Yoo, Jejoong; Cui, Qiang
2013-01-08
Using both atomistic and coarse-grained (CG) models, we compute the three-dimensional stress field around a gramicidin A (gA) dimer in lipid bilayers that feature different degrees of negative hydrophobic mismatch. The general trends in the computed stress field are similar at the atomistic and CG levels, supporting the use of the CG model for analyzing the mechanical features of protein/lipid/water interfaces. The calculations reveal that the stress field near the protein-lipid interface exhibits a layered structure with both significant repulsive and attractive regions, with the magnitude of the stress reaching 1000 bar in certain regions. Analysis of density profiles and stress field distributions helps highlight the Trp residues at the protein/membrane/water interface as mechanical anchors, suggesting that similar analysis is useful for identifying tension sensors in other membrane proteins, especially membrane proteins involved in mechanosensation. This work fosters a connection between microscopic and continuum mechanics models for proteins in complex environments and makes it possible to test the validity of assumptions commonly made in continuum mechanics models for membrane mediated processes. For example, using the calculated stress field, we estimate the free energy of membrane deformation induced by the hydrophobic mismatch, and the results for regions beyond the annular lipids are in general consistent with relevant experimental data and previous theoretical estimates using elasticity theory. On the other hand, the assumptions of homogeneous material properties for the membrane and a bilayer thickness at the protein/lipid interface being independent of lipid type (e.g., tail length) appear to be oversimplified, highlighting the importance of annular lipids of membrane proteins. Finally, the stress field analysis makes it clear that the effect of even rather severe hydrophobic mismatch propagates to only about two to three lipid layers, thus putting a limit on the range of cooperativity between membrane proteins in crowded cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Li, Longbiao
2015-01-01
The tension-tension fatigue behavior of unidirectional C/SiC ceramic-matrix composite at room temperature and 800 °C under air has been investigated. The fatigue hysteresis modulus and fatigue hysteresis loss energy corresponding to different number of applied cycles have been analyzed. The fatigue hysteresis loops models for different interface slip cases have been derived based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading. The fiber/matrix interface shear stress has been estimated for different numbers of applied cycles. By combining the interface shear stress degradation model and fibers strength degradation model with fibers failure model, the tension-tension fatigue life S-N curves of unidirectional C/SiC composite at room temperature and 800 °C under air have been predicted.
NASA Astrophysics Data System (ADS)
Benz, N.; Bartlow, N. M.
2017-12-01
The addition of borehole strainmeter (BSM) to cGPS time series inversions can yield more precise slip distributions at the subduction interface during episodic tremor and slip (ETS) events in the Cascadia subduction zone. Traditionally very noisy BSM data has not been easy to incorporate until recently, but developments in processing noise, re-orientation of strain components, removal of tidal, hydrologic, and atmospheric signals have made this additional source of data viable (Roeloffs, 2010). The major advantage with BSMs is their sensitivity to spatial derivatives in slip, which is valuable for investigating the ETS nucleation process and stress changes on the plate interface due to ETS. Taking advantage of this, we simultaneously invert PBO GPS and cleaned BSM time series with the Network Inversion Filter (Segall and Matthews, 1997) for slip distribution and slip rate during selected Cascadia ETS events. Stress distributions are also calculated for the plate interface using these inversion results to estimate the amount of stress change during an ETS event. These calculations are performed with and without the utilization of BSM time series, highlighting the role of BSM data in constraining slip and stress.
Analysis of singular interface stresses in dissimilar material joints for plasma facing components
NASA Astrophysics Data System (ADS)
You, J. H.; Bolt, H.
2001-10-01
Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.
NASA Astrophysics Data System (ADS)
Saito, T.; Noda, A.; Yoshida, K.; Tanaka, S.
