulation is adapted for a wildfire simulator based on a Lagrangian front tracking technique, namely the Discrete Event System Specification (DEVS). The main highlight of the present study is the comparison of the performance of a Lagrangian and an Eulerian moving interface method when applied to wild-land fire propagation. Simple idealised numerical experiments are used to investigate the potential applicability of the proposed formulation to DEVS and to compare its behaviour with respect to the LSM. The results show that DEVS based wildfire propagation model qualitatively improves its performance (e.g., reproducing flank and back fire, increase in fire spread due to pre-heating of the fuel by hot air and firebrands, fire propagation across no fuel zones, secondary fire generation, ...) when random effects are included according to the present formulation. The performance of DEVS and LSM based wildfire models is comparable and the only differences which arise among the two are due to the differences in the geometrical construction of the direction of propagation. Though the results presented here are devoid of any validation exercise and provide only a proof of concept, they show a strong inclination towards an intended operational use. The existing LSM or DEVS based operational simulators like WRF-SFIRE and ForeFire respectively can serve as an ideal basis for the same.
Nanostructured conductive polymeric materials
NASA Astrophysics Data System (ADS)
Al-Saleh, Mohammed H.
Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry mixing with pure polymer powder followed by compression molding. The EMI shielding material was developed using copper nanowires. CuNW/Polystyrene composites exhibit EMI shielding effectiveness exceeding that of metal microfillers and carbon nanotube/polymer composites and approaching that of coating techniques have been formulated by solution processing and dry mixing.
Expansion tube test time predictions
NASA Technical Reports Server (NTRS)
Gourlay, Christopher M.
1988-01-01
The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.
Crack growth in bonded elastic half planes
NASA Technical Reports Server (NTRS)
Goree, J. G.
1975-01-01
Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
NASA Astrophysics Data System (ADS)
Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.
2016-04-01
The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.
Mental workload prediction based on attentional resource allocation and information processing.
Xiao, Xu; Wanyan, Xiaoru; Zhuang, Damin
2015-01-01
Mental workload is an important component in complex human-machine systems. The limited applicability of empirical workload measures produces the need for workload modeling and prediction methods. In the present study, a mental workload prediction model is built on the basis of attentional resource allocation and information processing to ensure pilots' accuracy and speed in understanding large amounts of flight information on the cockpit display interface. Validation with an empirical study of an abnormal attitude recovery task showed that this model's prediction of mental workload highly correlated with experimental results. This mental workload prediction model provides a new tool for optimizing human factors interface design and reducing human errors.
How to help intelligent systems with different uncertainty representations cooperate with each other
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Kumar, Sundeep
1991-01-01
In order to solve a complicated problem one must use the knowledge from different domains. Therefore, if one wants to automatize the solution of these problems, one has to help the knowledge-based systems that correspond to these domains cooperate, that is, communicate facts and conclusions to each other in the process of decision making. One of the main obstacles to such cooperation is the fact that different intelligent systems use different methods of knowledge acquisition and different methods and formalisms for uncertainty representation. So an interface f is needed, 'translating' the values x, y, which represent uncertainty of the experts' knowledge in one system, into the values f(x), f(y) appropriate for another one. The problem of designing such an interface as a mathematical problem is formulated and solved. It is shown that the interface must be fractionally linear: f(x) = (ax + b)/(cx + d).
Vollmer, Anne-Maria; Skonetzki-Cheng, Stefan; Prokosch, Hans-Ulrich
2013-01-01
Typically general wards and intensive care units (ICU) have very different labor organizations, structures and IT-systems in Germany. There is a need for coordination, because of the different working arrangements. Our team investigated the interface between ICU and general ward and especially the respective information transfer in the University hospital in Erlangen (Bavaria, Germany). The research team used a combination of interviews, observations and the analysis of transfer records and forms as part of a methodical triangulation. We identified 41 topics, which are discussed or presented in writing during the handover. In a second step, we investigate the requirements of data transmission in expert interviews. A data transfer concept from the perspective of the nurses and physicians was developed and we formulated recommendations for improvements of process and communication for this interface. Finally the data transfer concept was evaluated by the respondents.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.
NASA Astrophysics Data System (ADS)
Wang, Fenggong; Tsyshevsky, Roman; Zverev, Anton; Mitrofanov, Anatoly; Kuklja, Maija
Organic-inorganic interfaces provide both intrigues and opportunities for designing systems that possess properties and functionalities inaccessible by each individual component. In particular, mixing with a photocatalyst may significantly affect the adsorption, decomposition, and photoresponse of organic molecules. Here, we choose the formulation of TiO2 and trinitrotoluene (TNT), a highly catalytic oxide and a prominent explosive, as a prototypical example to explore the interaction at the interface on the photosensitivity of energetic materials. We show that, whether or not a catalytic oxide additive can help molecular decompositions under light illumination depends largely on the band alignment between the oxide surface and the energetic molecule. Furthermore, an oxygen vacancy can lead to the electron density transfer from the surface to the energetic molecules, causing an enhancement of the bonding between molecules and surface and a reduction of the molecular decomposition activation barriers.
On Multifunctional Collaborative Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2001-01-01
Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1993-01-01
The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.
Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations
NASA Astrophysics Data System (ADS)
Jenkins, T. G.; Smithe, D. N.
2015-02-01
The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.
Interoceptive inference: From computational neuroscience to clinic.
