Sample records for interface sei layer

  1. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE PAGES

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  2. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunsong; Leung, Kevin; Qi, Yue

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  3. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.

    PubMed

    Hou, Guangmei; Ma, Xiaoxin; Sun, Qidi; Ai, Qing; Xu, Xiaoyan; Chen, Lina; Li, Deping; Chen, Jinghua; Zhong, Hai; Li, Yang; Xu, Zhibin; Si, Pengchao; Feng, Jinkui; Zhang, Lin; Ding, Fei; Ci, Lijie

    2018-06-06

    The electrode-electrolyte interface stability is a critical factor influencing cycle performance of All-solid-state lithium batteries (ASSLBs). Here, we propose a LiF- and Li 3 N-enriched artificial solid state electrolyte interphase (SEI) protective layer on metallic lithium (Li). The SEI layer can stabilize metallic Li anode and improve the interface compatibility at the Li anode side in ASSLBs. We also developed a Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 -poly(ethylene oxide) (LAGP-PEO) concrete structured composite solid electrolyte. The symmetric Li/LAGP-PEO/Li cells with SEI-protected Li anodes have been stably cycled with small polarization at a current density of 0.05 mA cm -2 at 50 °C for nearly 400 h. ASSLB-based on SEI-protected Li anode, LAGP-PEO electrolyte, and LiFePO 4 (LFP) cathode exhibits excellent cyclic stability with an initial discharge capacity of 147.2 mA h g -1 and a retention of 96% after 200 cycles.

  4. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less

  5. Modeling the degradation mechanisms of C6/LiFePO4 batteries

    NASA Astrophysics Data System (ADS)

    Li, Dongjiang; Danilov, Dmitri L.; Zwikirsch, Barbara; Fichtner, Maximilian; Yang, Yong; Eichel, Rüdiger-A.; Notten, Peter H. L.

    2018-01-01

    A fundamental electrochemical model is developed, describing the capacity fade of C6/LiFePO4 batteries as a function of calendar time and cycling conditions. At moderate temperatures the capacity losses are mainly attributed to Li immobilization in Solid-Electrolyte-Interface (SEI) layers at the anode surface. The SEI formation model presumes the availability of an outer and inner SEI layers. Electron tunneling through the inner SEI layer is regarded as the rate-determining step. The model also includes high temperature degradation. At elevated temperatures, iron dissolution from the positive electrode and the subsequent metal sedimentation on the negative electrode influence the capacity loss. The SEI formation on the metal-covered graphite surface is faster than the conventional SEI formation. The model predicts that capacity fade during storage is lower than during cycling due to the generation of SEI cracks induced by the volumetric changes during (dis)charging. The model has been validated by cycling and calendar aging experiments and shows that the capacity loss during storage depends on the storage time, the State-of-Charge (SoC), and temperature. The capacity losses during cycling depend on the cycling current, cycling time, temperature and cycle number. All these dependencies can be explained by the single model presented in this paper.

  6. Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes.

    PubMed

    Yim, Taeeun; Han, Young-Kyu

    2017-09-27

    Tris(trimethylsilyl) phosphite (TMSP) has received considerable attention as a functional additive for various cathode materials in lithium-ion batteries, but the effect of TMSP on the surface stability of a graphite anode has not been studied. Herein, we demonstrate that TMSP serves as an effective solid electrolyte interphase (SEI)-forming additive for graphite anodes in lithium-ion batteries (LIBs). TMSP forms SEI layers by chemical reactions between TMSP and a reductively decomposed ethylene carbonate (EC) anion, which is strikingly different from the widely known mechanism of the SEI-forming additives. TMSP is stable under cathodic polarization, but it reacts chemically with radical anion intermediates derived from the electrochemical reduction of the carbonate solvents to generate a stable SEI layer. These TMSP-derived SEI layers improve the interfacial stability of the graphite anode, resulting in a retention of 96.8% and a high Coulombic efficiency of 95.2%. We suggest the use of TMSP as a functional additive that effectively stabilizes solid electrolyte interfaces of both the anode and cathode in lithium-ion batteries.

  7. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on high-voltage stability.

    PubMed

    Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A

    2014-04-01

    The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes.

    PubMed

    Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia; Zeng, Xian-Xiang; Li, Jin-Yi; Li, Cong-Ju; Wan, Li-Jun; Wen, Rui; Guo, Yu-Guo

    2018-02-05

    Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less

  10. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity

    DOE PAGES

    Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; ...

    2016-10-26

    Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (Li xSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited,more » layer-by-layer lithiation of the Si at the Li xSi/Si interface.« less

  11. In situ analytical techniques for battery interface analysis.

    PubMed

    Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe

    2018-02-05

    Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.

  12. Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase.

    PubMed

    Wan, Guojia; Guo, Feihu; Li, Hui; Cao, Yuliang; Ai, Xinping; Qian, Jiangfeng; Li, Yangxing; Yang, Hanxi

    2018-01-10

    The growth and proliferation of Li dendrites during repeated Li cycling has long been a crucial issue that hinders the development of secondary Li-metal batteries. Building a stable and robust solid state electrolyte interphase (SEI) on the Li-anode surface is regarded as a promising strategy to overcome the dendrite issues. In this work, we report a simple strategy to engineer the interface chemistry of Li-metal anodes by using tiny amounts of dimethyl sulfate (DMS, C 2 H 6 SO 4 ) as the SEI-forming additive. With the preferential reduction of DMS, an SEI layer composed of Li 2 S/Li 2 O forms on the Li surface. This inorganic SEI layer features high structural modulus and low interfacial resistant, enabling a dense and dendrite-free Li deposition as evidenced by scanning electron microscopy, atomic force microscopy, and in situ optical images. In addition, this SEI layer can prevent the deposited Li from direct contact with corrosive electrolytes, thus rendering an improved cycling stability of Li anodes with an average Coulombic efficiency of 97% for up to 150 cycles. When the DMS additive is introduced into a Li/NCM full cell, the cycle life of Li-metal batteries can be also improved significantly. This work demonstrates a feasible route to suppress Li dendrite growth by designing appropriate film-forming additives to regulate the interfacial properties of the SEI layer, and also the sulfonyl-based derivatives revealed in this work represent a large variety of new film-forming molecules, providing a broad selectivity for constructing high efficiency and cycle-stable Li anodes to address the intrinsic problems of rechargeable Li-metal batteries.

  13. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions - A Sum Frequency Generation Vibrational Spectroscopy Study

    DOE PAGES

    Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N.; ...

    2015-12-11

    The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). In this paper, we have studied a common electrolyte, 1.0 M LiPF 6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials wheremore » electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC 2H 5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. Finally, these findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general.« less

  14. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue

    2018-03-01

    A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.

  15. Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries.

    PubMed

    Qin, Panpan; Wang, Meng; Li, Na; Zhu, Haili; Ding, Xuan; Tang, Yongbing

    2017-05-01

    In this work, a bubble-sheet-like hollow interface design on Al foil anode to improve the cycling stability and rate performance of aluminum anode based dual-ion battery is reported, in which, a carbon-coated hollow aluminum anode is used as both anode materials and current collector. This anode structure can guide the alloying position inside the hollow nanospheres, and also confine the alloy sizes within the hollow nanospheres, resulting in significantly restricted volumetric expansion and ultrastable solid electrolyte interface (SEI). As a result, the battery demonstrates an excellent long-term cycling stability within 1500 cycles with ≈99% capacity retention at 2 C. Moreover, this cell displays an energy density of 169 Wh kg -1 even at high power density of 2113 W kg -1 (10 C, charge and discharge within 6 min), which is much higher than most of conventional lithium ion batteries. The interfacial engineering strategy shown in this work to stabilize SEI layer and control the alloy forming position could be generalized to promote the research development of metal anodes based battery systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Degradation Mechanisms of Electrochemically Cycled Graphite Anodes in Lithium-ion Cells

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sandeep

    This research is aimed at developing advanced characterization methods for studying the surface and subsurface damage in Li-ion battery anodes made of polycrystalline graphite and identifying the degradation mechanisms that cause loss of electrochemical capacity. Understanding microstructural aspects of the graphite electrode degradation mechanisms during charging and discharging of Li-ion batteries is of key importance in order to design durable anodes with high capacity. An in-situ system was constructed using an electrochemical cell with an observation window, a large depth-of-field digital microscope and a micro-Raman spectrometer. It was revealed that electrode damage by removal of the surface graphite fragments of 5-10 mum size is the most intense during the first cycle that led to a drastic capacity drop. Once a solid electrolyte interphase (SEI) layer covered the electrode surface, the rate of graphite particle loss decreased. Yet, a gradual loss of capacity continued by the formation of interlayer cracks adjacent to SEI/graphite interfaces. Deposition of co-intercalation compounds, LiC6, Li2CO3 and Li2O, near the crack tips caused partial closure of propagating graphite cracks during cycling and reduced the crack growth rate. Bridging of crack faces by delaminated graphite layers also retarded crack propagation. The microstructure of the SEI layer, formed by electrochemical reduction of the ethylene carbonate based electrolyte, consisted of ˜5-20 nm sized crystalline domains (containing Li2CO3, Li2O 2 and nano-sized graphite fragments) dispersed in an amorphous matrix. During the SEI formation, two regimes of Li-ion diffusion were identified at the electrode/electrolyte interface depending on the applied voltage scan rate (dV/dt). A low Li-ion diffusion coefficient ( DLi+) at dV/dt < 0.05 mVs-1 produced a tubular SEI that uniformly covered the graphite surface and prevented damage at 25°C. At 60°C, a high D Li+ formed a Li2CO3-enriched SEI and ensued a 28% increase in the battery capacity at 25°C. On correlating the microscopic information to the electrochemical performance, novel Li2CO3-coated electrodes were fabricated that were durable. The SEI formed on pre-treated electrodes reduced the strain in the graphite lattice from 0.4% (for uncoated electrodes) to 0.1%, facilitated Li-ion diffusion and hence improved the capacity retention of Li-ion batteries during long-term cycling.

  17. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-08

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

  18. Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface.

    PubMed

    Dinkelacker, Franz; Marzak, Philipp; Yun, Jeongsik; Liang, Yunchang; Bandarenka, Aliaksandr S

    2018-04-25

    A so-called solid electrolyte interface (SEI) in a lithium-ion battery largely determines the performance of the whole system. However, it is one of the least understood objects in these types of batteries. SEIs are formed during the initial charge-discharge cycles, prevent the organic electrolytes from further decomposition, and at the same time govern lithium intercalation into the graphite anodes. In this work, we use electrochemical impedance spectroscopy and atomic force microscopy to investigate the properties of a SEI film and an electrified "graphite/SEI/electrolyte interface". We reveal a multistage mechanism of lithium intercalation and de-intercalation in the case of graphite anodes covered by SEI. On the basis of this mechanism, we propose a relatively simple model, which perfectly explains the impedance response of the "graphite/SEI/electrolyte" interface at different temperatures and states of charge. From the whole data obtained in this work, it is suggested that not only Li + but also negatively charged species, such as anions from the electrolyte or functional groups of the SEI, likely interact with the surface of the graphite anode.

  19. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    NASA Astrophysics Data System (ADS)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  20. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    NASA Astrophysics Data System (ADS)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  1. Evaluation of the SEI using a multilayer spectroscopic ellipsometry model

    DOE PAGES

    Dufek, Eric J.

    2014-08-28

    A multilayer spectroscopic ellipsometry (SE) model has been developed to characterize SEI formation. The model, which consists of two Cauchy layers, is constructed with an inner layer meant to model primarily inorganic compounds adjacent to an electrode and an outer layer which mirrors polymeric, organic constituents on the exterior of the SEI. Comparison of 1:1 EC:EMC and 1:4 EC:EMC with 1.0 M LiPF₆ shows distinct differences in the two modeled layers. The data suggest that the thickness of both layers change over a wide potential range. These changes have been linked with other reports on the growth of the SEI.

  2. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ionmore » storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.« less

  3. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Shin, Hosop; Park, Jonghyun; Han, Sangwoo; Sastry, Ann Marie; Lu, Wei

    2015-03-01

    The mechanical instability of the Solid Electrolyte Interphase (SEI) layer in lithium ion (Li-ion) batteries causes significant side reactions resulting in Li-ion consumption and cell impedance rise by forming further SEI layers, which eventually leads to battery capacity fade and power fade. In this paper, the composition-/structure-dependent elasticity of the SEI layer is investigated via Atomic Force Microscopy (AFM) measurements coupled with X-ray Photoelectron Spectroscopy (XPS) analysis, and atomistic calculations. It is observed that the inner layer is stiffer than the outer layer. The measured Young's moduli are mostly in the range of 0.2-4.5 GPa, while some values above 80 GPa are also observed. This wide variation of the observed elastic modulus is elucidated by atomistic calculations with a focus on chemical and structural analysis. The numerical analysis shows the Young's moduli range from 2.4 GPa to 58.1 GPa in the order of the polymeric, organic, and amorphous inorganic components. The crystalline inorganic component (LiF) shows the highest value (135.3 GPa) among the SEI species. This quantitative observation on the elasticity of individual components of the SEI layer must be essential to analyzing the mechanical behavior of the SEI layer and to optimizing and controlling it.

  4. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  5. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes

    DOE PAGES

    Gilbert, James A.; Bareño, Javier; Spila, Timothy; ...

    2016-09-22

    Energy density of full cells containing layered-oxide positive electrodes can be increased by raising the upper cutoff voltage above the current 4.2 V limit. In this article we examine aging behavior of cells, containing LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523)-based positive and graphite-based negative electrodes, which underwent up to ~400 cycles in the 3-4.4 V range. Electrochemistry results from electrodes harvested from the cycled cells were obtained to identify causes of cell performance loss; these results were complemented with data from X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) measurements. Our experiments indicate that the full cell capacitymore » fade increases linearly with cycle number and results from irreversible lithium loss in the negative electrode solid electrolyte interphase (SEI) layer. The accompanying electrode potential shift reduces utilization of active material in both electrodes and causes the positive electrode to cycle at higher states-of-charge. Here, full cell impedance rise on aging arises primarily at the positive electrode and results mainly from changes at the electrode-electrolyte interface; the small growth in negative electrode impedance reflects changes in the SEI layer. Our results indicate that cell performance loss could be mitigated by modifying the electrode-electrolyte interfaces through use of appropriate electrode coatings and/or electrolyte additives.« less

  6. Estimating the thickness of diffusive solid electrolyte interface

    NASA Astrophysics Data System (ADS)

    Wang, XiaoHe; Shen, WenHao; Huang, XianFu; Zang, JinLiang; Zhao, YaPu

    2017-06-01

    The solid electrolyte interface (SEI) is a hierarchical structure formed in the transition zone between the electrode and the electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.

  7. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2016-04-09

    An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less

  8. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study.

    PubMed

    Boyer, Mathew J; Vilčiauskas, Linas; Hwang, Gyeong S

    2016-10-12

    Electrolyte and electrode materials used in lithium-ion batteries have been studied separately to a great extent, however the structural and dynamical properties of the electrolyte-electrode interface still remain largely unexplored despite its critical role in governing battery performance. Using molecular dynamics simulations, we examine the structural reorganization of solvent molecules (cyclic ethylene carbonate : linear dimethyl carbonate 1 : 1 molar ratio doped with 1 M LiPF 6 ) in the vicinity of graphite electrodes with varying surface charge densities (σ). The interfacial structure is found to be sensitive to the molecular geometry and polarity of each solvent molecule as well as the surface structure and charge distribution of the negative electrode. We also evaluated the potential difference across the electrolyte-electrode interface, which exhibits a nearly linear variation with respect to σ up until the onset of Li + ion accumulation onto the graphite edges from the electrolyte. In addition, well-tempered metadynamics simulations are employed to predict the free-energy barriers to Li + ion transport through the relatively dense interfacial layer, along with analysis of the Li + solvation sheath structure. Quantitative analysis of the molecular arrangements at the electrolyte-electrode interface will help better understand and describe electrolyte decomposition, especially in the early stages of solid-electrolyte-interphase (SEI) formation. Moreover, the computational framework presented in this work offers a means to explore the effects of solvent composition, electrode surface modification, and operating temperature on the interfacial structure and properties, which may further assist in efforts to engineer the electrolyte-electrode interface leading to a SEI layer that optimizes battery performance.

  9. Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance.

    PubMed

    Smaran, Kumar Sai; Shibata, Sae; Omachi, Asami; Ohama, Ayano; Tomizawa, Eika; Kondo, Toshihiro

    2017-10-19

    The electrochemical quartz crystal microbalance technique was employed to study the initial stage of the electrodeposition and dissolution of lithium utilizing three kinds of electrolyte solutions such as LiPF 6 , LiTFSI, or LiFSI in tetraglyme. The native-SEI (solid-electrolyte interphase) formed by a potential prescan before lithium deposition/dissolution in all three solutions. Simultaneous additional SEI (add-SEI) deposition and its dissolution with lithium deposition and dissolution, respectively, were observed in LiPF 6 and LiTFSI. Conversely, the add-SEI dissolution with lithium deposition and its deposition with lithium dissolution were observed in LiFSI. Additional potential precycling resulted in the accumulation of a "pre-SEI" layer over the native-SEI layer in all of the solutions. With the pre-SEI, only lithium deposition/dissolution were significantly observed in LiTFSI and LiFSI. On the basis of the potential dependences of the mass and resistance changes, the anion-dependent effects of such a pre-SEI layer presence/absence on the lithium deposition/dissolution processes were discussed.

  10. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  11. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  12. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE PAGES

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; ...

    2017-05-03

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  13. 75 FR 16731 - Young Dodge SEIS; Kootenai National Forest, Lincoln County, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... (SEIS) for the Young Dodge project. The Young Dodge project includes urban interface fuels treatments... management changes, including road decommissioning. The project is located in the Young Dodge planning... Wildland-Urban Interface, to decrease the likelihood that fires would become stand-replacing wildfires; (2...

  14. Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo

    2018-04-01

    In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.

  15. Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John

    2014-03-01

    The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries.

    PubMed

    Bobnar, Jernej; Lozinšek, Matic; Kapun, Gregor; Njel, Christian; Dedryvère, Rémi; Genorio, Boštjan; Dominko, Robert

    2018-04-11

    Metallic lithium is considered to be one of the most promising anode materials since it offers high volumetric and gravimetric energy densities when combined with high-voltage or high-capacity cathodes. However, the main impediment to the practical applications of metallic lithium is its unstable solid electrolyte interface (SEI), which results in constant lithium consumption for the formation of fresh SEI, together with lithium dendritic growth during electrochemical cycling. Here we present the electrochemical performance of a fluorinated reduced graphene oxide interlayer (FGI) on the metallic lithium surface, tested in lithium symmetrical cells and in combination with two different cathode materials. The FGI on the metallic lithium exhibit two roles, firstly it acts as a Li-ion conductive layer and electronic insulator and secondly, it effectively suppresses the formation of high surface area lithium (HSAL). An enhanced electrochemical performance of the full cell battery system with two different types of cathodes was shown in the carbonate or in the ether based electrolytes. The presented results indicate a potential application in future secondary Li-metal batteries.

  17. Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer.

    PubMed

    Shin, Jungwoo; Ryu, Won-Hee; Park, Kyu-Sung; Kim, Il-Doo

    2013-08-27

    Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs.

  18. Cutaway of SEIS (Artist's Concept)

    NASA Image and Video Library

    2018-04-09

    This artist's rendering shows a cutaway of the Seismic Experiment for Interior Structure instrument, or SEIS, which will fly as part of NASA's Mars InSight lander. SEIS is a highly sensitive seismometer that will be used to detect marsquakes from the Red Planet's surface for the first time. There are two layers in this cutaway. The outer layer is the Wind and Thermal Shield -- a covering that protects the seismometer from the Martian environment. The wind on Mars, as well as extreme temperature changes, could affect the highly sensitive instrument. The inside layer is SEIS itself, a brass-colored dome that houses the instrument's three pendulums. These insides are inside a titanium vacuum chamber to further isolate them from temperature changes on the Martian surface. https://photojournal.jpl.nasa.gov/catalog/PIA22320

  19. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    PubMed Central

    Lochala, Joshua A.; Kwok, Alexander; Deng, Zhiqun Daniel

    2017-01-01

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1–1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (>1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges. PMID:28852621

  20. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    DOE PAGES

    Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander; ...

    2017-03-31

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquidmore » electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less

  1. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications.

    PubMed

    Zheng, Jianming; Lochala, Joshua A; Kwok, Alexander; Deng, Zhiqun Daniel; Xiao, Jie

    2017-08-01

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (>1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.

  2. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquidmore » electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less

  3. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    DOE PAGES

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; ...

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li 3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  5. SeisFlows-Flexible waveform inversion software

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan T.; Borisov, Dmitry; Lefebvre, Matthieu; Tromp, Jeroen

    2018-06-01

    SeisFlows is an open source Python package that provides a customizable waveform inversion workflow and framework for research in oil and gas exploration, earthquake tomography, medical imaging, and other areas. New methods can be rapidly prototyped in SeisFlows by inheriting from default inversion or migration classes, and code can be tested on 2D examples before application to more expensive 3D problems. Wave simulations must be performed using an external software package such as SPECFEM3D. The ability to interface with external solvers lends flexibility, and the choice of SPECFEM3D as a default option provides optional GPU acceleration and other useful capabilities. Through support for massively parallel solvers and interfaces for high-performance computing (HPC) systems, inversions with thousands of seismic traces and billions of model parameters can be performed. So far, SeisFlows has run on clusters managed by the Department of Defense, Chevron Corp., Total S.A., Princeton University, and the University of Alaska, Fairbanks.

  6. Fluorinated End-Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Open-Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy

    DOE PAGES

    Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.; ...

    2017-05-12

    Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less

  7. Fluorinated End-Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Open-Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.

    Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less

  8. SeisComP 3 - Where are we now?

    NASA Astrophysics Data System (ADS)

    Saul, Joachim; Becker, Jan; Hanka, Winfried; Heinloo, Andres; Weber, Bernd

    2010-05-01

    The seismological software SeisComP has evolved within the last approximately 10 years from a pure acquisition modules to a fully featured real-time earthquake monitoring software. The now very popular SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as "SeisComP 3", automatic processing capabilities have been augmented by graphical user interfaces for vizualization, rapid event review and quality control. Communication between the modules is achieved using a a TCP/IP infrastructure that allows distributed computing and remote review. For seismological metadata exchange export/import to/from QuakeML is avalable, which also provides a convenient interface with 3rd-party software. SeisComP is the primary seismological processing software at the GFZ Potsdam. It has also been in use for years in numerous seismic networks in Europe and, more recently, has been adopted as primary monitoring software by several tsunami warning centers around the Indian Ocean. In our presentation we describe the current status of development as well as future plans. We illustrate its possibilities by discussing different use cases for global and regional real-time earthquake monitoring and tsunami warning.

  9. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Xu, Wu; Choi, Daiwon

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less

  10. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    PubMed

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  11. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

    PubMed

    Yu, Xingwen; Manthiram, Arumugam

    2017-11-21

    Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li + -ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li + -ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdi, Beata L.; Qian, Jiangfeng; Nasybulin, Eduard

    Lithium (Li)-ion batteries are currently used for a wide variety of portable electronic devices, electric vehicles and renewable energy applications. In addition, extensive worldwide research efforts are now being devoted to more advanced “beyond Li-ion” battery chemistries - such as lithium-sulfur (Li-S) and lithium-air (Li-O2) - in which the carbon anode is replaced with Li metal. However, the practical application of Li metal anode systems has been highly problematic. The main challenges involve controlling the formation of a solid-electrolyte interphase (SEI) layer and the suppression of Li dendrite growth during the charge/discharge process (achieving “dendrite-free” cycling). The SEI layer formationmore » continuously consumes the electrolyte components creating highly resistive layer, which leads to the rapid decrease of cycling performance and degradation of the Li anode. The growth of Li metal dendrites at the anode contributes to rapid capacity fading (the presence of “dead Li” created during the discharge leads to an increased overpotential) and, in the case of continuous growth, leads to internal short circuits and extreme safety issues. Here we demonstrate the application of an operando electrochemical scanning transmission electron microscopy (ec-(S)TEM) cell to study the SEI layer formation and the initial stages of Li dendrite growth - the goal is to develop a mechanism for mitigating the degradation processes and increasing safety. Bright field (BF) STEM images in Figure 1 A-C show Li metal deposition and dissolution processes at the interface between the Pt working electrode and the lithium hexafluorophosphate (LiPF6) in propylene carbonate (PC) electrolyte during three charge/discharge cycles. A contrast reversal caused by Li metal being lighter/less dense than surrounding electrolyte (Li appears brighter than the background in BF STEM images) allows Li to be uniquely identified from the other components in the system - the only solid material that is less dense than the electrolyte is Li metal. Using these images, we can precisely quantify the total volume of Li deposition, the thickness of the SEI layer (observed as a ring of positive contrast around the electrode) and alloy formation due to Li+ ion insertion during each cycle. Furthermore, at the end of each discharge cycle we can quantify the presence of “dead Li” detached from the Pt electrode, thereby demonstrating the degree of irreversibility (and degradation of Pt electrode) associated with insertion/removal of Li+during this process with direct correlation to electrochemical performance. Such analyses provide significant insights into Li metal dendrite growth, which is critical to understand the complex interfacial reactions needed to be controlled for future Li-based and next generation energy storage systems.« less

  13. Exploiting Anti-T-shaped Graphene Architecture to Form Low Tortuosity, Sieve-like Interfaces for High-Performance Anodes for Li-Based Cells

    PubMed Central

    2017-01-01

    Graphitic carbon anodes have long been used in Li ion batteries due to their combination of attractive properties, such as low cost, high gravimetric energy density, and good rate capability. However, one significant challenge is controlling, and optimizing, the nature and formation of the solid electrolyte interphase (SEI). Here it is demonstrated that carbon coating via chemical vapor deposition (CVD) facilitates high electrochemical performance of carbon anodes. We examine and characterize the substrate/vertical graphene interface (multilayer graphene nanowalls coated onto carbon paper via plasma enhanced CVD), revealing that these low-tortuosity and high-selection graphene nanowalls act as fast Li ion transport channels. Moreover, we determine that the hitherto neglected parallel layer acts as a protective surface at the interface, enhancing the anode performance. In summary, these findings not only clarify the synergistic role of the parallel functional interface when combined with vertical graphene nanowalls but also have facilitated the development of design principles for future high rate, high performance batteries. PMID:29392179

  14. Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.

    2017-12-01

    Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.

  15. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Li, Guoxing; Huang, Qingquan; He, Xin; Gao, Yue; Wang, Daiwei; Kim, Seong H; Wang, Donghai

    2018-02-27

    Lithium-sulfur (Li-S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li-S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π-π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li-S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.

  16. In situ SEM Study of Lithium Intercalation in individual V 2O 5 Nanowires

    DOE PAGES

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; ...

    2015-01-08

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  17. Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance.

    PubMed

    Sun, Yong; Jin, Shuaixing; Yang, Guowei; Wang, Jing; Wang, Chengxin

    2015-04-28

    Despite the high theoretical capacity, pure Ge has various difficulties such as significant volume expansion and electron and Li(+) transfer problems, when applied as anode materials in lithium ion battery (LIB), for which the solution would finally rely on rational design like advanced structures and available hybrid. Here in this work, we report a one-step synthesis of Ge nanowires-in-graphite tubes (GNIGTs) with the liquid Ge/C synergetic confined growth method. The structure exhibits impressing LIB behavior in terms of both cyclic stability and rate performance. We found the semiclosed graphite shell with thickness of ∼50 layers experience an interesting splitting process that was driven by electrolyte diffusion, which occurs before the Ge-Li alloying plateau begins. Two types of different splitting mechanism addressed as "inside-out"/zipper effect and "outside-in" dominate this process, which are resulted from the SEI layer growing longitudinally along the Ge-graphite interface and the lateral diffusion of Li(+) across the shell, respectively. The former mechanism is the predominant way driving the initial shell to split, which behaves like a zipper with SEI layer as invisible puller. After repeated Li(+) insertion/exaction, the GNIGTs configuration is finally reconstructed by forming Ge nanowires-thin graphite strip hybrid, both of which are in close contact, resulting in enormous enchantment to the electrons/Li(+) transport. These features make the structures perform well as anode material in LIB. We believe both the progress in 1D assembly and the structure evolution of this Ge-C composite would contribute to the design of advanced LIB anode materials.

  18. Auger Electrons as Probes for Composite Micro- and Nano- structured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.

    In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less

  19. Auger Electrons as Probes for Composite Micro- and Nano- structured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    DOE PAGES

    Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.; ...

    2017-10-05

    In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less

  20. Achieving Agility and Stability in Large-Scale Software Development

    DTIC Science & Technology

    2013-01-16

    temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon

  1. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guoxing; Huang, Qingquan; He, Xin

    Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this paper, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Limore » salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. Finally, this work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.« less

  2. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries

    DOE PAGES

    Li, Guoxing; Huang, Qingquan; He, Xin; ...

    2018-01-29

    Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this paper, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Limore » salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. Finally, this work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.« less

  3. Studying Degradation in Lithium-Ion Batteries by Depth Profiling with Lithium-Nuclear Reaction Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, Adam

    Lithium ion batteries (LIBs) are secondary (rechargeable) energy storage devices that lose the ability to store charge, or degrade, with time. This charge capacity loss stems from unwanted reactions such as the continual growth of the solid electrolyte interphase (SEI) layer on the negative carbonaceous electrode. Parasitic reactions consume mobile lithium, the byproducts of which deposit as SEI layer. Introducing various electrolyte additives and coatings on the positive electrode reduce the rate of SEI growth and lead to improved calendar lifetimes of LIBs respectively. There has been substantial work both electrochemically monitoring and computationally modeling the development of the SEI layer. Additionally, a plethora of spectroscopic techniques have been employed in an attempt to characterize the components of the SEI layer. Despite lithium being the charge carrier in LIBs, depth profiles of lithium in the SEI are few. Moreover, accurate depth profiles relating capacity loss to lithium in the SEI are virtually non-existent. Better quantification of immobilized lithium would lead to improved understanding of the mechanisms of capacity loss and allow for computational and electrochemical models dependent on true materials states. A method by which to prepare low variability, high energy density electrochemical cells for depth profiling with the non-destructive technique, lithium nuclear reaction analysis (Li-NRA), is presented here. Due to the unique and largely non-destructive nature of Li-NRA we are able to perform repeated measurement on the same sample and evaluate the variability of the technique. By using low variability electrochemical cells along with this precise spectroscopic technique, we are able to confidently report trends of lithium concentration while controlling variables such as charge state, age and electrolyte composition. Conversion of gamma intensity versus beam energy, rendered by NRA, to Li concentration as a function of depth requires calibration and modeling of the nuclear stopping power of the substrate (electrode material). A methodology to accurately convert characteristic gamma intensity versus beam energy raw data to Li % as a function of depth is presented. Depth profiles are performed on the electrodes of commercial LIBs charged to different states of charge and aged to different states of health. In-lab created Li-ion cells are prepared with different electrolytes and then depth profiled by Li-NRA. It was found lithium accumulates within the solid electrolyte interphase (SEI) layer with the square root of time, consistent with previous reports. When vinylene carbonate (VC) is introduced to electrolyte lithium accumulates at a rapidly reduced rate as compared to cells containing ethylene carbonte (EC). Additionally, lithium concentration within the positive electrode surface was observed to decrease linearly with time independent of electrolyte tested. Future experiments to be conducted to finish the work and the underpinnings of a materials based capacity loss model are proposed.

  4. Achieving Agility and Stability in Large-Scale Software Development

    DTIC Science & Technology

    2013-01-16

    temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer Framework...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon

  5. Effect of water on solid electrolyte interphase formation in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Saito, M.; Fujita, M.; Aoki, Y.; Yoshikawa, M.; Yasuda, K.; Ishigami, R.; Nakata, Y.

    2016-03-01

    Time-of-flight-elastic recoil detection analysis (TOF-ERDA) with 20 MeV Cu ions has been applied to measure the depth profiles of solid electrolyte interphase (SEI) layers on the negative electrode of lithium ion batteries (LIB). In order to obtain quantitative depth profiles, the detector efficiency was first assessed, and the test highlighted a strong mass and energy dependence of the recoiled particles, especially H and He. Subsequently, we prepared LIB cells with different water contents in the electrolyte, and subjected them to different charge-discharge cycle tests. TOF-ERDA, X-ray photoelectron spectrometry (XPS), gas chromatography (GC), ion chromatography (IC), and 1H nuclear magnetic resonance (1H NMR) were applied to characterize the SEI region of the negative electrode. The results showed that the SEI layer is formed after 300 cycle tests, and a 500 ppm water concentration in the electrolyte does not appear to cause significant differences in the elemental and organic content of the SEI.

  6. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M 2) (1.87 x 10 -2 mS/cm -1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while inmore » situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less

  7. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    DOE PAGES

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.; ...

    2016-04-15

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M 2) (1.87 x 10 -2 mS/cm -1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while inmore » situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less

  8. Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Sung-Jin; Uddin, Md-Jamal; Alaboina, Pankaj K.

    Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltagemore » for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.« less

  9. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    PubMed

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries

    DOE PAGES

    Nie, Mengyun; Demeaux, Julien; Young, Benjamin T.; ...

    2015-07-23

    Binder free (BF) graphite electrodes were utilized to investigate the effect of electrolyte additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) on the structure of the solid electrolyte interface (SEI). The structure of the SEI has been investigated via ex-situ surface analysis including X-ray Photoelectron spectroscopy (XPS), Hard XPS (HAXPES), Infrared spectroscopy (IR) and transmission electron microscopy (TEM). The components of the SEI have been further investigated via nuclear magnetic resonance (NMR) spectroscopy of D2O extractions. The SEI generated on the BF-graphite anode with a standard electrolyte (1.2 M LiPF6 in ethylene carbonate (EC) / ethyl methyl carbonate (EMC), 3/7more » (v/v)) is composed primarily of lithium alkyl carbonates (LAC) and LiF. Incorporation of VC (3% wt) results in the generation of a thinner SEI composed of Li2CO3, poly(VC), LAC, and LiF. Incorporation of VC inhibits the generation of LAC and LiF. Incorporation of FEC (3% wt) also results in the generation of a thinner SEI composed of Li2CO3, poly(FEC), LAC, and LiF. The concentration of poly(FEC) is lower than the concentration of poly(VC) and the generation of LAC is inhibited in the presence of FEC. The SEI appears to be a homogeneous film for all electrolytes investigated.« less

  11. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

    DOE PAGES

    Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; ...

    2016-01-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li 2CO 3, LiF and Li 3PO 4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tensionmore » and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.« less

  12. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Chuan; Xu, Suochang; Hu, Mary Y.