2017-12-01
In the Nankai Trough, southwest Japan, the Philippine Sea Plate descends beneath the Eurasian plate. The locking, or the slip deficit, on the plate interface causes stress fluctuation in the inland area. The interplate locking does not always result in stress accumulation but also causes stress release. The stress increase/decrease is not determined only from the stress fluctuation but also depends on the background stress, in particular, its orientation. This study proposes a method to estimate the shear-strain energy increase/decrease distribution caused by the interplate locking. We at first investigated the background stress field in and around the Nankai Trough. The spatial distribution of the principal stress orientations and the stress ratio were estimated by analysis of 130,000 focal mechanisms of small earthquakes (e.g., Yoshida et al. 2015 Tectonophysics). For example, in an area called Chugoku region, the maximum and minimum compression axes were E-W and N-S directions, respectively. We also estimated the slip-deficit rate at the plate interface by analyzing GNSS data and calculated the stress fluctuation due to the deficit (e.g., Noda et al. 2013 GJI). The interplate locking causes the maximum compression in the direction of plate convergence. This is significantly different from the orientations of the background stress characterized by the E-W compressional strike-slip stress regime.. By combining the results of the background stress and the stress fluctuation, we made a map indicating the shear-strain energy change due to the interplate locking. In the Chugoku region, the shear-strain energy decreases due to the interplate locking. This is because the N-S compressional stress caused by the interplate locking compensates the N-S extensional stress in the background. The shear-strain energy increases in some parts of the analyzed areas. By statistically comparing the shear strain energy rate with the seismicity in the inland area, we found that the seismicity tends to be high where the interplate locking increases the shear-strain energy. Our results suggest that the stress fluctuation due to the interplate locking is not dominant in the background stress but surely contributes to the inland seismicity in southwest Japan.
LES of stratified-wavy flows using novel near-interface treatment
NASA Astrophysics Data System (ADS)
Karnik, Aditya; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.
2017-11-01
The pressure drop in horizontal stratified wavy flows is influenced by interfacial shear stress. The near-interface behavior of the lighter phase is akin to that near a moving wall. We employ a front-tracking code, Blue, to simulate and capture the near-interface behaviour of both phases. Blue uses a modified Smagorinsky LES model incorporating a novel near-interface treatment for the sub-grid viscosity, which is influenced by damping due to the wall-like interface, and enhancement of the turbulent kinetic energy (TKE) due to the interfacial waves. Simulations are carried out for both air-water and oil-water stratified configurations to demonstrate the applicability of the present method. The mean velocities and tangential Reynolds stresses are compared with experiments for both configurations. At the higher Re, the waves penetrate well into the buffer region of the boundary layer above the interface thus altering its dynamics. Previous attempts to capture the secondary structures associated with such flows using RANS or standard LES methodologies have been unsuccessful. The ability of the present method to reproduce these structures is due to the correct estimation of the near-interface TKE governing energy transfer from the normal to tangential directions. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K
2018-03-27
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
NASA Astrophysics Data System (ADS)
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1996-01-01
A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.
NASA Astrophysics Data System (ADS)
Jung, Duk-Young; Kang, Yu-Bong; Tsutsumi, Sadami; Nakai, Ryusuke; Ikeuchi, Ken; Sekel, Ron
In this study, we simulated a wide cortex separation from a cementless hip prosthesis using the bone resorption remodeling method that is based on the generation of high compressive stress around the distal cortical bone. Thereafter, we estimated the effect on late migration quantities of the hip prosthesis produced by the interface state arising from bone ingrowth. This was accomplished using cortical bone remodeling over a long period of time. Two-dimensional natural hip and implanted hip FEM models were constructed with each of the following interface statements between the bone and prosthesis: (1) non-fixation, (2) proximal 1/3, (3) proximal 2/3 and (4) full-fixation. The fixation interfaces in the fully and partially porous coated regions were rigidly fixed by bony ingrowth. The non-fixation model was constructed as a critical situation, with the fibrous or bony tissue not integrated at all into the implant surface. The daily load history was generated using the three loading cases of a one-legged stance as well as abduction and adduction motions. With the natural hip and one-legged stance, the peak compressive principal stresses were found to be under the criteria value for causing bone resorption, while no implant movement occurred. The migration magnitude of the stem of the proximal 1/3 fixation model with adduction motion was much higher, reaching 6%, 11%and 21%greater than those of the non-fixation, proximal 2/3 fixation and all-fixation models, respectively. The full-fixation model showed the lowest compressive principal stress and implant movement. Thus, we concluded that the late loosening and subsequent movement of the stem in the long term could be estimated with the cortical bone remodeling method based on a high compressive stress at the bone-implant interface. The change caused at the bone-prosthesis interface by bony or fibrous tissue ingrowth constituted the major factor in determining the extent of cortical bone resorption occurring with clinical loosening and subsequent implant movement.
An analysis of fiber-matrix interface failure stresses for a range of ply stress states
NASA Technical Reports Server (NTRS)
Crews, J. H.; Naik, R. A.; Lubowinski, S. J.
1993-01-01
A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.
NASA Astrophysics Data System (ADS)
Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.
2017-12-01
A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.