Owens, Andrew P; Allen, Micah; Ondobaka, Sasha; Friston, Karl J
2018-04-22
The central and autonomic nervous systems can be defined by their anatomical, functional and neurochemical characteristics, but neither functions in isolation. For example, fundamental components of autonomically mediated homeostatic processes are afferent interoceptive signals reporting the internal state of the body and efferent signals acting on interoceptive feedback assimilated by the brain. Recent predictive coding (interoceptive inference) models formulate interoception in terms of embodied predictive processes that support emotion and selfhood. We propose interoception may serve as a way to investigate holistic nervous system function and dysfunction in disorders of brain, body and behaviour. We appeal to predictive coding and (active) interoceptive inference, to describe the homeostatic functions of the central and autonomic nervous systems. We do so by (i) reviewing the active inference formulation of interoceptive and autonomic function, (ii) survey clinical applications of this formulation and (iii) describe how it offers an integrative approach to human physiology; particularly, interactions between the central and peripheral nervous systems in health and disease. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
The importance of radiation for semiempirical water-use efficiency models
NASA Astrophysics Data System (ADS)
Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus
2017-06-01
Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.
Eronen, Lauri; Toivonen, Hannu
2012-06-06
Biological databases contain large amounts of data concerning the functions and associations of genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of previously unknown connections spanning multiple types of relationships and databases. Biomine is a system that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We consider and experiment with several such measures, and perform a parameter optimization procedure where different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of putative disease genes. The experimental results show that Biomine has strong potential for predicting links when a set of selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly outperform ones obtained using any single source of data alone, when different types of links are suitably weighted. In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show that under favorable conditions, Biomine can also perform well when no such information is available.The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations between them, with focus on human genetics. Some of its functionalities are available in a public query interface at http://biomine.cs.helsinki.fi, allowing searching for and visualizing connections between given biological entities.
NASA Astrophysics Data System (ADS)
Dalgleish, Hugh; Kirczenow, George
2006-06-01
We present a theory of nonlinear transport phenomena in molecular junctions where single thiolated organic molecules bridge transition metal nanocontacts whose densities of states have strong d orbital components near the Fermi level. At moderate bias, we find electron transmission between the contacts to be mediated by interface states within the molecular highest-occupied-molecular-orbital-lowest-unoccupied-molecular-orbital gap that arise from hybridization between the thiol-terminated ends of the molecules and the d orbitals of the transition metals. Because these interface states are localized mainly within the metal electrodes, we find their energies to accurately track the electrochemical potentials of the contacts when a variable bias is applied across the junction. We predict resonant enhancement and reduction of the interface state transmission as the applied bias is varied, resulting in negative differential resistance (NDR) in molecular junctions with Pd nanocontacts. We show that these nonlinear phenomena can be tailored by suitably choosing the nanocontact materials: If a Rh electrode is substituted for one Pd contact, we predict enhancement of these NDR effects. The same mechanism is also predicted to give rise to rectification in Pd/molecule/Au junctions. The dependences of the interface state resonances on the orientation of the metal interface, the adsorption site of the molecule, and the separation between the thiolated ends of the molecule and the metal contacts are also discussed.
Protein-protein interface analysis and hot spots identification for chemical ligand design.
Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua
2014-01-01
Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.
Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.
Chen, Duan; Wei, Guo-Wei
2013-01-01
Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.
Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone
NASA Astrophysics Data System (ADS)
Zyserman, F. I.; Monachesi, L. B.; Jouniaux, L.
2017-02-01
In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value of 15 μV m-1, which is compatible with reported values.
NASA Astrophysics Data System (ADS)
Ogden, F. L.
2017-12-01
HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.
Thermocapillary Motion in an Emulsion
NASA Technical Reports Server (NTRS)
Pukhnachov, Vladislav V.; Voinov, Oleg V.
1996-01-01
The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.
Equilibrium Fluid Interface Behavior Under Low- and Zero-Gravity Conditions. 2
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert
1996-01-01
The mathematical basis for the forthcoming Angular Liquid Bridge investigation on board Mir is described. Our mathematical work is based on the classical Young-Laplace-Gauss formulation for an equilibrium free surface of liquid partly filling a container or otherwise in contact with solid support surfaces. The anticipated liquid behavior used in the apparatus design is also illustrated.
Stabilised finite-element methods for solving the level set equation with mass conservation
NASA Astrophysics Data System (ADS)
Kabirou Touré, Mamadou; Fahsi, Adil; Soulaïmani, Azzeddine
2016-01-01
Finite-element methods are studied for solving moving interface flow problems using the level set approach and a stabilised variational formulation proposed in Touré and Soulaïmani (2012; Touré and Soulaïmani To appear in 2016), coupled with a level set correction method. The level set correction is intended to enhance the mass conservation satisfaction property. The stabilised variational formulation (Touré and Soulaïmani 2012; Touré and Soulaïmani, To appear in 2016) constrains the level set function to remain close to the signed distance function, while the mass conservation is a correction step which enforces the mass balance. The eXtended finite-element method (XFEM) is used to take into account the discontinuities of the properties within an element. XFEM is applied to solve the Navier-Stokes equations for two-phase flows. The numerical methods are numerically evaluated on several test cases such as time-reversed vortex flow, a rigid-body rotation of Zalesak's disc, sloshing flow in a tank, a dam-break over a bed, and a rising bubble subjected to buoyancy. The numerical results show the importance of satisfying global mass conservation to accurately capture the interface position.
Manipulating the Coffee-Ring Effect: Interactions at Work.