    The composition of the solid electrolyte interphase (SEI) layers associated with a high performance Cu|Li cell using lithium bis(fluorosulfonyi)imide (LiFSI) in 1,2-dimethoxyethane (DME) as electrolyte is determined by a multinuclear (6Li, 19F, 13C and 1H) solid-state MAS NMR study at high magnetic field (850 MHz). This cell can be cycled at high rates (4 mA•cm-2) for more than 1000 cycles with no increase in the cell impedance at high Columbic efficiency (average of 98.4%) in a highly concentrated LiFSI-DME electrolyte (4 M). LiFSI, LiF, Li2O2 (and/or CH3OLi), LiOH, Li2S and Li2O are observed in the SEI and validated by comparingmore » with the spectra acquired on standard compounds and literature reports. To gain further insight into the role of the solute and its concentration dependence on the formation of SEIs while keeping the solvent of DME unchanged, the SEIs from different concentrations of LiFSI-DME and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-DME electrolyte are also investigated. It is found that LiF, a lithiated compound with superior mechanical strength and good Li+ ionic conductivity, is observed in the concentrated 4.0 M LiFSI-DME and the 3.0 M LiTFSI-DME systems but not in the diluted 1.0 M LiFSI-DME system. Li2O exists in both low and high concentration of LiFSI-DME while no Li2O is observed in the LiTFSI system. Furthermore, the dead metallic Li is reduced in the 4 M LiFSI-DME system compared with that in the 1 M LiFSI-DME system. Quantitative 6Li MAS results indicate that the SEI associated with the 4 M LiFSI-DEME is denser or thicker than that of the 1 M LiFSI-DME and the 3 M LiTFSI-DME systems. These findings are likely the reasons for explaining the high electrochemical performance associated with the high concentration LiFSI-DME system.« less

  13. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively.more » The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.« less

  14. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veith, Gabriel M.; Doucet, Mathieu; Sacci, Robert L.

    2017-07-24

    In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li +). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent withmore » the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.« less

  15. Gassing in Li4Ti5O12-based batteries and its remedy

    PubMed Central

    He, Yan-Bing; Li, Baohua; Liu, Ming; Zhang, Chen; Lv, Wei; Yang, Cheng; Li, Jia; Du, Hongda; Zhang, Biao; Yang, Quan-Hong; Kim, Jang-Kyo; Kang, Feiyu

    2012-01-01

    Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li4Ti5O12 (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H2, CO2 and CO, which originate from interfacial reactions between LTO and surrounding alkyl carbonate solvents. The reactions occur at the very thin outermost surface of LTO (111) plane, which result in transformation from (111) to (222) plane and formation of (101) plane of anatase TiO2. A nanoscale carbon coating along with a stable solid electrolyte interface (SEI) film around LTO is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the LTO surface. Such an ability to tune the interface nanostructure of electrodes has practical implications in the design of next-generation high power LIBs. PMID:23209873

  16. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode

    NASA Astrophysics Data System (ADS)

    Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.

    2014-03-01

    In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.

  17. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries.

    PubMed

    Luo, Fei; Chu, Geng; Xia, Xiaoxiang; Liu, Bonan; Zheng, Jieyun; Li, Junjie; Li, Hong; Gu, Changzhi; Chen, Liquan

    2015-05-07

    Thickness, homogeneity and coverage of the surface passivation layer on Si anodes for Li-ion batteries have decisive influences on their cyclic performance and coulombic efficiency, but related information is difficult to obtain, especially during cycling. In this work, a well-defined silicon nanocone (SNC) on silicon wafer sample has been fabricated as a model electrode in lithium ion batteries to investigate the growth of surface species on the SNC electrode during cycling using ex situ scanning electronic microscopy. It is observed that an extra 5 μm thick layer covers the top of the SNCs after 25 cycles at 0.1 C. This top layer has been proven to be a solid electrolyte interphase (SEI) layer by designing a solid lithium battery. It is noticed that the SEI layer is much thinner at a high rate of 1 C. The cyclic performance of the SNCs at 1 C looks much better than that of the same electrode at 0.1 C in the half cell. Our findings clearly demonstrate that the formation of the thick SEI on the naked nanostructured Si anode during low rate cycling is a serious problem for practical applications. An in depth understanding of this problem may provide valuable guidance in designing Si-based anode materials.

  18. Prediction of battery storage ageing and solid electrolyte interphase property estimation using an electrochemical model

    NASA Astrophysics Data System (ADS)

    Ashwin, T. R.; Barai, A.; Uddin, K.; Somerville, L.; McGordon, A.; Marco, J.

    2018-05-01

    Ageing prediction is often complicated due to the interdependency of ageing mechanisms. Research has highlighted that storage ageing is not linear with time. Capacity loss due to storing the battery at constant temperature can shed more light on parametrising the properties of the Solid Electrolyte Interphase (SEI); the identification of which, using an electrochemical model, is systematically addressed in this work. A new methodology is proposed where any one of the available storage ageing datasets can be used to find the property of the SEI layer. A sensitivity study is performed with different molecular mass and densities which are key parameters in modelling the thickness of the SEI deposit. The conductivity is adjusted to fine tune the rate of capacity fade to match experimental results. A correlation is fitted for the side reaction variation to capture the storage ageing in the 0%-100% SoC range. The methodology presented in this paper can be used to predict the unknown properties of the SEI layer which is difficult to measure experimentally. The simulation and experimental results show that the storage ageing model shows good accuracy for the cases at 50% and 90% and an acceptable agreement at 20% SoC.

  19. Telecommunications, navigation and information management concept overview for the Space Exploration Initiative program

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Stephens, Elaine; Barton, Gregg

    1991-01-01

    An overview is provided of the Space Exploration Initiative (SEI) concepts for telecommunications, information systems, and navigation (TISN), and engineering and architecture issues are discussed. The SEI program data system is reviewed to identify mission TISN interfaces, and reference TISN concepts are described for nominal, degraded, and mission-critical data services. The infrastructures reviewed include telecommunications for robotics support, autonomous navigation without earth-based support, and information networks for tracking and data acquisition. Four options for TISN support architectures are examined which relate to unique SEI exploration strategies. Detailed support estimates are given for: (1) a manned stay on Mars; (2) permanent lunar and Martian settlements; short-duration missions; and (4) systematic exploration of the moon and Mars.

  20. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Gu, Meng; Chen, Honghao

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectivelymore » protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.« less

  1. Understanding and improving lithium ion batteries through mathematical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj D.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.

  2. Mechanistic elucidation of thermal runaway in potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Adams, Ryan A.; Varma, Arvind; Pol, Vilas G.

    2018-01-01

    For the first time, thermal runaway of charged graphite anodes for K-ion batteries is investigated, using differential scanning calorimetry (DSC) to probe the exothermic degradation reactions. Investigated parameters such as state of charge, cycle number, surface area, and binder demonstrate strong influences on the DSC profiles. Thermal runaway initiates at 100 °C owing to KxC8 - electrolyte reactions, but the K-ion graphite anode evolves significantly less heat as compared to the analogous Li-ion system (395 J g-1 vs. 1048 J g-1). The large volumetric expansion of graphite during potassiation cracks the SEI layer, enabling contact and reaction of KC8 - electrolyte, which diminishes with cycle number due to continuous SEI growth. High surface area graphite decreases the total heat generation, owing to thermal stability of the K-ion SEI layer. These findings illustrate the dynamic nature of K-ion thermal runaway and its many contrasts with the Li-ion graphite system, permitting possible engineering solutions for safer batteries.

  3. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.

    PubMed

    Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka

    2016-03-28

    Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode.

  4. Software engineering activities at SEI (Software Engineering Institute)

    NASA Technical Reports Server (NTRS)

    Chittister, Clyde

    1990-01-01

    Prototyping was shown to ease system specification and implementation, especially in the area of user interfaces. Other prototyping approaches do not allow for the evolution of the prototype into a production system or support maintenance after the system is fielded. A set of goals is presented for a modern user interface environment and Serpent, a prototype implementation that achieves these goals, is described.

  5. Modeling Solvation Structure and Charge Transfer at the Solid Electrolyte Interphase for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Raguette, Lauren Elizabeth

    Rechargeable lithium-ion battery technology is providing a revolution in energy storage. However, in order to fully realize this revolution, a better understanding is required of both the bulk properties of battery materials and their interfaces. This work endeavors to use classical molecular dynamics (MD) to investigate the electrochemical interfaces present in lithium-ion batteries to understand the impact of chemical reactions on ion transport. When batteries containing cyclic carbonates and lithium salts are charge cycled, both species can react with the electrodes to form complex solid mixtures at the electrode/electrolyte interface, known as a solid electrolyte interphase (SEI). While decades of experiments have yielded significant insights into the structure of these films and their chemical composition, there remains a lack of connection between the properties of the films and observed ion transport when interfaced with the electrolyte. A combination of MD and enhanced sampling methods will be presented to elucidate the link between the SEI, containing mixtures of dilithium ethylene dicarbonate (Li2EDC), lithium fluoride, and lithium carbonate, and battery performance. By performing extensive free energy calculations, clarity is provided to the impact of ion desolvation on the measured resistance to ion transport within lithium ion batteries.

  6. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  7. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Dahbi, Mouad; Fukunishi, Mika; Horiba, Tatsuo; Yabuuchi, Naoaki; Yasuno, Satoshi; Komaba, Shinichi

    2017-09-01

    Electrochemical performance of the red phosphorus electrode was examined in ionic-liquid electrolyte, 0.25 mol dm-3 sodium bisfluorosulfonylamide (NaFSA) dissolved N-methyl-N-propylpyridinium-bisfluorosulfonylamide (MPPFSA), at room temperature. We compared its electrochemical performance to conventional EC/PC/DEC, EC/DEC, and PC solutions containing 1 mol dm-3 NaPF6. The electrode in NaFSA/MPPFSA demonstrated a reversible capacity of 1480 mAh g-1 and excellent capacity retention of 93% over 80 cycles, which is much better than those in the conventional electrolytes. The difference in capacity retention for the electrolytes correlates to the different solid electrolyte interphase (SEI) layer formed on the phosphorus electrode. To understand the SEI formation in NaFSA/MPPFSA and its evolution during cycling, we investigate the surface layer of the red phosphorus electrodes with hard X-ray photoelectron spectroscopy (HAXPES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). A detailed analysis of HAXPES spectra demonstrates that SEI layer consists of major inorganic and minor organic species, originating from decomposition of MPP+ and FSA-. Homogenous surface layer is formed during the first cycle in NaFSA/MPPFSA while in alkyl carbonate ester electrolytes, continuous growth of surface film up to the 20th cycle is observed. Possibility of red phosphorous electrode for battery applications with pure ionic liquid is discussed.

  8. Insider Threat Security Reference Architecture

    DTIC Science & Technology

    2012-04-01

    this challenge. CMU/SEI-2012-TR-007 | 2 2 The Components of the ITSRA Figure 2 shows the four layers of the ITSRA. The Business Security layer......organizations improve their level of preparedness to address the insider threat. Business Security Architecture Data Security Architecture

  9. Nano-carbon coating layer prepared by the thermal evaporation of fullerene C60 for lithium metal anodes in rechargeable lithium batteries.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2011-07-01

    A nano carbon coating layer was prepared by the thermal evaporation of fullerene C60 on the surface of lithium metal anodes for rechargeable lithium batteries. The morphology and structure of the carbon layer was firstly investigated by Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the nano-carbon coating layer on the electrochemical performance of the lithium electrode were then examined by charge-discharge tests and impedance spectroscopy. Raman spectra of carbon coating layer showed two main peaks (D and G peaks), indicating the amorphous structure of the film. A honey comb-like structure of carbon film was observed by TEM photographs, providing a transport path for the transport of lithium ions at the electrode/electrolyte interface. The carbon coated lithium electrodes exhibited a higher initial coulombic efficiency (91%) and higher specific capacity retention (88%) after the 30th cycle at 0.2 C-rate between 3.4 and 4.5 V. Impedance measurements showed that the charge transfer resistance was significantly reduced after cycle tests for the carbon coated electrodes, revealing that the more stable solid electrolyte (SEI) layer was established on their surface. Based on the experimental results, it suggested that the presence of the nano-carbon coating layer might suppress the dendritic growth on the surface of lithium metal electrodes, as confirmed by the observation of SEM images after cycle tests.

  10. Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries

    DOE PAGES

    Yoon, Taeho; Nguyen, Cao Cuong; Seo, Daniel M.; ...

    2015-09-16

    A thorough analysis of the evolution of the voltage profiles of silicon nanoparticle electrodes upon cycling has been conducted. The largest changes to the voltage profiles occur at the earlier stages (> 0.16 V vs Li/Li +) of lithiation of the silicon nanoparticles. The changes in the voltage profiles suggest that the predominant failure mechanism of the silicon electrode is related to incomplete delithiation of the silicon electrode during cycling. The incomplete delithiation is attributed to resistance increases during delithiation, which are predominantly contact and solid electrolyte interface (SEI) resistance. The capacity retention can be significantly improved by lowering delithiationmore » cutoff voltage or by introducing electrolyte additives, which generate a superior SEI. The improved capacity retention is attributed to the reduction of the contact and SEI resistance.« less

  11. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells

    DOE PAGES

    Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.

    2017-01-05

    Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs,more » Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each Mn II ion deposited in the SEI causes trapping of ~10 2 additional Li + ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail.« less

  12. Materials Research Society (MRS) 2014 Fall Meeting, Boston, MA on November 30 December 5, 2014

    DTIC Science & Technology

    2015-12-18

    10.1557/opl.2015.216, Published online by Cambridge University Press 03 Mar 2015 Lithium - ion Diffusion in Solid Electrolyte Interface (SEI) Predicted by...challenges; Innovation and Inclusion: What It Takes to Move Diversity Forward, Vern Myers, Esq., principal of Vern Myers Consulting Group, LLC, engaged...bacteriophage to synthesize radically novel electronic and battery devices at protein and semiconductor interfaces. Ashutosh Chilkoti (Duke Univ

  13. Lithium Dinitramide as an Additive in Lithium Power Cells

    NASA Technical Reports Server (NTRS)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with lithium on the surface of the anode to form a beneficial SEI. Apparently, nitrides and oxides that result from reduction of lithium dinitramide on the anode produce a thin, robust SEI different from the SEIs formed from organic SEI promoters. The SEI formed from lithium dinitramide is more electronically insulating than is the film formed in the presence of an otherwise identical electrolyte that does not include lithium dinitramide. SEI promotion with lithium dinitramide is useful in batteries with metallic lithium and lithium alloy anodes.

  14. Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A

    2018-02-14

    Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.

  15. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kumar, Binod

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li 1+ xAl xGe 2- x(PO 4) 3 (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si 3N 4) and PC(Li 2O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li 2O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity.

  16. Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery.

    PubMed

    Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng

    2017-02-22

    The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na 2 CO 3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na 2 SO 3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Understanding electrical conduction in lithium ion batteries through multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Pan, Jie

    Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.

  18. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    PubMed

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  19. Analysis of Regolith Properties Using Seismic Signals Generated by InSight's HP3 Penetrator

    NASA Astrophysics Data System (ADS)

    Kedar, Sharon; Andrade, Jose; Banerdt, Bruce; Delage, Pierre; Golombek, Matt; Grott, Matthias; Hudson, Troy; Kiely, Aaron; Knapmeyer, Martin; Knapmeyer-Endrun, Brigitte; Krause, Christian; Kawamura, Taichi; Lognonne, Philippe; Pike, Tom; Ruan, Youyi; Spohn, Tilman; Teanby, Nick; Tromp, Jeroen; Wookey, James

    2017-10-01

    InSight's Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of ˜1 mm per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels. Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight's Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence.

  20. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitatemore » the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.« less

  1. On the Suitability of Tcl/Tk for SYS

    DTIC Science & Technology

    2003-02-01

    database design, or user interface. CMU/SEI-2003-TN-001 7 4.4 Legacy Systems SYS is not now complete. The system it replaced interfaced with a dozen...a database maintained by a parent organization. Before SYS was released, many of its current users interacted directly with JSYS, so that system...rating. Rather than shades of blue, the full rainbow is exploited. Rather than window proliferation, the usual result of an action is to replace the

  2. Flowable resin and marginal gap on tooth third medial cavity involving enamel and radicular cementum: a SEM evaluation of two restoration techniques.

    PubMed

    Lo Giudice, G; Cicciù, M; Cervino, G; Lizio, A; Visco, A M

    2012-01-01

    The aim of this study is to investigate the presence and the extent of a possible marginal gap after the interposition of a flowable composite between the composite restoration and the dental structures (enamel and cementum). This technique is also used to eliminate the infiltration in a zone of the cavity preparation that is frequently at a risk of secondary decay. Fifteen human premolars extracted for orthodontic reasons were used for the study. A cavity with mesial and distal margin in enamel and cementum was realized in every tooth. The cavities were then restored with an adhesive system (ScotchBond 3MÔ) and composite (Filtek Supreme 3MÔ); and, a fine layer of flowable composite was applied in the distal margin of each cavity. Scanning electron microscopy (SEM) in secondary electron imaging (S.E.I.) modality was used for the study and identifying the marginal gaps in the composite restorations. Data was investigated on the mesial and distal margin of each cavity at the restoration-enamel interface, and at the restoration-cementum interface. The interfaces were divided in four groups: Group A (enamel/composite); Group B (enamel/flow/composite); Group C (cementum/composite); and, Group D (cementum/flow/composite). By the comparison of the gap's average width found in each group, it is evidenced that the average width of the gap increases when the interface moves from the coronal to the radicular end (Group A 0,1 ± 0,4 μm Vs Group C 12,3 ± 11,6 μm; Group B 0,2 ± 0,8 μm Vs Group D 2,8 ± 6,6 μm). Correlating the measurements of the marginal gap's average width among the Group A and Group B, no significant variations were obtained; and instead, on comparing Group C with Group D, the gap's average width decreases. The interposition of a low elastic modulus composite between the adhesive layer and the composite resin allows an improvement of the cementum-restoration interface by the means of a lower shrinkage stress during polymerization.

  3. Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces

    DOE PAGES

    Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.

    2016-12-16

    The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecularmore » dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential main products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.« less

  4. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    DOE PAGES

    Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...

    2015-03-25

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  5. Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiOx on Li4Ti5O12 for High-Energy-Density Lithium-Ion Batteries.

    PubMed

    Jo, Mi Ru; Lee, Gi-Hyeok; Kang, Yong-Mook

    2015-12-23

    Li4Ti5O12 is a promising anode material for rechargeable lithium batteries due to its well-known zero strain and superb kinetic properties. However, Li4Ti5O12 shows low energy density above 1 V vs Li(+)/Li. In order to improve the energy density of Li4Ti5O12, its low-voltage intercalation behavior beyond Li7Ti5O12 has been demonstrated. In this approach, the extended voltage window is accompanied by the decomposition of liquid electrolyte below 1 V, which would lead to an excessive formation of solid electrolyte interphase (SEI) films. We demonstrate an effective method to improve electrochemical performance of Li4Ti5O12 in a wide working voltage range by coating Li4Ti5O12 powder with p-type semiconductor NiOx. Ex situ XRD, XPS, and FTIR results show that the NiOx coating suppresses electrochemical reduction reactions of the organic SEI components to Li2CO3, thereby promoting reversibility of the charge/discharge process. The NiOx coating layer offers a stable SEI film for enhanced rate capability and cyclability.

  6. Improved electrochemical performance of spinel LiMn(1.5)Ni(0.5)O4 through MgF2 nano-coating.

    PubMed

    Wu, Qing; Zhang, Xiaoping; Sun, Shuwei; Wan, Ning; Pan, Du; Bai, Ying; Zhu, Huiyuan; Hu, Yong-Sheng; Dai, Sheng

    2015-10-14

    A spinel LiMn1.5Ni0.5O4 (LMNO) cathode material synthesized by a sol-gel method is modified by MgF2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF2-coated LMNO demonstrates the best reversibility, with a capacity retention of 89.9% after 100 cycles, much higher than that of the pristine material, 69.3%. The dQ/dV analysis and apparent Li(+) diffusion coefficient calculation prove that the kinetic properties are enhanced after MgF2 surface modification, which partly explains the improved electrochemical performances. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) data confirm that the MgF2 coating layer helps in suppressing the fast growth of the solid electrolyte interface (SEI) film in repeated cycling, which effectively stabilizes the spinel structure. Additionally, differential scanning calorimetry (DSC) tests show that the MgF2 nano-coating layer also helps in enhancing the thermal stability of the LMNO cathode.

  7. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov Websites

    electrodes at the SEI interface, Li-ion batteries show limited calendar and cycle life--less than 2 years energy storage requirements. The CEES will focus on lithium batteries, as they offer the best opportunity of Argonne's Applied Battery Research and Development Program. EFRCs at Argonne The Center for

  8. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE PAGES

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  9. Structure formation and surface chemistry of ionic liquids on model electrode surfaces—Model studies for the electrode | electrolyte interface in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Buchner, Florian; Uhl, Benedikt; Forster-Tonigold, Katrin; Bansmann, Joachim; Groß, Axel; Behm, R. Jürgen

    2018-05-01

    Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Here we present a comprehensive review of the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP]+[TFSI]-) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO2(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-)monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode | electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-)monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, Li3N, Li2S, LixSOy, and Li2O. In the absence of a [BMP]+[TFSI]- adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO2) above a critical temperature, forming LiOx and Ti3+ species in the latter case. Finally, the formation of stable decomposition products was found to sensitively change the equilibrium between surface Li and Li+ intercalated in the bulk, leading to a deintercalation from lithiated HOPG in the presence of an adsorbed IL adlayer at >230 K. Overall, these results provide detailed insights into the surface chemistry at the solid | electrolyte interface and the initial stages of SEI formation at electrode surfaces in the absence of an applied potential, which is essential for the further improvement of future Li-ion batteries.

  10. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

    NASA Astrophysics Data System (ADS)

    Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.

    2014-07-01

    When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).

  11. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Young; Choi, Yunju; Hong, Kyong-Soo; Lee, Jung Kyoo; Kim, Ju-Young; Bae, Jong-Seong; Jeong, Euh Duck

    2018-07-01

    The crucial roles of ethylenediaminetetraacetic acid (EDTA) in the poly(acrylic acid) (PAA)-binder system were investigated for the high electrochemical performance silicon anode in lithium-ion batteries. The EDTA supports the construction of a mechanically robust network through the formation of sbndCOOH linkage with the SiO2 layer of the Si nanoparticles. The mixture of the PAA/EDTA binder and the conductive agent exhibited an improved elastic modulus and peeling strength. The creation of hydrogen fluoride (HF) was effectively suppressed through the elimination of the H2O. An H2O-phosphorous pentafluoride (PF5) reaction, which is known for its use in the etching of metal oxides including its creation of the solid electrolyte interphase (SEI) layer, generates the HF. A remarkably sound cyclability with a discharge capacity of 2540 mA h g-1 was achieved as a result of the synergistic effect between robust mechanical properties and suppression of the HF creation for the stability of the SEI layer.

  12. Energy Materials Center at Cornell: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abruña, Héctor; Mutolo, Paul F

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc 2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods formore » structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.« less

  13. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    PubMed

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  14. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  15. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

    PubMed

    Leung, Kevin; Budzien, Joanne L

    2010-07-07

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  16. Development and Evaluation of a New Spectral Planetary Boundary-Layer Architecture for the MM5

    DTIC Science & Technology

    1998-08-07

    I’m grateful to Dr. George Young for his suggestion to use the Bulk-Richardson technique for diagnosis of boundary-layer depth during convection, and...simulation (LES) (Wyngaard and Brost 1984). However, these profiles are not generally representative of all conditions. They are instead prescribed for...Wyngaard, J. C, and R. A. Brost , 1984: Top-down and bottom diffusion of a scalar in the convective boundary layer. J. Atmos. Sei., 44, 102-112. Zeman

  17. Development of a Visual System Interface to Support a Domain-Oriented Application Composition System

    DTIC Science & Technology

    1993-03-23

    Austin Texas, 1990. 25. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Tech- nical Report CMU/SEI-90-TR-21, Software...Validation and Analysis of the Architect Visual System. .. .. .. .. .... ....... 5-1 5.1 Validation Domain...5-2 5.3 Analysis .. .. .. .. .. .. .... .. .... .... .. .... .... .. ....... 5-2 5.3.1 The REFINE Environment

  18. Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions.

    PubMed

    Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Kim, Huikyong; Jeong, Sangsik; Wu, Liming; Gachot, Gregory; Laruelle, Stephane; Armand, Michel; Passerini, Stefano

    2016-03-08

    We report a systematic investigation of Na-based electrolytes that comprise various NaX [X=hexafluorophosphate (PF6 ), perchlorate (ClO4 ), bis(trifluoromethanesulfonyl)imide (TFSI), fluorosulfonyl-(trifluoromethanesulfonyl)imide (FTFSI), and bis(fluorosulfonyl)imide (FSI)] salts and solvent mixtures [ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/diethyl carbonate (DEC), and EC/propylene carbonate (PC)] with respect to the Al current collector stability, formation of soluble degradation compounds, reactivity towards sodiated hard carbon (Nax -HC), and solid-electrolyte interphase (SEI) layer formation. Cyclic voltammetry demonstrates that the stability of Al is highly influenced by the nature of the anions, solvents, and additives. GC-MS analysis reveals that the formation of SEI telltales depends on the nature of the linear alkyl carbonates and the battery chemistry (Li(+) vs. Na(+) ). FTIR spectroscopy shows that double alkyl carbonates are the main components of the SEI layer on Nax -HC. In the presence of Na salts, EC/DMC and EC/DEC presented a higher reactivity towards Nax -HC than EC/PC. For a fixed solvent mixture, the onset temperature follows the sequence NaClO4

  19. Interfacial reactions in lithium batteries

    NASA Astrophysics Data System (ADS)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  20. N-Allyl- N, N-Bis(trimethylsilyl)amine as a Novel Electrolyte Additive To Enhance the Interfacial Stability of a Ni-Rich Electrode for Lithium-Ion Batteries.

    PubMed

    Zheng, Qinfeng; Xing, Lidan; Yang, Xuerui; Li, Xiangfeng; Ye, Changchun; Wang, Kang; Huang, Qiming; Li, Weishan

    2018-05-16

    Enhancing the electrode/electrolyte interface stability of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (LNCA) cathode material is urgently required for its application in next-generation lithium-ion battery. Herein, we demonstrate that enhanced interfacial stability of LNCA can be achieved by simply introducing 2 wt % N-allyl- N, N-bis(trimethylsilyl)amine (NNB) electrolyte additive. Electrolyte oxidation reactions and electrode structural destruction are greatly suppressed in the electrolyte with NNB additive, leading to improved cyclic stability of LNCA from 72.8 to 86.2% after 300 cycles. The mechanism of NNB on improving the cyclic stability of LNCA has been verified to its excellent solid electrolyte interface (SEI) film-forming capability. Moreover, the X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the NNB-derived Si-containing SEI film restrains the Li/Ni disorder of LNCA during cycling, which further improves the cyclic stability of Ni-rich LNCA. Importantly, the charging/discharging test reveals that the NNB additive effectively improves the cyclic stability of the LNCA/graphite full cell.

  1. Li 2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGES

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; ...

    2016-01-22

    In a classic example of stability from instability, we show that Li 2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li 2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li 2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl systemmore » of crystalline solid electrolytes where Li 2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li 2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li 2OHCl solid electrolyte.« less

  2. Quantitative investigation of the gassing behavior in cylindrical Li4Ti5O12 batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Jian; Liu, Wei; Xie, Xiaohua; Xia, Baojia

    2017-03-01

    The Li4Ti5O12 gassing behavior is a critical limitation for applications in lithium-ion batteries. The impact of electrode/electrolyte interface, as well as the underlying mechanisms involved during the gassing process, are still debated. Herein, a quantitative evolution of the internal pressure in 18650-type cylindrical Li4Ti5O12 batteries is investigated using a self-designed pressure testing device. The results indicate that the internal pressure significantly increases during the formation cycle and continues growing during the following cycles. After several charge and discharge cycles, the pressure finally reaches constant. Simultaneously, the formation of the solid electrolyte interphase (SEI) film is also investigated. The results suggest that the initial formed SEI film has a thickness of 24 nm, and is observed to shrink during the following cycles. Furthermore, no apparent increase in thickness accompanying the pressure rising is noticed. These comparative investigations reveal a possible mechanism of the gassing behavior. We suggest that the gassing behavior is associated with side reactions which are determined by the potential of the Li4Ti5O12 electrode, where the active sites of the electrode/electrolyte interface manage the extent of the reaction.

  3. Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method

    NASA Astrophysics Data System (ADS)

    Biserni, E.; Xie, M.; Brescia, R.; Scarpellini, A.; Hashempour, M.; Movahed, P.; George, S. M.; Bestetti, M.; Li Bassi, A.; Bruno, P.

    2015-01-01

    Silicon-based electrodes for Li-ion batteries (LIB) attract much attention because of their high theoretical capacity. However, their large volume change during lithiation results in poor cycling due to mechanical cracking. Moreover, silicon can hardly form a stable solid electrolyte interphase (SEI) layer with common electrolytes. We present a safe, innovative strategy to prepare nanostructured silicon-carbon anodes in a two-step process. The nanoporosity of Si films accommodates the volume expansion while a disordered graphitic C layer on top promotes the formation of a stable SEI. This approach shows its promises: carbon-coated porous silicon anodes perform in a very stable way, reaching the areal capacity of ∼175 μAh cm-2, and showing no decay for at least 1000 cycles. With requiring only a two-step deposition process at moderate temperatures, this novel very simple cell concept introduces a promising way to possibly viable up-scaled production of next-generation nanostructured Si anodes for lithium-ion microbatteries.

  4. Improved electrochemical performance of spinel LiMn 1.5Ni 0.5O 4 through MgF 2 nano-coating

    DOE PAGES

    Wu, Qing; Zhang, Xiaoping; Sun, Shuwei; ...

    2015-07-08

    In this paper, a spinel LiMn 1.5Ni 0.5O 4 (LMNO) cathode material synthesized by a sol–gel method is modified by MgF 2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF 2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF 2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF 2-coated LMNO demonstrates the best reversibility, with a capacity retention of 89.9% after 100more » cycles, much higher than that of the pristine material, 69.3%. The dQ/dV analysis and apparent Li + diffusion coefficient calculation prove that the kinetic properties are enhanced after MgF 2 surface modification, which partly explains the improved electrochemical performances. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) data confirm that the MgF 2 coating layer helps in suppressing the fast growth of the solid electrolyte interface (SEI) film in repeated cycling, which effectively stabilizes the spinel structure. Finally and additionally, differential scanning calorimetry (DSC) tests show that the MgF 2 nano-coating layer also helps in enhancing the thermal stability of the LMNO cathode.« less

  5. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  6. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters.

    PubMed

    Sacci, Robert L; Black, Jennifer M; Balke, Nina; Dudney, Nancy J; More, Karren L; Unocic, Raymond R

    2015-03-11

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.

  7. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    NASA Astrophysics Data System (ADS)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  8. Project Interface Requirements Process Including Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bauch, Garland T.

    2010-01-01

    Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings

  9. Shallow geologic structure of Lake Lacawac, Wayne Co. PA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrer, J.W.; Meltzer, A.

    1993-03-01

    In this study the authors used seismic refraction techniques to characterize the shallow geologic structure around Lake Lacawac in northeastern Pennsylvania. They acquired six high resolution seismic refraction profiles, two each, on the east, west, and north sides of the lake. The lines were oriented perpendicular to each other to constrain dip of interfaces. The authors spaced receivers at 15 ft intervals with a maximum offset of 720 ft. A 12 lb. sledge hammer impacting a steel plate served as a seismic source on the east and west sides of the lake. The north side of the lake is amore » swamp. In the swamp they used a Betsy Seis-gun with 12 gauge shotgun shells as a seismic source, and marsh geophones as receivers. Source locations were 90 feet apart yielding 9 shot gathers per profile. Data was downloaded to a workstation for processing. Each shot record was scaled and bandpass filtered. First arrivals were defined and velocity-depth structure determined. The eastern side of the lake has a 15 ft layer of low velocity, (3,000 ft/s) material underlain by a layer of higher velocity, 7,500 ft/s material. The authors interpret this as a layer of shale below till. On the western side, a 15 ft layer of slow velocity, (3,500 ft/s) material is underlain by high velocity, 12,500 ft/s material. They interpret this as a layer of sandstone beneath till. On the north side of the lake, the surface layer is saturated organic material with an average velocity of 2,550 ft/s. This layer varies in thickness from 0--20 ft. The organic material is underlain by higher velocity material ([approximately]15,000 ft/s) interpreted as sandstone. To the southwest, the sandstone unit disappears across an abrupt, nearly vertical boundary. Minimum vertical offset across this NE/SW striking feature is 114 ft. Forward modeling is being done to help constrain subsurface structure.« less

  10. Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries.

    PubMed

    Wang, Shih-Hong; Lin, Yong-Yi; Teng, Chiao-Yi; Chen, Yen-Ming; Kuo, Ping-Lin; Lee, Yuh-Lang; Hsieh, Chien-Te; Teng, Hsisheng

    2016-06-15

    This study reports on a high ionic-conductivity gel polymer electrolyte (GPE), which is supported by a TiO2 nanoparticle-decorated polymer framework comprising poly(acrylonitrile-co-vinyl acetate) blended with poly(methyl methacrylate), i.e. , PAVM: TiO2. High conductivity TiO2 is achieved by causing the PAVM:TiO2 polymer framework to swell in 1 M LiPF6 in carbonate solvent. Raman analysis results demonstrate that the poly(acrylonitrile) (PAN) segments and TiO2 nanoparticles strongly adsorb PF6(-) anions, thereby generating 3D percolative space-charge pathways surrounding the polymer framework for Li(+)-ion transport. The ionic conductivity of TiO2 is nearly 1 order of magnitude higher than that of commercial separator-supported liquid electrolyte (SLE). TiO2 has a high Li(+) transference number (0.7), indicating that most of the PF6(-) anions are stationary, which suppresses PF6(-) decomposition and substantially enlarges the voltage that can be applied to TiO2 (to 6.5 V vs Li/Li(+)). Immobilization of PF6(-) anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a full-cell graphite|electrolyte|LiFePO4 battery, which exhibits low SEI and overall resistances. The graphite|electrolyte|LiFePO4 battery delivers high capacity of 84 mAh g(-1) even at 20 C and presents 90% and 71% capacity retention after 100 and 1000 charge-discharge cycles, respectively. This study demonstrates a GPE architecture comprising 3D space charge pathways for Li(+) ions and suppresses anion decomposition to improve the stability and lifespan of the resulting LIBs.

  11. Reduction mechanisms of additives on Si anodes of Li-ion batteries.

    PubMed

    Martínez de la Hoz, Julibeth M; Balbuena, Perla B

    2014-08-28

    Solid-electrolyte interphase (SEI) layers are films deposited on the surface of Li-ion battery electrodes during battery charge and discharge processes. They are due to electrochemical instability of the electrolyte which causes electron transfer from (to) the anode (cathode) surfaces. The films could have a protective passivating role and therefore understanding the detailed reduction (oxidation) processes is essential. Here density functional theory and ab initio molecular dynamics simulations are used to investigate the reduction mechanisms of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) on lithiated silicon surfaces. These species are frequently used as "additives" to improve the SEI properties. It is found that on lithiated Si anodes (with low to intermediate degrees of lithiation) VC may be reduced via a 2e(-) mechanism yielding an opened VC(2-) anion. At higher degrees of lithiation, such a species receives two extra electrons from the surface resulting in an adsorbed CO(2-)(ads) anion and a radical anion ˙OC2H2O(2-). Additionally, in agreement with experimental observations, it is shown that CO2 can be generated from reaction of VC with the CO3(2-)anion, a product of the reduction of the main solvent, ethylene carbonate (EC). On the other hand, FEC reduction on LixSiy surfaces is found to be independent of the degree of lithiation, and occurs through three mechanisms. One of them leads to an adsorbed VC(2-) anion upon release from the FEC molecule and adsorption on the surface of F(-) and one H atom. Thus in some cases, the reduction of FEC may lead to the exact same reduction products as that of VC, which explains similarities in SEI layers formed in the presence of these additives. However, FEC may be reduced via two other multi-electron transfer mechanisms that result in formation of either CO2(2-), F(-), and ˙CH2CHO(-) or CO(2-), F(-), and ˙OCH2CHO(-). These alternative reduction products may oligomerize and form SEI layers with different components than those formed in the presence of VC. In all cases, FEC reduction also leads to formation of LiF moieties on the anode surface, in agreement with reported experimental data. The crucial role of the surface in each of these mechanisms is thoroughly explained.