Anyfantakis, Manos; Baigl, Damien
2015-07-31
The evaporation of a drop of colloidal suspension pinned on a substrate usually results in a ring of particles accumulated at the periphery of the initial drop. Intense research has been devoted to understanding, suppressing and ultimately controlling this so-called coffee-ring effect (CRE). Although the crucial role of flow patterns in the CRE has been thoroughly investigated, the effect of interactions on this phenomenon has been largely neglected. This Concept paper reviews recent works in this field and shows that the interactions of colloids with (and at) liquid-solid and liquid-gas interfaces as well as bulk particle-particle interactions drastically affect the morphology of the deposit. General rules are established to control the CRE by tuning these interactions, and guidelines for the rational physicochemical formulation of colloidal suspensions capable of depositing particles in desirable patterns are provided. This opens perspectives for the reliable control of the CRE in real-world formulations and creates new paradigms for flexible particle patterning at all kinds of interfaces as well for the exploitation of the CRE as a robust and inexpensive diagnostic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of Bulk Evaporation and Condensation
NASA Technical Reports Server (NTRS)
Anghaie, S.; Ding, Z.
1996-01-01
This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.
Charge carrier transport and injection across organic heterojunctions
NASA Astrophysics Data System (ADS)
Tsang, Sai Wing
The discovery of highly efficient organic light-emitting diodes (OLEDs) in the 1980s has stimulated extensive research on organic semiconductors and devices. Underlying this breakthrough is the realization of the organic heterojunction (OH). Besides OLEDs, the implementation of the OH also significantly improves the power conversion efficiency in organic photovoltaic cells (OPVs). The continued technological advancements in organic electronic devices depend on the accumulation of knowledge of the intrinsic properties of organic materials and related interfaces. Among them, charge-carrier transport and carrier injection are two key factors that govern the performance of a device. This thesis mainly focuses on the charge carrier injection and transport at organic heterojunctions. The carrier transport properties of different organic materials used in this study are characterized by time-of-flight (TOF) and admittance spectroscopy (AS). An injection model is formulated by considering the carrier distribution at both sides of the interface. Using a steady-state simulation approach, the effect of accumulated charges on energy level alignment at OH is revealed. Instead of a constant injection barrier, it is found that the barrier varies with applied voltage. Moreover, an escape probability function in the injection model is modified by taking into account the total hopping rate and available hopping sites at the interface. The model predicts that the injection current at low temperature can be dramatically modified by an extremely small density of deep trap states. More importantly, the temperature dependence of the injection current is found to decrease with increasing barrier height. This suggests that extracting the barrier height from the J vs 1/T plot, as commonly employed in the literature, is problematic. These theoretical predictions are confirmed by a series of experiments on heterojunction devices with various barrier heights. In addition, the presence of deep trap states is also consistent with carrier mobility measurements at low temperature. From the point of view of application, an interface chemical doping method is proposed to engineer the carrier injection at an organic heterojunction. It is found that the injection current can be effectively increased or suppressed by introducing a thin (2 nm) doped organic layer at the interface. This technique is further extended to study the impact of an injection barrier at the OH, in OLEDs, on device performance. It is shown that a 0.3 eV injection barrier at the OH, that is normally negligible at metal/organic interface, can reduce the device efficiency by 25%. This is explained by the carrier distribution in the density-of-states at the OH. Furthermore, the carrier transport properties in a bulk heterojunction system are investigated. The bulk heterojunction consists of an interpenetrating network of a polymeric electron donor and a molecular electron acceptor. This material system has been studied in the last few years as an attractive power conversion efficiency (5% under AM 1.5) of OPV cells has been demonstrated. It is found that the electron mobility is greatly dependent on the thermal treatment of the film. Interfacial dipole effect at the heterojunction between the donor and the acceptor is proposed to be the determining factor that alters the carrier mobility in different nanoscale structures.
Predicting nucleic acid binding interfaces from structural models of proteins
Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael
2011-01-01
The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
NASA Astrophysics Data System (ADS)
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-06-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.
Convection-induced distortion of a solid-liquid interface
NASA Technical Reports Server (NTRS)
Schaefer, R. J.; Coriell, S. R.
1984-01-01
Measurements of convective flow fields and solid-liquid interface shapes during the solidification of a pure and a slightly alloyed transparent material reveal that the convective transport of solute can cause a macroscopic depression to develop in the solid-liquid interface. This effect occurs under conditions close to those which are predicted to produce morphological instability of a planar interface. A cellular or dendritic microstructure later develops within the interface depression. The convection is attributed to the effect of radial temperature gradients in the crystal growth apparatus.
NASA Technical Reports Server (NTRS)
Kradinov, V.; Madenci, E.; Ambur, D. R.
2004-01-01
Although two-dimensional methods provide accurate predictions of contact stresses and bolt load distribution in bolted composite joints with multiple bolts, they fail to capture the effect of thickness on the strength prediction. Typically, the plies close to the interface of laminates are expected to be the most highly loaded, due to bolt deformation, and they are usually the first to fail. This study presents an analysis method to account for the variation of stresses in the thickness direction by augmenting a two-dimensional analysis with a one-dimensional through the thickness analysis. The two-dimensional in-plane solution method based on the combined complex potential and variational formulation satisfies the equilibrium equations exactly, and satisfies the boundary conditions and constraints by minimizing the total potential. Under general loading conditions, this method addresses multiple bolt configurations without requiring symmetry conditions while accounting for the contact phenomenon and the interaction among the bolts explicitly. The through-the-thickness analysis is based on the model utilizing a beam on an elastic foundation. The bolt, represented as a short beam while accounting for bending and shear deformations, rests on springs, where the spring coefficients represent the resistance of the composite laminate to bolt deformation. The combined in-plane and through-the-thickness analysis produces the bolt/hole displacement in the thickness direction, as well as the stress state in each ply. The initial ply failure predicted by applying the average stress criterion is followed by a simple progressive failure. Application of the model is demonstrated by considering single- and double-lap joints of metal plates bolted to composite laminates.
Prediction of high-speed rotor noise with a Kirchhoff formula
NASA Technical Reports Server (NTRS)
Purcell, Timothy W.; Strawn, Roger C.; Yu, Yung H.
1987-01-01
A new methodology has been developed to predict the impulsive noise generated by a transonic rotor blade. The formulation uses a full-potential finite-difference method to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far-field. This Kirchhoff formula is written in a blade-fixed coordinate system. It requires initial data across a plane at the sonic radius. This data is provided by the finite-difference solution. Acoustic pressure predictions show excellent agreement with hover experimental data for two hover cases of 0.88 and 0.90 tip Mach number, the latter of which has delocalized transonic flow. These results represent the first successful prediction technique for peak pressure amplitudes using a computational code.
Formulation of Efficient Finite Element Prediction Models.
1980-01-01
vorticity-divergence FEM formulation. This paper will compare these FEM formulations by considering the Vgeostrophic adjustment process with the linearized...by Fourier transforming the terms that are independent of t in (2.12)-(2.14) or (2.19)-(2.21). However, in this paper the final state will be...filtering in a baroclinic primitive equation model. 17 L . , 5. Conclusions The objective of this paper is to determine the response of various finite
Wei, Qing; La, David; Kihara, Daisuke
2017-01-01
Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .
In vitro-in vivo correlation for nevirapine extended release tablets.
Macha, Sreeraj; Yong, Chan-Loi; Darrington, Todd; Davis, Mark S; MacGregor, Thomas R; Castles, Mark; Krill, Steven L
2009-12-01
An in vitro-in vivo correlation (IVIVC) for four nevirapine extended release tablets with varying polymer contents was developed. The pharmacokinetics of extended release formulations were assessed in a parallel group study with healthy volunteers and compared with corresponding in vitro dissolution data obtained using a USP apparatus type 1. In vitro samples were analysed using HPLC with UV detection and in vivo samples were analysed using a HPLC-MS/MS assay; the IVIVC analyses comparing the two results were performed using WinNonlin. A Double Weibull model optimally fits the in vitro data. A unit impulse response (UIR) was assessed using the fastest ER formulation as a reference. The deconvolution of the in vivo concentration time data was performed using the UIR to estimate an in vivo drug release profile. A linear model with a time-scaling factor clarified the relationship between in vitro and in vivo data. The predictability of the final model was consistent based on internal validation. Average percent prediction errors for pharmacokinetic parameters were <10% and individual values for all formulations were <15%. Therefore, a Level A IVIVC was developed and validated for nevirapine extended release formulations providing robust predictions of in vivo profiles based on in vitro dissolution profiles. Copyright 2009 John Wiley & Sons, Ltd.
Statistical evaluation for stability studies under stress storage conditions.
Gil-Alegre, M E; Bernabeu, J A; Camacho, M A; Torres-Suarez, A I
2001-11-01
During the pharmaceutical development of a new drug, it is necessary to select as soon as possible the formulation with the best stability characteristics. The current International Commission for Harmonisation (ICH) regulations regarding stability testing requirements for a Registration Application provide the stress testing conditions with the aim of assessing the effect of severe conditions on the drug product. In practice, the well-known Arrhenius theory is still used to make a rapid stability prediction, to estimate a drug product shelf life during early stages of its pharmaceutical development. In this work, both the planning of a stress stability study to obtain a correct stability prediction from a temperature extrapolation and the suitable data treatment to discern the reliability of the stability results are discussed. The study was focused on the early formulation step of a very stable drug, Mitonafide (antineoplastic agent), formulated in a parenteral solution and in tablets. It was observed, for the solid system, that the extrapolated results using Arrhenius theory might be statistically good, but far from the real situation if the stability study is not designed in a correct way. The statistical data treatment and the stress-stability test proposed in this work are suitable to make a reliable stability prediction of different formulations with the same drug, within its pharmaceutical development.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.
Deng, Li; Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP
Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740
Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2001-01-01
An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babadi, A. S., E-mail: aein.shiri-babadi@eit.lth.se; Lind, E.; Wernersson, L. E.
A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holesmore » even in depletion, so a full charge treatment is necessary.« less
Achieving bacterial eradication using pharmacokinetic/pharmacodynamic principles.
Dagan, Ron
2003-03-01
Evidence from studies in otitis media indicates that antimicrobials and dosing regimens that have equivalent bacteriologic efficacy against susceptible pathogens can have significantly different bacteriologic success rates against resistant strains of the same species. Unlike macrolide and fluoroquinolone resistance, penicillin resistance can be overcome in Streptococcus pneumoniae by increasing the dose, and hence increasing the time for which the serum concentrations are above the MIC. The new clinical formulation of extra-strength amoxicillin-clavulanate provides 90 mg/kg per day amoxicillin plus 6.4 mg/kg per day clavulanate (14:1) divided every 12 h, compared with 45/6.4 mg/kg per day b.i.d. with conventional dosing. The pharmacokinetic/pharmacodynamic (PK/PD) profiles of extra-strength amoxicillin-clavulanate predict that the new formulation will be more effective than the conventional formulation against S. pneumoniae with elevated amoxicillin MICs and against Haemophilus influenzae. In an open-label, non-comparative study in children with acute otitis media, the extra-strength formulation had high bacteriologic success rates against the major respiratory pathogens, including penicillin-resistant S. pneumoniae. The development of new antimicrobial agents and formulations should be aimed at meeting PK/PD parameters predictive of bacterial eradication of both susceptible and resistant strains.