  12. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  13. Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters

    DOE PAGES

    Hankins, Kie; Soto, Fernando A.; Balbuena, Perla B.

    2017-01-01

    We report a first-principles atomic level assessment of the lithiation and reactivity of pre-lithiated Si clusters. Density functional theory formation energy calculations reveal that the pre-lithiated Li 16Si 16 cluster exposed to two different Li fluxes can store Li between the concentrations of Li 2.5Si and Li 3.5Si. This increase in storage capacity is attributed to the start of an amorphization process in the cluster, and more importantly these results show that the intercalation reaction can be controlled by the flux of the Li-ions. However, in a real battery, the lithiation of the anode occurs simultaneously to the electrode-electrolyte reactions.more » Here we simulate the solid-electrolyte interphase (SEI) formation and simultaneous lithiation of a Li 16Si 16 cluster in contact with two different electrolyte solutions: one with pure ethylene carbonate (EC), and another with a 1 M solution of LiPF 6 in EC. Our ab initio molecular dynamics simulations show that the solvent and salt are decomposed leading to the initial stages of the SEI layer formation and large part of the added Li becomes part of the SEI. Interestingly, the pure EC solution results in lower storage capacity and higher reactivity, whereas the presence of the salt causes the opposite effect: higher lithiation and reduced reactivity.« less

  14. Designer interphases for the lithium-oxygen electrochemical cell

    PubMed Central

    Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.; Tu, Zhengyuan; Lau, Sampson; Zachman, Michael J.; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells. PMID:28439557

  15. Distributed Object Technology with CORBA and Java: Key Concepts and Implications.

    DTIC Science & Technology

    1997-06-01

    commercial use should be addressed to the SEI Licensing Agent. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL...retrieval. This power is not derived from the language per se, but from the architecture-neutral approach used by Java. The Java Virtual Machine...pattern that is focused on performance considerations, the PCo archi- tecture also uses CORBA interface definition language (IDL) to model the

  16. Improving Quality Using Architecture Fault Analysis with Confidence Arguments

    DTIC Science & Technology

    2015-03-01

    CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii List of Figures Figure 1: Architecture-Centric...Requirements Decomposition 5 Figure 2: A System and Its Interface with Its Environment 6 Figure 3: AADL Graphical Symbols 8 Figure 4: Textual AADL Example...8 Figure 5: Textual AADL Error Model Example 9 Figure 6: Potential Hazard Sources in the Feedback Control Loop [Leveson 2012] 11 Figure 7

  17. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yue; Zhao, Yuming; Li, Yuguang C.

    The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less

  18. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries

    DOE PAGES

    Gao, Yue; Zhao, Yuming; Li, Yuguang C.; ...

    2017-10-06

    The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less

  19. Lithium-ion conducting electrolyte salts for lithium batteries.

    PubMed

    Aravindan, Vanchiappan; Gnanaraj, Joe; Madhavi, Srinivasan; Liu, Hua-Kun

    2011-12-16

    This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A contrastive study of three graphite anodes in the piperidinium based electrolytes for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiao-Tao; Wang, Chen-Yi; Gao, Kun, E-mail: gaokun0451@163.com

    Graphical abstract: The fitting results of R{sub sei} and R{sub ct} of three graphite/Li cells. Besides three graphite/Li cells show the similar R{sub sei}, the NG198/Li cell demonstrates a higher R{sub ct} value in all test temperatures. Especially, the R{sub ct} at 333 K is even up to 355.8 Ω cm{sup 2}. Obviously, the narrow distribution of edge plane for NG198 caused this result, and then greatly restricts its cell capacity. By contrast, CMB with bigger specific surface area and more Li{sup +} insertion points shows lower resistance at room temperature, which should help to improve its capacity. - Highlights:more » • SEI film is closely related to graphite structures and formation temperature. • The graphite with bigger surface area and more Li{sup +} insertion points behaves better. • The graphite with narrow edge plane is uncompetitive for ionic liquid electrolyte. - Abstract: The electrochemical behaviors of natural graphite (NG198), artificial graphite (AG360) and carbon microbeads (CMB) in an ionic liquid based electrolyte are investigated by cyclic voltammetry (CV). The surface and structure of three graphite materials are characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) before and after cycling. It is found that solid electrolyte interface (SEI) is closely related to graphite structure. Benefiting from larger specific surface area and more dispersed Li{sup +} insertion points, CMB shows a better Li{sup +} insertion/de-insertion behavior than NG198 and AG360. Furthermore, electrochemical impedance spectra (EIS) prove that the SEI of different graphite electrodes has different intrinsic resistance and Li{sup +} penetrability. By comparison, CMB behaves better cell performances than AG360, while the narrow edge plane makes NG198 uncompetitive as a potential anode for the ionic liquids (ILs)-type Li-ion battery.« less

  1. Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaodi; Zhang, Yaohui; Engelhard, Mark H.

    Spatial and morphology control over lithium (Li) metal nucleation/growth, as well as improving Li Coulombic efficiency (CE) are of the most challenging issues for rechargeable Li metal batteries. Here, we report that LiAsF6 and vinylene carbonate (VC) can work synergistically to address these challenges. It is revealed that AsF6- can be reduced to Li3As and LiF, which can act as seeds for Li growth and form a robust solid electrolyte interphase (SEI) layer, respectively. The addition of VC is critical because it not only enables uniform AsF6- reduction by passivating the defect sites on Cu substrate, but also improves themore » SEI layer flexibility during the reductive polymerization process. As a result, highly compact, uniform and dendrite-free Li film with vertically aligned columns structure can be obtained with greatly increased Li CE, and the Li metal batteries using the electrolyte with both LiAsF6 and VC additives can have much improved cycle life.« less

  2. Electrolyte Chemistry for Simultaneous Stabilization of Potassium Metal and Superoxide in K-O₂ Batteries.

    PubMed

    Xiao, Neng; Gourdin, Gerald; Wu, Yiying

    2018-05-22

    In the superoxide batteries based on O2/O2- redox chemistry, identifying an electrolyte to stabilize both alkali metal and superoxide remains challenging due to their reactivity towards electrolyte components. Bis(fluorosulfonyl)imide (FSI-) has been recognized as a "magical anion" for passivating alkali metals. Herein, we illustrate the chemical reactions between FSI- and superoxide, and the resultant dilemma when considering an anode-compatible electrolyte vs. a cathode-compatible one in K-O2 batteries. On one side, the KFSI-dimethoxyethane (DME) electrolyte passivates the potassium metal anode via the cleavage of S-F bond and formation of a KF-rich solid electrolyte interface (SEI). Nevertheless, the KFSI salt is chemically unstable due to the nucleophilic attack by superoxide and/or hydroxide species. On the other hand, potassium bis(trifluorosulfonyl)imide (KTFSI) is stable for KO2, but results in mossy deposition and irreversible plating and stripping. In order to circumvent this dilemma, we develop an artificial SEI for K metal anode to achieve long cycle-life K-O2 batteries. This work contributes to the understanding of electrolyte chemistry and guides the development of stable electrolytes and artificial SEI in metal-O2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries

    DOE PAGES

    Benitez, Laura; Seminario, Jorge M.

    2017-05-17

    Understanding the transport properties of the solid electrolyte interface (SEI) is a critical piece in the development of lithium ion batteries (LIB) with better performance. We studied the lithium ion diffusivity in the main components of the SEI found in LIB with silicon anodes and performed classical molecular dynamics (MD) simulations on lithium fluoride (LiF), lithium oxide (Li 2O) and lithium carbonate (Li 2CO 3) in order to provide insights and to calculate the diffusion coefficients of Li-ions at temperatures in the range of 250 K to 400 K, which is within the LIB operating temperature range. We find amore » slight increase in the diffusivity as the temperature increases and since diffusion is noticeable at high temperatures, Li-ion diffusion in the range of 130 to 1800 K was also studied and the diffusion mechanisms involved in each SEI compound were analyzed. We observed that the predominant mechanisms of Li-ion diffusion included vacancy assisted and knock-off diffusion in LiF, direct exchange in Li 2O, and vacancy and knock-off in Li 2CO 3. Moreover, we also evaluated the effect of applied electric fields in the diffusion of Li-ions at room temperature.« less

  4. Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez, Laura; Seminario, Jorge M.

    Understanding the transport properties of the solid electrolyte interface (SEI) is a critical piece in the development of lithium ion batteries (LIB) with better performance. We studied the lithium ion diffusivity in the main components of the SEI found in LIB with silicon anodes and performed classical molecular dynamics (MD) simulations on lithium fluoride (LiF), lithium oxide (Li 2O) and lithium carbonate (Li 2CO 3) in order to provide insights and to calculate the diffusion coefficients of Li-ions at temperatures in the range of 250 K to 400 K, which is within the LIB operating temperature range. We find amore » slight increase in the diffusivity as the temperature increases and since diffusion is noticeable at high temperatures, Li-ion diffusion in the range of 130 to 1800 K was also studied and the diffusion mechanisms involved in each SEI compound were analyzed. We observed that the predominant mechanisms of Li-ion diffusion included vacancy assisted and knock-off diffusion in LiF, direct exchange in Li 2O, and vacancy and knock-off in Li 2CO 3. Moreover, we also evaluated the effect of applied electric fields in the diffusion of Li-ions at room temperature.« less

  5. The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte.

    PubMed

    Chang, Zeng-Hua; Wang, Jian-Tao; Wu, Zhao-Hui; Gao, Min; Wu, Shuai-Jin; Lu, Shi-Gang

    2018-06-11

    Silicon is a promising material for anodes in energy-storage devices. However, excessive growth of a solid-electrolyte interphase (SEI) caused by the severe volume change during the (de)lithiation processes leads to dramatic capacity fading. Here, we report a super-concentrated electrolyte composed of lithium bis(fluorosulfonyl)imide (LiFSI) and propylene carbonate (PC) with a molar ratio of 1:2 to improve the cycling performance of silicon nanoparticles (SiNPs). The SiNP electrode shows a remarkably improved cycling performance with an initial delithiation capacity of approximately 3000 mAh g -1 and a capacity of approximately 2000 mAh g -1 after 100 cycles, exhibiting about 6.8 times higher capacity than the cells with dilute electrolyte LiFSI-(PC) 8 . Raman spectra reveal that most of the PC solvent and FSI anions are complexed by Li + to form a specific solution structure like a fluid polymeric network. The reduction of FSI anions starts to play an important role owing to the increased concentration of contact ion pairs (CIPs) or aggregates (AGGs), which contribute to the formation of a more mechanically robust and chemically stable complex SEI layer. The complex SEI layer can effectively suppress the morphology evolution of silicon particles and self-limit the excessive growth, which mitigates the crack propagation of the silicon electrode and the deterioration of the kinetics. This study will provide a new direction for screening cycling-stable electrolytes for silicon-based electrodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Histological and histomorphometric evaluation of implant with nanometer scale and oxidized surface. in vitro and in vivo study.

    PubMed

    Corvino, V; Iezzi, G; Trubiani, O; Traini, T; Piattelli, M

    2012-01-01

    The biological fixation of an implant to bone is influenced by numerous factors, including surface chemistry and surface topography. Various methods have been developed to create rough implant surfaces in order to improve the clinical performance of implants and to guarantee a stable mechanical bone-implant interface. Anodic oxidation is a dental implant surface modification technique that results in oxide layer growth up to a thickness of 1–10 micron. The purpose of this study was to evaluate the performance of the surface through the osteoblasts cells growth and the influence of oxidixed surface on BIC percent, in the human posterior maxilla after 2 months of unloaded healing. In vitro commercially available primary human osteoblasts (NHOst) from both femur and tibia of different donor systems (Lonza Walkersville Inc, Walkersville, MD, USA) were grown in Osteoblast Growth Media (OBM) (Lonza). Osteogenic differentiation was induced for a period of 4 weeks by the OGM medium (OBM basal medium supplemented with 200nM of hydrocortisone-21-hemisuccinate and 7.5 mM of glycerophosphate). The viability of NHOst cells seeded test A and B was measured by the quantitative colorimetric MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2Htetrazoliumbromide test) (Promega, Milan, Italy). One custom-made 2 x 10-mm site evaluation implant (SEI) with nanometer scale and oxidized surface (test) ( Evo Plan 1 Health s.r.l. - Amaro, UD, Italy), and one SEI with hydroxyapatite sandblasted surface (control) (Osseogrip Plan 1 Health s.r.l. – Amaro, UD, Italy), were placed in the posterior maxilla of 15 patients. Patients received one of each type of SEI placed on controlateral side. The proliferation rate studied by the MTT assay showed that during the incubation time, starting at 24 h, an increased proliferation rate was evident in Test B respect to Test A. After 2 months of unloaded healing BIC percent was significantly higher in oxidized implants. BIC percent mean values for the Osseogrip surface was 36,133 +/-4,888 ER and 53,533 +/- 5,180 ER for the Evo surface(P = 0,028). These results seem to confirm that implant surface topography entails mechanical restrictions to the spread and locomotion of the cells involved in bone healing.

  7. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gao; Wang, Dongdong

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  8. Proceedings of the Systems Reengineering Technology Workshop (4th) held in Monterey, California on February 8 - 10, 1994

    DTIC Science & Technology

    1994-09-01

    report for the Properties of User Interface Software Architetures ", draft DISCUS Working Group, Programmers Tutorial, MITRE paper, SEI. Carnegie...execution that we have defined called asynchronous remote procedure call (ARPC) [15], which allows concurrency in amounts proportional to the amount of...demonstration project to use STARS DoD software budget and the proportion concepts. IBM is one of the prime is expected to be increased during the contractors

  9. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less

  10. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content ofmore » 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.« less

  11. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis

    NASA Astrophysics Data System (ADS)

    Ando, Keisuke; Matsuda, Tomoyuki; Imamura, Daichi

    2018-06-01

    Understanding the degradation factors (cathode and anode degradation and solid electrolyte interface (SEI) formation) of lithium-ion batteries (LIBs) with a blended cathode is necessary to improve their durability because battery drive vehicles often use LIBs with a blended cathode due to advantages of power and cost. We developed a dV/dQ curve analysis adapted for through a dQ/dV curve analysis to elucidate the relations between cycle test conditions and degradation factors. To compare said factors, cycle tests were conducted under different conditions: one charge/discharge rate (C/3), two state-of-charge (SoC) ranges (100%-0% and 100%-70%), and three temperatures (0 °C, 25 °C, and 45 °C). We confirmed that there are clear differences in the degree of contribution of each degradation factor depending on conditions. For instance, at 0 °C, although the capacity reduction rate was almost the same regardless of the SoC range, the degradation mechanisms were different, i.e., the cathode degradation and the SEI formation occurred at the same time, resulting in the reduced capacity for the 100%-0% SoC range, while capacity reduction was mainly due to SEI formation for the 100%-70% SoC range.

  12. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A (Inventor)

    2015-01-01

    A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  13. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2016-01-01

    A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  14. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.

    PubMed

    Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan

    2017-05-22

    Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening

    NASA Astrophysics Data System (ADS)

    Kafle, Janak; Harris, Joshua; Chang, Jeremy; Koshina, Joe; Boone, David; Qu, Deyang

    2018-07-01

    In this report, we demonstrate that the low temperature power capability of a Li-ion battery can be substantially improved not by adding commercially unavailable additives into the electrolyte, but by rational design of the composition of the most commonly used solvents. Through the detail analysis with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte interface (SEI) layer on the carbon anode surface is found to be critical to ensure the performance of a Li-ion battery in a wide temperature range. The post mortem analysis of the negative electrode by XPS revealed that all the electrolyte compositions form similar compounds in the solid electrolyte interphase. However, the electrolytes which give higher capacities at low temperature showed higher percentage of LiF and lower percentage of carbon containing species such as lithium carbonate and lithium ethylene di-carbonate. The electrolyte compositions where cyclic carbonates make up less than 25% of the total solvent showed increased low temperature performance. The solvent composition with higher percentage of linear short chain carbonates showed an improved low temperature performance. The high temperature performances were similar in almost all the combinations.

  16. First-Principles Modeling of Mn(II) Migration above and Dissolution from Li x Mn 2 O 4 (001) Surfaces

    DOE PAGES

    Leung, Kevin

    2016-12-10

    The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less

  17. Role of graphene inter layer on the formation of the MoS2-CZTS interface during growth

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Manoj; Thota, Narayana; Karakulina, Olesia; Hadermann, Joke; Mehta, B. R.

    2018-05-01

    The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.

  18. High school students as a seismic network analysts

    NASA Astrophysics Data System (ADS)

    Filatov, P.; Fedorenko, Yu.; Beketova, E.; Husebye, E.

    2003-04-01

    Many research organizations have a large amount of collected seismological data. Some data centers keep data closed from scientists, others have a specific interfaces for access, what is not acceptable for education. For SeisSchool Network in Norway we have developed an universal interface for research and study. The main principles of our interface are: bullet Accessibility - it should provides data access for everybody any where via Internet without restrictions of hardware platform, operational system, Internet browser or bandwidth of connection. bullet Informativity - it should visualize data, have examples of processing routines (filters, envelopes) including phase picking and event location. Also it provides access to various seismology information. bullet Scalability - provide storage for various types of seismic data and a multitude of services for many user levels. This interface (http://pcg1.ifjf.uib.no) helps analysts in basic research and together with information of our Web site we introduces students to theory and practice of seismology. Based on our Web interface group of students won a Norwegian Young Scientists award. In this presentation we demonstrate advantages of our interface, on-line data processing and how to monitoring our network in near real time.

  19. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  20. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  1. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti

    2018-01-01

    The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.

  2. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen

    2018-01-01

    A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.

  3. Local Structure Analysis and Interface Layer Effect of Phase-Change Recording Material Using Actual Media

    NASA Astrophysics Data System (ADS)

    Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio

    2008-07-01

    The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.

  4. Organizational Considerations for Implementing Systems Engineering and Integration in the Ares Projects Office

    NASA Technical Reports Server (NTRS)

    Thomas, LeAnn; Doreswamy, Rajiv N.

    2008-01-01

    Systems Engineering and Integration (SE&I) is a critical discipline in developing new space systems. In 2005, NASA performed an internal study of 24 agency and Department of Defense (DoD) programs to evaluate methods of integrating SE&I practices and determine their effectiveness. The goal of the study was to determine the best SE&I implementation strategy for the Ares Projects Office. The study identified six SE&I organizational structures: 1. Lead systems integrator (LSI) with SE&I responsibility and government technical insight. 2a. Integration contractor with government SE&I responsibility (government insight). 2b. Integration contractor with government SE&I responsibility (government oversight). 3a. Prime contractor with SE&I responsibility (government insight). 3b. Prime contractor with SE&I responsibility (government oversight). 3c. Prime contractor with SE&I responsibility (government/industry partnership). 4a.Prime contractor with government SE&I responsibility (government insight). 4b. Prime contractor with government SE&I responsibility (government oversight). 4d.Prime contractors with total system performance responsibility (TSPR). 5. Prime contractor with government SE&I responsibility and integration products through a Federally Funded Research and Development Center (FFRDC). 6. Government/FFRDC in-house development with SE&I responsibility and function. The organizational structure used most often was number 4, using a prime contractor with government SE&I responsibility and government technical insight. However, data analyses did not establish a positive relationship between program development costs and specific SE&I organizational types, nor did it positively determine the relationship between successful programs or projects and their SE&I structure. The SE&I study reached the following conclusions: (1) Large, long-duration, technically complex programs or projects reach their technical goals, but rarely meet schedule or cost goals. NASA's recent successes have been smaller, short-duration development projects using heritage hardware/software, focused technology development, technical oversight and stable external factors. (2) Programs and projects have failed or been terminated due to lack of technical insight, relaxing of SE&I processes, and unstable external factors. (3) The study did not find a single, clear optimum SE&I organization type to fit all projects. However, while any organizational structure can be made to work, the fewer complexities in the program, the better the likelihood of success. (4) The most common successful SE&I organization structure type in the study was type 4b, where the government maintained integration responsibility, with the prime contractor providing SE&I products and the government providing technical oversight. This study was instrumental in helping the APO select organization structure 4, following the same SE&I and oversight process used during humanlund7s last voyages to the Moon.

  5. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  6. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  7. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    PubMed

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  8. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  9. Developing Battery Computer Aided Engineering Tools for Military Vehicles

    DTIC Science & Technology

    2013-12-01

    Task 1.b Modeling Bullet penetration. The purpose of Task 1.a was to extend the chemical kinetics models of CoO2 cathodes developed under CAEBAT to...lithium- ion batteries. The new finite element model captures swelling/shrinking in cathodes /anodes due to thermal expansion and lithium intercalation...Solid Electrolyte Interphase (SEI) layer decomposition 80 2 Anode — electrolyte 100 3 Cathode — electrolyte 130 4 Electrolyte decomposition 180

  10. Prospects for reducing the processing cost of lithium ion batteries

    DOE PAGES

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  11. Influence of Pentacene Interface Layer in ITO/α-NPD/Alq3/Al Organic Light Emitting Diodes by Time-Resolved Electric-Field-Induced Optical Second-Harmonic Generation Measurement.

    PubMed

    Oda, Yoshiaki; Sadakata, Atsuo; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    By using I-V, EL-V, displacement current measurement (DCM) and time-resolved electric-field-induced optical second-harmonic generation (TR-EFISHG) measurement, we studied the influence of interface pentacene layer inserted between ITO and a-NPD layers in ITO/α-NPD/Alq3/Al OLEDs. All experiments were carried out for the OLEDs with and without a pentacene interface layer. The I-V and EL-V measurements showed the decrease of operating voltage of EL, the DCM showed the lowering of inception voltage of carrier injection by inserting a pentacene interface layer. The TR-EFISHG measurement showed the faster accumulation of holes at the interface between the a-NPD and Alq3 layers, which resulted in the relaxation of electric field of a-NPD layer accomplished by the increase of the conductivity and the increase of the electric field in the Alq3 layer. We conclude that TR-EFISHG measurement is helpful for understanding I-V and EL-V characteristics, and can be combined with other methods to give significant information which are impacted by the interface layer.

  12. Effect of interface layer on the performance of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng

    2015-02-01

    Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.

  13. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.

    PubMed

    Tasaki, Ken

    2005-02-24

    The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.

  14. Discrete particle modeling and micromechanical characterization of bilayer tablet compaction.

    PubMed

    Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M

    2017-08-30

    A mechanistic particle scale model is proposed for bilayer tablet compaction. Making bilayer tablets involves the application of first layer compaction pressure on the first layer powder and a second layer compaction pressure on entire powder bed. The bonding formed between the first layer and the second layer particles is crucial for the mechanical strength of the bilayer tablet. The bonding and the contact forces between particles of the first layer and second layer are affected by the deformation and rearrangement of particles due to the compaction pressures. Our model takes into consideration the elastic and plastic deformations of the first layer particles due to the first layer compaction pressure, in addition to the mechanical and physical properties of the particles. Using this model, bilayer tablets with layers of the same material and different materials, which are commonly used pharmaceutical powders, are tested. The simulations show that the strength of the layer interface becomes weaker than the strength of the two layers as the first layer compaction pressure is increased. The reduction of strength at the layer interface is related to reduction of the first layer surface roughness. The reduced roughness decreases the available bonding area and hence reduces the mechanical strength at the interface. In addition, the simulations show that at higher first layer compaction pressure the bonding area is significantly less than the total contact area at the layer interface. At the interface itself, there is a non-monotonic relationship between the bonding area and first layer force. The bonding area at the interface first increases and then decreases as the first layer pressure is increased. These results are in agreement with findings of previous experimental studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    PubMed Central

    Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-01-01

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view. PMID:28946690

  16. Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface

    NASA Astrophysics Data System (ADS)

    Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.

    2009-03-01

    Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.

  17. Interface roughness induced asymmetric magnetic property in sputter-deposited Co/CoO/Co exchange coupled trilayers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.

    2012-04-01

    The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(tAF)/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.

  18. Method of transferring a thin crystalline semiconductor layer

    DOEpatents

    Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  19. Thermal Protection Supplement for Reducing Interface Thermal Mismatch

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2017-01-01

    A thermal protection system that reduces a mismatch of thermal expansion coefficients CTE between a first material layer (CTE1) and a second material layer (CTE2) at a first layer-second layer interface. A portion of aluminum borosilicate (abs) or another suitable additive (add), whose CTE value, CTE(add), satisfies (CTE(add)-CTE1)(CTE(add)-CTE2)<0, is distributed with variable additive density,.rho.(z;add), in the first material layer and/or in the second material layer, with.rho.(z;add) near the materials interface being relatively high (alternatively, relatively low) and.rho.(z;add) in a region spaced apart from the interface being relatively low (alternatively, relatively high).

  20. STV fueling options

    NASA Technical Reports Server (NTRS)

    Flemming, Ken

    1991-01-01

    Lunar vehicles that will be space based and reusable will require resupply of propellants in orbit. Approximately 75 pct. of the total mass delivered to low earth orbit will be propellants. Consequently, the propellant management techniques selected for Space Exploration Initiative (SEI) orbital operations will have a major influence on the overall SEI architecture. Five proposed propellant management facility (PMF) concepts were analyzed and compared in order to determine the best method of resupplying reusable, space based Lunar Transfer Vehicles (LTVs). The processing time needed at the Space Station to prepare LTV for its next lunar mission was estimated for each of the PMF concepts. The estimated times required to assemble and maintain the different PMF concepts were also compared. The results of the maintenance analysis were similar, with co-orbiting depots needing 100 to 350 pct. more annual maintenance. The first few external tanks mating operations at KSC encountered many problems that could cause serious lunar mission schedule delays. The use of drop tanks on lunar vehicles increases by a factor of four the number of critical propellant interface disturbances.

  1. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystallinemore » II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  2. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II-VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  3. Reducing interface recombination for Cu(In,Ga)Se 2 by atomic layer deposited buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hultqvist, Adam; Li, Jian V.; Kuciauskas, Darius

    2015-07-20

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VImore » systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.« less

  4. Intermetallic Compound Growth between Electroless Nickel/Electroless Palladium/Immersion Gold Surface Finish and Sn-3.5Ag or Sn-3.0Ag-0.5Cu Solder

    NASA Astrophysics Data System (ADS)

    Oda, Yukinori; Fukumuro, Naoki; Yae, Shinji

    2018-04-01

    Using an electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish with a thick palladium-phosphorus (Pd-P) layer of 1 μm, the intermetallic compound (IMC) growth between the ENEPIG surface finish and lead-free solders Sn-3.5Ag (SA) or Sn-3.0Ag-0.5Cu (SAC) after reflow soldering and during solid-state aging at 150°C was investigated. After reflow soldering, in the SA/ENEPIG and SAC/ENEPIG interfaces, thick PdSn4 layers of about 2 μm to 3 μm formed on the residual Pd-P layers ( 0.5 μm thick). On the SA/ENEPIG interface, Sn was detected on the upper side of the residual Pd-P layer. On the SAC/ENEPIG interface, no Sn was detected in the residual Pd-P layer, and Cu was detected in the interface between the Pd-P and PdSn4 layers. After 300 h of aging at 150°C, the residual Pd-P layers had diffused completely into the solders. In the SA/ENEPIG interface, an IMC layer consisting of Ni3Sn4 and Ni3SnP formed between the PdSn4 layer and the nickel-phosphorus (Ni-P) layer, and a (Pd,Ni)Sn4 layer formed on the lower side of the PdSn4 layer. On the SAC/ENEPIG interface, a much thinner (Pd,Ni)Sn4 layer was observed, and a (Cu,Ni)6Sn5 layer was observed between the PdSn4 and Ni-P layers. These results indicate that Ni diffusion from the Ni-P layer to the PdSn4 layer produced a thick (Pd,Ni)Sn4 layer in the SA solder case, but was prevented by formation of (Cu,Ni)6Sn5 in the SAC solder case. This causes the difference in solder joint reliability between SA/ENEPIG and SAC/ENEPIG interfaces in common, thin Pd-P layer cases.

  5. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries.

    PubMed

    Zhao, Jie; Lu, Zhenda; Wang, Haotian; Liu, Wei; Lee, Hyun-Wook; Yan, Kai; Zhuo, Denys; Lin, Dingchang; Liu, Nian; Cui, Yi

    2015-07-08

    Prelithiation is an important strategy to compensate for lithium loss in lithium-ion batteries, particularly during the formation of the solid electrolyte interphase (SEI) from reduced electrolytes in the first charging cycle. We recently demonstrated that LixSi nanoparticles (NPs) synthesized by thermal alloying can serve as a high-capacity prelithiation reagent, although their chemical stability in the battery processing environment remained to be improved. Here we successfully developed a surface modification method to enhance the stability of LixSi NPs by exploiting the reduction of 1-fluorodecane on the LixSi surface to form a continuous and dense coating through a reaction process similar to SEI formation. The coating, consisting of LiF and lithium alkyl carbonate with long hydrophobic carbon chains, serves as an effective passivation layer in the ambient environment. Remarkably, artificial-SEI-protected LixSi NPs show a high prelithiation capacity of 2100 mA h g(-1) with negligible capacity decay in dry air after 5 days and maintain a high capacity of 1600 mA h g(-1) in humid air (∼10% relative humidity). Silicon, tin, and graphite were successfully prelithiated with these NPs to eliminate the irreversible first-cycle capacity loss. The use of prelithiation reagents offers a new approach to realize next-generation high-energy-density lithium-ion batteries.

  6. Symmetric and asymmetric instability of buried polymer interfaces

    NASA Astrophysics Data System (ADS)

    de Silva, J. P.; Cousin, F.; Wildes, A. R.; Geoghegan, M.; Sferrazza, M.

    2012-09-01

    We demonstrate using neutron reflectometry that the internal interfaces in a trilayer system of two identical thick polystyrene layers sandwiching a much thinner (deuterated) poly(methyl methacrylate) layer 15 nm thick (viscosity matched with the polystyrene layers) increase in roughness at the same rate. When the lower polystyrene layer is replaced with a layer of the same polymer of much greater molecular mass, two different growths of the interfaces are observed. From the growth of the interface for this asymmetric case in the solid regime using the theoretical prediction of the spinodal instability including slippage at the interface, a value of the Hamaker constant of the system has been extracted in agreement with the calculated value. For the symmetric case the rise time of the instability is much faster.

  7. Structural and electronic properties of the transition layer at the SiO{sub 2}/4H-SiC interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenbo; Wang, Dejun, E-mail: dwang121@dlut.edu.cn; Zhao, Jijun

    Using first-principles methods, we generate an amorphous SiO{sub 2}/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiC{sub x}O{sub y} species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC{sub x}O{sub y} structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO{sub 5} configurations, which lead tomore » the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO{sub 5} configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO{sub 2}/SiC interface.« less

  8. Electrical properties of surface and interface layers of the N- and In-polar undoped and Mg-doped InN layers grown by PA MBE

    NASA Astrophysics Data System (ADS)

    Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.

    2018-01-01

    Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.

  9. MatSeis and the GNEM R&E regional seismic anaylsis tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Eric Paul; Hart, Darren M.; Young, Christopher John

    2003-08-01

    To improve the nuclear event monitoring capability of the U.S., the NNSA Ground-based Nuclear Explosion Monitoring Research & Engineering (GNEM R&E) program has been developing a collection of products known as the Knowledge Base (KB). Though much of the focus for the KB has been on the development of calibration data, we have also developed numerous software tools for various purposes. The Matlab-based MatSeis package and the associated suite of regional seismic analysis tools were developed to aid in the testing and evaluation of some Knowledge Base products for which existing applications were either not available or ill-suited. This presentationmore » will provide brief overviews of MatSeis and each of the tools, emphasizing features added in the last year. MatSeis was begun in 1996 and is now a fairly mature product. It is a highly flexible seismic analysis package that provides interfaces to read data from either flatfiles or an Oracle database. All of the standard seismic analysis tasks are supported (e.g. filtering, 3 component rotation, phase picking, event location, magnitude calculation), as well as a variety of array processing algorithms (beaming, FK, coherency analysis, vespagrams). The simplicity of Matlab coding and the tremendous number of available functions make MatSeis/Matlab an ideal environment for developing new monitoring research tools (see the regional seismic analysis tools below). New MatSeis features include: addition of evid information to events in MatSeis, options to screen picks by author, input and output of origerr information, improved performance in reading flatfiles, improved speed in FK calculations, and significant improvements to Measure Tool (filtering, multiple phase display), Free Plot (filtering, phase display and alignment), Mag Tool (maximum likelihood options), and Infra Tool (improved calculation speed, display of an F statistic stream). Work on the regional seismic analysis tools (CodaMag, EventID, PhaseMatch, and Dendro) began in 1999 and the tools vary in their level of maturity. All rely on MatSeis to provide necessary data (waveforms, arrivals, origins, and travel time curves). CodaMag Tool implements magnitude calculation by scaling to fit the envelope shape of the coda for a selected phase type (Mayeda, 1993; Mayeda and Walter, 1996). New tool features include: calculation of a yield estimate based on the source spectrum, display of a filtered version of the seismogram based on the selected band, and the output of codamag data records for processed events. EventID Tool implements event discrimination using phase ratios of regional arrivals (Hartse et al., 1997; Walter et al., 1999). New features include: bandpass filtering of displayed waveforms, screening of reference events based on SNR, multivariate discriminants, use of libcgi to access correction surfaces, and the output of discrim{_}data records for processed events. PhaseMatch Tool implements match filtering to isolate surface waves (Herrin and Goforth, 1977). New features include: display of the signal's observed dispersion and an option to use a station-based dispersion surface. Dendro Tool implements agglomerative hierarchical clustering using dendrograms to identify similar events based on waveform correlation (Everitt, 1993). New features include: modifications to include arrival information within the tool, and the capability to automatically add/re-pick arrivals based on the picked arrivals for similar events.« less

  10. Conceptualizing ¬the Abstractions of Earthquakes Through an Instructional Sequence Using SeisMac and the Rapid Earthquake Viewer

    NASA Astrophysics Data System (ADS)

    Taber, J.; Hubenthal, M.; Wysession, M.

    2007-12-01

    Newsworthy earthquakes provide an engaging hook for students in Earth science classes, particularly when discussing their effects on people and the landscape. However, engaging students in an analysis of earthquakes that extends beyond death and damage, is frequently hampered by the abstraction of recorded ground motion data in the form of raw seismograms and the inability of most students to personally relate to ground accelerations. To overcome these challenges, an educational sequence has been developed using two software tools: SeisMac by Daniel Griscom, and the Rapid Earthquake Viewer (REV) developed by the University of South Carolina in collaboration with IRIS and DLESE. This sequence presents a unique opportunity for Earth Science teachers to "create" foundational experiences for students as they construction a framework of understanding of abstract concepts. The first activity is designed to introduce the concept of a three-component seismogram and to directly address the very abstract nature of seismograms through a kinesthetic experience. Students first learn to take the pulse of their classroom through a guided exploration of SeisMac, which displays the output of the laptop's built-in Sudden Motion Sensor (a 3-component accelerometer). This exploration allows students to view a 3-component seismogram as they move or tap the laptop and encourages them to propose and carry out experiments to explain the meaning of the 3-component seismogram. Once completed students are then asked to apply this new knowledge to a real 3-component seismogram printed from REV. Next the activity guides students through the process of identifying P and S waves and using SeisMac to connect the physical motion of the laptop to the "wiggles" they see on the SeisMac display and then comparing those to the "wiggles" they see on their seismogram. At this point students are more fully prepared to engage in an S-P location exercise such as those included in many state standards because they have a physical sense of what the wiggles indicate. As a result students are better positioned to identify S and P arrivals within the complexity of real data available through REV rather than using the canned or artificial data normally associated with a location exercise. REV provides easy access to recent and noteworthy earthquake data via a simple Web interface. Earthquake locations and near-real time ground motion data are accessed via the IRIS Data Management System, and data are automatically processed and selected so that only events with "good" data are presented within REV. Once students have completed the learning sequence using SeisMac, they will be better able to relate the trace of a seismogram to the physical motion of the ground. This can then lead to better understanding of more advanced exercises including detecting the core and finding the Moho. Building on an understanding of the basics of a seismogram, SeisMac can next be used to help student further understand earthquakes by provide a kinesthetic experience to model how hard the Earth shakes during earthquakes. Through another guided exploration students discover that the SeisMac display is calibrated in units of acceleration and can be related to the Modified Mercalli scale. They then compare shaking during an earthquake via video clips and ground shaking maps from the USGS "Did you feel it" Web site to the shaking of personal objects and the laptop.

  11. Role of interface layers on Tunneling Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.

    2002-03-01

    Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.

  12. Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.

    PubMed

    Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C

    2016-07-27

    Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.

  13. ACR/NEMA Digital Image Interface Standard (An Illustrated Protocol Overview)

    NASA Astrophysics Data System (ADS)

    Lawrence, G. Robert

    1985-09-01

    The American College of Radiologists (ACR) and the National Electrical Manufacturers Association (NEMA) have sponsored a joint standards committee mandated to develop a universal interface standard for the transfer of radiology images among a variety of PACS imaging devicesl. The resulting standard interface conforms to the ISO/OSI standard reference model for network protocol layering. The standard interface specifies the lower layers of the reference model (Physical, Data Link, Transport and Session) and implies a requirement of the Network Layer should a requirement for a network exist. The message content has been considered and a flexible message and image format specified. The following Imaging Equipment modalities are supported by the standard interface... CT Computed Tomograpy DS Digital Subtraction NM Nuclear Medicine US Ultrasound MR Magnetic Resonance DR Digital Radiology The following data types are standardized over the transmission interface media.... IMAGE DATA DIGITIZED VOICE HEADER DATA RAW DATA TEXT REPORTS GRAPHICS OTHERS This paper consists of text supporting the illustrated protocol data flow. Each layer will be individually treated. Particular emphasis will be given to the Data Link layer (Frames) and the Transport layer (Packets). The discussion utilizes a finite state sequential machine model for the protocol layers.

  14. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, A., E-mail: arupb@barc.gov.in; Bhattacharyya, D.; Sahoo, N. K.

    2015-10-28

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayermore » W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.« less

  15. Thin films as a platform for understanding the conversion mechanism of FeF2 cathodes in lithium-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Santos-Ortiz, Reinaldo

    Conversion material electrodes such as FeF2 possess the potential to deliver transformative improvements in lithium ion battery performance because they permit a reversible change of more than one Li-ion per 3d metal cation. They outperform current state of the art intercalation cathodes such as LiCoO2, which have volumetric and gravimetric energy densities that are intrinsically limited by single electron transfer. Current studies focus on composite electrodes that are formed by mixing with carbon (FeF 2-C), wherein the carbon is expected to act as a binder to support the matrix and facilitate electronic conduction. These binders complicate the understanding of the electrode-electrolyte interface (SEI) passivation layer growth, of Li agglomeration, of ion and electron transport, and of the basic phase transformation processes under electrochemical cycling. This research uses thin-films as a model platform for obtaining basic understanding to the structural and chemical foundations of the phase conversion processes. Thin film cathodes are free of the binders used in nanocomposite structures and may potentially provide direct basic insight to the evolution of the SEI passivation layer, electron and ion transport, and the electrochemical behavior of true complex phases. The present work consisted of three main tasks (1) Development of optimized processes to deposit FeF2 and LiPON thin-films with the required phase purity and microstructure; (2) Understanding their electron and ion transport properties and; (3) Obtaining insight to the correlation between structure and capacity in thin-film microbatteries with FeF2 thin-film cathode and LiPON thin-film solid electrolyte. Optimized pulsed laser deposition (PLD) growth produced polycrystalline FeF2 films with excellent phase purity and P42/mnm crystallographic symmetry. A schematic band diagram was deduced using a combination of UPS, XPS and UV-Vis spectroscopies. Room temperature Hall measurements reveal that as-deposited FeF2 is n-type with an electron mobility of 0.33 cm 2/V.s and a resistivity was 0.255 O.cm. The LiPON films were deposited by reactive sputtering in nitrogen, and the results indicate that the ionic conductivity is dependent on the amount of nitrogen incorporated into the film during processing. The highest ionic conductivity obtained was 1.431.9E-6 Scm-1 and corresponded to a chemical composition of Li1.9PO3.3N.21.

  16. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    PubMed

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeena, M. T.; Bok, Taesoo; Kim, Si Hoon; Park, Sooham; Kim, Ju-Young; Park, Soojin; Ryu, Ja-Hyoung

    2016-04-01

    The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%.The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01559j

  18. The Measurement, Nomological Net, and Theory of Perceived Self-Esteem Instability: Applying the Conservation of Resources Theory to Understand the Construct.

    PubMed

    Howard, Matt C

    2018-01-01

    The current article performs the first focused investigation into the construct of perceived self-esteem instability (P-SEI). Four studies investigate the construct's measurement, nomological net, and theoretical dynamics. Study 1 confirms the factor structure of a P-SEI Measure, supporting that P-SEI can be adequately measured. Study 2 identifies an initial nomological net surrounding P-SEI, showing that the construct is strongly related to stable aspects of the self (i.e., neuroticism and core self-evaluations). In Studies 3 and 4, the Conservation of Resources Theory is applied to develop and test five hypotheses. These studies show that P-SEI is predicted by self-esteem level and stressors, and the relationship of certain stressors is moderated by self-esteem contingencies. P-SEI also predicts stress, depression, anxiety, and certain defensive postures. From these studies and the integration of Conservation of Resources Theory, we suggest that P-SEI emerges through an interaction between environmental influences and personal resources, and we provide a theoretical model to better understand the construct of P-SEI. We suggest that this theory-driven model can prompt the initial field of study on P-SEI.

  19. Interfacial elastic relaxation during the ejection of bi-layered tablets.

    PubMed

    Anuar, M S; Briscoe, B J

    2010-03-15

    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion. 2009 Elsevier B.V. All rights reserved.

  20. Confined methane-water interfacial layers and thickness measurements using in situ Raman spectroscopy.

    PubMed

    Pinho, Bruno; Liu, Yukun; Rizkin, Benjamin; Hartman, Ryan L

    2017-11-07

    Gas-liquid interfaces broadly impact our planet, yet confined interfaces behave differently than unconfined ones. We report the role of tangential fluid motion in confined methane-water interfaces. The interfaces are created using microfluidics and investigated by in situ 1D, 2D and 3D Raman spectroscopy. The apparent CH 4 and H 2 O concentrations are reported for Reynolds numbers (Re), ranging from 0.17 to 8.55. Remarkably, the interfaces are comprised of distinct layers of thicknesses varying from 23 to 57 μm. We found that rarefaction, mixture, thin film, and shockwave layers together form the interfaces. The results indicate that the mixture layer thickness (δ) increases with Re (δ ∝ Re), and traditional transport theory for unconfined interfaces does not explain the confined interfaces. A comparison of our results with thin film theory of air-water interfaces (from mass transfer experiments in capillary microfluidics) supports that the hydrophobicity of CH 4 could decrease the strength of water-water interactions, resulting in larger interfacial thicknesses. Our findings help explain molecular transport in confined gas-liquid interfaces, which are common in a broad range of societal applications.

  1. Versatile dual organic interface layer for performance enhancement of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhiqi; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Zhang, Liu; Zhang, Xinyuan; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-11-01

    The electron transport layer plays a crucial role on determining electron injection and extraction, resulting from the effect of balancing charge transport and reducing the interfacial energy barrier. Decreasing the inherent incompatibility and enhancing electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collection. Herein, we demonstrate that an efficient dual polyelectrolytes interfacial layer composed of polyethylenimine (PEI) and conducting poly(9,9-dihexylfluorenyl-2,7-diyl) (PDHFD) is incorporated to investigate the interface energetics and electron transport in polymer solar cells (PSCs). The composited PEI/PDHFD interface layer (PPIL) overcomed the low conductivity of bare PEI polymer, which decreased series resistance and facilitated electron extraction at the ITO/PPIL-active layer interface. The introduction of the interface energy state of the PPIL reduced the work function of ITO so that it can mate the top of the valence band of the photoactive materials and promoted the formation of ohmic contact at ITO electrode interface. As a result, the composited PPIL tuned energy alignment and accelerated the electron transfer, leading to significantly increased photocurrent and power conversion efficiency (PCE) of the devices based on various representative polymer:fullerene systems.

  2. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  3. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    PubMed

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  4. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms.

    PubMed

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-05

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  5. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    NASA Astrophysics Data System (ADS)

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  6. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    PubMed Central

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials. PMID:28053307

  7. Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities

    NASA Astrophysics Data System (ADS)

    Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles

    2017-06-01

    Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.

  8. Interface spins in polycrystalline FeMn/Fe bilayers with small exchange bias

    NASA Astrophysics Data System (ADS)

    Pires, M. J. M.

    2018-04-01

    The magnetic moments at the interface between ferromagnetic and antiferromagnetic layers play a central role in exchange biased systems, but their behavior is still not completely understood. In this work, the FeMn/Fe interface in polycrystalline thin films has been studied using conversion electron Mössbauer spectroscopy (CEMS), magneto-optic Kerr effect (MOKE) and micromagnetic simulations. Samples were prepared with 57Fe layers at two distinct depths in order to probe the interface and bulk behaviors. At the equilibrium, the interface moments are randomly oriented while the bulk of the Fe layer has an in-plane magnetic anisotropy. Several models for the interface and anisotropies of the layers were used in the simulations of spin configurations and hysteresis loops. From the whole set of simulations, one can conclude the direct analysis of hysteresis curves is not enough to infer whether the interface has a configuration with spins tilted out of the film plane at equilibrium since different choices of parameters provide similar curves. The simulations have also shown the occurrence of spin clusters at the interface is compatible with CEMS and MOKE measurements.

  9. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  10. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    PubMed

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided insight into the growth of epitaxial graphene on TiC(111)/SiC(0001[combining macron]) substrates and the design of graphene/TiC/SiC-based electronic devices.

  11. Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Manthiram, Arumugam

    2011-03-01

    Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.

  12. Diet misreporting can be corrected: confirmation of the association between energy intake and fat-free mass in adolescents.

    PubMed

    Vainik, Uku; Konstabel, Kenn; Lätt, Evelin; Mäestu, Jarek; Purge, Priit; Jürimäe, Jaak

    2016-10-01

    Subjective energy intake (sEI) is often misreported, providing unreliable estimates of energy consumed. Therefore, relating sEI data to health outcomes is difficult. Recently, Börnhorst et al. compared various methods to correct sEI-based energy intake estimates. They criticised approaches that categorise participants as under-reporters, plausible reporters and over-reporters based on the sEI:total energy expenditure (TEE) ratio, and thereafter use these categories as statistical covariates or exclusion criteria. Instead, they recommended using external predictors of sEI misreporting as statistical covariates. We sought to confirm and extend these findings. Using a sample of 190 adolescent boys (mean age=14), we demonstrated that dual-energy X-ray absorptiometry-measured fat-free mass is strongly associated with objective energy intake data (onsite weighted breakfast), but the association with sEI (previous 3-d dietary interview) is weak. Comparing sEI with TEE revealed that sEI was mostly under-reported (74 %). Interestingly, statistically controlling for dietary reporting groups or restricting samples to plausible reporters created a stronger-than-expected association between fat-free mass and sEI. However, the association was an artifact caused by selection bias - that is, data re-sampling and simulations showed that these methods overestimated the effect size because fat-free mass was related to sEI both directly and indirectly via TEE. A more realistic association between sEI and fat-free mass was obtained when the model included common predictors of misreporting (e.g. BMI, restraint). To conclude, restricting sEI data only to plausible reporters can cause selection bias and inflated associations in later analyses. Therefore, we further support statistically correcting sEI data in nutritional analyses. The script for running simulations is provided.

  13. Interface or bulk scattering in the semiclassical theory for spin valves

    NASA Astrophysics Data System (ADS)

    Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.

    2004-06-01

    By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.

  14. Ruddlesden-Popper interface in correlated manganite heterostructures induces magnetic decoupling and dead layer reduction

    NASA Astrophysics Data System (ADS)

    Belenchuk, A.; Shapoval, O.; Roddatis, V.; Bruchmann-Bamberg, V.; Samwer, K.; Moshnyaga, V.

    2016-12-01

    We report on the interface engineering in correlated manganite heterostructures by octahedral decoupling using embedded stacks of atomic layers that form the Ruddlesden-Popper structure. A room temperature magnetic decoupling was achieved through deposition of a (SrO)2-TiO2-(SrO)2 sequence of atomic layers at the interface between La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.9Ru0.1O3 films. Moreover, the narrowing of the interfacial dead layer in ultrathin La0.7Sr0.3MnO3 films was demonstrated by insertion of a single (SrO)2 rock-salt layer at the interface with the SrTiO3(100) substrate. The obtained results are discussed based on the symmetry breaking and disconnection of the MnO6 octahedra network at the interface that may lead to the improved performance of all-oxide magnetic tunnel junctions. We suggest that octahedral decoupling realized by formation of Ruddlesden-Popper interfaces is an effective structural mechanism to control functionalities of correlated perovskite heterostructures.

  15. Interface waves in multilayered plates.

    PubMed

    Li, Bing; Li, Ming-Hang; Lu, Tong

    2018-04-01

    In this paper, the characteristic equation of interface waves in multilayered plates is derived. With a reasonable assumption undertaken for the potential functions of longitudinal and shear waves in the nth layer medium, the characteristic equation of interface waves in the N-layered plate is derived and presented in a determinant form. The particle displacement and stress components are further presented in explicit forms. The dispersion curves and wave structures of interface waves in both a three-layered Al-Steel-Ti and a four-layered Steel-Al-Steel-Ti plate are displayed subsequently. It is observed in dispersion curves that obvious dispersion occurs on the low frequency band, whereas the phase velocities converge to the corresponding true Stoneley wave mode velocities at high frequency, and the number of interface wave modes equals the number of interfaces in multilayered plates (if all individual interfaces satisfy the existence condition of Stoneley waves). The wave structures reveal that the displacement components of interface waves are relatively high at interfaces, and the amplitude distribution varies from frequency to frequency. In the end, a similarly structured three-layered Al-Steel-Ti plate is tested. In this experiment, theoretical group velocity and experimental group velocity are compared. According to the discussion and comparison, the predicted group velocities are in good agreement with the experimental results. Thus, the theory of interface wave in multilayered plates is proved. As a result, the proposed theoretical approach represents a leap forward in the understanding of how to promote the characteristic study and practical applications of interface waves in multilayered structures.

  16. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films.

    PubMed Central

    Pum, D; Weinhandl, M; Hödl, C; Sleytr, U B

    1993-01-01

    S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde. Images PMID:8478338

  17. First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on Li xMn 2O 4 (100) Surfaces [First principles modeling of Mn(II) migration to and dissolution from Li xMn 2O 4 (100) surfaces

    DOE PAGES

    Leung, Kevin

    2012-04-13

    Density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (100) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is necessary but far from sufficient. Key steps that facilitate Mn(II) ion migration include concerted liquid/solid-state motions, proton-induced weakening of Mn-O bonds forming mobile OH - surface groups; andmore » chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI component facilitates electrochemical reduction and decomposition of LEDC. These findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less

  18. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    PubMed

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electronic Structure at Electrode/Electrolyte Interfaces in Magnesium based Batteries

    NASA Astrophysics Data System (ADS)

    Balachandran, Janakiraman; Siegel, Donald

    2015-03-01

    Magnesium is a promising multivalent element for use in next generation electrochemical energy storage systems. However, a wide range of challenges such as low coulombic efficiency, low/varying capacity and cyclability need to be resolved in order to realize Mg based batteries. Many of these issues can be related to interfacial phenomena between the Mg anode and common electrolytes. Ab-initio based computational models of these interfaces can provide insights on the interfacial interactions that can be difficult to probe experimentally. In this work we present ab-initio computations of common electrolyte solvents (THF, DME) in contact with two model electrode surfaces namely -- (i) an ``SEI-free'' electrode based on Mg metal and, (ii) a ``passivated'' electrode consisting of MgO. We perform GW calculations to predict the reorganization of the molecular orbitals (HOMO/LUMO) upon contact with the these surfaces and their alignment with respect to the Fermi energy of the electrodes. These computations are in turn compared with more efficient GGA (PBE) & Hybrid (HSE) functional calculations. The results obtained from these computations enable us to qualitatively describe the stability of these solvent molecules at electrode-electrolyte interfaces

  20. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing

    2017-12-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.

  1. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films is presented as a method for enabling non-conductive, but possibly electrochemically active materials, to be used for electrochemical applications.

  2. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities

    NASA Astrophysics Data System (ADS)

    Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike

    2017-02-01

    Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.

  3. Method of transferring strained semiconductor structure

    DOEpatents

    Nastasi, Michael A [Santa Fe, NM; Shao, Lin [College Station, TX

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  4. Asymmetry of radiation damage properties in Al-Ti nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gerboth, Matthew D.; Yao, Bo

    2014-02-01

    Molecular dynamics (MD) simulations were employed with empirical potentials to study the effects of multilayer interfaces and interface spacing in Al-Ti nanolayers. Several model interfaces derived from stacking of close-packed layers or face-centered cubic \\{100\\} layers were investigated. The simulations reveal significant and important asymmetries in defect production withmore » $$\\sim$$60\\% of vacancies created in Al layers compared to Ti layers within the Al-Ti multilayer system. The asymmetry in the creation of interstitials is even more pronounced. The asymmetries cause an imbalance in the ratio of vacancies and interstitials in films of dissimilar materials leading to $>$$90\\% of the surviving interstitials located in the Al layers. While in the close-packed nanolayers the interstitials migrate to the atomic layers adjacent to the interface of the Al layers, in the \\{100\\} nanolayers the interstitials migrate to the center of the Al layers and away from the interfaces. The degree of asymmetry and defect ratio imbalance increases as the layer spacing decreases in the multilayer films. Underlying physical processes are discussed including the interfacial strain fields and the individual elemental layer stopping power in nanolayered systems. In addition, experimental work was performed on low-dose (10$$^{16}$ atoms/cm$^2$) helium (He) irradiation on Al/Ti nanolayers (5 nm per film), resulting in He bubble formation $$\\sim$$1 nm in diameter in the Ti film near the interface. The correlation between the preferential flux of displaced atoms from Ti films to Al films during the defect production that is revealed in the simulations and the morphology and location of He bubbles from the experiments is discussed.« less

  5. In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface

    NASA Astrophysics Data System (ADS)

    Merkel, D. G.; Bessas, D.; Bazsó, G.; Jafari, A.; Rüffer, R.; Chumakov, A. I.; Khanh, N. Q.; Sajti, Sz; Celse, J.-P.; Nagy, D. L.

    2018-01-01

    Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 Å increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.

  6. An Object-Oriented View of Backend Databases in a Mobile Environment for Navy and Marine Corps Applications

    DTIC Science & Technology

    2006-09-01

    Each of these layers will be described in more detail to include relevant technologies ( Java , PDA, Hibernate , and PostgreSQL) used to implement...Logic Layer -Object-Relational Mapper ( Hibernate ) Data 35 capable in order to interface with Java applications. Based on meeting the selection...further discussed. Query List Application Logic Layer HibernateApache - Java Servlet - Hibernate Interface -OR Mapper -RDBMS Interface

  7. X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less

  8. Third SEI Technical Interchange: Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Given here are the proceedings of the 3rd Space Exploration Initiative (SEI) Technical Interchange. Topics covered include the First Lunar Outpost (FLO), the Lunar Resource Mapper, lunar rovers, lunar habitat concepts, lunar shelter construction analysis, thermoelectric nuclear power systems for SEI, cryogenic storage, a space network for lunar communications, the moon as a solar power satellite, and off-the-shelf avionics for future SEI missions.

  9. 75 FR 39916 - Endangered and Threatened Species; Notice of Intent to Prepare a Recovery Plan for the Sei Whale

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Fisheries Service (NMFS) is announcing its intent to prepare a recovery plan for the Sei Whale (Balaenoptera... the fax comments as ``Sei Whale Recovery Plan Information'' 3. Mail: National Marine Fisheries Service... and Threatened Species; Notice of Intent to Prepare a Recovery Plan for the Sei Whale AGENCY: National...

  10. Hot-carrier degradation in deep-submicrometer nMOSFETs: lightly doped drain vs. large angle tilt implanted drain

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Campabadal, F.

    2001-08-01

    The hot-carrier degradation of lightly doped drain (LDD) and large angle tilt implanted drain (LATID) nMOSFETs of a 0.35 μm CMOS technology is analysed and compared by means of I-V characterisation and charge pumping current measurements. LATID nMOSFETs are found to exhibit a significant improvement in terms of both, current drivability and hot-carrier immunity at maximum substrate current condition. The different factors which can be responsible for this improved hot-carrier resistance are investigated. It is shown that this must be attributed to a reduction of the maximum lateral electric field along the channel, but not to a minor generation of physical damage for a given electric field or to a reduced I-V susceptibility to a given amount of generated damage. Further to this analysis, the hot-carrier degradation comparison between LDD and LATID devices is extended to the whole range of gate-stress regimes and the effects of short electron injection (SEI) and short hole injection (SHI) phases on hot-carrier-stressed devices are analysed. Apart from a significant improved resistance to hot-carrier effects registered for LATID devices, a similar behaviour is observed for the two types of architectures. In this way, SEI phases are found to be an efficient tool for revealing part of the damage generated in stresses at low gate voltages, whereas the performance of a first SHI phase after stress at high gate bias is found to result in a significant additional degradation of the devices. This enhanced degradation is attributed to a sudden interface states build-up occurring in both, LDD and LATID devices, near the Si/spacer interface only under the first hot-hole injection condition.

  11. Ultrastructural characteristics of the cranial dura mater-arachnoid interface layer.

    PubMed

    Angelov, D N

    1990-01-01

    The ultrastructural features of the encephalic dura mater-arachnoid borderline (interface) layer (zone) of rats, rabbits, cats and humans were studied. The rat's interface zone included the electron-lucent epithelium-like arranged fibroblasts of the inner dural layer, the rich in filaments cells of the dural neurothelium, a 20 nm wide intercellular cleft filled with electron-dense material and the dark mitochondria-rich cells of the outer arachnoidal layer; in rabbits and cats, this laminar distinction was less prominent, while in man, it was almost absent.

  12. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  13. Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices

    NASA Astrophysics Data System (ADS)

    He, C.; Grutter, A. J.; Gu, M.; Browning, N. D.; Takamura, Y.; Kirby, B. J.; Borchers, J. A.; Kim, J. W.; Fitzsimmons, M. R.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.

    2012-11-01

    We have found ferromagnetism in epitaxially grown superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial ferromagnetism is only limited to one unit cell of CaMnO3 at each interface. The interfacial moment alternates between the 1μB/interface Mn ion for even CaMnO3 layers and the 0.5μB/interface Mn ion for odd CaMnO3 layers. This modulation, combined with the exchange bias, suggests the presence of a modulating interlayer coupling between neighboring ferromagnetic interfaces via the antiferromagnetic CaMnO3 layers.

  14. Water Density in the Electric Double Layer at the Insulator/Electrolyte Solution Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    I studied the spatial structure of the thick transition region between n-hexane and a colloidal solution of 7-nm silica particles by X-ray reflectivity and grazing incidence small-angle scattering. The interfacial structure is discussed in terms of a semiquantitative interface model wherein the potential gradient at the n-hexane/sol interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anions (nanoparticles) and the specific adsorption of surface charge at the interface between the adsorbed layer and the solution, as well as at the interface between the adsorbed layer and n-hexane. The X-ray scattering data revealed thatmore » the average density of water in the field {approx}10{sup 9}-10{sup 10} V/m of the electrical double layer at the hexane/silica sol interface is the same as, or only few percent higher (1-7%) than, its density under normal conditions.« less

  15. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-06-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  16. High performance sandwich structured Si thin film anodes with LiPON coating

    NASA Astrophysics Data System (ADS)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  17. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    PubMed

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  18. Tuning the Two-Dimensional Electron Liquid at Oxide Interfaces by Buffer-Layer-Engineered Redox Reactions.

    PubMed

    Chen, Yunzhong; Green, Robert J; Sutarto, Ronny; He, Feizhou; Linderoth, Søren; Sawatzky, George A; Pryds, Nini

    2017-11-08

    Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO 3 (STO) achieved using polar La 7/8 Sr 1/8 MnO 3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.

  19. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.

    PubMed

    He, Meinan; Sa, Qina; Liu, Gao; Wang, Yan

    2013-11-13

    Silicon is a very promising anode material for lithium ion batteries. It has a 4200 mAh/g theoretical capacity, which is ten times higher than that of commercial graphite anodes. However, when lithium ions diffuse to Si anodes, the volume of Si will expand to almost 400% of its initial size and lead to the crack of Si. Such a huge volume change and crack cause significant capacity loss. Meanwhile, with the crack of Si particles, the conductivity between the electrode and the current collector drops. Moreover, the solid electrolyte interphase (SEI), which is generated during the cycling, reduces the discharge capacity. These issues must be addressed for widespread application of this material. In this work, caramel popcorn shaped porous silicon particles with carbon coating are fabricated by a set of simple chemical methods as active anode material. Si particles are etched to form a porous structure. The pores in Si provide space for the volume expansion and liquid electrolyte diffusion. A layer of amorphous carbon is formed inside the pores, which gives an excellent isolation between the Si particle and electrolyte, so that the formation of the SEI layer is stabilized. Meanwhile, this novel structure enhances the mechanical properties of the Si particles, and the crack phenomenon caused by the volume change is significantly restrained. Therefore, an excellent cycle life under a high rate for the novel Si electrode is achieved.

  20. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation ofmore » a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.« less

  1. Effects of interfaces on the thermal conductivity in Si/Si0.75Ge0.25 multilayer with varying Au layers

    NASA Astrophysics Data System (ADS)

    Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu

    2018-02-01

    The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.

  2. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.

    Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less

  3. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

    DOE PAGES

    Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.; ...

    2017-02-03

    Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less

  4. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  5. TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique

    NASA Astrophysics Data System (ADS)

    Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.

    2018-06-01

    Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.

  6. Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Laha, Tapas; Roy, Deb; Chatterjee, Subrata

    2017-11-01

    An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu-Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu-Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu-Fe-Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu-Fe-Ti-based intermetallics.

  7. Development of 66 kV class REBCO superconducting cable

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.

    Sumitomo Electric Industries (SEI) has been involved in the development of 66 kV/5 kA-class HTS cables using REBCO wires. One of the technical targets was to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI developed a clad-type textured metal substrate with lower magnetization loss than NiW substrates. REBCO wires of 30 mm wide were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The measured AC loss of the manufactured cable was 1.8 W/m/phase at 5 kA, achieving the AC loss goal. Another important target was to manage fault current. The copper protection layers were designed based on simulation findings. Fault current tests (max. 31.5 kA, 2 sec) showed that the designed HTS cable has the required withstanding performance. The development of the elemental technologies was finished on schedule, and a 15 m-long HTS cable system will be constructed to demonstrate that it meets all the required specifications.

  8. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuandong; Liu, Kewei; Zhu, Yu

    Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less

  9. Interfacial reactions in lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng

    The lithium-ion battery was first commercially introduced by Sony Corporation on 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage devices for modern portable electronics, as well as for the emerging application for electric vehicles and smart grids. It has been a common sense that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses the parasitic reactions between the lithiated 2 graphitic anodes and the carbonate-based non-aqueous electrolytes.more » Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for rational design of high-energy-density lithiumion batteries with extended cycle/calendar life. In this article, the physical model of the solid electrolyte interphase, as well as the recent research effort to under the nature and role SEI are summarized, and future perspectives on this important research field will also be presented.« less

  10. Interfacial reactions in lithium batteries

    DOE PAGES

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; ...

    2017-06-29

    The lithium-ion battery was first commercially introduced by Sony Corporation on 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage devices for modern portable electronics, as well as for the emerging application for electric vehicles and smart grids. It has been a common sense that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses the parasitic reactions between the lithiated 2 graphitic anodes and the carbonate-based non-aqueous electrolytes.more » Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for rational design of high-energy-density lithiumion batteries with extended cycle/calendar life. In this article, the physical model of the solid electrolyte interphase, as well as the recent research effort to under the nature and role SEI are summarized, and future perspectives on this important research field will also be presented.« less

  11. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    DOE PAGES

    Sun, Yuandong; Liu, Kewei; Zhu, Yu

    2017-07-31

    Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less

  12. High voltage photo switch package module

    DOEpatents

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  13. Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon

    NASA Astrophysics Data System (ADS)

    Demchenko, Iraida N.; Lisowski, Wojciech; Syryanyy, Yevgen; Melikhov, Yevgen; Zaytseva, Iryna; Konstantynov, Pavlo; Chernyshova, Maryna; Cieplak, Marta Z.

    2017-03-01

    Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.

  14. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  15. Aminosilanization nanoadhesive layer for nanoelectric circuits with porous ultralow dielectric film.

    PubMed

    Zhao, Zhongkai; He, Yongyong; Yang, Haifang; Qu, Xinping; Lu, Xinchun; Luo, Jianbin

    2013-07-10

    An ultrathin layer is investigated for its potential application of replacing conventional diffusion barriers and promoting interface adhesion for nanoelectric circuits with porous ultralow dielectrics. The porous ultralow dielectric (k ≈ 2.5) substrate is silanized by 3-aminopropyltrimethoxysilane (APTMS) to form the nanoadhesive layer by performing oxygen plasma modification and tailoring the silanization conditions appropriately. The high primary amine content is obtained in favor of strong interaction between amino groups and copper. And the results of leakage current measurements of metal-oxide-semiconductor capacitor structure demonstrate that the aminosilanization nanoadhesive layer can block copper diffusion effectively and guarantee the performance of devices. Furthermore, the results of four-point bending tests indicate that the nanoadhesive layer with monolayer structure can provide the satisfactory interface toughness up to 6.7 ± 0.5 J/m(2) for Cu/ultralow-k interface. Additionally, an annealing-enhanced interface toughness effect occurs because of the formation of Cu-N bonding and siloxane bridges below 500 °C. However, the interface is weakened on account of the oxidization of amines and copper as well as the breaking of Cu-N bonding above 500 °C. It is also found that APTMS nanoadhesive layer with multilayer structure provides relatively low interface toughness compared with monolayer structure, which is mainly correlated to the breaking of interlayer hydrogen bonding.

  16. Disorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Garcia-Barriocanal, J.; Perez-Muñoz, A. M.; Sefrioui, Z.; Arias, D.; Varela, M.; Leon, C.; Pennycook, S. J.; Santamaria, J.

    2013-06-01

    We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.

  17. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  18. The Multi-factor Predictive Seis &Gis Model of Ecological, Genetical, Population Health Risk and Bio-geodynamic Processes In Geopathogenic Zones

    NASA Astrophysics Data System (ADS)

    Bondarenko, Y.

    I. Goal and Scope. Human birth rate decrease, death-rate growth and increase of mu- tagenic deviations risk take place in geopathogenic and anthropogenic hazard zones. Such zones create unfavourable conditions for reproductive process of future genera- tions. These negative trends should be considered as a protective answer of the com- plex biosocial system to the appearance of natural and anthropogenic risk factors that are unfavourable for human health. The major goals of scientific evaluation and de- crease of risk of appearance of hazardous processes on the territory of Dnipropetrovsk, along with creation of the multi-factor predictive Spirit-Energy-Information Space "SEIS" & GIS Model of ecological, genetical and population health risk in connection with dangerous bio-geodynamic processes, were: multi-factor modeling and correla- tion of natural and anthropogenic environmental changes and those of human health; determination of indicators that show the risk of destruction structures appearance on different levels of organization and functioning of the city ecosystem (geophys- ical and geochemical fields, soil, hydrosphere, atmosphere, biosphere); analysis of regularities of natural, anthropogenic, and biological rhythms' interactions. II. Meth- ods. The long spatio-temporal researches (Y. Bondarenko, 1996, 2000) have proved that the ecological, genetic and epidemiological processes are in connection with de- velopment of dangerous bio-geophysical and bio-geodynamic processes. Mathemat- ical processing of space photos, lithogeochemical and geophysical maps with use of JEIS o and ERDAS o computer systems was executed at the first stage of forma- tion of multi-layer geoinformation model "Dnipropetrovsk ARC View GIS o. The multi-factor nonlinear correlation between solar activity and cosmic ray variations, geophysical, geodynamic, geochemical, atmospheric, technological, biological, socio- economical processes and oncologic case rate frequency, general and primary popula- tion sickness cases in Dnipropetrovsk City (1.2 million persons) are described by the multi-factor predictive SEIS & GIS model of geopathogenic zones that determines the human health risk and hazards. Results and Conclusions. We have created the SEIS system and multi-factor predictive SEIS model for the analysis of phase-metric spatio- 1 temporal nonlinear correlation and variations of rhythms of human health, ecological, genetic, epidemiological risks, demographic, socio-economic, bio-geophysical, bio- geodynamic processes in geopathogenic hazard zones. Cosmophotomaps "CPM" of vegetation index, anthropogenic-landscape and landscape-geophysical human health risk of Dnipropetrovsk City present synthesis-based elements of multi-layer GIS, which include multispectral images SPOT o, maps of different geophysical, geochem- ical, anthropogenic and citogenic risk factors, maps of integral oncologic case rate frequency, general and primary population sickness cases for administrative districts. Results of multi-layer spatio-temporal correlation of geophysical field parameters and variations of population sickness rate rhythms have enabled us to state grounds and to develop medico-biological and bio-geodynamic classification of geopathogenic zones. Bio-geodynamic model has served to define contours of anthropogenic-landscape and landscape-geophysical human health risk in Dnipropetrovsk City. Biorhythmic vari- ations give foundation for understanding physiological mechanisms of organism`s adaptation to extreme helio-geophysical and bio-geodynamic environmental condi- tions, which are dictated by changes in Multi-factor Correlation Stress Field "MCSF" with deformation of 5D SEIS. Interaction between organism and environment results in continuous superpositioning of external (exogenic) Nuclear-Molecular-Cristallic "NMC" MCSF rhythms on internal (endogenic) Nuclear-Molecular-Cellular "NMCl" MCSF rhythms. Their resonance wave (energy-information) integration and disinte- gration are responsible for structural and functional state of different physiological systems. Herewith, complex restructurization of defense functions blocks the adapta- tion process and may turn to be the primary reason for phase shifting, process and biorhythms hindering, appearance of different deseases. Interaction of biorhythms with natural and anthropogenic rhythms specify the peculiar features of environ- mental adaptation of living species. Such interaction results in correlation of sea- sonal rhythms in variations of thermo-baro-geodynamic "TBG" parameters of am- bient air with toxic concentration and human health risk in Dnipropetrovsk City. Bio-geodynamic analysis of medical and demographic situations has provided for search of spatio-temporal correlation between rhythms of general and primary pop- ulation sickness cases and oncologic case rate frequency, other medico-demographic rhythms, natural processes (helio-geophysical, thermodynamic, geodynamic) and an- thropogenic processes (industrial and houschold waste disposal, toxic emissions and their concentration in ambient air). The year of 1986, the year of minimum helio- geophysical activity "2G1dG1" and maximum anthropogenic processes associated with changes in sickness and death rates of the population of Earth were synchronized. With account of quantum character of SEIS rhythms, 5 reference levels of desyn- chronized helio-geophysical and bio-geodynamic processes affecting population sick- ness rate have been specified within bio-geodynamic models. The first reference level 2 of SEIS desynchronization includes rhythms with period of 22,5 years: ... 1958,2; 1980,7; 2003,2; .... The second reference level of SEIS desynchronization includes rhythms with period of 11,25 years: ... 1980,7; 1992; 2003,2;.... The third reference level covers 5,625-years periodic rhythms2:... 1980,7; 1986,3; 1992; 1997,6; 2003,2; .... The fourth quantum reference level includes rhythms 3 with period of 2,8125 years: ... 1980,7; 1983,5; 1986,3; 1989,1; 1992; 1994,8; 1997,6; 2000,4; 2003,2; .... Rhythms with 1,40625-years period fall is fifth reference level of SEIS desynchro- nization: ...1980,7; 1982,1; 1983,5; 1984,9; 1986,3; 1987,7; 1989,1; 1990,5; 1992; 1993,3; 1994,8; 1996,2; 1997,6; 1999; 2000,4; 2001,8; 2003,2;.... Analysis of alternat- ing medical and demographic situation in Ukraine (1981-1992)and in Dnipropetrovsk (1988-1995)has allowed to back up theoretical model of various-level rhythm quan- tum, with non-linear regularities due to phase-metric spatio-temporal deformation be- ing specified. Application of new technologies of Risk Analysis, Sinthesis and SEIS Modeling at the choice of a burial place for dangerous radioactive wastes in the zone of Chernobyl nuclear disaster (Shestopalov V., Bondarenko Y...., 1998) has shown their very high efficiency in comparison with GIS Analysis. IV.Recommendations and Outlook. In order to draw a conclusion regarding bio-geodynamic modeling of spatio-temporal structure of areas where common childhood sickness rate exists, it is necessary to mention that the only thing that can favour to exact predicting of where and when important catastrophes and epidemies will take place is correct and complex bio-geodynamic modeling. Imperfection of present GIS is the result of the lack of interactive facilities for multi-factor modeling of nonlinear natural and an- thropogenic processes. Equations' coefficients calculated for some areas are often irrelevant when applied to others. In this connection there arises a number of prob- lems concerning practical application and reliability of GIS-models that are used to carry out efficient ecological monitoring. References Bondarenko Y., 1997, Drawing up Cosmophotomaps and Multi-factor Forecasting of Hazard of Development of Dan- gerous Geodynamic Processes in Dnipropetrovsk,The Technically-Natural Problems of failures and catastrophes in connection with development of dangerous geological processes, Kiev, Ukraine, 1997. Bondarenko Y., 1997, The Methodology of a State the Value of Quality of the Ground and the House Level them Ecology-Genetic-Toxic of the human health risk based on multi-layer cartographical model", Experience of application GIS - Technologies for creating Cadastral Systems, Yalta, Ukraine, 1997, p. 39-40. Shestopalov V., Bondarenko Y., Zayonts I., Rudenko Y. , Bohuslavsky A., 1998, Complexation of Structural-Geodynamical and Hydrogeological Methods of Studying Areas to Reveal Geological Structural Perspectives for Deep Isolation of Radioactive Wastes, Field Testing and Associated Modeling of Potential High-Level Nuclear Waste Geologic Disposal Sites, Berkeley, USA, 1998, p.81-82. 3

  19. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1992-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10.times. critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  20. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1991-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10x critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  1. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, E.A. Jr.; Ast, D.G.