Hybrid BEM/empirical approach for scattering of correlated sources in rocket noise prediction
NASA Astrophysics Data System (ADS)
Barbarino, Mattia; Adamo, Francesco P.; Bianco, Davide; Bartoccini, Daniele
2017-09-01
Empirical models such as the Eldred standard model are commonly used for rocket noise prediction. Such models directly provide a definition of the Sound Pressure Level through the quadratic pressure term by uncorrelated sources. In this paper, an improvement of the Eldred Standard model has been formulated. This new formulation contains an explicit expression for the acoustic pressure of each noise source, in terms of amplitude and phase, in order to investigate the sources correlation effects and to propagate them through a wave equation. In particular, the correlation effects between adjacent and not-adjacent sources have been modeled and analyzed. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach that allows an evaluation of the scattering effects. In the framework of the European Space Agency funded program VECEP (VEga Consolidation and Evolution Programme), these models have been applied for the prediction of the aeroacoustics loads of the VEGA (Vettore Europeo di Generazione Avanzata - Advanced Generation European Carrier Rocket) launch vehicle at lift-off and the results have been compared with experimental data.
Gonçalves de Lima, L; Rossi de Campos, D
2016-05-01
Quetiapine is an atypical antipsychotic recommended as first-line treatment for acute bipolar depression. The extended-release quetiapine formulation is intended to be administered as an once-daily dosing. The development of an in vitro-in vivo correlation (IVIVC) and the use of in vitro data to predict in vivo bioavailability parameters has been of great interest for the rational development and evaluation process for extended release dosage forms. The aim of this study was to develop an IVIVC for quetiapine extended release formulation. In vitro dissolution rate data were obtained using USP apparatus 2 at 50 rpm, in 3 bio-relevant dissolution media with different pH values (1.2, 4.5 and 6.8). The drug release profiles of the 2 extended release dosage forms were compared using the similarity factor (f 2). The relative bioavailability of quetiapine was evaluated by a single-dose, randomized-sequence, open-label, 2 period cross over study with 16 healthy volunteers. A linear level A IVIVC model was established using percentage of absorbed and dissolved data obtained at pH 1.2. The developed IVIVC model was employed to predict quetiapine concentration-time profiles, as well as the bioequivalence parameters for test formulation. Percent prediction errors were estimated for Cmax and AUC to evaluate the validity of the correlation. The values did not exceed 15%, proving the predictability of the correlation model. In conclusion, the established level A IVIVC model proved to be an excellent tool for predicting the rate and extent of quetiapine absorption as characterized by Cmax and AUC for test formulation. © Georg Thieme Verlag KG Stuttgart · New York.
A Fast, Minimalist Search Tool for Remote Sensing Data
NASA Astrophysics Data System (ADS)
Lynnes, C. S.; Macharrie, P. G.; Elkins, M.; Joshi, T.; Fenichel, L. H.
2005-12-01
We present a tool that emphasizes speed and simplicity in searching remotely sensed Earth Science data. The tool, nicknamed "Mirador" (Spanish for a scenic overlook), provides only four freetext search form fields, for Keywords, Location, Data Start and Data Stop. This contrasts with many current Earth Science search tools that offer highly structured interfaces in order to ensure precise, non-zero results. The disadvantages of the structured approach lie in its complexity and resultant learning curve, as well as the time it takes to formulate and execute the search, thus discouraging iterative discovery. On the other hand, the success of the basic Google search interface shows that many users are willing to forgo high search precision if the search process is fast enough to enable rapid iteration. Therefore, we employ several methods to increase the speed of search formulation and execution. Search formulation is expedited by the minimalist search form, with only one required field. Also, a gazetteer enables the use of geographic terms as shorthand for latitude/longitude coordinates. The search execution is accelerated by initially presenting dataset results (returned from a Google Mini appliance) with an estimated number of "hits" for each dataset based on the user's space-time constraints. The more costly file-level search is executed against a PostGres database only when the user "drills down", and then covering only the fraction of the time period needed to return the next page of results. The simplicity of the search form makes the tool easy to learn and use, and the speed of the searches enables an iterative form of data discovery.
NASA Technical Reports Server (NTRS)
Farassat, F.; Dunn, M. H.; Padula, S. L.
1986-01-01
The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.
NASA Astrophysics Data System (ADS)
Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.
2016-04-01
A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.
Three-dimensional numerical simulation of gradual opening in a wave rotor passage
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.
1993-01-01
The evolution of the contact interface and the propagation of compression waves inside a single wave rotor passage gradually opening to and traversing an inlet port is studied numerically using an inviscid formulation of the governing equations. Insights into the response of the interface and kinematics of the flow field to various opening times are given. Since the opening time is inversely proportional to the rotational speed of the rotor, the effects of passage rotation such as centripetal and Coriolis accelerations are intrinsically coupled to the gradual opening process. Certain three-dimensional features associated with the gradual opening process as a result of centripetal and Coriolis accelerations are illustrated. For the range of opening times or rotational speeds considered, a portion of the interface behaves like a vortex sheet that can degenerate into a complex interfacial structure. The vortices produced along the interface can serve as a stirring mechanism to promote local mixing. Coriolis and centripetal accelerations can introduce three dimensional effects such as interfacial distortions in meridional planes and spanwise migration of fluid elements.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James
2017-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.
Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms
Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon
2011-01-01
Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532
Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent
The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.
A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components
Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.
2008-01-01
The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269
A Comparison of Ffowcs Williams-Hawkings Solvers for Airframe Noise Applications
NASA Technical Reports Server (NTRS)
Lockard, David P.