    1992-10-20

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10[times] critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In[sub 0.05]Ga[sub 0.95]As/(001)GaAs interface was controlled by fabricating 2-[mu]m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500 [angstrom] of In[sub 0.05]Ga[sub 0.95]As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-[mu]m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 [mu]m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density. 7 figs.

  2. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    PubMed

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  3. Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells.

    PubMed

    Qiu, Longbin; Ono, Luis K; Jiang, Yan; Leyden, Matthew R; Raga, Sonia R; Wang, Shenghao; Qi, Yabing

    2018-01-18

    The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO 2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO 2 , but the device is not stable and degrades rapidly. With an amorphous TiO 2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO 2 . Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH 3 NH 3 PbI 3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO 2 and CH 3 NH 3 PbI 3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO 2 can enhance device stability, strongly suggests that the interface interaction between TiO 2 and CH 3 NH 3 PbI 3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.

  4. Plasmon modes supported by left-handed material slab waveguide with conducting interfaces

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.

    2018-07-01

    Theoretical analysis of left-handed material core layer waveguide in the presence of interface free charge layers is presented. The thickness of the interface charge layer can be neglected compared with the incident wavelength. The tangential component of the magnetic field is no longer continuous due to the conducting interfaces. The non-homogeneous boundary conditions are solved and the corresponding dispersion relation is found. The dispersion properties are studied. The proposed structure is found to support even as well as odd plasmon modes. Moreover, the structure shows abnormal dispersion property of decreasing the effective index with the increase of the frequency which means negative group velocity.

  5. Modeling interface roughness scattering in a layered seabed for normal-incident chirp sonar signals.

    PubMed

    Tang, Dajun; Hefner, Brian T

    2012-04-01

    Downward looking sonar, such as the chirp sonar, is widely used as a sediment survey tool in shallow water environments. Inversion of geo-acoustic parameters from such sonar data precedes the availability of forward models. An exact numerical model is developed to initiate the simulation of the acoustic field produced by such a sonar in the presence of multiple rough interfaces. The sediment layers are assumed to be fluid layers with non-intercepting rough interfaces.

  6. A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Yamada, Riku; Gresback, Ryan; Zhou, Shu; Pi, Xiaodong; Nozaki, Tomohiro

    2014-12-01

    Silicon nanoparticles (Si NPs) synthesized in non-thermal plasma with silicon tetrachloride (SiCl4) are anticipated as a non-toxic and inexpensive Si source for important applications. This study examines the crystallinity, yield, and size distribution of Si NPs in terms of specific energy input (SEI) for 2.5-65 J cm‒3 and the H2/SiCl4 ratio (1-10). The particle growth mechanism is discussed comprehensively. Atomic hydrogen (H) production using non-thermal plasma is the primary important step for SiCl4 dechlorination at low temperatures. The Si NP yield increases with SEI (plasma power divided by total gas flow) because SiCl4 conversion increases with energy fed into the unit volume of the feed gas. At low SEI, Si NPs were mostly in amorphous material because of insufficient plasma heating. A maximum yield of 50 wt% was obtained when SEI = 10 J cm‒3 (H2/SiCl4 = 10) with a crystal fraction of about 1%. Increased SEI is necessary to improve crystal fraction, but excessive SEI decreases the NP yield remarkably. The NP yield losses correspond to increasing NP-free thin film growth on the reactor wall. Mass spectrometry shows that SiCl4 is highly decomposed with greater SEI. Hydrogen chloride (HCl) increases as a by-product. At higher SEI, particle nucleation and subsequent growth are suppressed.

  7. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.

    PubMed

    Christensen, Kyle; Davis, Brian; Jin, Yifei; Huang, Yong

    2018-08-01

    Additive manufacturing, or 3D printing, is a promising approach for the fabrication of biological structures for regenerative medicine applications using tissue-like materials such as hydrogels. Herein, inkjet printing is implemented as a model droplet-based 3D printing technology for which interfaces have been shown to form between printed lines within printed layers of hydrogel structures. Experimental samples with interfaces in two orientations are fabricated by inkjet printing and control samples with and without interfaces are fabricated by extrusion printing and casting, respectively. The formation of partial and full interfaces is modeled in terms of printing conditions and gelation parameters, and an approach to predicting the ratio of interfacial area to the total contact area between two adjacent lines is presented. Digital image correlation is used to determine strain distributions and identify regions of increased localized deformation for samples under uniaxial tension. Despite the presence of interfaces in inkjet-printed samples, strain distributions are found to be homogeneous regardless of interface orientation, which may be attributed to the multi-layer nature of samples. Conversely, single-layer extrusion-printed samples exhibit localized regions of increased deformation between printed lines, indicating delamination along interfaces. The effective stiffness, failure strength, and failure strain of inkjet-printed samples are found to be dependent on the orientation of interfaces within layers. Specifically, inkjet-printed samples in which tensile forces pull apart interfaces exhibit significantly decreased mechanical properties compared to cast samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian

    2018-02-01

    Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.

  9. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions.

    PubMed

    Pan, Yuanjie; Nitin, N

    2015-11-01

    Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    PubMed

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  11. Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells

    NASA Astrophysics Data System (ADS)

    Hilal, Muhammad; Han, Jeong In

    2018-06-01

    This is the first study that described how the interface interactions of graphene oxide (GO) with poly(3-hexylthiophene): 3'H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3'-butanoic acid 3'-phenyl methyl ester (PCBM) and with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) are influencing the stability and performance of poly(3-hexylthiophene): poly(3-hexylthiophene) (P3HT) (P3HT:PCBM)-based organic solar cell. The interface functionalization of these carrier-transporting layers was confirmed by XRD pattern, XPS analysis, and Raman spectroscopy. These interfaces chemical bond formation helped to firmly attach the GO layer with PCBM and PEDOT:PSS layers, forming a strong barrier against water molecule absorption and also provided an easy pathway for fast transfer of free carriers between P3HT:PCBM layer and metal electrodes via the backbone of the conjugated GO sheets. Because of these interface interactions, the device fabricated with PCBM/GO composite as an electron transport layer and GO/PEDOT:PSS composite as hole transport layer demonstrated a remarkable improvement in the value of power conversion efficiency (5.34%) and reproducibility with a high degree of control over the environmental stability (600 h). This study is paving a way for a new technique to further improve the stability and PCE for the commercialization of OSCs.

  12. Blocking Gastric Lipase Adsorption and Displacement Processes with Viscoelastic Biopolymer Adsorption Layers.

    PubMed

    Scheuble, Nathalie; Lussi, Micha; Geue, Thomas; Carrière, Frédéric; Fischer, Peter

    2016-10-10

    Delayed fat digestion might help to fight obesity. Fat digestion begins in the stomach by adsorption of gastric lipases to oil/water interfaces. In this study we show how biopolymer covered interfaces can act as a physical barrier for recombinant dog gastric lipase (rDGL) adsorption and thus gastric lipolysis. We used β-lactoglobulin (β-lg) and thermosensitive methylated nanocrystalline cellulose (metNCC) as model biopolymers to investigate the role of interfacial fluid dynamics and morphology for interfacial displacement processes by rDGL and polysorbate 20 (P20) under gastric conditions. Moreover, the influence of the combination of the flexible β-lg and the elastic metNCC was studied. The interfaces were investigated combining interfacial techniques, such as pendant drop, interfacial shear and dilatational rheology, and neutron reflectometry. Displacement of biopolymer layers depended mainly on the fluid dynamics and thickness of the layers, both of which were drastically increased by the thermal induced gelation of metNCC at body temperature. Soft, thin β-lg interfaces were almost fully displaced from the interface, whereas the composite β-lg-metNCC layer thermogelled to a thick interfacial layer incorporating β-lg as filler material and therefore resisted higher shear forces than a pure metNCC layer. Hence, with metNCC alone lipolysis by rDGL was inhibited, whereas the layer performance could be increased by the combination with β-lg.

  13. SOFTWARE ENGINEERING INSTITUTE (SEI)

    EPA Science Inventory

    The Software Engineering Institute (SEI) is a federally funded research and development center established in 1984 by the U.S. Department of Defense and operated by Carnegie Mellon University. SEI has a broad charter to provide leadership in the practice of software engineering t...

  14. Comparison and characterization of different tunnel layers, suitable for passivated contact formation

    NASA Astrophysics Data System (ADS)

    Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf

    2017-08-01

    Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.

  15. Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure

    NASA Astrophysics Data System (ADS)

    Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa

    2017-12-01

    We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.

  16. Dependence of the Carrier Transport Characteristics on the Buried Layer Thickness in Ambipolar Double-Layer Organic Field-Effect Transistors Investigated by Electrical and Optical Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2013-05-01

    By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.

  17. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  18. Physical criteria for the interface passivation layer in hydrogenated amorphous/crystalline silicon heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing

    2018-01-01

    AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.

  19. Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Shigeyuki; Kasai, Shinya; Mitani, Seiji

    2018-01-01

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Ta/NiFe/Pt layered structures was investigated through magnetization measurements. Ta/NiFe/Pt films with NiFe layer thickness (t) values of 2 nm or more showed typical in-plane magnetization curves, which was presumably due to the dominant contribution of the shape magnetic anisotropy. The thickness dependence of the saturation magnetization of the entire NiFe layer (M s) was well analyzed using the so-called dead-layer model, showing that the magnetically active part of the NiFe layer has saturation magnetization (M\\text{s}\\text{act}) independent of t and comparable to the bulk value. In the perpendicular direction, the saturation field H k was found to clearly decrease with decreasing t, while the effective field of shape magnetic anisotropy due to the active NiFe saturation magnetization M\\text{s}\\text{act} should be independent of t. These observations show that there exists interface PMA in the layered structures. The interface PMA energy density was determined to be ∼0.17 erg/cm2 using the dead-layer model. Motivated by the correlation observed between M s and H k, we also attempted to interpret the experimental results using an alternative approach beyond the dead-layer model; however, it gives only implications on the incomplete validity of the dead-layer model and no better understanding.

  20. Tailoring Heterovalent Interface Formation with Light

    DOE PAGES

    Park, Kwangwook; Alberi, Kirstin

    2017-08-17

    Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less

  1. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  2. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  3. Cr incorporated phase transformation in Y2O3 under ion irradiation

    PubMed Central

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  4. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE PAGES

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun; ...

    2017-01-16

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  5. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  6. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibayama, Shigehisa; JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083; Kato, Kimihiko

    2013-08-19

    The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to themore » AlGeO formation could lead appropriate interface structures with high interface qualities.« less

  7. Magnetoresistance effect in Fe{sub 20}Ni{sub 80}/graphene/Fe{sub 20}Ni{sub 80} vertical spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entani, Shiro, E-mail: entani.shiro@qst.go.jp; Naramoto, Hiroshi; Sakai, Seiji

    2016-08-22

    Vertical spin valve devices with junctions of single- and bi-layer graphene interlayers sandwiched with Fe{sub 20}Ni{sub 80} (Permalloy) electrodes were fabricated by exploiting the direct growth of graphene on the Permalloy. The linear current-voltage characteristics indicated that ohmic contacts were realized at the interfaces. The systematic characterization revealed the significant modification of the electronic state of the interfacial graphene layer on the Permalloy surface, which indicates the strong interactions at the interface. The ohmic transport was attributable to the strong interface-interaction. The vertical resistivity of the graphene interlayer and the spin asymmetry coefficient at the graphene/Permalloy interface were obtained tomore » be 0.13 Ω cm and 0.06, respectively. It was found that the strong interface interaction modifies the electronic structure and metallic properties in the vertical spin valve devices with bi-layer graphene as well as single-layer graphene.« less

  8. Dry texturing of solar cells

    DOEpatents

    Sopori, B.L.

    1994-10-25

    A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside on an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer. 9 figs.

  9. Dry texturing of solar cells

    DOEpatents

    Sopori, Bhushan L.

    1994-01-01

    A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer.

  10. Magnetic moments, coupling, and interface interdiffusion in Fe/V(001) superlattices

    NASA Astrophysics Data System (ADS)

    Schwickert, M. M.; Coehoorn, R.; Tomaz, M. A.; Mayo, E.; Lederman, D.; O'brien, W. L.; Lin, Tao; Harp, G. R.

    1998-06-01

    Epitaxial Fe/V(001) multilayers are studied both experimentally and by theoretical calculations. Sputter-deposited epitaxial films are characterized by x-ray diffraction, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. These results are compared with first-principles calculations modeling different amounts of interface interdiffusion. The exchange coupling across the V layers is observed to oscillate, with antiferromagnetic peaks near the V layer thicknesses tV~22, 32, and 42 Å. For all films including superlattices and alloys, the average V magnetic moment is antiparallel to that of Fe. The average V moment increases slightly with increasing interdiffusion at the Fe/V interface. Calculations modeling mixed interface layers and measurements indicate that all V atoms are aligned with one another for tV<~15 Å, although the magnitude of the V moment decays toward the center of the layer. This ``transient ferromagnetic'' state arises from direct (d-d) exchange coupling between V atoms in the layer. It is argued that the transient ferromagnetism suppresses the first antiferromagnetic coupling peak between Fe layers, expected to occur at tV~12 Å.

  11. Removal of the Magnetic Dead Layer by Geometric Design

    DOE PAGES

    Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.; ...

    2018-05-28

    The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less

  12. Removal of the Magnetic Dead Layer by Geometric Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.

    The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less

  13. A Modeling Pattern for Layered System Interfaces

    NASA Technical Reports Server (NTRS)

    Shames, Peter M.; Sarrel, Marc A.

    2015-01-01

    Communications between systems is often initially represented at a single, high level of abstraction, a link between components. During design evolution it is usually necessary to elaborate the interface model, defining it from several different, related viewpoints and levels of abstraction. This paper presents a pattern to model such multi-layered interface architectures simply and efficiently, in a way that supports expression of technical complexity, interfaces and behavior, and analysis of complexity. Each viewpoint and layer of abstraction has its own properties and behaviors. System elements are logically connected both horizontally along the communication path, and vertically across the different layers of protocols. The performance of upper layers depends on the performance of lower layers, yet the implementation of lower layers is intentionally opaque to upper layers. Upper layers are hidden from lower layers except as sources and sinks of data. The system elements may not be linked directly at each horizontal layer but only via a communication path, and end-to-end communications may depend on intermediate components that are hidden from them, but may need to be shown in certain views and analyzed for certain purposes. This architectural model pattern uses methods described in ISO 42010, Recommended Practice for Architectural Description of Software-intensive Systems and CCSDS 311.0-M-1, Reference Architecture for Space Data Systems (RASDS). A set of useful viewpoints and views are presented, along with the associated modeling representations, stakeholders and concerns. These viewpoints, views, and concerns then inform the modeling pattern. This pattern permits viewing the system from several different perspectives and at different layers of abstraction. An external viewpoint treats the systems of interest as black boxes and focuses on the applications view, another view exposes the details of the connections and other components between the black boxes. An internal view focuses on the implementation within the systems of interest, either showing external interface bindings and specific standards that define the communication stack profile or at the level of internal behavior. Orthogonally, a horizontal view isolates a single layer and a vertical viewpoint shows all layers at a single interface point between the systems of interest. Each of these views can in turn be described from both behavioral and structural viewpoints.

  14. Double-plasma enhanced carbon shield for spatial/interfacial controlled electrodes in lithium ion batteries via micro-sized silicon from wafer waste

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Hong; Chuang, Shang-I.; Duh, Jenq-Gong

    2016-11-01

    Using spatial and interfacial control, the micro-sized silicon waste from wafer slurry could greatly increase its retention potential as a green resource for silicon-based anode in lithium ion batteries. Through step by step spatial and interfacial control for electrode, the cyclability of recycled waste gains potential performance from its original poor retention property. In the stages of spatial control, the electrode stabilizers of active, inactive and conductive additives were mixed into slurries for maintaining architecture and conductivity of electrode. In addition, a fusion electrode modification of interfacial control combines electrolyte additive, technique of double-plasma enhanced carbon shield (D-PECS) to convert the chemical bond states and to alter the formation of solid electrolyte interphases (SEIs) in the first cycle. The depth profiles of chemical composition from external into internal electrode illustrate that the fusion electrode modification not only forms a boundary to balance the interface between internal and external electrodes but also stabilizes the SEIs formation and soothe the expansion of micro-sized electrode. Through these effect approaches, the performance of micro-sized Si waste electrode can be boosted from its serious capacity degradation to potential retention (200 cycles, 1100 mAh/g) and better meet the requirements for facile and cost-effective in industrial production.

  15. Teaching with Real-time Earthquake Data in jAmaSeis

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Coleman, B.; Taber, J.

    2011-12-01

    Earthquakes can capture the attention of students and inspire them to explore the Earth. The Incorporated Research Institutions in Seismology (IRIS) and Moravian College are collaborating to develop cross-platform software (jAmaSeis) that enables students to access real-time earthquake waveform data. Users can record their own data from several different types of educational seismometers, and they can obtain data in real-time from other jAmaseis users nationwide. Additionally, the ability to stream data from the IRIS Data Management Center (DMC) is under development. Once real-time data is obtained, users of jAmaseis can study seismological concepts in the classroom. The user interface of the software is carefully designed to lead students through the steps to interrogate seismic data following a large earthquake. Users can process data to determine characteristics of seismograms such as time of occurrence, distance from the epicenter to the station, magnitude, and location (via triangulation). Along the way, the software provides graphical clues to assist student interpretations. In addition to the inherent pedagogical features of the software, IRIS provides pre-packaged data and instructional activities to help students learn the analysis steps. After using these activities, students can apply their skills to interpret seismic waves from their own real-time data.

  16. Space exploration initiative (SEI) logistics support lessons from the DoD

    NASA Astrophysics Data System (ADS)

    Cox, John R.; McCoy, Walbert G.; Jenkins, Terence

    Proven and innovative logistics management approaches and techniques used for developing and supporting DoD and Strategic Defense Initiative Office (SDIO) systems are described on the basis of input from DoD to the SEI Synthesis Group; SDIO-developed logistics initiatives, innovative tools, and methodologies; and logistics planning support provided to the NASA/Johnson Planet Surface System Office. The approach is tailored for lunar/Martian surface operations, and provides guidelines for the development and management of a crucial element of the SEI logistics support program. A case study is presented which shows how incorporation of DoD's proven and innovative logistics management approach, tools, and techniques can substantially benefit early logistics planning for SEI, while also implementing many of DoD's recommendations for SEI.

  17. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  18. First-principles study of graphene under c-HfO{sub 2}(111) layers: Electronic structures and transport properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Tomoaki, E-mail: kaneko@flex.phys.tohoku.ac.jp; Materials Research Consortium for Energy Efficient Electronic Devices; Ohno, Takahisa, E-mail: OHNO.Takahisa@nims.go.jp

    2016-08-22

    We investigated the electronic properties, stability, and transport of graphene under c-HfO{sub 2}(111) layers by performing first-principles calculations with special attention to the chemical bonding between graphene and HfO{sub 2} surfaces. When the interface of HfO{sub 2}/graphene is terminated by an O layer, the linear dispersion of graphene is preserved and the degradation of transport is suppressed. For other interface structures, HfO{sub 2} is tightly adsorbed on graphene and the transport is strictly limited. In terms of the stability of the interface structures, an O-terminated interface is preferable, which is achieved under an O-deficient condition.

  19. Coherently coupled ZnO and VO2 interface studied by photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Herng, T. S.; Saha, Surajit; Nina, Bao; Annadi, A.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Ariando; Ding, J.; Venkatesan, T.

    2012-06-01

    We have investigated the photoluminescence and electrical properties of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire across the phase transition of VO2. The band edge and defect luminescence of the ZnO overlayer exhibit hysteresis in opposite directions induced by the phase transition of VO2. Concomitantly the phase transition of VO2 was seen to induce defects in the ZnO layer. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces in situ and also for novel device application.

  20. Ab initio density functional theory study on the atomic and electronic structure of GaP/Si(001) heterointerfaces

    NASA Astrophysics Data System (ADS)

    Romanyuk, O.; Supplie, O.; Susi, T.; May, M. M.; Hannappel, T.

    2016-10-01

    The atomic and electronic band structures of GaP/Si(001) heterointerfaces were investigated by ab initio density functional theory calculations. Relative total energies of abrupt interfaces and mixed interfaces with Si substitutional sites within a few GaP layers were derived. It was found that Si diffusion into GaP layers above the first interface layer is energetically unfavorable. An interface with Si/Ga substitution sites in the first layer above the Si substrate is energetically the most stable one in thermodynamic equilibrium. The electronic band structure of the epitaxial GaP/Si(001) heterostructure terminated by the (2 ×2 ) surface reconstruction consists of surface and interface electronic states in the common band gap of two semiconductors. The dispersion of the states is anisotropic and differs for the abrupt Si-Ga, Si-P, and mixed interfaces. Ga 2 p , P 2 p , and Si 2 p core-level binding-energy shifts were computed for the abrupt and the lowest-energy heterointerface structures. Negative and positive core-level shifts due to heterovalent bonds at the interface are predicted for the abrupt Si-Ga and Si-P interfaces, respectively. The distinct features in the heterointerface electronic structure and in the core-level shifts open new perspectives in the experimental characterization of buried polar-on-nonpolar semiconductor heterointerfaces.

  1. A methodology for the design and evaluation of user interfaces for interactive information systems. Ph.D. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Farooq, Mohammad U.

    1986-01-01

    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.

  2. Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface.

    PubMed

    Mallik, Srijani; Mattauch, Stefan; Dalai, Manas Kumar; Brückel, Thomas; Bedanta, Subhankar

    2018-04-03

    Probing the hybridized magnetic interface between organic semiconductor (OSC) and ferromagnetic (FM) layers has drawn significant attention in recent years because of their potential in spintronic applications. Recent studies demonstrate various aspects of organic spintronics such as magnetoresistance, induced interface moment etc. However, not much work has been performed to investigate the implications of such OSC/FM interfaces on the magnetization reversal and domain structure which are the utmost requirements for any applications. Here, we show that non-magnetic Fullerene can obtain non-negligible magnetic moment at the interface of Fe(15 nm)/C 60 (40 nm) bilayer. This leads to substantial effect on both the magnetic domain structure as well as the magnetization reversal when compared to a single layer of Fe(15 nm). This is corroborated by the polarized neutron reflectivity (PNR) data which indicates presence of hybridization at the interface by the reduction of magnetic moment in Fe. Afterwards, upto 1.9 nm of C 60 near the interface exhibits magnetic moment. From the PNR measurements it was found that the magnetic C 60 layer prefers to be aligned anti-parallel with the Fe layer at the remanant state. The later observation has been confirmed by domain imaging via magneto-optic Kerr microscopy.

  3. 76 FR 72729 - SEI Investments Management Corporation, et al.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ...] SEI Investments Management Corporation, et al. November 18, 2011. AGENCY: Securities and Exchange... Application: Applicants request an order to permit open-end management investment companies relying on rule 12d1-2 under the Act to invest in certain financial instruments. Applicants: SEI Investments Management...

  4. Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell

    An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.

  5. Why we should care about soft tissue interfaces when applying ultrasonic diathermy: an experimental and computer simulation study.

    PubMed

    Omena, Thaís Pionório; Fontes-Pereira, Aldo José; Costa, Rejane Medeiros; Simões, Ricardo Jorge; von Krüger, Marco Antônio; Pereira, Wagner Coelho de Albuquerque

    2017-01-01

    One goal of therapeutic ultrasound is enabling heat generation in tissue. Ultrasound application protocols typically neglect these processes of absorption and backscatter/reflection at the skin/fat, fat/muscle, and muscle/bone interfaces. The aim of this study was to investigate the heating process at interfaces close to the transducer and the bone with the aid of computer simulation and tissue-mimicking materials (phantoms). The experimental setup consists of physiotherapeutic ultrasound equipment for irradiation, two layers of soft tissue-mimicking material, and one with and one without an additional layer of bone-mimicking material. Thermocouple monitoring is used in both cases. A computational model is used with the experimental parameters in a COMSOL® software platform. The experimental results show significant temperature rise (42 °C) at 10 mm depth, regardless of bone layer presence, diverging 3 °C from the simulated values. The probable causes are thermocouple and transducer heating and interface reverberations. There was no statistical difference in the experimental results with and without the cortical bone for the central thermocouple of the first interface [ t (38) = -1.52; 95% CI = -0.85, 0.12; p  = 14]. Temperature rise (>6 °C) close to the bone layer was lower than predicted (>21 °C), possibly because without the bone layer, thermocouples at 30 mm make contact with the water bath and convection intensifies heat loss; this factor was omitted in the simulation model. This work suggests that more attention should be given to soft tissue layer interfaces in ultrasound therapeutic procedures even in the absence of a close bone layer.

  6. Graphene interfaced perovskite solar cells: Role of graphene flake size

    NASA Astrophysics Data System (ADS)

    Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu

    2018-04-01

    Graphene interfaced inverted planar heterojunction perovskite solar cells are fabricated by facile solution method and studied its potential as hole conducting layer. Reduced graphene oxide (rGO) with small and large flake size and Polyethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) are utilized as hole conducting layers in different devices. For the solar cell employing PEDOT:PSS as hole conducting layer, 3.8 % photoconversion efficiency is achieved. In case of solar cells fabricated with rGO as hole conducting layer, the efficiency of the device is strongly dependent on flake size. With all other fabrication conditions kept constant, the efficiency of graphene-interfaced solar cell improves by a factor of 6, by changing the flake size of graphene oxide. We attribute this effect to uniform coverage of graphene layer and improved electrical percolation network.

  7. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    NASA Astrophysics Data System (ADS)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  8. Influence of interface layer preparation on the electrical and spectral characteristics of GaN/Si solar cells

    NASA Astrophysics Data System (ADS)

    Shugurov, K. U.; Mozharov, A. M.; Sapunov, G. A.; Fedorov, V. V.; Bolshakov, A. D.; Mukhin, I. S.

    2018-03-01

    Volt-ampere and spectral characteristics of GaN/Si solar cell samples differing in interface layer preparation are obtained and analyzed. External quantum efficiency curves are experimentally determined via excitation with a 532 nm incident radiation wavelength. It is demonstrated that interface preparation has a significant influence on photovoltaic characteristics of the studied samples.

  9. A simple model for the prediction of the discrete stiffness states of a homogeneous electrostatically tunable multi-layer beam

    NASA Astrophysics Data System (ADS)

    Bergamini, A.; Christen, R.; Motavalli, M.

    2007-04-01

    The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.

  10. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Süle, P.; Horváth, Z. E.; Kaptás, D.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuummore » evaporation—support the results of the molecular dynamics calculations.« less

  11. Numerical study of metal oxide hetero-junction solar cells with defects and interface states

    NASA Astrophysics Data System (ADS)

    Zhu, Le; Shao, Guosheng; Luo, J. K.

    2013-05-01

    Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.

  12. Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM₇₀ bulk-heterojunction layers.

    PubMed

    Huh, Yoon Ho; Park, Byoungchoo

    2013-01-14

    We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C₇₁ butyric acid methyl ester (PCBM₇₀), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM₇₀ system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM₇₀ PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells.

  13. Comparative study on nitridation and oxidation plasma interface treatment for AlGaN/GaN MIS-HEMTs with AlN gate dielectric

    NASA Astrophysics Data System (ADS)

    Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue

    2017-02-01

    This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.

  14. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOEpatents

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  15. Long-wavelength Instability in Surface-tension-driven Bénard Convection

    NASA Astrophysics Data System (ADS)

    van Hook, Stephen J.

    1997-03-01

    Laboratory experiments and numerical simulations reveal that a liquid layer heated from below and possessing a free upper surface can undergo a long-wavelength deformational instability that causes rupture of the interface.(S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift, and H. L. Swinney, Phys. Rev. Lett.) 75, 4397 (1995). Depending on the depth and thermal conductivity of the liquid and the overlying gas layer, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. This long-wavelength instability competes with the formation of Bénard hexagons for thin or viscous liquid layers, or for liquid layers in microgravity.

  16. Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers

    NASA Astrophysics Data System (ADS)

    Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.

    2015-05-01

    The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.

  17. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-T c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed.more » Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  18. Hidden Interface Driven Exchange Coupling in Oxide Heterostructures

    DOE PAGES

    Chen, Aiping; Wang, Qiang; Fitzsimmons, Michael R.; ...

    2017-05-02

    In a variety of emergent phenomena have been enabled by interface engineering in complex oxides. The existence of an intrinsic interfacial layer has often been found at oxide heterointerfaces. But, the role of such an interlayerin controlling functionalities is not fully explored. Here, we report the control of the exchange bias (EB) in single-phase manganite thin films with nominallyuniform chemical composition across the interfaces. The sign of EB depends on the magnitude of the cooling field. A pinned layer, confirmed by polarized neutron reflectometry, provides the source of unidirectional anisotropy. The origin of the exchange bias coupling is discussed inmore » terms of magnetic interactions between the interfacial ferromagnetically reduced layer and the bulk ferromagnetic region. The sign of EB is related to the frustration of antiferromagnetic coupling between the ferromagnetic region and the pinned layer. These results shed new light on using oxide interfaces to design functional spintronic devices.« less

  19. Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon

    2011-03-01

    Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.

  20. CMMI on the Web: Remastered

    DTIC Science & Technology

    2009-09-01

    Patrick Kirwin: www.sei.cmu.edu/library/abstracts/webinars/18jul2008.cfm  Also see: www.sei.cmu.edu/prime  ISO 9001/15504/ 12207 /15288 Process...Improvement with CMMI V1.2 and ISO Standards by Boris Mutafelija and Harvey Stromberg (Book)  www.sei.cmu.edu/library/abstracts/presentations/Mutafelija

  1. Socio-economic inequality and HIV in South Africa

    PubMed Central

    2013-01-01

    Background The linkage between the socio-economic inequality and HIV outcomes was analysed using data from a population-based household survey that employed multistage-stratified sampling. The goal is to help refocus attention on how HIV is linked to inequalities. Methods A socio-economic index (SEI) score, derived using Multiple Correspondence Analysis of measures of ownership of durable assets, was used to generate three SEI groups: Low (poorest), Middle, and Upper (no so poor). Distribution of HIV outcomes (i.e. HIV prevalence, access to HIV/AIDS information, level of stigma towards HIV/AIDS, perceived HIV risk and sexual behaviour) across the SEI groups, and other background characteristics was assessed using weighted data. Univariate and multivariate logistic regression was used to assess the covariates of the HIV outcomes across the socio-economic groups. The study sample include 14,384 adults 15 years and older. Results More women (57.5%) than men (42.3%) were found in the poor SEI [P<0.001]. HIV prevalence was highest among the poor (20.8%) followed by those in the middle (15.9%) and those in the upper SEI (4.6%) [P<0.001]. It was also highest among women compared to men (19.7% versus 11.4% respectively) and among black Africans (20.2%) compared to other races [P<0.001]. Individuals in the upper SEI reported higher frequency of HIV testing (59.3%) compared to the low SEI (47.7%) [P< 0.001]. Only 20.5% of those in poor SEI had “good access to HIV/AIDS information” compared to 79.5% in the upper SEI (P<0.001). A higher percentage of the poor had a stigmatizing attitude towards HIV/AIDS (45.6%) compared to those in the upper SEI (34.8%) [P< 0.001]. There was a high personal HIV risk perception among the poor (40.0%) and it declined significantly to 10.9% in the upper SEI. Conclusions Our findings underline the disproportionate burden of HIV disease and HIV fear among the poor and vulnerable in South Africa. The poor are further disadvantaged by lack of access to HIV information and HIV/AIDS services such as testing for HIV infection. There is a compelling urgency for the national HIV/AIDS response to maximizing program focus for the poor particularly women. PMID:24180366

  2. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p(ΔNterm) only in combination with Ldb16p.

    PubMed

    Han, Sungwon; Binns, Derk D; Chang, Yu-Fang; Goodman, Joel M

    2015-12-04

    Seipin is required for the correct assembly of cytoplasmic lipid droplets. In the absence of the yeast seipin homolog Sei1p (formerly Fld1p), droplets are slow to bud from the endoplasmic reticulum, lack the normal component of proteins on their surface, are highly heterogeneous in size and shape, often bud into the nucleus, and promote local proliferation of the endoplasmic reticulum in which they become tangled. But the mechanism by which seipin catalyzes lipid droplet formation is still uncertain. Seipin prevents a localized accumulation of phosphatidic acid (PA puncta) at ER-droplet junctions. PA puncta were detected with three different probes: Opi1p, Spo20p(51-91) and Pah1p. A system of droplet induction was used to show that PA puncta were not present until droplets were formed; the puncta appeared regardless of whether droplets consisted of triacylglycerol or steryl ester. Deletion strains were used to demonstrate that a single phosphatidic acid-producing enzyme is not responsible for the generation of the puncta, and the puncta remain resistant to overexpression of enzymes that metabolize phosphatidic acid, suggesting that this lipid is trapped in a latent compartment. Suppression of PA puncta requires the first 14 amino acids of Sei1p (Nterm), a domain that is also important for initiation of droplet assembly. Consistent with recent evidence that Ldb16p and Sei1p form a functional unit, the PA puncta phenotype in the ldb16Δ sei1Δ strain was rescued by human seipin. Moreover, PA puncta in the sei1Δ strain expressing Sei1p(ΔNterm) was suppressed by overexpression of Ldb16p, suggesting a functional interaction of Nterm with this protein. Overexpression of both Sei1p and Ldb16p, but not Sei1p alone, is sufficient to cause a large increase in droplet number. However, Ldb16p alone increases triacylglycerol accumulation in the ldb16Δ sei1Δ background. We hypothesize that seipin prevents formation of membranes with extreme curvature at endoplasmic reticulum/droplet junctions that would attract phosphatidic acid. While Ldb16p alone can affect triacylglycerol accumulation, proper droplet formation requires the collaboration of Sei1p and Ldb16.

  3. Socio-economic inequality and HIV in South Africa.

    PubMed

    Wabiri, Njeri; Taffa, Negussie

    2013-11-04

    The linkage between the socio-economic inequality and HIV outcomes was analysed using data from a population-based household survey that employed multistage-stratified sampling. The goal is to help refocus attention on how HIV is linked to inequalities. A socio-economic index (SEI) score, derived using Multiple Correspondence Analysis of measures of ownership of durable assets, was used to generate three SEI groups: Low (poorest), Middle, and Upper (no so poor). Distribution of HIV outcomes (i.e. HIV prevalence, access to HIV/AIDS information, level of stigma towards HIV/AIDS, perceived HIV risk and sexual behaviour) across the SEI groups, and other background characteristics was assessed using weighted data. Univariate and multivariate logistic regression was used to assess the covariates of the HIV outcomes across the socio-economic groups. The study sample include 14,384 adults 15 years and older. More women (57.5%) than men (42.3%) were found in the poor SEI [P<0.001]. HIV prevalence was highest among the poor (20.8%) followed by those in the middle (15.9%) and those in the upper SEI (4.6%) [P<0.001]. It was also highest among women compared to men (19.7% versus 11.4% respectively) and among black Africans (20.2%) compared to other races [P<0.001]. Individuals in the upper SEI reported higher frequency of HIV testing (59.3%) compared to the low SEI (47.7%) [P< 0.001]. Only 20.5% of those in poor SEI had "good access to HIV/AIDS information" compared to 79.5% in the upper SEI (P<0.001). A higher percentage of the poor had a stigmatizing attitude towards HIV/AIDS (45.6%) compared to those in the upper SEI (34.8%) [P< 0.001]. There was a high personal HIV risk perception among the poor (40.0%) and it declined significantly to 10.9% in the upper SEI. Our findings underline the disproportionate burden of HIV disease and HIV fear among the poor and vulnerable in South Africa. The poor are further disadvantaged by lack of access to HIV information and HIV/AIDS services such as testing for HIV infection. There is a compelling urgency for the national HIV/AIDS response to maximizing program focus for the poor particularly women.

  4. The atomic level structure of the TiO(2)-NiTi interface.

    PubMed

    Nolan, M; Tofail, S A M

    2010-09-07

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.

  5. Orientation dependences of atomic structures in chemically heterogeneous Cu{sub 50}Ta{sub 50}/Ta glass-crystal interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guiqin; Gao, Xiaoze; Li, Jinfu

    2015-01-07

    Molecular dynamics simulations based on an angular-dependent potential were performed to examine the structural properties of chemically heterogeneous interfaces between amorphous Cu{sub 50}Ta{sub 50} and crystalline Ta. Several phenomena, namely, layering, crystallization, intermixing, and composition segregation, were observed in the Cu{sub 50}Ta{sub 50} region adjacent to the Ta layers. These interfacial behaviors are found to depend on the orientation of the underlying Ta substrate: Layering induced by Ta(110) extends the farthest into Cu{sub 50}Ta{sub 50}, crystallization in the Cu{sub 50}Ta{sub 50} region is most significant for interface against Ta(100), while inter-diffusion is most pronounced for Ta(111). It turns out thatmore » the induced layering behavior is dominated by the interlayer distances of the underlying Ta layers, while the degree of inter-diffusion is governed by the openness of the Ta crystalline layers. In addition, composition segregations are observed in all interface models, corresponding to the immiscible nature of the Cu-Ta system. Furthermore, Voronoi polyhedra 〈0,5,2,6〉 and 〈0,4,4,6〉 are found to be abundant in the vicinity of the interfaces for all models, whose presence is believed to facilitate the structural transition between amorphous and body centered cubic.« less

  6. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO2 as the Electronic Interface Layer.

    PubMed

    Chen, Li; Chen, Weilin; Li, Jianping; Wang, Jiabo; Wang, Enbo

    2017-07-21

    Electron recombination occurring at the TiO 2 /quantum dot sensitizer/electrolyte interface is the key reason for hindering further efficiency improvements to quantum dot sensitized solar cells (QDSCs). Polyoxometalate (POM) can act as an electron-transfer medium to decrease electron recombination in a photoelectric device owing to its excellent oxidation/reduction properties and thermostability. A POM/TiO 2 electronic interface layer prepared by a simple layer-by-layer self-assembly method was added between fluorine-doped tin oxide (FTO) and mesoporous TiO 2 in the photoanode of QDSCs, and the effect on the photovoltaic performance was systematically investigated. Photovoltaic experimental results and the electron transmission mechanism show that the POM/TiO 2 electronic interface layer in the QDSCs can clearly suppress electron recombination, increase the electron lifetime, and result in smoother electron transmission. In summary, the best conversion efficiency of QDSCs with POM/TiO 2 electronic interface layers increases to 8.02 %, which is an improvement of 25.1 % compared with QDSCs without POM/TiO 2 . This work first builds an electron-transfer bridge between FTO and the quantum dot sensitizer and paves the way for further improved efficiency of QDSCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J. L., E-mail: jlyu@semi.ac.cn; Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou 350002

    2015-01-07

    The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2 nm to 8 nm has been studied by reflectance difference spectroscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness ofmore » the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k ⋅ p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.« less

  8. Silicon/HfO{sub 2} interface: Effects of gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, Savita

    2016-05-23

    Quality of MOS devices is a strong function of substrate and oxide interface. In this work we have studied how gamma photon irradiation affects the interface of a 13 nm thick, atomic layer deposited hafnium dioxide deposited on silicon wafer. CV and GV measurements have been done for pristine and irradiated samples to quantify the effect of gamma photon irradiation. Gamma photon irradiation not only introduces positive charge in the oxide and at the interface of Si/HfO{sub 2} interface but also induce phase change of oxide layer. Maximum oxide capacitances are affected by gamma photon irradiation.

  9. Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Gonzales, D.; Criswell, D.; Heer, E.

    1991-01-01

    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.

  10. U.S. Tsunami Information technology (TIM) Modernization:Developing a Maintainable and Extensible Open Source Earthquake and Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Lisowski, S.; Baker, B.; Hagerty, M.; Lomax, A.; Leifer, J. M.; Thies, D. A.; Schnackenberg, A.; Barrows, J.

    2015-12-01

    Tsunami Information technology Modernization (TIM) is a National Oceanic and Atmospheric Administration (NOAA) project to update and standardize the earthquake and tsunami monitoring systems currently employed at the U.S. Tsunami Warning Centers in Ewa Beach, Hawaii (PTWC) and Palmer, Alaska (NTWC). While this project was funded by NOAA to solve a specific problem, the requirements that the delivered system be both open source and easily maintainable have resulted in the creation of a variety of open source (OS) software packages. The open source software is now complete and this is a presentation of the OS Software that has been funded by NOAA for benefit of the entire seismic community. The design architecture comprises three distinct components: (1) The user interface, (2) The real-time data acquisition and processing system and (3) The scientific algorithm library. The system follows a modular design with loose coupling between components. We now identify the major project constituents. The user interface, CAVE, is written in Java and is compatible with the existing National Weather Service (NWS) open source graphical system AWIPS. The selected real-time seismic acquisition and processing system is open source SeisComp3 (sc3). The seismic library (libseismic) contains numerous custom written and wrapped open source seismic algorithms (e.g., ML/mb/Ms/Mwp, mantle magnitude (Mm), w-phase moment tensor, bodywave moment tensor, finite-fault inversion, array processing). The seismic library is organized in a way (function naming and usage) that will be familiar to users of Matlab. The seismic library extends sc3 so that it can be called by the real-time system, but it can also be driven and tested outside of sc3, for example, by ObsPy or Earthworm. To unify the three principal components we have developed a flexible and lightweight communication layer called SeismoEdex.

  11. S-Layer Protein-Based Biosensors.

    PubMed

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  12. Orthogonal Simulation Experiment for Flow Characteristics of Ore in Ore Drawing and Influencing Factors in a Single Funnel Under a Flexible Isolation Layer

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu; Chen, Qinglin; Wang, Yuding; Zhong, Yu; Niu, Wenjing

    2017-12-01

    A study on the flow characteristics of ore and factors that influence these characteristics is important to master ore flow laws. An orthogonal ore-drawing numerical model was established and the flow characteristics were explored. A weight matrix was obtained and the effect of the factors was determined. It was found that (1) the entire isolation-layer interface presents a Gaussian curve morphology and marked particles in each layer show a funnel morphology; (2) the drawing amount, Q, and the isolation layer half-width, W, are correlated positively with the fall depth, H, of the isolation layer; (3) factors that affect the characteristics sequentially include the particle friction coefficient, the interface friction coefficient, the isolation layer thickness, and the particle radius, and (4) the optimal combination is an isolation layer thickness of 0.005 m, an interface friction coefficient of 0.8, a particle friction coefficient of 0.2, and a particle radius of 0.007 m.

  13. On the role of weak interface in crack blunting process in nanoscale layered composites

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian

    2018-03-01

    Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.

  14. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    PubMed

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Signature of a highly spin polarized resonance state at Co2MnSi(0 0 1)/Ag(0 0 1) interfaces

    NASA Astrophysics Data System (ADS)

    Lidig, Christian; Minár, Jan; Braun, Jürgen; Ebert, Hubert; Gloskovskii, Andrei; Kronenberg, Alexander; Kläui, Mathias; Jourdan, Martin

    2018-04-01

    We investigated interfaces of halfmetallic Co2MnSi(1 0 0) Heusler thin films with Ag(1 0 0), Cr(1 0 0), Cu and Al layers relevant for spin valves by high energy x-ray photoemission spectroscopy (HAXPES). Experiments on Co2MnSi samples with an Ag(1 0 0) interface showed a characteristic spectral shoulder feature close to the Fermi edge, which is strongly diminished or suppressed at Co2MnSi (1 0 0) interfaces with the other metallic layers. This feature is found to be directly related to the Co2MnSi(1 0 0) layer, as reflected by control experiments with reference non-magnetic films, i.e. without the Heusler layer. By comparison with HAXPES calculations, the shoulder feature is identified as originating from an interface state related to a highly spin polarized surface resonance of Co2MnSi (1 0 0).

  16. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    PubMed

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  17. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  18. A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model development and application

    USGS Publications Warehouse

    Essaid, Hedeff I.

    1990-01-01

    A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.

  19. Interfacial layering and capillary roughness in immiscible liquids.

    PubMed

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  20. Defense in Depth: Foundation for Secure and Resilient IT Enterprises

    DTIC Science & Technology

    2006-09-01

    Gabbard , D., & May, C. (2003). Outsourcing Managed Security Service. http://www.sei.cmu.edu/publications/documents/sims/sim012.html. 296 CMU/SEI...security_matters/2001/2q01/security-2q01.htm. [Allen 03] Allen, J., Gabbard , D., & May, C. Outsourcing Managed Security Service (CMU/SEI-SIM-012

  1. Science and Engineering Indicators 2010. NSB 10-01

    ERIC Educational Resources Information Center

    Lehming, Rolf F.; Alt, Martha Naomi; Chen, Xianglei; Hall, Leslie; Burton, Lawrence; Burrelli, Joan S.; Kannankutty, Nirmala; Proudfoot, Steven; Regets, Mark C.; Boroush, Mark; Moris, Francisco A.; Wolfe, Raymond M.; Britt, Ronda; Christovich, Leslie; Hill, Derek; Falkenheim, Jaquelina C.; Dunnigan, Paula C.

    2010-01-01

    "Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising the major high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI is factual and policy neutral. It does not offer policy options, and it does not make policy recommendations. SEI employs a variety…

  2. Science and Engineering Indicators 2012. NSB 12-01

    ERIC Educational Resources Information Center

    National Science Foundation, 2012

    2012-01-01

    Science and Engineering Indicators (SEI) is first and foremost a volume of record comprising the major high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI is factual and policy neutral. It does not offer policy options, and it does not make policy recommendations. SEI employs a variety of…

  3. Conversion of type of quantum well structure

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng (Inventor)

    2007-01-01

    A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.

  4. Conversion of Type of Quantum Well Structure

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng (Inventor)

    2007-01-01

    A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.

  5. Multijunction photovoltaic device and fabrication method

    DOEpatents

    Arya, Rajeewa R.; Catalano, Anthony W.

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  6. Mathematic modeling of the method of measurement relative dielectric permeability

    NASA Astrophysics Data System (ADS)

    Plotnikova, I. V.; Chicherina, N. V.; Stepanov, A. B.

    2018-05-01

    The method of measuring relative permittivity’s and the position of the interface between layers of a liquid medium is considered in the article. An electric capacitor is a system consisting of two conductors that are separated by a dielectric layer. It is mathematically proven that at any given time it is possible to obtain the values of the relative permittivity in the layers of the liquid medium and to determine the level of the interface between the layers of the two-layer liquid. The estimation of measurement errors is made.

  7. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    NASA Astrophysics Data System (ADS)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  8. Fermi level pinning at epitaxial Si on GaAs(100) interfaces

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-12-01

    GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.

  9. CU’s Department of Geological Sciences - Science Education Initiative Project (GEOL-SEI): A five-year plan for introducing and supporting an evidence-based and scientific approach to teaching

    NASA Astrophysics Data System (ADS)

    Arthurs, L.; Budd, D. A.

    2009-12-01

    The Science Education Initiative (SEI) at the University of Colorado at Boulder was conceived in 2006 with the goal of improving science education at the undergraduate level by changing the basic approach to teaching in science departments. Five departments were selected on a competitive basis for participation in the SEI. The SEI is operating as a five year plan with funding of ~$1 million/year for the five departments. The goal of the SEI is to implement sustainable department-level change for an evidence-based and scientific approach to teaching. Among the five departments receiving funding for discipline-specific SEI projects is the Department of Geological Sciences (GEOL-SEI). The GEOL-SEI has worked to transform geology courses beginning with lower division large enrollment courses and moving towards upper division courses. They are transformed on the basis of existing research into how people learn, and they are characterized by the use of learning goals and effective instructional approaches. Furthermore, a natural component of the transformation towards evidence-based and scientific approaches to teaching is geocognition and geoscience education research. This research focuses on how students think about geologic concepts (e.g. misconceptions) and the effectiveness of different instructional approaches (e.g. the implementation of instructional technologies, peer learning activities, homework, and labs). The research is conducted by post-doctoral fellows (with PhDs in geology and pedagogical training) in collaboration with the instructional faculty members. The directorate of CU’s Science Education Initiative provides the fellows with training useful for conducting the research. Currently, into the 4th year of its 5-year plan, the GEOL-SEI is working towards publishing its findings and exploring options for sustaining various changes made to courses and new departmental programs that support student learning (e.g. GEOL Tutoring & Study Room).

  10. Season-Ending Shoulder Injuries in the National Collegiate Athletic Association: Data From the NCAA Injury Surveillance Program, 2009-2010 Through 2013-2014.

    PubMed

    Goodman, Avi D; DeFroda, Steven F; Gil, Joseph A; Kleiner, Justin E; Li, Neill Y; Owens, Brett D

    2018-05-01

    Examination of the incidence of shoulder season-ending injury (SEI) in the collegiate athlete population is limited. To determine the incidence of shoulder SEI in the National Collegiate Athletic Association (NCAA) and to investigate the risk factors for a shoulder injury ending an athlete's season. Descriptive epidemiology study. All shoulder injuries from the NCAA Injury Surveillance Program database for the years 2009-2010 to 2013-2014 were extracted, and SEI status was noted. The incidences of SEI and non-SEI were calculated for athlete, activity, and injury characteristics and compared via univariable analysis and risk ratios to determine risk factors for an injury being season ending. Shoulder injuries were season ending in 4.3% of cases. The overall incidence of shoulder SEI was 0.31 per 10,000 athlete exposures (AEs), as opposed to 7.25 per 10,000 AEs for all shoulder injuries. Shoulder instability constituted 49.1% of SEI, with an incidence of 0.15 per 10,000 AEs, while fractures had the highest rate of being season ending (41.9%). Men's wrestling had the highest incidence of shoulder SEI (1.65 per 10,000 AEs), while men's soccer had the highest proportion of shoulder injuries that ended a season (14.6%). Overall, men had a 6.3-fold higher incidence of SEI than women and a 2.4-fold increased likelihood that an injury would be season ending. Injury to the shoulder of an NCAA athlete, while somewhat infrequent, can have significant implications on time lost from play. Incidence of these injuries varies widely by sport and injury, with a number of associated risk factors. Athletes sustaining potentially season-ending shoulder injuries, with their coaches and medical providers, may benefit from these data to best manage expectations and outcomes.

  11. Layer-by-Layer Evolution of a Two-Dimensional Electron Gas Near an Oxide Interface

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Moreschini, Luca; Bostwick, Aaron; Gaines, Geoffrey A.; Kim, Yong Su; Walter, Andrew L.; Freelon, Byron; Tebano, Antonello; Horn, Karsten; Rotenberg, Eli

    2013-09-01

    We report the momentum-resolved measurement of a two-dimensional electron gas at the LaTiO3/SrTiO3 interface by angle-resolved photoemission spectroscopy (ARPES). Thanks to an advanced sample preparation technique, the orbital character of the conduction electrons and the electronic correlations can be accessed quantitatively as each unit cell layer is added. We find that all of these quantities change dramatically with distance from the interface. These findings open the way to analogous studies on other heterostructures, which are traditionally a forbidden field for ARPES.

  12. Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched between Two Homogeneous Layers of Finite Thickness

    NASA Technical Reports Server (NTRS)

    Shbeeh, N. I.; Binienda, W. K.

    1999-01-01

    The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.

  13. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of dry air on interface smoothening in reactive sputter deposited Co/Ti multilayer

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Porwal, A.; Bhattacharya, Debarati; Prajapat, C. L.; Ghosh, Arnab; Nand, Mangla; Nayak, C.; Rai, S.; Jha, S. N.; Singh, M. R.; Bhattacharyya, D.; Basu, S.; Sahoo, N. K.

    2017-09-01

    Top surface roughness and interface roughness are one of the key elements which determine the performance of X-ray and neutron thin film multilayer devices. It has been observed that by mixing air with argon in sputtering ambience during deposition of Co layers, polarized neutron reflectivity (PNR) of Co/Ti supermirror polarizers can be improved substantially. Cross-sectional HRTEM measurement reveals that sharper interfaces in the supermirror can be achieved in case of deposition of the multilayer under mixed ambience of argon and air. In order to investigate this interface modification mechanism further, in this communication two sets of tri-layer Co/Ti/Co samples and 20-layer Co/Ti periodic multilayer samples have been prepared; in one set all the layers are deposited only under argon ambience and in the other set, Co layers are deposited under a mixed ambience of argon and air. These samples have been characterized by measuring specular and non-specular X-ray reflectivities (GIXR) with X-rays of 1.54 Å wavelength and polarized neutron reflectivity (PNR) with neutron of 2.5 Å wavelength at grazing angle of incidence. It has been observed that the X-ray and neutron specular reflectivities at Bragg peaks of 20 layer periodic multilayer increase when Co layers are deposited under mixed ambience of argon and air. The detail information regarding the effect of air on the interfaces and magnetic properties has been obtained by fitting the measured spectra. The above information has subsequently been supplemented by XRD and magnetic measurements on the samples. XPS and XANES measurements have also been carried out to investigate whether cobalt oxide or cobalt nitride layers are being formed due to use of air in sputtering ambience.

  15. Triangular lattice atomic layer of Sn(1 × 1) at graphene/SiC(0001) interface

    NASA Astrophysics Data System (ADS)

    Hayashi, Shingo; Visikovskiy, Anton; Kajiwara, Takashi; Iimori, Takushi; Shirasawa, Tetsuroh; Nakastuji, Kan; Miyamachi, Toshio; Nakashima, Shuhei; Yaji, Koichiro; Mase, Kazuhiko; Komori, Fumio; Tanaka, Satoru

    2018-01-01

    Sn atomic layers attract considerable interest owing to their spin-related physical properties caused by their strong spin-orbit interactions. We performed Sn intercalation into the graphene/SiC(0001) interface and found a new type of Sn atomic layer. Sn atoms occupy on-top sites of Si-terminated SiC(0001) with in-plane Sn-Sn bondings, resulting in a triangular lattice. Angle-resolved photoemission spectroscopy revealed characteristic dispersions at \\bar{\\text{K}} and \\bar{\\text{M}} points, which agreed well with density functional theory calculations. The Sn triangular lattice atomic layer at the interface showed no oxidation upon exposure to air, which is useful for characterization and device fabrication ex situ.

  16. Post-mortem analysis on LiFePO4|Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance

    NASA Astrophysics Data System (ADS)

    Lewerenz, Meinert; Warnecke, Alexander; Sauer, Dirk Uwe

    2017-11-01

    During cyclic aging of lithium-ion batteries the formation of a μm-thick covering layer on top of the anode facing the separator is found on top of the anode. In this work several post-mortem analyses of cyclic aged cylindrical LFP|Graphite cells are evaluated to give a detailed characterization of the covering layer and to find possible causes for the evolution of such a layer. The analyses of the layer with different methods return that it consists to high percentage of plated active lithium, deposited Fe and products of a solid electrolyte interphase (SEI). The deposition is located mainly in the center of the cell symmetrical to the coating direction. The origin of these depositions is assumed in locally overcharged particles, Fe deposition or inhomogeneous distribution of capacity density. As a secondary effect the deposition on one side increases the thickness locally; thereafter a pressure-induced overcharging due to charge agglomeration of the back side of the anode occurs. Finally a compact and dense covering layer in a late state of aging leads to deactivation of the covered parts of the anode and cathode due to suppressed lithium-ion conductivity. This leads to increasing slope of capacity fade and increase of internal resistance.

  17. Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials.

    PubMed

    Duval, Jérôme F L; van Leeuwen, Herman P

    2004-11-09

    The current theoretical approaches to electrokinetics of gels or polyelectrolyte layers are based on the assumption that the position of the very interface between the aqueous medium and the gel phase is well defined. Within this assumption, spatial profiles for the volume fraction of polymer segments (phi), the density of fixed charges in the porous layer (rho fix), and the coefficient modeling the friction to hydrodynamic flow (k) follow a step-function. In reality, the "fuzzy" nature of the charged soft layer is intrinsically incompatible with the concept of a sharp interface and therefore necessarily calls for more detailed spatial representations for phi, rho fix, and k. In this paper, the notion of diffuse interface is introduced. For the sake of illustration, linear spatial distributions for phi and rho fix are considered in the interfacial zone between the bulk of the porous charged layer and the bulk electrolyte solution. The corresponding distribution for k is inferred from the Brinkman equation, which for low phi reduces to Stokes' equation. Linear electrostatics, hydrodynamics, and electroosmosis issues are analytically solved within the context of streaming current and streaming potential of charged surface layers in a thin-layer cell. The hydrodynamic analysis clearly demonstrates the physical incorrectness of the concept of a discrete slip plane for diffuse interfaces. For moderate to low electrolyte concentrations and nanoscale spatial transition of phi from zero (bulk electrolyte) to phi o (bulk gel), the electrokinetic properties of the soft layer as predicted by the theory considerably deviate from those calculated on the basis of the discontinuous approximation by Ohshima.

  18. Application of SQL database to the control system of MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Tomohiro; Omata, Koji; Konishi, Masahiro; Ichikawa, Takashi; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Nishimura, Tetsuo

    2006-06-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru telescope. In order to perform observations of near-infrared imaging and spectroscopy with cold slit mask, MOIRCS contains many device components, which are distributed on an Ethernet LAN. Two PCs wired to the focal plane array electronics operate two HAWAII2 detectors, respectively, and other two PCs are used for integrated control and quick data reduction, respectively. Though most of the devices (e.g., filter and grism turrets, slit exchange mechanism for spectroscopy) are controlled via RS232C interface, they are accessible from TCP/IP connection using TCP/IP to RS232C converters. Moreover, other devices are also connected to the Ethernet LAN. This network distributed structure provides flexibility of hardware configuration. We have constructed an integrated control system for such network distributed hardwares, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS has also network distributed software design, applying TCP/IP socket communication to interprocess communication. In order to help the communication between the device interfaces and the user interfaces, we defined three layers in T-LECS; an external layer for user interface applications, an internal layer for device interface applications, and a communication layer, which connects two layers above. In the communication layer, we store the data of the system to an SQL database server; they are status data, FITS header data, and also meta data such as device configuration data and FITS configuration data. We present our software system design and the database schema to manage observations of MOIRCS with Subaru.

  19. 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin

    2016-03-01

    1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.

  20. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    NASA Astrophysics Data System (ADS)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  1. Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Tynell, Tommi; Gaskins, John T.; Donovan, Brian F.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-03-01

    Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased.

  2. 76 FR 38676 - Gulf of Mexico (GOM), Outer Continental Shelf (OCS), Central Planning Area (CPA), Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... September 2008. SUPPLEMENTARY INFORMATION: BOEMRE developed the Draft SEIS for CPA Lease Sale 216/222 to consider new information made available since completion of the Multisale EIS and 2009-2012 SEIS, including information concerning the Deepwater Horizon event and spill and new regulatory requirements. This Draft SEIS...

  3. A Study of Arizona's Teachers of English Language Learners

    ERIC Educational Resources Information Center

    Rios-Aguilar, Cecilia; Gonzalez Canche, Manuel S.; Moll, Luis C.

    2012-01-01

    Background/Context: In September 2007, the Arizona State Board of Education adopted the Structured English Immersion (SEI) model proposed by the Arizona English Language Learner (ELL) Task Force.During the 2008-2009 academic year, it required all school districts to implement the SEI model.The SEI program, best known as the 4-hour English Language…

  4. Studies on dispersive stabilization of porous media flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daripa, Prabir, E-mail: prabir.daripa@math.tamu.edu; Gin, Craig

    Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types ofmore » interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a “turning point” Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.« less

  5. The effect of bioadhesive on the interfacial compatibility and pervaporation performance of composite membranes by MD and GCMC simulation.

    PubMed

    Wang, Baohe; Nie, Yan; Ma, Jing

    2018-03-01

    Combing molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation, the effect of bioadhesive transition layer on the interfacial compatibility of the pervaporation composite membranes, and the pervaporation performance toward penetrant molecules were investigated. In our previous experimental study, the structural stability and permeability selectivity of the composite membranes were considerably enhanced by the introduction of bioadhesive carbopol (CP). In the present study, the interfacial compatibility and the interfacial energies between the chitosan (CS) separation layer, CP transition layer and the support layer were investigated, respectively. The mobility of polymer chains, free volume in bulk and interface regions were evaluated by the mean-square displacement (MSD) and free volume voids (FFV) analysis. The diffusion and sorption behavior of water/ethanol molecules in bulk and interface regions were characterized. The simulation results of membrane structure have good consistency, indicating that the introduction of CP transition layer improved the interfacial compatibility and interaction between the separation layer and the support layer. Comparing the bulk region of the separation layer, the mobility and free volume of the polymer chain in the interface region decreased and thus reduced the swelling of CS active layer, revealing the increased diffusion selectivity toward the permeated water and ethanol molecules. The strong hydrogen bonds interaction between the COOH of the CP transition layer and water molecules increased the adsorption of water molecules in the interface region. The simulation results were quite consistent with the experimental results. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

    DOE PAGES

    Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; ...

    2015-02-11

    In this study, near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopymore » and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.« less

  7. Kapitza resistance of Si/SiO2 interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen Deng; Aleksandr Chenatynskiy; Marat Khafizov

    2014-02-01

    A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.

  8. ‘Safer Environment Interventions’: A qualitative synthesis of the experiences and perceptions of people who inject drugs

    PubMed Central

    McNeil, Ryan; Small, Will

    2014-01-01

    There is growing acknowledgment that social, structural, and environmental forces produce vulnerability to health harms among people who inject drugs (PWID), and safer environment interventions (SEI) have been identified as critical to mitigating the impacts of these contextual forces on drug-related harm. To date, however, SEIs have been under-theorized in the literature, and how they minimize drug-related risks across intervention types and settings has not been adequately examined. This article presents findings from a systematic review and meta-synthesis of qualitative studies reporting PWID’s experiences with three types of SEIs (syringe exchange programmes, supervised injection facilities and peer-based harm reduction interventions) published between 1997 and 2012. This meta-synthesis seeks to develop a comprehensive understanding of SEIs informed by the experiences of PWID. Twenty-nine papers representing twenty-one unique studies that included an aggregate of more than 800 PWID were included in this meta-synthesis. This meta- synthesis found that SEIs fostered social and physical environments that mitigated drug-related harms and increased access to social and material resources. Specifically, SEIs: (1) provided refuge from street-based drug scenes; (2) enabled safer injecting by reshaping the social and environmental contexts of injection drug use; (3) mediated access to resources and health care services; and, (4) were constrained by drug prohibition and law enforcement activities. These findings indicate that it is critical to situate SEIs in relation to the lived experiences of PWID, and in particular provide broader environmental support to PWID. Given that existing drug laws limit the effectiveness of interventions, drug policy reforms are needed to enable public health, and specifically SEIs, to occupy a more prominent role in the response to injection drug use. PMID:24561777

  9. Artificial solid electrolyte interphase for aqueous lithium energy storage systems

    PubMed Central

    Zhi, Jian; Yazdi, Alireza Zehtab; Valappil, Gayathri; Haime, Jessica; Chen, Pu

    2017-01-01

    Aqueous lithium energy storage systems address environmental sustainability and safety issues. However, significant capacity fading after repeated cycles of charge-discharge and during float charge limit their practical application compared to their nonaqueous counterparts. We introduce an artificial solid electrolyte interphase (SEI) to the aqueous systems and report the use of graphene films as an artificial SEI (G-SEI) that substantially enhance the overall performance of an aqueous lithium battery and a supercapacitor. The thickness (1 to 50 nm) and the surface area (1 cm2 to 1 m2) of the G-SEI are precisely controlled on the LiMn2O4-based cathode using the Langmuir trough–based techniques. The aqueous battery with a 10-nm-thick G-SEI exhibits a discharge capacity as high as 104 mA·hour g−1 after 600 cycles and a float charge current density as low as 1.03 mA g−1 after 1 day, 26% higher (74 mA·hour g−1) and 54% lower (1.88 mA g−1) than the battery without the G-SEI, respectively. We propose that the G-SEI on the cathode surface simultaneously suppress the structural distortion of the LiMn2O4 (the Jahn-Teller distortion) and the oxidation of conductive carbon through controlled diffusion of Li+ and restricted permeation of gases (O2 and COx), respectively. The G-SEI on both small (~1 cm2 in 1.15 mA·hour cell) and large (~9 cm2 in 7 mA·hour cell) cathodes exhibit similar property enhancement, demonstrating excellent potential for scale-up and manufacturing. PMID:28913426

  10. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less

  11. First-Principles Molecular Dynamics Study on the Electric-double layer Capacitance of Water-MXene interfaces

    NASA Astrophysics Data System (ADS)

    Ando, Yasunobu; Otani, Minoru

    MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.

  12. Spontaneous evaluative inferences and their relationship to spontaneous trait inferences.

    PubMed

    Schneid, Erica D; Carlston, Donal E; Skowronski, John J

    2015-05-01

    Three experiments are reported that explore affectively based spontaneous evaluative impressions (SEIs) of stimulus persons. Experiments 1 and 2 used modified versions of the savings in relearning paradigm (Carlston & Skowronski, 1994) to confirm the occurrence of SEIs, indicating that they are equivalent whether participants are instructed to form trait impressions, evaluative impressions, or neither. These experiments also show that SEIs occur independently of explicit recall for the trait implications of the stimuli. Experiment 3 provides a single dissociation test to distinguish SEIs from spontaneous trait inferences (STIs), showing that disrupting cognitive processing interferes with a trait-based prediction task that presumably reflects STIs, but not with an affectively based social approach task that presumably reflects SEIs. Implications of these findings for the potential independence of spontaneous trait and evaluative inferences, as well as limitations and important steps for future study are discussed. (c) 2015 APA, all rights reserved).

  13. GaN as an interfacial passivation layer: tuning band offset and removing fermi level pinning for III-V MOS devices.

    PubMed

    Zhang, Zhaofu; Cao, Ruyue; Wang, Changhong; Li, Hao-Bo; Dong, Hong; Wang, Wei-Hua; Lu, Feng; Cheng, Yahui; Xie, Xinjian; Liu, Hui; Cho, Kyeongjae; Wallace, Robert; Wang, Weichao

    2015-03-11

    The use of an interfacial passivation layer is one important strategy for achieving a high quality interface between high-k and III-V materials integrated into high-mobility metal-oxide-semiconductor field-effect transistor (MOSFET) devices. Here, we propose gallium nitride (GaN) as the interfacial layer between III-V materials and hafnium oxide (HfO2). Utilizing first-principles calculations, we explore the structural and electronic properties of the GaN/HfO2 interface with respect to the interfacial oxygen contents. In the O-rich condition, an O8 interface (eight oxygen atoms at the interface, corresponding to 100% oxygen concentration) displays the most stability. By reducing the interfacial O concentration from 100 to 25%, we find that the interface formation energy increases; when sublayer oxygen vacancies exist, the interface becomes even less stable compared with O8. The band offset is also observed to be highly dependent on the interfacial oxygen concentration. Further analysis of the electronic structure shows that no interface states are present at the O8 interface. These findings indicate that the O8 interface serves as a promising candidate for high quality III-V MOS devices. Moreover, interfacial states are present when such interfacial oxygen is partially removed. The interface states, leading to Fermi level pinning, originate from unsaturated interfacial Ga atoms.