2002-01-01
This paper presents a comparison between two implementations of the Ffowcs Williams and Hawkings equation for airframe noise applications. Airframe systems are generally moving at constant speed and not rotating, so these conditions are used in the current investigation. Efficient and easily implemented forms of the equations applicable to subsonic, rectilinear motion of all acoustic sources are used. The assumptions allow the derivation of a simple form of the equations in the frequency-domain, and the time-domain method uses the restrictions on the motion to reduce the work required to find the emission time. The comparison between the frequency domain method and the retarded time formulation reveals some of the advantages of the different approaches. Both methods are still capable of predicting the far-field noise from nonlinear near-field flow quantities. Because of the large input data sets and potentially large numbers of observer positions of interest in three-dimensional problems, both codes utilize the message passing interface to divide the problem among different processors. Example problems are used to demonstrate the usefulness and efficiency of the two schemes.
Initialization methods and ensembles generation for the IPSL GCM
NASA Astrophysics Data System (ADS)
Labetoulle, Sonia; Mignot, Juliette; Guilyardi, Eric; Denvil, Sébastien; Masson, Sébastien
2010-05-01
The protocol used and developments made for decadal and seasonal predictability studies at IPSL (Paris, France) are presented. The strategy chosen is to initialize the IPSL-CM5 (NEMO ocean and LMDZ atmosphere) model only at the ocean-atmosphere interface, following the guidance and expertise gained from ocean-only NEMO experiments. Two novel approaches are presented for initializing the coupled system. First, a nudging of sea surface temperature and wind stress towards available reanalysis is made with the surface salinity climatologically restored. Second, the heat, salt and momentum fluxes received by the ocean model are computed as a linear combination of the fluxes computed by the atmospheric model and by a CORE-style bulk formulation using up-to-date reanalysis. The steps that led to these choices are presented, as well as a description of the code adaptation and a comparison of the computational cost of both methods. The strategy for the generation of ensembles at the end of the initialization phase is also presented. We show how the technical environment of IPSL-CM5 (LibIGCM) was modified to achieve these goals.
Prediction of gravity-driven fingering in porous media
NASA Astrophysics Data System (ADS)
Beljadid, Abdelaziz; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-11-01
Gravity-driven displacement of one fluid by another in porous media is often subject to a hydrodynamic instability, whereby fluid invasion takes the form of preferential flow paths-examples include secondary oil migration in reservoir rocks, and infiltration of rainfall water in dry soil. Here, we develop a continuum model of gravity-driven two-phase flow in porous media within the phase-field framework (Cueto-Felgueroso and Juanes, 2008). We employ pore-scale physics arguments to design the free energy of the system, which notably includes a nonlinear formulation of the high-order (square-gradient) term based on equilibrium considerations in the direction orthogonal to gravity. This nonlocal term plays the role of a macroscopic surface tension, which exhibits a strong link with capillary pressure. Our theoretical analysis shows that the proposed model enforces that fluid saturations are bounded between 0 and 1 by construction, therefore overcoming a serious limitation of previous models. Our numerical simulations show that the proposed model also resolves the pinning behavior at the base of the infiltration front, and the asymmetric behavior of the fingers at material interfaces observed experimentally.
Static Aeroelastic Analysis with an Inviscid Cartesian Method
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.
2014-01-01
An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program
NASA Technical Reports Server (NTRS)
Ryan, Shannon
2013-01-01
This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.
Structural modifications due to interface chemistry at metal-nitride interfaces
Yadav, S. K.; Shao, S.; Wang, J.; ...
2015-11-27
Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less
Structural modifications due to interface chemistry at metal-nitride interfaces
Yadav, S. K.; Shao, S.; Wang, J.; Liu, X.-Y.
2015-01-01
Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces. PMID:26611639
NASA Astrophysics Data System (ADS)
Lopez Ortega, Alejandro
This thesis presents a numerical and analytical study of two problems of interest involving shock waves propagating through elastic-plastic media: the motion of converging (imploding) shocks and the Richtmyer-Meshkov (RM) instability. Since the stress conditions encountered in these cases normally produce large deformations in the materials, an Eulerian description, in which the spatial coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and differences between the present study of phenomena driven by shock-loading in elastic-plastic solids, and in fluids, where they have been studied extensively. In the first application, Whitham's shock dynamics (WSD) theory is employed for obtaining an approximate description of the motion of an elastic-plastic material processed by a cylindrically/spherically converging shock. Comparison with numerical simulations of the full set of equations of motion reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all stages. The study of the Richtmyer-Meshkov flow (i.e., interaction between the interface separating two materials of different density and a shock wave incoming at an angle) in solids is performed by means of analytical models for purely elastic solids and numerical simulations when plasticity is included in the material model. To this effect, an updated version of a previously developed multi-material, level-set-based, Eulerian framework for solid mechanics is employed. The revised code includes the use of a multi-material HLLD Riemann problem for imposing material boundary conditions, and a new formulation of the equations of motion that makes use of the stretch tensor while avoiding the degeneracy of the stress tensor under rotation. Results reveal that the interface separating two elastic solids always behaves in a stable oscillatory or decaying oscillatory manner due to the existence of shear waves, which are able to transport the initial vorticity away from the interface. In the case of elastic-plastic materials, the interface behaves at first in an unstable manner similar to a fluid. Ejecta formation is appreciated under certain initial conditions while in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-term behavior due to stress relaxation. The effect of secondary shock-interface interactions (re-shocks) in converging geometries is also studied. A turbulent mixing zone, similar to what is observed in gas--gas interfaces, is created, especially when materials with low strength driven by moderate to strong shocks are considered.
An outflow boundary condition for aeroacoustic computations
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Hagstrom, Thomas
1995-01-01
A formulation of boundary condition for flows with small disturbances is presented. The authors test their methodology in an axisymmetric jet flow calculation, using both the Navier-Stokes and Euler equations. Solutions in the far field are assumed to be oscillatory. If the oscillatory disturbances are small, the growth of the solution variables can be predicted by linear theory. Eigenfunctions of the linear theory are used explicitly in the formulation of the boundary conditions. This guarantees correct solutions at the boundary in the limit where the predictions of linear theory are valid.
The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB
NASA Astrophysics Data System (ADS)
Wang, Jiangping; Hu, Yingcai
This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.
Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
Geng, Tao; Gan, John Q
2008-01-01
EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-08-01
In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.
Importance of curvature evaluation scale for predictive simulations of dynamic gas-liquid interfaces
NASA Astrophysics Data System (ADS)
Owkes, Mark; Cauble, Eric; Senecal, Jacob; Currie, Robert A.
2018-07-01
The effect of the scale used to compute the interfacial curvature on the prediction of dynamic gas-liquid interfaces is investigated. A new interface curvature calculation methodology referred to herein as the Adjustable Curvature Evaluation Scale (ACES) is proposed. ACES leverages a weighted least squares regression to fit a polynomial through points computed on the volume-of-fluid representation of the gas-liquid interface. The interface curvature is evaluated from this polynomial. Varying the least squares weight with distance from the location where the curvature is being computed, adjusts the scale the curvature is evaluated on. ACES is verified using canonical static test cases and compared against second- and fourth-order height function methods. Simulations of dynamic interfaces, including a standing wave and oscillating droplet, are performed to assess the impact of the curvature evaluation scale for predicting interface motions. ACES and the height function methods are combined with two different unsplit geometric volume-of-fluid (VoF) schemes that define the interface on meshes with different levels of refinement. We find that the results depend significantly on curvature evaluation scale. Particularly, the ACES scheme with a properly chosen weight function is accurate, but fails when the scale is too small or large. Surprisingly, the second-order height function method is more accurate than the fourth-order variant for the dynamic tests even though the fourth-order method performs better for static interfaces. Comparing the curvature evaluation scale of the second- and fourth-order height function methods, we find the second-order method is closer to the optimum scale identified with ACES. This result suggests that the curvature scale is driving the accuracy of the dynamics. This work highlights the importance of studying numerical methods with realistic (dynamic) test cases and that the interactions of the various discretizations is as important as the accuracy of one part of the discretization.
Time-dependent deformation of titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.
1995-01-01
A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.
NASA Technical Reports Server (NTRS)
Koch, Steven E.; Mcqueen, Jeffery T.
1987-01-01
A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.
Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás
2013-01-01
A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and slow release of target molecules of interest. PMID:23527087
Predicting MHC-II binding affinity using multiple instance regression
EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2011-01-01
Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923
USDA-ARS?s Scientific Manuscript database
Pediatric drug development is hampered by the various biological, clinical, and formulation challenges associated with age-based populations. A primary cause for this lack of development is the inability to accurately predict ontogenic changes that affect pharmacokinetics (PK) in children using trad...
Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san
2011-05-30
The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu
2015-08-01
This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Method for Predicting Hypergolic Mixture Flammability Limits
2017-02-01
liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition and the interactions...of what happens in the liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition...and the interactions of all these phases. The ignition happens in the gas -phase but products formed here and there (in the liquid phase or at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio
The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviationsmore » of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.« less
Radosinski, Lukasz; Labus, Karolina
2017-10-05
Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.
Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo
2017-03-30
The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Ada Software Design Methods Formulation.
1982-10-01
cycle organization is also appropriate for another reason. The source material for the case studies is the work of the two contractors who participated in... working version of the system exist. The integration phase takes the pieces developed and combines them into a single working system. Interfaces...hardware, developed separately from the software, is united with the software, and further testing is performed until the system is a working whole
Study of airborne science experiment management concepts for application to space shuttle, volume 2
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.
Airland Battlefield Environment (ALBE) Tactical Decision Aid (TDA) Demonstration Program,
1987-11-12
Management System (DBMS) software, GKS graphics libraries, and user interface software. These components of the ATB system software architecture will be... knowlede base ano auqent the decision mak:n• process by providing infocr-mation useful in the formulation and execution of battlefield strategies...Topographic Laboratories as an Engineer. Ms. Capps is managing the software development of the AirLand Battlefield Environment (ALBE) geographic
On the Proper Calculation of Electrostatic Interactions in Solid-Supported Bilayer Systems
2011-01-01
the effects of im- plementing different electrostatic boundary conditions on the structural and electrostatic properties of a quartz/water/vacuum...interface and a similar quartz-supported hydrated lipid bilayer exposed to vacuum. Since these interfacial systems have a net polarization, implementing the...implemented electrostatic boundary condition removed these inconsistencies. This formulation is generally applicable to similar interfacial systems in bulk
NASA Astrophysics Data System (ADS)
Stone, T. W.; Horstemeyer, M. F.
2012-09-01
The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.