  14. Energy and water vapor transport across a simplified cloud-clear air interface

    NASA Astrophysics Data System (ADS)

    Gallana, L.; Di Savino, S.; De Santi, F.; Iovieno, M.; Tordella, D.

    2014-11-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers.

  15. Improved CLARAty Functional-Layer/Decision-Layer Interface

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang

    2008-01-01

    Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.

  16. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates. The interfaces were optically smooth; the resulting specular reflections were computed from the Fresnel reflection laws. This provides a somewhat different behavior than for diffuse interfaces. A similar application was for heating that occurs in a window of a re-entry vehicle (Fowle et al., 1969). A number of recent papers (Rokhsaz and Dougherty, 1989; Ping and Lallemand, 1989; Crosbie and Shieh, 1990) further examined the effects of Fresnel boundary reflections and nonunity refractive index. Other examples of analyses of both steady and transient heat transfer to single or multiple plane layers (Amlin and Korpela, 1979; Tarshis et al., 1969) have used diffuse assumptions at the interfaces as in the present study

  17. Interface reconstruction with emerging charge ordering in hexagonal manganite

    PubMed Central

    Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent

    2018-01-01

    Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782

  18. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  19. Control of the orbital ordering in manganite superlattices and impact on properties

    NASA Astrophysics Data System (ADS)

    Koçak, Ayşegül Begüm; Varignon, Julien; Lemal, Sébastien; Ghosez, Philippe; Lepetit, Marie-Bernadette

    2017-09-01

    The present paper theoretically studies the possibility to control the orbital ordering in manganite superlattices. Indeed, favored dz2eg -orbital occupancy is one of the proposed interpretations for the formation of a "dead" layer at the interfaces in manganite thin films and superlattices. We show here that favored dz2eg -orbital occupancy at the interfaces can be prevented by using alkaline-earth simple oxides as alternating layers in very thin superlattices. Such an alternating layer promotes the contraction of the manganite layers at the interfaces and favors a dx2-y2eg orbital occupancy. This result holds for different manganites, different alkaline-earth simple oxides, as well as different thicknesses of the two layers. While Boltzmann's transport calculations on different superlattices show unexpectedly only weak dependence of the electrical conductivity on the orbital ordering, the enhanced occupation of the dx2-y2 orbital should result in an increased Curie temperature.

  20. Charge transfer at organic-inorganic interfaces—Indoline layers on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Meyenburg, I.; Falgenhauer, J.; Rosemann, N. W.; Chatterjee, S.; Schlettwein, D.; Heimbrodt, W.

    2016-12-01

    We studied the electron transfer from excitons in adsorbed indoline dye layers across the organic-inorganic interface. The hybrids consist of indoline derivatives on the one hand and different inorganic substrates (TiO2, ZnO, SiO2(0001), fused silica) on the other. We reveal the electron transfer times from excitons in dye layers to the organic-inorganic interface by analyzing the photoluminescence transients of the dye layers after femtosecond excitation and applying kinetic model calculations. A correlation between the transfer times and four parameters have been found: (i) the number of anchoring groups, (ii) the distance between the dye and the organic-inorganic interface, which was varied by the alkyl-chain lengths between the carboxylate anchoring group and the dye, (iii) the thickness of the adsorbed dye layer, and (iv) the level alignment between the excited dye ( π* -level) and the conduction band minimum of the inorganic semiconductor.

  1. Oxygen octahedral distortions in LaMO 3/SrTiO 3 superlattices

    DOE PAGES

    Sanchez-Santolino, Gabriel; Cabero, Mariona; Varela, Maria; ...

    2014-04-24

    Here we study the interfaces between the Mott insulator LaMnO 3 (LMO) and the band insulator SrTiO 3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectrum imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO 3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies.more » On the other hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. In conclusion, these findings will be discussed in view of the transport and magnetic differences found in previous studies.« less

  2. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations.more » The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.« less

  3. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness,more » which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.« less

  4. Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao

    2018-03-01

    The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.

  5. Compression stockings for treating venous leg ulcers: measurement of interface pressure under a new ulcer kit.

    PubMed

    Partsch, B; Partsch, H

    2008-01-01

    The aim of this study was to measure the interface pressure of a newly designed two-layer compression stocking (Mediven ulcer kit Medi QMBH, Bayreuth, Germany) in different body positions and to compare the values with those obtained with another two-layer product. Interface pressure was measured on the distal medial leg in 16 legs of volunteers, with the basic layer alone and with the whole stocking kit in the supine, sitting and standing position for both stocking systems. The literature concerning ulcer-healing rates is reviewed. Mediven ulcerkit produced statistically significant higher pressure values than the ulcer stocking with a median resting value of 35.5 mmHg in the supine and 42.5 mmHg in the standing position. The pressure while standing comes close to values exerted by bandages. The basic layer alone applies a pressure of 20.5 mmHg. Especially designed compression stockings exerting sufficient interface pressure may be indicated in patients with small ulcers of short duration.

  6. Layerless fabrication with continuous liquid interface production.

    PubMed

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  7. Layerless fabrication with continuous liquid interface production

    PubMed Central

    Janusziewicz, Rima; Tumbleston, John R.; Quintanilla, Adam L.; Mecham, Sue J.; DeSimone, Joseph M.

    2016-01-01

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology. PMID:27671641

  8. Interface layer to tailor the texture and surface morphology of Al-doped ZnO polycrystalline films on glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2017-06-01

    A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.

  9. Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals

    NASA Technical Reports Server (NTRS)

    Huang, YU; Debnam, William J.; Fripp, Archibald L.

    1990-01-01

    Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.

  10. Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry.

    PubMed

    Kawaura, Hiroyuki; Harada, Masashi; Kondo, Yasuhito; Kondo, Hiroki; Suganuma, Yoshitake; Takahashi, Naoko; Sugiyama, Jun; Seno, Yoshiki; Yamada, Norifumi L

    2016-04-20

    We report the first operando measurement of solid electrolyte interphase (SEI) formation at an electrode using in situ neutron reflectometry. The results revealed the growth of the SEI and intercalation of ions during the charge reaction. Furthermore, we propose a way of evaluating the charge used for the SEI formation.

  11. Systems engineering and integration and management for manned space flight programs

    NASA Technical Reports Server (NTRS)

    Morris, Owen

    1993-01-01

    This paper discusses the history of SE&I management of the overall program architecture, organizational structure and the relationship of SE&I to other program organizational elements. A brief discussion of the method of executing the SE&I process, a summary of some of the major lessons learned, and identification of things that have proven successful are included.

  12. Systems engineering and integration and management for manned space flight programs

    NASA Astrophysics Data System (ADS)

    Morris, Owen

    This paper discusses the history of SE&I management of the overall program architecture, organizational structure and the relationship of SE&I to other program organizational elements. A brief discussion of the method of executing the SE&I process, a summary of some of the major lessons learned, and identification of things that have proven successful are included.

  13. SIAH1-induced p34SEI-1 polyubiquitination/degradation mediates p53 preferential vitamin C cytotoxicity.

    PubMed

    Lee, Soonduck; Kim, Jinsun; Jung, Samil; Li, Chengping; Yang, Young; Kim, Keun Il; Lim, Jong-Seok; Kim, Yonghwan; Cheon, Choong-Il; Lee, Myeong-Sok

    2015-03-01

    Vitamin C is considered as an important anticancer therapeutic agent although this view is debatable. In this study, we introduce a physiological mechanism demonstrating how vitamin C exerts anticancer activity that induces cell cycle arrest and apoptosis. Our previous and current data reveal that p53 tumor suppressor is the prerequisite factor for stronger anticancer effects of vitamin C. In addition, vitamin C-mediated cancer cell cytotoxicity appears to be achieved at least partly through the downregulation of the p34SEI-1 oncoprotein. Our previous study showed that p34SEI-1 increases the survival of various types of cancer cells by inhibiting their apoptosis. Present data suggest that vitamin C treatment decreases the p34SEI-1 expression at the protein level and therefore alleviates its anti-apoptotic activity. Of note, SIAH1, E3 ubiquitin ligase, appears to be responsible for the p34SEI-1 polyubiquitination and its subsequent degradation, which is dependent on p53. In summary, vitamin C increases cancer cell death by inducing SIAH1-mediated polyubiquitination/degradation of the p34SEI-1 oncoprotein in a p53-dependent manner.

  14. Molecular dynamics simulation of the cooperative adsorption of barley lipid transfer protein and cis-isocohumulone at the vacuum-water interface.

    PubMed

    Euston, S R; Hughes, P; Naser, Md A; Westacott, R E

    2008-11-01

    Molecular dynamic simulations have been carried out on systems containing a mixture of barley lipid transfer protein (LTP) and cis-isocohumulone (a hop derived iso-alpha-acid) in one of its enol forms, in bulk water and at the vacuum-water interface. In solution, the cis-isocohumulone molecules bind to the surface of the LTP molecule. The mechanism of binding appears to be purely hydrophobic in nature via desolvation of the protein surface. Binding of hop acids to the LTP leads to a small change in the 3-D conformation of the protein, but no change in the proportion of secondary structure present in helices, even though there is a significant degree of hop acid binding to the helical regions. At the vacuum-water interface, cis-isocohumulone shows a high surface activity and adsorbs rapidly at the interface. LTP then shows a preference to bind to the preadsorbed hop acid layer at the interface rather than to the bare water-vacuum interface. The free energy of adsorption of LTP at the hop-vacuum-water interface is more favorable than for adsorption at the vacuum-water interface. Our results support the view that hop iso-alpha-acids promote beer foam stability by forming bridges between separate adsorbed protein molecules, thus strengthening the adsorbed protein layer and reducing foam breakdown by lamellar phase drainage. The results also suggest a second mechanism may also occur, whereby the concentration of protein at the interface is increased via enhanced protein adsorption to adsorbed hop acid layers. This too would increase foam stability through its effect on the stabilizing protein layer around the foam bubbles.

  15. Transfer-printing of active layers to achieve high quality interfaces in sequentially deposited multilayer inverted polymer solar cells fabricated in air

    PubMed Central

    Vohra, Varun; Anzai, Takuya; Inaba, Shusei; Porzio, William; Barba, Luisa

    2016-01-01

    Abstract Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs. PMID:27877901

  16. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  17. Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface

    NASA Astrophysics Data System (ADS)

    Cimarelli, Andrea; Cocconi, Giacomo; Frohnapfel, Bettina; De Angelis, Elisabetta

    2015-12-01

    A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.

  18. HPC in Basin Modeling: Simulating Mechanical Compaction through Vertical Effective Stress using Level Sets

    NASA Astrophysics Data System (ADS)

    McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.

    2017-12-01

    In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.

  19. Regularized inversion of controlled source audio-frequency magnetotelluric data in horizontally layered transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun

    2014-04-01

    We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.

  20. Separated rupture and retraction of a bi-layer free film

    NASA Astrophysics Data System (ADS)

    Stewart, Peter; Feng, Jie; Griffiths, Ian

    2017-11-01

    We investigate the dynamics of a rising air bubble in an aqueous phase coated with a layer of oil. Recent experiments have shown that bubble rupture at the compound air/oil/aqueous interface can effectively disperse submicrometre oil droplets into the aqueous phase, suggesting a possible mechanism for clean-up of oil spillages on the surface of the ocean. Using a theoretical model we consider the stability of the long liquid free film formed as the bubble reaches the free surface, composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. For an excess of surfactant on one gas-liquid interface we show that the instability manifests as distinct rupture events, with the oil layer rupturing first and retracting over the in-tact water layer beneath, consistent with the experimental observations. We use our model to examine the dynamics of oil retraction, showing that it follows a power-law for short times, and examine the influence of retraction on the stability of the water layer.

  1. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  2. Evidence for Chemical and Electronic Nonuniformities in the Formation of the Interface of RbF-Treated Cu(In,Ga)Se2 with CdS.

    PubMed

    Nicoara, Nicoleta; Kunze, Thomas; Jackson, Philip; Hariskos, Dimitrios; Duarte, Roberto Félix; Wilks, Regan G; Witte, Wolfram; Bär, Marcus; Sadewasser, Sascha

    2017-12-20

    We report on the initial stages of CdS buffer layer formation on Cu(In,Ga)Se 2 (CIGSe) thin-film solar cell absorbers subjected to rubidium fluoride (RbF) postdeposition treatment (PDT). A detailed characterization of the CIGSe/CdS interface for different chemical bath deposition (CBD) times of the CdS layer is obtained from spatially resolved atomic and Kelvin probe force microscopy and laterally integrating X-ray spectroscopies. The observed spatial inhomogeneity in the interface's structural, chemical, and electronic properties of samples undergoing up to 3 min of CBD treatments is indicative of a complex interface formation including an incomplete coverage and/or nonuniform composition of the buffer layer. It is expected that this result impacts solar cell performance, in particular when reducing the CdS layer thickness (e.g., in an attempt to increase the collection in the ultraviolet wavelength region). Our work provides important findings on the absorber/buffer interface formation and reveals the underlying mechanism for limitations in the reduction of the CdS thickness, even when an alkali PDT is applied to the CIGSe absorber.

  3. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatmentmore » at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.« less

  4. A Theoretical Study of Cold Air Damming.

    NASA Astrophysics Data System (ADS)

    Xu, Qin

    1990-12-01

    The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.

  5. Dual functional passivating layer of graphene/TiO2 for improved performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad Umair; Mohamed, Norani Muti; Muhsan, Ali Samer; Khatani, Mehboob; Bashiri, Robabeh; Zaine, Siti Nur Azella; Shamsudin, Adel Eskandar

    2018-02-01

    The FTO/TiO2 interface plays a crucial role in the performance of dye-sensitized solar cells (DSSCs). The uneven microstructure morphology of FTO (fluorine-doped tin oxide) glass surface and high porosity of TiO2 layer produce tiny gaps and voids at the FTO/TiO2 interface that breaks the connectivity, leading to an increase in the recombination process. In the current work, a dual functional passivating layer is introduced by the combination of the graphene/TiO2 compact layer. The excellent mobility and flexibility of graphene is capitalized using its layer to fill the voids in the FTO surface, which can consequently reduce the charge transfer resistance at the interface, while the added TiO2 compact layer avoids direct contact with the electrolyte thus reducing the recombination. Graphene was synthesized by the facile solvent exfoliation method with the assistance of the probe sonication process. The parameters of sonication were optimized to achieve high-quality concentrated graphene inks (0.177-0.51 mg/ml). Raman spectroscopy and transmission electron microscopy (TEM) revealed that the graphene obtained is of a few-layer type. Electrochemical impedance spectroscopy (EIS) analysis indicated that the incorporated compact layer of graphene/TiO2 was capable of accelerating the charge transfer and reducing the recombination process at the FTO/TiO2 interface. Consequently, the photoconversion efficiency (PCE) for the device (1 cm2 active area) with double-coated graphene layer under one sun irradiation (AM 1.5) was found to be 49.49% higher than the conventional one.

  6. Evaluation of Various Tack Coat Materials Using Interface Shear Device and Recommendations on a Simplified Device

    DOT National Transportation Integrated Search

    2017-12-01

    The performance of pavement interface bonds affects the integrity of pavement structures. In current practice, tack coats are used to ensure sufficient bonding between asphalt concrete (AC) layers as well as AC and concrete or aggregate base layers. ...

  7. Joining Dental Ceramic Layers With Glass

    PubMed Central

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  8. An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung

    The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less

  9. An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures

    DOE PAGES

    Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung; ...

    2018-05-07

    The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less

  10. Organic electronic devices via interface engineering

    NASA Astrophysics Data System (ADS)

    Xu, Qianfei

    This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu/Buffer-layer/organic layer/Cu show very attractive electrical bi-stability. The switching mechanism is believed to origin from by the different copper ion concentrations in the organic layer. This opens up a promising way to achieve high-performance organic electronic devices.

  11. Structure and strength at the bonding interface of a titanium-segmented polyurethane composite through 3-(trimethoxysilyl) propyl methacrylate for artificial organs.

    PubMed

    Sakamoto, Harumi; Doi, Hisashi; Kobayashi, Equo; Yoneyama, Takayuki; Suzuki, Yoshiaki; Hanawa, Takao

    2007-07-01

    The objective of this study was to investigate the structure and strength at the bonding interface of a titanium (Ti)-segmented polyurethane (SPU) composite through (3-trimethoxysilyl) propyl methacrylate (gamma-MPS) for artificial organs. The effects of the thickness of the gamma-MPS layer on the shear bonding strength between Ti and SPU were investigated. Ti disks were immersed in various concentrations of gamma-MPS solutions for several immersion times. The depth profiles of elements and the thickness of the gamma-MPS layer were determined by glow discharge optical emission spectroscopy and ellipsometry, respectively. The bonding stress at the Ti/gamma-MPS/SPU interface was evaluated with a shear bonding test. Furthermore, the fractured surface of a Ti-SPU composite was observed by optical microscopy and characterized using X-ray photoelectron spectroscopy. Consequently, the thickness of the gamma-MPS layer was controlled by the concentration of the gamma-MPS solution and immersion time. The shear bonding stress at the interface increased with the increase of the thickness of the gamma-MPS layer. Therefore, the control of the thickness of the gamma-MPS layer is significant to increase the shear bonding stress at the Ti/gamma-MPS/SPU interface. These results are significant to create composites for artificial organs consisting of other metals and polymers. Copyright 2007 Wiley Periodicals, Inc.

  12. Exploring interface morphology of a deeply buried layer in periodic multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection conditionmore » is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.« less

  13. Interface effects in ultra-thin films: Magnetic and chemical properties

    NASA Astrophysics Data System (ADS)

    Park, Sungkyun

    When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air- oxidized samples. However, peak intensity variations were observed due to interface interdiffusion.

  14. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  15. Design and evaluation of 66 kV-class HTS power cable using REBCO wires

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.

    2011-11-01

    Sumitomo Electric (SEI) has been involved in the development of 66 kV-class HTS cables using REBCO wires. One of the technical targets in this project is to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI has developed a clad-type of textured metal substrate with lower magnetization loss compared with a conventional NiW substrate. In addition, 30 mm-wide REBCO tapes were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The AC loss of a manufactured 4-layer cable conductor was 1.5 W/m at 5 kA at 64 K. Given that the AC loss in a shield layer is supposed to be one-fourth of a whole cable core loss, our cables are expected to achieve the AC loss target of less than 2 W/m/phase at 5 kA. Another important target is to manage a fault current. A cable core was designed and fabricated based on the simulation findings, and over-current tests (max. 31.5 kA, 2 s) were conducted to check its performance. The critical current value of the cable cores were measured before and after the over-current tests and verified its soundness. A 5 kA-class current lead for the cable terminations was also developed. The current loading tests were conducted for the developed current leads. The temperature distribution of the current leads reached to the steady-state within less than 12 h, and it was confirmed that the developed current lead has enough capacity of 5 kA loading.

  16. Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions.

    PubMed

    Chaudhari, Mangesh I; Muralidharan, Ajay; Pratt, Lawrence R; Rempe, Susan B

    2018-02-12

    Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li[Formula: see text] deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li[Formula: see text] ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li[Formula: see text] thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li[Formula: see text] transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.

  17. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries

    DOE PAGES

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2015-12-11

    All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less

  18. Advancing Cyber Intelligence Practices Through the SEI’s Consortium

    DTIC Science & Technology

    2015-01-27

    blogsjsocial media Extracurricular Activities Vu lnerabilities from these individuals roles with non-target entities-non-profits, activist groups, or...information to identify, track, and predict cyber capabilities, intentions, and activities to offer courses of action that enhance decision making 7 SEI...8 SEI Webinar Series January 27, 2015 © 2015 Carnegie Mellon University Offerings Steering Committee: Guide Consortium activities and plan for

  19. Proliferation of Shadow Education Institutions (SEI's) in the Philippines: A Time Series Analysis

    ERIC Educational Resources Information Center

    de Castro, Belinda V.; de Guzman, Allan B.

    2013-01-01

    While the issue on the existence of shadow education institutions (SEI's) has only recently been the subject of investigation in studies in various countries worldwide, it is clear that its market is a huge industry in much of Asia and is growing fast elsewhere. Capitalizing on the annual number of SEI's gathered from key government agencies and…

  20. Conductance control at the LaAlO{sub 3}/SrTiO{sub 3}-interface by a multiferroic BiFeO{sub 3} ad-layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mix, Christian; Finizio, Simone; Kläui, Mathias

    2014-06-30

    Multilayered BiFeO{sub 3} (BFO)/LaAlO{sub 3} (LAO) thin film samples were fabricated on SrTiO{sub 3} (STO) substrates by pulsed laser deposition. In this work, the ferroelectric polarization of a multiferroic BFO ad-layer on top of the quasi-two-dimensional electron gas (2DEG) at the LAO/STO interface is used to manipulate the conductivity of the quasi-2DEG. By microstructuring the conductive area of the LAO/STO-interface, a four-point geometry for the measurement of the resistivity was achieved. Piezo force microscopy allows for imaging and poling the spontaneous ferroelectric polarization of the multiferroic layer. The resistance changes showed a linear dependence on the area scanned and amore » hysteretic behavior with respect to the voltages applied in the scanning process. This is evidence for the ferroelectric polarization of the multiferroic causing the resistance changes. Coupling the antiferromagnetic BFO layer to another ferromagnetic layer could enable a magnetic field control of the conductance of the quasi-2DEG at the LAO/STO interface.« less

  1. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    PubMed

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  2. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  3. Variation of the conductance enhancement at BaSnO3/LaInxGa1-xO3 polar Interface

    NASA Astrophysics Data System (ADS)

    Kim, Young Mo; Shin, Juyeon; Kim, Youjung; Char, Kookrin

    We have recently reported that La-doped BaSnO3 (BLSO) displayed conductance enhancement by more than 104 times when LaInO3 (LIO) layer was grown on top of the BLSO layer. The conductance enhancement implies the two-dimensional electron gas (2DEG) formation at the interface. To identify the origin of the conductance enhancement, we developed other heterostructures based on different overlayers. Since LaGaO3 is also a polar perovskite like the LIO with its band gap of 4.4 eV and its lattice constant of 3.9, we investigated the variation of the conductance enhancement at LaIn1-xGaxO3 (LIGO)/BLSO interface while varying the Ga ratio. We first checked the interfacial epitaxial growth of LIGO on BSO by x-ray diffraction measurement and transmission electron microscopy. The sheet conductances of BLSO layer before and after the deposition of LIGO layer were measured. Putting together the structural and electrical properties of the LIGO/BLSO interfaces with various Ga compositions, we will discuss the origin of the conductance enhancement in terms of the strain-induced polarization in the LIGO layer. Samsung Science and Technology Foundation.

  4. Room temperature bonding and debonding of polyimide film and glass substrate based on surface activate bonding method

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-02-01

    The temporary bonding of polyimide (PI) films and glass substrates is a key technology for realizing flexible devices with thin-film transistors (TFTs). In this paper, we report the surface activated bonding (SAB) method using Si intermediate layers and its bonding and debonding mechanisms after heating. The bonding interface composed of Si and Fe shows a higher bond strength than the interface of only Si, while the bond strengths of both interfaces decrease with post bonding heating. It is also clarified by composition analysis on the debonded surfaces and cross-sectional observation of the bonding interface that the bond strength depends on the toughness of the intermediated layers and PI. The SAB method using Si intermediate layers is found to be applicable to the bonding and debonding of PI and glass.

  5. Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore

    PubMed Central

    2017-01-01

    We use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica. When graphene is negatively charged, the interface fills faster with a complete three layer water film, compared to uncharged graphene. As charged positively, the third water layer dewets the interface, either by evaporation into the ambient or by the formation of three-dimensional droplets under the graphene, on top of the bilayer. Our experimental findings reveal novel phenomena of water at the nanoscale, which are interesting from a fundamental point of view and demonstrate the direct control over the wetting properties of the graphene/water interface. PMID:28985466

  6. Multijunction photovoltaic device and method of manufacture

    DOEpatents

    Arya, Rejeewa R.; Catalano, Anthony W.; Bennett, Murray

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  7. Optical models for radio-frequency-magnetron reactively sputtered AlN films

    NASA Astrophysics Data System (ADS)

    Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.

    2005-10-01

    The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.

  8. Band alignment and charge transfer in rutile-TiO2/CH3NH3PbI3-xClx interfaces.

    PubMed

    Nemnes, G A; Goehry, C; Mitran, T L; Nicolaev, Adela; Ion, L; Antohe, S; Plugaru, N; Manolescu, A

    2015-11-11

    Rutile-TiO2/hybrid halide perovskite CH3NH3PbI3-xClx interfaces are investigated by ab initio density functional theory calculations. The role of chlorine in achieving enhanced solar cell power conversion efficiencies is in the focus of recent studies, which point to increased carrier mobilities, reduced recombination rates, a driven morphology evolution of the perovskite layer and improved carrier transport across the interface. As it was recently established that chlorine is preferentially localized in the vicinity of the interface and not in the bulk of the perovskite layer, we analyze the changes introduced in the electronic properties by varying the chlorine concentration near the interface. In particular, we discuss the effects introduced in the electronic band structure and show the role of chlorine in the enhanced electron injection into the rutile-TiO2 layer. Taking into account these implications, we discuss the conditions for optimizing the solar cell efficiency in terms of interfacial chlorine concentration.

  9. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  10. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules.

    PubMed

    Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko

    2016-08-31

    Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.

  11. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules

    PubMed Central

    Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko

    2016-01-01

    Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices. PMID:27578395

  12. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules

    NASA Astrophysics Data System (ADS)

    Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko

    2016-08-01

    Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.

  13. Instabilities in a staircase stratified shear flow

    NASA Astrophysics Data System (ADS)

    Ponetti, G.; Balmforth, N. J.; Eaves, T. S.

    2018-01-01

    We study stratified shear flow instability where the density profile takes the form of a staircase of interfaces separating uniform layers. Internal gravity waves riding on density interfaces can resonantly interact due to a background shear flow, resulting in the Taylor-Caulfield instability. The many steps of the density profile permit a multitude of interactions between different interfaces, and a rich variety of Taylor-Caulfield instabilities. We analyse the linear instability of a staircase with piecewise-constant density profile embedded in a background linear shear flow, locating all the unstable modes and identifying the strongest. The interaction between nearest-neighbour interfaces leads to the most unstable modes. The nonlinear dynamics of the instabilities are explored in the long-wavelength, weakly stratified limit (the defect approximation). Unstable modes on adjacent interfaces saturate by rolling up the intervening layer into a distinctive billow. These nonlinear structures coexist when stacked vertically and are bordered by the sharp density gradients that are the remnants of the steps of the original staircase. Horizontal averages remain layer-like.

  14. Benard and Marangoni convection in multiple liquid layers

    NASA Technical Reports Server (NTRS)

    Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.

    1992-01-01

    Convective fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer convective flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. Convective flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system convection results due to the classical Benard instability.

  15. Interface structure between tetraglyme and graphite

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  16. In situ observation of the water-sediment interface in combined sewers, using endoscopy.

    PubMed

    Oms, C; Gromaire, M C; Chebbo, G

    2003-01-01

    A new method for water-sediment interface observation has been designed. This system is based on a small diameter endoscope protected by a graduated plastic tube. It makes it possible to visualise in a non-destructive manner the sediments and the water-sediment interface. The endoscope was used to investigate Le Marais catchment (Paris): an immobile organic layer was observed at the water-sediment interface. This layer appears in pools of gross bed sediment, at the upstream of collectors, in zones where velocity is slow and where bed shear stress is less than 0.03 N/m2.

  17. High reflectivity mirrors and method for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikman, Sten; Jacob-Mitos, Matthew; Li, Ting

    2016-06-07

    A composite high reflectivity mirror (CHRM) with at least one relatively smooth interior surface interface. The CHRM includes a composite portion, for example dielectric and metal layers, on a base element. At least one of the internal surfaces is polished to achieve a smooth interface. The polish can be performed on the surface of the base element, on various layers of the composite portion, or both. The resulting smooth interface(s) reflect more of the incident light in an intended direction. The CHRMs may be integrated into light emitting diode (LED) devices to increase optical output efficiency

  18. Ka-Band, RF MEMS Switches on CMOS Grade Silicon with a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Varaljay, Nicholas C.; Papapolymerou, John

    2003-01-01

    For the first time, RF MEMS switcbes on CMOS grade Si witb a polyimide interface layer are fabricated and characterized. At Ka-Band (36.6 GHz), an insertion loss of 0.52 dB and an isolation of 20 dB is obtained.

  19. Electron drag in ferromagnetic structures separated by an insulating interface

    NASA Astrophysics Data System (ADS)

    Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.

    2018-06-01

    We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.

  20. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  1. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  2. The Effect of Prosthetic Socket Interface Design on Socket Comfort, Residual Limb Health, and Function for the Transfemoral Amputee

    DTIC Science & Technology

    2016-10-01

    laminated rigid frame to reduce thermal layers, increase flexibility and comfort while retaining ischial containment. In contrast, a Sub-I design has...design is comprised of a flexible interface and minimal laminated rigid frame to reduce thermal layers, increase flexibility and comfort while...AWARD NUMBER: W81XWH-15-1-0410 TITLE: The Effect of Prosthetic Socket Interface Design on Socket Comfort , Residual Limb Health, and Function

  3. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2018-01-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  4. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, I., E-mail: ia31@msstate.edu

    2016-10-15

    Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate whilemore » no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.« less

  5. Liquid/liquid interface layering of 1-butanol and [bmim]PF6 ionic liquid: a nonlinear vibrational spectroscopy and molecular dynamics simulation study.

    PubMed

    Iwahashi, Takashi; Ishiyama, Tatsuya; Sakai, Yasunari; Morita, Akihiro; Kim, Doseok; Ouchi, Yukio

    2015-10-14

    IR-visible sum-frequency generation (IV-SFG) vibrational spectroscopy and a molecular dynamics (MD) simulation were used to study the local layering order at the interface of 1-butanol-d9 and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6), a room-temperature ionic liquid (RTIL). The presence of a local non-polar layer at the interface of the two polar liquids was successfully demonstrated. In the SFG spectra of 1-butanol-d9, we observed significant reduction and enhancement in the strength of the CD3 symmetric stretching (r(+)) mode and the antisymmetric stretching (r(-)) mode peaks, respectively. The results can be well explained by the presence of an oppositely oriented quasi-bilayer structure of butanol molecules, where the bottom layer is strongly bound by hydrogen-bonding with the PF6(-) anion. MD simulations reveal that the hydrogen-bonding of butanol with the PF6(-) anion causes the preferential orientation of the butanols; the restriction on the rotational distribution of the terminal methyl group along their C3 axis enhances the r(-) mode. As for the [bmim](+) cations, the SFG spectra taken within the CH stretch region indicate that the butyl chain of [bmim](+) points away from the bulk RTIL phase to the butanol phase at the interface. Combining the SFG spectroscopy and MD simulation results, we propose an interfacial model structure of layering, in which the butyl chains of the butanol molecules form a non-polar interfacial layer with the butyl chains of the [bmim](+) cations at the interface.

  6. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells.

    PubMed

    Dalapati, Goutam Kumar; Zhuk, Siarhei; Masudy-Panah, Saeid; Kushwaha, Ajay; Seng, Hwee Leng; Chellappan, Vijila; Suresh, Vignesh; Su, Zhenghua; Batabyal, Sudip Kumar; Tan, Cheng Cheh; Guchhait, Asim; Wong, Lydia Helena; Wong, Terence Kin Shun; Tripathy, Sudhiranjan

    2017-05-02

    We have investigated the impact of Cu 2 ZnSnS 4 -Molybdenum (Mo) interface quality on the performance of sputter-grown Cu 2 ZnSnS 4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoS x ) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoS x layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoS x layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.

  7. Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology.

    PubMed

    Huang, Shilin; Gawlitza, Kornelia; von Klitzing, Regine; Gilson, Laurent; Nowak, Johannes; Odenbach, Stefan; Steffen, Werner; Auernhammer, Günter K

    2016-01-26

    Stimuli-responsive microgels can be used as stabilizers for emulsions. However, the details of structure and the viscoelastic property of the microgel-laden interface are still not well-known. We synthesized fluorescently labeled microgels and used confocal microscopy to observe their arrangement at the water/oil interface. The microgels aggregated spontaneously at the interface, and the aggregated structure reorganized due to thermal motion. The structure of the interfacial layer formed by microgels depended on the microgel concentration at the interface. We suggest that the structure was controlled by the aggregation and adsorption of microgels at the interface. The interparticle separation between microgels at the interface decreased over time, implying a slow aging process of the microgels at the interface. Magnetic beads were introduced at the interface and used to trigger deformation of the microgel layer. Under compression and shear the microgels in the aggregated structure rearranged, leading to plastic deformation, and some elastic responses were also observed.

  8. AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries

    DOE PAGES

    Sun, Shuwei; Yin, Yanfeng; Wan, Ning; ...

    2015-06-24

    For Li-rich layered cathode materials considerable attention has been paid owing to their high capacity performance for Li-ion batteries (LIBs). In our work, layered Li-rich Li[Li 0.2Ni 0.17Co 0.07Mn 0.56]O 2 nanoparticles are surface-modified with AlF 3 through a facile chemical deposition method. The AlF 3 surface layers have little impact on the structure of the material and act as buffers to prevent the direct contact of the electrode with the electrolyte; thus, they enhance the electrochemical performance significantly. The 3 wt% AlF 3-coated Li-rich electrode exhibits the best cycling capability and has a considerably enhanced capacity retention of 83.1%more » after 50 cycles. Moreover, the rate performance and thermal stability of the 3 wt% AlF3-coated electrode are also clearly improved. Finally, surface analysis indicates that the AlF 3 coating layer can largely suppress the undesirable growth of solid electrolyte interphase (SEI) film and, therefore, stabilizes the structure upon cycling.« less

  9. How many records should be used in ASCE/SEI-7 ground motion scaling procedure?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.

  10. Reuse Adoption Guidebook. Version 02.00.05

    DTIC Science & Technology

    1993-11-01

    Oriented Domain Analysis ( FODA ) Feasibiity Study, W Novak, and S. Peterson CMU/SEI-90-TR-21 Pittsburgh, Pennsylvania: Software 1990 Engineering Institute...Mettala and Graham 1992). " SEI has developed domain analysis techniques (Kang et al. 1990) and other reuse technology. Additionally, the SEI is in the...continue to build on your success. Figure 2-1 illustrates the Reuse Adoption process using a Structured Analysis and Design Thchmque (SADT) diagram

  11. Software Estimation: Developing an Accurate, Reliable Method

    DTIC Science & Technology

    2011-08-01

    Lake, CA ,93555- 6110 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S...Activity, the systems engineering team is responsible for system and software requirements. 2 . Process Dashboard is a software planning and tracking tool... CA 93555- 6110 760-939-6989 Brad Hodgins is an interim TSP Mentor Coach, SEI-Authorized TSP Coach, SEI-Certified PSP/TSP Instructor, and SEI

  12. Analysis of the VIDAS® Staph Enterotoxin III (SET3) for Detection of Staphylococcal Enterotoxins G, H, and I in Foods.

    PubMed

    Hait, Jennifer M; Nguyen, Angela T; Tallent, Sandra M

    2018-04-20

    Background : Staphylococcal food poisoning (SFP) frequently causes illnesses worldwide. SFP occurs from the ingestion of staphylococcal enterotoxins (SEs) preformed in foods by enterotoxigenic strains of Staphylococcus species, primarily S. aureus . SEG, SEH, and SEI induce emesis and have been implicated in outbreaks. Immunological-based methods are deemed the most practical methods for the routine analysis of SEs in foods given their ease of use, sensitivity, specificity, and commercial availability. These kits are routinely used to test for SEA-SEE. However, only recently has a kit been developed to detect SEG, SEH, and SEI. Objective: Our research examined the performance of the novel VIDAS ® Staph Enterotoxin III (SET3) for the detection of staphylococcal enterotoxins SEG, SEH, and SEI in foods. Methods : Here we assess the sensitivity and specificity of SET3 using duplicate test portions of six foods at varying concentrations of inclusivity and exclusivity inocula: pure SEG, SEH, SEI, S. aureus strain extracts positive for seg, seh , and sei , as well as SEA, SEB, SEC, SED, and SEE. Results : The overall detection limit was less than 2.09 ng/mL for foods inoculated with SEG, SEH, and SEI, with no cross reactivity observed. Highlights : Integrating concurrent testing to detect the presence of SEA-SEE and SEG-SEI utilizing the SET3 along with the VIDAS SET2, Ridascreen ® SET total, or other comparable kits will be instrumental for the future food assessments in our laboratory and may become the new standard for SE analysis of foods.

  13. Measuring perceived effects of drinking an extract of basidiomycetes Agaricus blazei murill: a survey of Japanese consumers with cancer

    PubMed Central

    Talcott, James A; Clark, Jack A; Lee, Insu P

    2007-01-01

    Background To survey cancer patients who consume an extract of the Basidiomycetes Agaricus blazei Murill mushroom (Sen-Sei-Ro) to measure their self-assessment of its effects and to develop an instrument for use in future randomized trials. Methods We designed, translated and mailed a survey to 2,346 Japanese consumers of Sen-Sei-Ro self-designated as cancer patients. The survey assessed consumer demographics, cancer history, Sen-Sei-Ro consumption, and its perceived effects. We performed exploratory psychometric analyses to identify distinct, multi-item scales that could summarize perceptions of effects. Results We received completed questionnaires from 782 (33%) of the sampled Sen-Sei-Ro consumers with a cancer history. Respondents represented a broad range of cancer patients familiar with Sen-Sei-Ro. Nearly all had begun consumption after their cancer diagnosis. These consumers expressed consistently positive views, though not extremely so, with more benefit reported for more abstract benefits such as emotional and physical well-being than relief of specific symptoms. We identified two conceptually and empirically distinct and internally consistent summary scales measuring Sen-Sei-Ro consumers' perceptions of its effects, Relief of Symptoms and Functional Well-being (Cronbach's alpha: Relief of Symptoms, α = .74; Functional Well-Being, α = .91). Conclusion Respondents to our survey of Sen-Sei-Ro consumers with cancer reported favorable perceived effects from its use. Our instrument, when further validated, may be a useful outcome in trials assessing this and other complementary and alternative medicine (CAM) substances in cancer patients. PMID:17967191

  14. Solvophilic and solvophobic surfaces and non-Coulombic surface interactions in charge regulating electric double layers

    NASA Astrophysics Data System (ADS)

    Vangara, R.; van Swol, F.; Petsev, D. N.

    2018-01-01

    The properties of electric double layers are governed by the interface between the substrate and the adjacent electrolyte solution. This interface is involved in chemical, Coulombic, and non-Coulombic (e.g., van der Waals or Lennard-Jones) interactions with all components of the fluid phase. We present a detailed study of these interactions using a classical density functional approach. A particular focus is placed on the non-Coulombic interactions and their effect on the surface chemistry and charge regulation. The solution structure near the charged interface is also analyzed and used to offer a thorough interpretation of established concepts such as the Stern and diffuse ionic layers.

  15. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    DOE PAGES

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; ...

    2015-09-03

    Low-enrichment (U-235 < 20%) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing was comprised of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates that were tested inmore » INL's Advanced Test Reactor (ATR) were subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. Adjacent to the AA6061 cladding were Mg-rich precipitates, which was in close proximity to the region where Xe is observed to be enriched. In samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface were possible indications of porosity/debonding, which suggested that the interface in this location is relatively weak.« less

  16. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    PubMed

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  17. Free-standing epitaxial graphene on silicon carbide and transport barriers in layered materials

    NASA Astrophysics Data System (ADS)

    Shivaraman, Shriram

    This thesis is based on the topic of layered materials, in which different layers interact with each other via van der Waals forces. The majority of this thesis deals with epitaxial graphene (EG) obtained from silicon carbide (SiC). Free-standing epitaxial graphene (FSEG) structures are produced from EG using a photoelectrochemical (PEC) etching process developed for making suspended graphene structures on a large-scale. These structures are investigated for their mechanical and electrical properties. For doubly-clamped FSEG structures, a unique U-beam effect is observed which causes orders of magnitude increase in their mechanical resonance frequency compared to that expected using simple beam theory. Combined magnetotransport and Raman spectroscopy studies reveal that FSEG devices produced from nominally monolayer graphene on the Si-face of SiC exhibit properties of an inhomogeneously doped bilayer after becoming suspended. This suggests that the buffer layer which precedes graphene growth on the Si-face of SiC gets converted to a graphene layer after the PEC etching process. In the second theme of this thesis, transport barriers in layered materials are investigated. The EG-SiC interface is studied using a combination of electrical (I-V, C-V) and photocurrent spectroscopy techniques. It is shown that the interface may be described as having a Schottky barrier for electron transport with a Gaussian distribution of barrier heights. Another interface explored in this work is that between different layers of MoS 2, a layered material belonging to the class of transition metal dichalcogenides. This interface maybe thought of as a one-dimensional junction. Four-point transport measurements indicate the presence of a barrier for electron transport at this interface. A simple model of the junction as a region with an increased threshold voltage and degraded mobility is suggested. The final chapter is a collection of works based on the topic of layered materials, which are not related to the main theme of the thesis. They include fabrication and characterization details of a dual-gated bilayer graphene device, an investigation of the graphene-Si interface and hexagonal boron nitride-based membranes. These are presented in the hope that they may be useful for further investigations along those directions.

  18. HST STIS Observations of the Mixing Layer in the Cat’s Eye Nebula

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; Guerrero, Martín A.; Toalá, Jesús A.; Chu, You-Hua; Gruendl, Robert A.

    2016-05-01

    Planetary nebulae (PNe) are expected to have a ˜105 K interface layer between the ≥slant 106 K inner hot bubble and the ˜104 K optical nebular shell. The PN structure and evolution, and the X-ray emission, depend critically on the efficiency of the mixing of material at this interface layer. However, neither its location nor its spatial extent have ever been determined. Using high-spatial resolution HST STIS spectroscopic observations of the N v λ λ 1239,1243 lines in the Cat’s Eye Nebula (NGC 6543), we have detected this interface layer and determined its location, extent, and physical properties for the first time in a PN. We confirm that this interface layer, as revealed by the spatial distribution of the N v λ1239 line emission, is located between the hot bubble and the optical nebular shell. We estimate a thickness of 1.5× {10}16 cm and an electron density of ˜200 cm-3 for the mixing layer. With a thermal pressure of ˜2 × 10-8 dyn cm-2, the mixing layer is in pressure equilibrium with the hot bubble and ionized nebular rim of NGC 6543. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The observations are associated with program #12509.

  19. 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    Electrolyte additive 4-vinyl-1,3-dioxolane-2-one has been found to be promising for rechargeable lithium-ion electrochemical cells. This and other additives, along with advanced electrolytes comprising solutions of LiPF6 in various mixtures of carbonate solvents, have been investigated in a continuing effort to improve the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. In contrast to work by other researchers who have investigated the use of this additive to improve the high-temperature resilience of Li-ion cells, the current work involves the incorporation of 4-vinyl-1,3-dioxolane-2-one into quaternary carbonate electrolyte mixtures, previously optimized for low-temperature applications, resulting in improved low-temperature performance. The benefit afforded by 4-vinyl-1,3- dioxolane-2-one can be better understood in the light of relevant information from a number of prior NASA Tech Briefs articles about electrolytes and additives for such cells. To recapitulate: The loss of performance with decreasing temperature is attributable largely to a decrease of ionic conductivity and the increase in viscosity of the electrolyte. What is needed to extend the lower limit of operating temperature is a stable electrolyte solution with relatively small lowtemperature viscosity, a large electric permittivity, adequate coordination behavior, and appropriate ranges of solubilities of liquid and salt constituents. Whether the anode is made of graphitic or non-graphitic carbon, a film on the surface of the anode acts as a solid/electrolyte interface (SEI), the nature of which is critical to low-temperature performance. Desirably, the surface film should exert a chemically protective (passivating) effect on both the anode and the electrolyte, yet should remain conductive to lithium ions to facilitate intercalation and de-intercalation of the ions into and out of the carbon during discharging and charging, respectively. The additives investigated previously include alkyl pyrocarbonates. Those additives help to improve low-temperature performances by giving rise to the formation of SEIs having desired properties. The formation of the SEIs is believed to be facilitated by products (e.g., CO2) of the decomposition of these additives. These decomposition products are believed to react to form Li2CO3-based films on the carbon electrodes. The present additive, 4-vinyl-1,3-dioxolane-2-one, also helps to improve lowtemperature performance by contributing to the formation of SEIs having desired properties, but probably in a different manner: It is believed that, as part of the decomposition process, the compound polymerizes on the surfaces of carbon electrodes.

  20. Skin exposure to aliphatic polyisocyanates in the auto body repair and refinishing industry: III. A personal exposure algorithm.

    PubMed

    Liu, Youcheng; Stowe, Meredith H; Bello, Dhimiter; Sparer, Judy; Gore, Rebecca J; Cullen, Mark R; Redlich, Carrie A; Woskie, Susan R

    2009-01-01

    Isocyanate skin exposure may play an important role in sensitization and the development of isocyanate asthma, but such exposures are frequently intermittent and difficult to assess. Exposure metrics are needed to better estimate isocyanate skin exposures. The goal of this study was to develop a semiquantitative algorithm to estimate personal skin exposures in auto body shop workers using task-based skin exposure data and daily work diaries. The relationship between skin and respiratory exposure metrics was also evaluated. The development and results of respiratory exposure metrics were previously reported. Using the task-based data obtained with a colorimetric skin exposure indicator and a daily work diary, we developed a skin exposure algorithm to estimate a skin exposure index (SEI) for each worker. This algorithm considered the type of personal protective equipment (PPE) used, the percentage of skin area covered by PPE and skin exposures without and underneath the PPE. The SEI was summed across the day (daily SEI) and survey week (weekly average SEI) for each worker, compared among the job title categories and also compared with the respiratory exposure metrics. A total of 893 person-days was calculated for 232 workers (49 painters, 118 technicians and 65 office workers) from 33 auto body shops. The median (10th-90th percentile, maximum) daily SEI was 0 (0-0, 1.0), 0 (0-1.9, 4.8) and 1.6 (0-3.5, 6.1) and weekly average SEI was 0 (0-0.0, 0.7), 0.3 (0-1.6, 4.2) and 1.9 (0.4-3.0, 3.6) for office workers, technicians and painters, respectively, which were significantly different (P < 0.0001). The median (10th-90th percentile, maximum) daily SEI was 0 (0-2.4, 6.1) and weekly average SEI was 0.2 (0-2.3, 4.2) for all workers. A relatively weak positive Spearman correlation was found between daily SEI and time-weighted average (TWA) respiratory exposure metrics (microg NCO m(-3)) (r = 0.380, n = 893, P < 0.0001) and between weekly SEI and TWA respiratory exposure metrics (r = 0.482, n = 232, P < 0.0001). The skin exposure algorithm developed in this study provides task-based personal daily and weekly average skin exposure indices that are adjusted for the use of PPE. These skin exposure indices can be used to assess isocyanate exposure-response relationships.

  1. Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Zhihong; Huang Peiyan; Guo Yongchang

    2010-05-21

    A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectivelymore » utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.« less

  2. Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yang, Hong; Luo, Wei-Chun; Xu, Ye-Feng; Wang, Yan-Rong; Tang, Bo; Wang, Wen-Wu; Qi, Lu-Wei; Li, Jun-Feng; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun

    2016-08-01

    The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it/N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.

  3. Connecting Interface Structure to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    Understanding structure-function relationships at aqueous semiconductor interfaces presents fundamental challenges, including the discovery of the key interface structure motifs themselves. Important examples include the alignment of electrochemical redox levels with the semiconductor band edges and the identification of catalytic active sites. We have developed a multistep approach, initially demonstrated for GaN, ZnO and their alloys, motivated by measured high efficiency for photocatalytic water oxidation. The interface structure is simulated using ab initio molecular dynamics (AIMD). The calculated, average interface dipole is combined with the GW approach from many-body perturbation theory to calculate the energy level alignment between the semiconductor band edges and the centroid of the occupied 1b1 energy level of water and thus, the electrochemical levels. Cluster models are used to study reaction pathways. The emergent interface motif is the full (GaN) or partial (ZnO) dissociated interface water layer. Here I will focus on the aqueous interfaces to the stable TiO2 anatase (101) and rutile (110) facets. The AIMD calculations reveal interface water dissociation and reassociation processes through distinct pathways: one direct at the interface and the other via a spectator water molecule from the hydration layer. Comparisons between the two interfaces shows that the energy landscape for these pathways depends on the local hydrogen bonding patterns and the interplay with the interface template. Combined results from different initial conditions and AIMD temperatures demonstrate a partially dissociated interface water layer in both cases. Specifically for rutile, structure and the GW-based analysis of the interface energy level alignment agree with experiment. Finally, hole localization at different interface structure motifs will be discussed. Work performed in collaboration with J. Lyons, N. Kharche, M. Ertem and J. Muckerman, done in part at the CFN, which is a U.S. DOE Office of Science Facility, at BNL under Contract No. DE-SC0012704 and with resources from NERSC under Contract No. DE-AC02-05CH11231.

  4. Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy.

    PubMed

    Johnson; Yuan; Lenhoff

    2000-03-15

    The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.

  5. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    PubMed

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  6. Enhanced interfacial deformation in a Marangoni flow: A measure of the dynamical surface tension

    NASA Astrophysics Data System (ADS)

    Leite Pinto, Rodrigo; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud

    2018-02-01

    We investigate the flows and deformations resulting from the deposition of a water soluble surfactant at a bare oil-water interface. Once the surfactant is deposited, we show that the oil-water interface is deformed with a water bump rising upward into the oil. For a given oil, the maximal deformation—located at the surfactant deposition point—decreases with the oil-layer thickness. We also observe a critical oil-layer thickness below which the deformation becomes as large as the oil layer, leading to the rupture of this layer and an oil-water dewetting. Experimentally, it is found that this critical thickness depends on the oil density and viscosity. We then provide an analytical modelization that explains quantitatively all these experimental features. In particular, our analysis allows us to derive an analytical relationship between the vertical profile of the oil-water interface and the in-plane surface tension profile. Therefore, we propose that the monitoring of the interface vertical shape can be used as a new spatially resolved tensiometry technique.

  7. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  8. Features of electronic and lattice mechanisms of transboundary heat transfer in multilayer nanolaminate TiAlN/Ag coatings.

    PubMed

    Kovalev, A I; Wainstein, D L; Vakhrushev, V O; Gago, R; Soldera, F; Endrino, J L; Fox-Rabinovich, G S; Veldhuis, S

    2017-12-06

    Plasmon resonance heterogeneities were identified and studied along Ag and TiAlN layers within a multilayer stack in nanolaminate TiAlN/Ag coatings. For this purpose, a high-resolution plasmon microscopy was used. The plasmons intensity, energy, and depth of interface plasmon-polariton penetration were studied by scanning reflected electron energy loss spectroscopy. The heat conductivity of such metal-insulator-metal (MIM) nanolaminate coatings was measured by laser reflectometry. Dependencies of thermal conductivity coefficient of coatings, MIM interfaces, and resistivity of Ag layers as a function of the Ag-TiAlN bilayer thickness were calculated on the basis of experimental data. The contribution of plasmon resonance confinement to the abnormal lower thermal conductivity in the MIM metamaterial with Ag layer thickness below 25 nm is discussed. In particular, the results highlight the relevant role of different heat transfer mechanisms between MI and IM interfaces: asymmetry of plasmon-polariton interactions on upper and lower boundaries of Ag layer and asymmetry of LA and TA phonons propagation through interfaces.

  9. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  10. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  11. Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces

    NASA Astrophysics Data System (ADS)

    von Morzé, Natascha; Dittrich, Thomas; Calvet, Wolfram; Lauermann, Iver; Rusu, Marin

    2017-02-01

    Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe2 (untreated and Na-conditioned) thin films and organic C60 as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe2 surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C60 layer, a strong band bending at the CuInSe2 surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe2/ZnPc interface. The Cu-poor layer at the CuInSe2 surface was found to be crucial for transient and modulated charge separation at CuInSe2/organic hybrid interfaces.

  12. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor)

    1988-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on a normal probability chart, enables prediction of the yield of good integrated circuits from the wafer.

  13. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, U. (Inventor)

    1986-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on normal probability chart enables prediction of the yield of good integrated circuits from the wafer.

  14. Graphene quantum dot (GQD)-induced photovoltaic and photoelectric memory elements in a pentacene/GQD field effect transistor as a probe of functional interface

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam

    2017-09-01

    Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.

  15. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  16. Wet oxidation of GeSi strained layers by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.

    1990-07-01

    A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.

  17. Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3.

    PubMed

    Sánchez-Barriga, Jaime; Ogorodnikov, Ilya I; Kuznetsov, Mikhail V; Volykhov, Andrey A; Matsui, Fumihiko; Callaert, Carolien; Hadermann, Joke; Verbitskiy, Nikolay I; Koch, Roland J; Varykhalov, Andrei; Rader, Oliver; Yashina, Lada V

    2017-11-22

    To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi 2 Te 3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi 2 Te 3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi 2 Te 3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi 2 Te 3 leading to the formation of septuple layers of Bi 3 Te 4 within a distance of ∼25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.

  18. A concise way to estimate the average density of interface states in an ITO-SiOx/n-Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B. C.; Gao, M.; Wan, Y. Z.; Yang, J.; Du, H. W.; Ma, Z. Q.

    2017-09-01

    On the basis of a photon-assisted high frequency capacitance-voltage (C-V) method (1 MHz C-V), an effective approach is developed to evaluate the average interface state density (Dit) of an ITO-SiOx/n-Si heterojunction structure. Tin-doped indium oxide (ITO) films with different thicknesses were directly deposited on (100) n-type crystalline silicon by magnetron sputtering to fabricate semiconductor-insulator-semiconductor (SIS) hetero-interface regions where an ultra-thin SiOx passivation layer was naturally created. The morphology of the SiOx layer was confirmed by X-ray photoelectron spectroscopy depth profiling and transmission electron microscope analysis. The thinness of this SiOx layer was the main reason for the SIS interface state density being more difficult to detect than that of a typical metal-oxide-semiconductor structure. A light was used for photon injection while measuring the C-V of the device, thus enabling the photon-assisted C-V measurement of the Dit. By quantifying decreases of the light-induced-voltage as a variation of the capacitance caused by parasitic charge at interface states the passivation quality within the interface of ITO-SiOx/n-Si could be reasonably evaluated. The average interface state density of these SIS devices was measured as 1.2-1.7 × 1011 eV-1 cm-2 and declined as the passivation layer was made thicker. The lifetime of the minority carriers, dark leakage current, and the other photovoltaic parameters of the devices were also used to determine the passivation.

  19. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Solution to the Boltzmann equation for layered systems for current perpendicular to the planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.

    2000-05-01

    Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less

  1. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion-MoS2 sandwich interfaces.

    PubMed

    Su, Jie; Feng, Liping; Zeng, Wei; Liu, Zhengtang

    2017-06-08

    Metal/insertion-MoS 2 sandwich interfaces are designed to reduce the Schottky barriers at metal-MoS 2 interfaces. The effects of geometric and electronic structures of two-dimensional (2D) insertion materials on the contact properties of metal/insertion-MoS 2 interfaces are comparatively studied by first-principles calculations. Regardless of the geometric and electronic structures of 2D insertion materials, Fermi level pinning effects and charge scattering at the metal/insertion-MoS 2 interface are weakened due to weak interactions between the insertion and MoS 2 layers, no gap states and negligible structural deformations for MoS 2 layers. The Schottky barriers at metal/insertion-MoS 2 interfaces are induced by three interface dipoles and four potential steps that are determined by the charge transfers and structural deformations of 2D insertion materials. The lower the electron affinities of 2D insertion materials, the more are the electrons lost from the Sc surface, resulting in lower n-type Schottky barriers at Sc/insertion-MoS 2 interfaces. The larger the ionization potentials and the thinner the thicknesses of 2D insertion materials, the fewer are the electrons that accumulate at the Pt surface, leading to lower p-type Schottky barriers at Pt/insertion-MoS 2 interfaces. All Sc/insertion-MoS 2 interfaces exhibited ohmic characters. The Pt/BN-MoS 2 interface exhibits the lowest p-type Schottky barrier of 0.52 eV due to the largest ionization potential (∼6.88 eV) and the thinnest thickness (single atomic layer thickness) of BN. These results in this work are beneficial to understand and design high performance metal/insertion-MoS 2 interfaces through 2D insertion materials.

  2. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.

    PubMed

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue

    2018-06-06

    The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.

  3. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  4. Type VII Collagen Expression in the Human Vitreoretinal Interface, Corpora Amylacea and Inner Retinal Layers

    PubMed Central

    Wullink, Bart; Pas, Hendri H.; Van der Worp, Roelofje J.; Kuijer, Roel; Los, Leonoor I.

    2015-01-01

    Type VII collagen, as a major component of anchoring fibrils found at basement membrane zones, is crucial in anchoring epithelial tissue layers to their underlying stroma. Recently, type VII collagen was discovered in the inner human retina by means of immunohistochemistry, while proteomic investigations demonstrated type VII collagen at the vitreoretinal interface of chicken. Because of its potential anchoring function at the vitreoretinal interface, we further assessed the presence of type VII collagen at this site. We evaluated the vitreoretinal interface of human donor eyes by means of immunohistochemistry, confocal microscopy, immunoelectron microscopy, and Western blotting. Firstly, type VII collagen was detected alongside vitreous fibers6 at the vitreoretinal interface. Because of its known anchoring function, it is likely that type VII collagen is involved in vitreoretinal attachment. Secondly, type VII collagen was found within cytoplasmic vesicles of inner retinal cells. These cells resided most frequently in the ganglion cell layer and inner plexiform layer. Thirdly, type VII collagen was found in astrocytic cytoplasmic inclusions, known as corpora amylacea. The intraretinal presence of type VII collagen was confirmed by Western blotting of homogenized retinal preparations. These data add to the understanding of vitreoretinal attachment, which is important for a better comprehension of common vitreoretinal attachment pathologies. PMID:26709927

  5. Optical properties and band alignments in ZnTe nanoparticles/MoS2 layer hetero-interface using SE and KPFM studies

    NASA Astrophysics Data System (ADS)

    Sharma, Intu; Mehta, B. R.

    2017-11-01

    Integration of a layered two-dimensional (2D) material with a non-2D material provides a platform where one can modulate and achieve the properties desired for various next-generation electronic and opto-electronic applications. Here, we investigated ZnTe nanoparticles/MoS2 hetero-interfaces with the thickness of the MoS2 varying from few to multilayer. High-resolution transmission electron microscopy was used to observe the crystalline behaviour of the ZnTe nanoparticles, while the number of MoS2 layers was investigated using Raman measurements. Spectroscopic ellipsometry (SE) analysis based on the five-layer fitting model was used to analyse the optical behaviour of the heterojunction, where the excitonic features corresponding to the MoS2 layers and absorption features due to the ZnTe nanoparticles are observed. From the Kelvin probe force microscopy (KPFM) measurements, the surface potential (SP) of the ZnTe nanoparticles/MoS2 is found to be different in comparison with the SP of the ZnTe nanoparticles and MoS2, which is indicative of the charge transfer at the ZnTe nanoparticles/MoS2 hetero-interface. Various parameters obtained using SE and KPFM measurements were used to propose energy band alignments at the ZnTe nanoparticles/MoS2 hetero-interface. In addition, an interface photovoltage of 193 mV was obtained by carrying out KPFM measurements under illuminating condition.

  6. Formation of a conducting LaAlO3/SrTiO3 interface studied by low-energy electron reflection during growth

    NASA Astrophysics Data System (ADS)

    van der Torren, A. J. H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S. J.

    2017-12-01

    The two-dimensional electron gas occurring between the band insulators SrTiO3 and LaAlO3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density and due to ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO3 layer at the growth temperature (around 800°C) in oxygen (pressure around 5 ×10-5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO2-rich surface and a conducting interface or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.

  7. A Pattern for Increased Monitoring for Intellectual Property Theft by Departing Insiders

    DTIC Science & Technology

    2012-04-01

    2012 TECHNICAL REPORT CMU/SEI-2012-TR-008 ESC-TR-2012-008 CERT® Program http://www.sei.cmu.edu SEI markings v3.2 / 30 August 2011... Programs Conference (PLoP) 2011 (http://www.hillside.net/plop/2011/). This material is based upon work funded and supported by the United States...research project at the CERT® Program is identifying enterprise architectural patterns to protect against the insider threat to organizations. This

  8. Software Engineering Institute, Annual Report 2001

    DTIC Science & Technology

    2002-03-01

    PSP and TSP written by Watts S . Humphrey for the Addison- Wesley SEI Series in...become SCAMPI Lead Assessors. SEI A n n u a l R epo r t fy20 0 1 • 25 CMM Pioneer: Watts S . Humphrey The effort to create the original concepts of the SW...CMM was led by SEI Fellow Watts S . Humphrey , who has had a profound impact on the field of software engineering. In February 2000, a new

  9. Theoretical study of magnetic layers of nickel on copper; dead or alive?

    NASA Astrophysics Data System (ADS)

    Ernst, A.; Lueders, M.; Temmerman, W. M.; Szotek, Z.; van der Laan, G.

    2000-07-01

    We studied the persistence of magnetism in ultrathin nickel films on copper. Layer-dependent magnetic moments in Ni films on the (001), (110) and (111) surfaces of Cu have been calculated using the Korringa-Kohn-Rostoker Green's function method. The results show that, at temperature T = 0, a single nickel monolayer is ferromagnetic on Cu(001) and Cu(110) but magnetically `dead' on the more closely packed Cu(111) surface. Films of two and more layers of Ni are always ferromagnetic, with the magnetic moment enhanced in the surface layer but strongly reduced in the interface layer. Due to the short screening length, both the effect of the interface and that of the surface are confined to only a few atomic layers.

  10. BAnd offset and magnetic property engineering for epitaxial interfaces: a Monolayer of M2O3 (M=Al, Ga, Sc, Ti, Ni) at the alpha-Fe203/alpha-Cr203 (0001) Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, John E; Bachorz, Rafal A; Gutowski, Maciej S

    2007-05-01

    We have used density functional theory with the gradient corrected exchange-correlation functional PW91 to study the effect of an interfactant layer, where Fe and Cr are replaced by a different metal, on electronic and magnetic properties of an epitaxial interface between -Fe2O3 and -Cr2O3 in the hexagonal (0001) basal plane. We studied a monolayer of M2O3 (M=Al, Ga, Sc, Ti, Ni) sandwiched with 5 layers of chromia and five layers of hematite through epitaxial interfaces of two types, termed “oxygen divided” or “split metal.” We found that both the magnetic and electronic properties of the superlattice are modified by themore » interfactant monolayer. For the split metal interface, which is favored through the growth pattern of chromia and hematite, the band offset can be changed from 0.62 eV (no interfactant) up to 0.90 eV with the Sc2O3 interfactant, and down to –0.51 eV (i.e. the a-Fe2O3/a-Cr2O3 heterojunction changes from Type II to Type I) with the Ti2O3 interfactant, due to a massive interfacial charge transfer. The band gap of the system as a whole remains open for the interfactant monolayers based on Al, Ga, and Sc, but it closes for Ti. For Ni, the split-metal interface has a negative band offset and a small band gap. Thus, nanoscale engineering through layer-by-layer growth will strongly affect the macroscopic properties of this system.« less

  11. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces.

    PubMed

    Sarkar, Anwesha; Zhang, Shuning; Murray, Brent; Russell, Jessica A; Boxal, Sally

    2017-10-01

    In this study, we designed emulsions with an oil-water interface consisting of a composite layer of whey protein isolate (WPI, 1wt%) and cellulose nanocrystals (CNCs) (1-3wt%). The hypothesis was that a secondary layer of CNCs at the WPI-stabilized oil-water interface could protect the interfacial protein layer against in vitro gastric digestion by pepsin at 37°C. A combination of transmission electron microscopy, ζ-potential measurements, interfacial shear viscosity measurements and theoretical surface coverage considerations suggested the presence of CNCs and WPI together at the O/W interface, owing to the electrostatic attraction between complementarily charged WPI and CNCs at pH 3. Microstructural analysis and droplet sizing revealed that the presence of CNCs increased the resistance of the interfacial protein film to rupture by pepsin, thus inhibiting droplet coalescence in the gastric phase, which occurs rapidly in an emulsion stabilized by WPI alone. It appeared that there was an optimum concentration of CNCs at the interface for such barrier effects. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results further confirmed that the presence of 3wt% of CNCs reduced the rate and extent of proteolysis of protein at the interface. Besides, evidence of adsorption of CNCs to the protein-coated droplets to form more rigid layers, there is also the possibility that network formation by the CNCs in the bulk (continuous) phase reduced the kinetics of proteolysis. Nevertheless, structuring emulsions with mixed protein-particle layers could be an effective strategy to tune and control interfacial barrier properties during gastric passage of emulsions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field

    NASA Astrophysics Data System (ADS)

    Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.

    2018-05-01

    In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.

  13. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    PubMed

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  14. Imaging the in-plane distribution of helium precipitates at a Cu/V interface

    DOE PAGES

    Chen, Di; Li, Nan; Yuryev, Dina; ...

    2017-02-15

    Here, we describe a transmission electron microscopy investigation of the distribution of helium precipitates within the plane of an interface between Cu and V. Statistical analysis of precipitate locations reveals a weak tendency for interfacial precipitates to align alongmore » $$\\langle$$110$$\\rangle$$-type crystallographic directions within the Cu layer. Comparison of these findings with helium-free Cu/V interfaces suggests that the precipitates may be aggregating preferentially along atomic-size steps in the interface created by threading dislocations in the Cu layer. Our observations also suggest that some precipitates may be aggregating along intersections between interfacial misfit dislocations.« less

  15. Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bareño, Javier; Shkrob, Ilya A.; Gilbert, James A.

    In this study we scrutinize the causes for capacity fade in lithium-ion cells containing silicongraphite (Si-Gr) blends in the negative electrode and examine approaches for minimizing this fade. The causal mechanisms are inferred from data obtained by electrochemistry, microscopy, spectroscopy and thermogravimetry techniques. The presence of SiOxFy signals in the Si-Gr electrode, LixPOyFz compounds in the electrolyte, and SiO2 species on the NCM523 positive electrode, highlight the crucial role of hydrolytically generated HF, which accelerates the degradation of Si particles. The hydrolysis could result from residual moisture in the current electrode fabrication process, which uses aqueous binders. Water can alsomore » be released when silanol groups on the Si nanoparticles react with HF to form Si-F compounds. We note that the primary cause of capacity fade in the full cells is the loss of solid electrolyte interphase (SEI) integrity resulting from volume changes in Si particles during electrochemical cycling. Adding fluoroethylene carbonate (FEC) to the conventional electrolyte slows capacity fade through the formation of a cross linked polymer with elastomeric properties. Further gains in cell longevity are possible by excluding water during electrode fabrication, using hydrolytically stable lithium salts, and adopting electrolyte systems that provide more elasticity to the SEI layers.« less

  16. The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-01-01

    TiC and TiN films were deposited by reactive magnetron sputtering on Si substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of the microstructure and interface structure have been carried out and the stoichiometric composition of TiC is determined. Thermal conductivity and interface thermal conductance between different layers in the films are evaluated by the transient thermo reflectance (TTR) and three-omega (3- ω) methods. The results showed that the thermal conductivity of the TiC films increased with temperature. The thermal conductivity of TiC in the absence of TiN is dominated by phonon contribution. The electronic contribution to the thermal conductivity of TiC in the presence of TiN is found to be more significant. The interface thermal conductance of the TiC/TiN interface is much larger than that of interfaces at Au/TiC, TiC/Si, or TiN/Si. The interface thermal conductance between TiC and TiN is reduced by the layer formed as a result of interdiffusion.

  17. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    PubMed

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.

  18. Origin of Lamellar Magnetism (Invited)

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, P.; Fabian, K.; Harrison, R. J.

    2010-12-01

    The theory of lamellar magnetism arose through search for the origin of the strong and extremely stable remanent magnetization (MDF>100 mT) recorded in igneous and metamorphic rocks containing ilmenite with exsolution lamellae of hematite, or hematite with exsolution lamellae of ilmenite. Properties of rocks producing major remanent magnetic anomalies could not be explained by PM ilmenite or CAF hematite alone. Monte Carlo modeling of chemical and magnetic interactions in such intergrowths at high temperature indicated the presence of "contact layers" one cation layer thick at (001) interfaces of the two phases. Contact layers, with chemical composition different from layers in the adjacent phases, provide partial relief of ionic charge imbalance at interfaces, and can be common, not only in magnetic minerals. In rhombohedral Fe-Ti oxides, magnetic moments of 2 Fe2+Fe3+ contact layers (2 x 4.5µB) on both sides of a lamella, are balanced by the unbalanced magnetic moment of 1 Fe3+ hematite layer (1 x 5µB), to produce a net uncompensated ferrimagnetic "lamellar moment" of 4µB. Bulk lamellar moment is not proportional to the amount of magnetic oxide, but to the quantity of magnetically "in-phase" lamellar interfaces, with greater abundance and smaller thickness of lamellae, extending down to 1-2 nm. The proportion of "magnetically in-phase" lamellae relates to the orientation of (001) interfaces to the magnetizing field during exsolution, hence highest in samples with a strong lattice-preferred orientation of (001) parallel to the field during exsolution. The nature of contact layers, ~0.23 nm thick, with Fe2+Fe3+ charge ordering postulated by the Monte Carlo models, was confirmed by bond-valence and DFT calculations, and, their presence confirmed by Mössbauer measurements. Hysteresis experiments on hematite with nanoscale ilmenite at temperatures below 57 K, where ilmenite becomes AF, demonstrate magnetic exchange bias produced by strong coupling across phase interfaces. Interface coupling, with nominal magnetic moments perpendicular and parallel to (001), is facilitated by magnetic moments in hematite near interfaces that are a few degrees out of the (001) plane, proved by neutron diffraction experiments. When a ~b.y.-old sample, with a highly stable NRM, is ZF cooled below 57 K, it shows bimodal exchange bias, indicating the presence of two lamellar populations that are magnetically "out-of-phase", and incidentally proving the existence of lamellar magnetism. Lamellar magnetism may enhance the strength and stability of remanence in samples with magnetite or maghemite lamellae in pure hematite, or magnetite lamellae in ilmenite, where coarse magnetite or maghemite alone would be multi-domain. Here the "contact layers" should be a complex hybrid of 2/3-filled rhombohedral layers parallel to (001) and 3/4-filled cubic octahedral layers parallel to (111), with a common octahedral orientation confirmed by TEM observations. Here, because of different layer populations, the calculated lamellar moment may be higher than in the purely rhombohedral example.

  19. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  20. Modulating surface rheology by electrostatic protein/polysaccharide interactions.

    PubMed

    Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H

    2006-11-21

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.

Top