Vakili, Hossein; Wickström, Henrika; Desai, Diti; Preis, Maren; Sandler, Niklas
2017-05-30
Quality control tools to assess the quality of printable orodispersible formulations are yet to be defined. Four different orodispersible dosage forms containing two poorly soluble drugs, levothyroxine and prednisolone, were produced on two different edible substrates by piezoelectric inkjet printing. Square shaped units of 4cm 2 were printed in different resolutions to achieve an escalating drug dose by highly accurate and uniform displacement of droplets in picoliter range from the printhead onto the substrates. In addition, the stability of drug inks in a course of 24h as well as the mechanical properties and disintegration behavior of the printed units were examined. A compact handheld near-infrared (NIR) spectral device in the range of 1550-1950nm was used for quantitative estimation of the drug amount in printed formulations. The spectral data was treated with mean centering, Savitzky-Golay filtering and a third derivative approach. Principal component analysis (PCA) and orthogonal partial least squares (OPLS) regression were applied to build predictive models for quality control of the printed dosage forms. The accurate tuning of the dose in each formulation was confirmed by UV spectrophotometry for prednisolone (0.43-1.95mg with R 2 =0.999) and high performance liquid chromatography for levothyroxine (0.15-0.86mg with R 2 =0.997). It was verified that the models were capable of clustering and predicting the drug dose in the formulations with both Q 2 and R 2 Y values between 0.94-0.99. Copyright © 2017 Elsevier B.V. All rights reserved.
Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D
2018-03-05
Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2016-10-01
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.
NASA Technical Reports Server (NTRS)
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Permeation of Therapeutic Drugs in Different Formulations across the Airway Epithelium In Vitro
Meindl, Claudia; Stranzinger, Sandra; Dzidic, Neira; Salar-Behzadi, Sharareh; Mohr, Stefan; Zimmer, Andreas; Fröhlich, Eleonore
2015-01-01
Background Pulmonary drug delivery is characterized by short onset times of the effects and an increased therapeutic ratio compared to oral drug delivery. This delivery route can be used for local as well as for systemic absorption applying drugs as single substance or as a fixed dose combination. Drugs can be delivered as nebulized aerosols or as dry powders. A screening system able to mimic delivery by the different devices might help to assess the drug effect in the different formulations and to identify potential interference between drugs in fixed dose combinations. The present study evaluates manual devices used in animal studies for their suitability for cellular studies. Methods Calu-3 cells were cultured submersed and in air-liquid interface culture and characterized regarding mucus production and transepithelial electrical resistance. The influence of pore size and material of the transwell membranes and of the duration of air-liquid interface culture was assessed. Compounds were applied in solution and as aerosols generated by MicroSprayer IA-1C Aerosolizer or by DP-4 Dry Powder Insufflator using fluorescein and rhodamine 123 as model compounds. Budesonide and formoterol, singly and in combination, served as examples for drugs relevant in pulmonary delivery. Results and Conclusions Membrane material and duration of air-liquid interface culture had no marked effect on mucus production and tightness of the cell monolayer. Co-application of budesonide and formoterol, applied in solution or as aerosol, increased permeation of formoterol across cells in air-liquid interface culture. Problems with the DP-4 Dry Powder Insufflator included compound-specific delivery rates and influence on the tightness of the cell monolayer. These problems were not encountered with the MicroSprayer IA-1C Aerosolizer. The combination of Calu-3 cells and manual aerosol generation devices appears suitable to identify interactions of drugs in fixed drug combination products on permeation. PMID:26274590
NASA Technical Reports Server (NTRS)
Taylor, W.
1982-01-01
Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.
Performance of an ablator for Space Shuttle inorbit repair in an arc-plasma airstream
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Cuellar, M.; Flowers, O.
1983-01-01
An ablator patch material performed well in an arc plasma environment simulating nominal Earth entry conditions for the Space Shuttle. Ablation tests using vacuum molded cones provided data to optimize the formulation of a two part polymer system for application under space conditions. The blunt cones were made using a Teflon mold and a state of the art caulking gun. Char stability of formulations with various amounts of catalyst and diluent were investigated. The char was found to be unstable in formulations with low amounts of catalyst and high amounts of diluent. The best polymer system determined by these tests was evaluated using a half tile patch in a multiple High Temperature Reusable surface Insulation tile model. It was demonstrated that this ablator could be applied in a space environment using a state of the art caulking gun, would maintain the outer mold line of the thermal protection system during entry, and would keep the bond line temperature at the aluminum tile interface below the design limit.
Leclercq, Loïc; Nardello-Rataj, Véronique
2016-01-20
Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.
Protein stability in pulmonary drug delivery via nebulization.
Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang
2015-10-01
Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.
Problem formulation, metrics, open government, and on-line collaboration
NASA Astrophysics Data System (ADS)
Ziegler, C. R.; Schofield, K.; Young, S.; Shaw, D.
2010-12-01
Problem formulation leading to effective environmental management, including synthesis and application of science by government agencies, may benefit from collaborative on-line environments. This is illustrated by two interconnected projects: 1) literature-based evidence tools that support causal assessment and problem formulation, and 2) development of output, outcome, and sustainability metrics for tracking environmental conditions. Specifically, peer-production mechanisms allow for global contribution to science-based causal evidence databases, and subsequent crowd-sourced development of causal networks supported by that evidence. In turn, science-based causal networks may inform problem formulation and selection of metrics or indicators to track environmental condition (or problem status). Selecting and developing metrics in a collaborative on-line environment may improve stakeholder buy-in, the explicit relevance of metrics to planning, and the ability to approach problem apportionment or accountability, and to define success or sustainability. Challenges include contribution governance, data-sharing incentives, linking on-line interfaces to data service providers, and the intersection of environmental science and social science. Degree of framework access and confidentiality may vary by group and/or individual, but may ultimately be geared at demonstrating connections between science and decision making and supporting a culture of open government, by fostering transparency, public engagement, and collaboration.