NASA Astrophysics Data System (ADS)
Zhu, JianGuo; Chen, Wei; Xie, HuiMin
2015-03-01
Thermal barrier coating (TBC) systems are widely used in industrial gas-turbine engines. However, premature failures have impaired the use of TBCs and cut down their lifetime, which requires a better understanding of their failure mechanisms. In the present study, experimental studies of isothermal cycling are firstly carried out with the observation and estimation of microstructures. According to the experimental results, a finite element model is established for the analysis of stress perpendicular to the TBC/BC interface. Detailed residual stress distributions in TBC are obtained to reflect the influence of mechanical properties, oxidation, and interfacial roughness. The calculated results show that the maximum tensile stress concentration appears at the peak of TBC and continues to increase with thermal cycles. Because of the microstructural characteristics of plasma-sprayed TBCs, cracks initialize in tensile stress concentration (TSC) regions at the peaks of TBC and propagate along the TBC/BC interface resulting in the spallation of TBC. Also, the inclusion of creep is crucial to failure prediction and is more important than the inclusion of sintering in the simulation.
Zhang, Fangzhou; Bordia, Rajendra K.
2018-01-01
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates. PMID:29584647
A fiber-resin micromechanics analysis of the delamination front in a DCB specimen
NASA Technical Reports Server (NTRS)
Crews, J. H.; Shivakumar, K. N.; Raju, I. S.
1988-01-01
A 3-D finite element model was developed to analyze the fiber-resin behavior near the delamination front in a graphite-epoxy double cantilever beam (DCB) specimen. The specimen interior was analyzed using a typical one-fiber slice, represented by a local 3-D fiber-resin model. The resin stresses were computed for the resin-rich layer at the ply interface as well as for the regions between the fibers close to the delamination front. However, the computed strain energy release rate G sub I along the delamination front varied by less than two percent, and was within about four percent of the plane-strain value. The von Mises yield criterion was used to estimate the extent of yielding near the delamination front. The yielding extended ahead of the delamination and also developed between the fibers. Although the fibers had only a negligible effect on G sub I, they caused yielding within the ply and therefore could influence delamination fracture toughness. The normal and shear stresses at the fiber-resin interface were computed near the delamination front. These results suggest that multi-axial stress criteria may be required to analyze fiber-resin interfaces.
Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Cabello, Inmaculada; Toledano-Osorio, Manuel; Aguilera, Fátima S
2018-06-01
The aim of this study was to evaluate the induced changes in the chemical and mechanical performance at the glass-ionomer cement-dentin interface after mechanical load application. A conventional glass-ionomer cement (GIC) (Ketac Bond), and a resin-modified glass-ionomer cement (RMGIC) (Vitrebond Plus) were used. Bonded interfaces were stored in simulated body fluid, and then tested or submitted to the mechanical loading challenge. Different loading waveforms were applied: No cycling, 24 h cycled in sine or loaded in sustained hold waveforms. The cement-dentin interface was evaluated using a nano-dynamic mechanical analysis, estimating the complex modulus and tan δ. Atomic Force Microscopy (AFM) imaging, Raman analysis and dye assisted confocal microscopy evaluation (CLSM) were also performed. The complex modulus was lower and tan delta was higher at interfaces promoted with the GIC if compared to the RMGIC unloaded. The conventional GIC attained evident reduction of nanoleakage. Mechanical loading favored remineralization and promoted higher complex modulus and lower tan delta values at interfaces with RMGIC, where porosity, micropermeability and nanoleakage were more abundant. Mechanical stimuli diminished the resistance to deformation and increased the stored energy at the GIC-dentin interface. The conventional GIC induced less porosity and nanoleakage than RMGIC. The RMGIC increased nanoleakage at the porous interface, and dye sorption appeared within the cement. Both cements created amorphous and crystalline apatites at the interface depending on the type of mechanical loading. Remineralization, lower stress concentration and resistance to deformation after mechanical loading improved the sealing of the GIC-dentin interface. In vitro oral function will favor high levels of accumulated energy and permits micropermeability at the RMGIC-dentin interface which will become remineralized. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatio-temporal Variations in Slow Earthquakes along the Mexican Subduction Zone
NASA Astrophysics Data System (ADS)
Ide, S.; Maury, J.; Cruz-Atienza, V. M.; Kostoglodov, V.
2017-12-01
Slow earthquakes in Mexico have been investigated independently in different areas. Here, we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress suggesting the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.
Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone
NASA Astrophysics Data System (ADS)
Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.
2018-02-01
Slow earthquakes in Mexico have been investigated independently in different areas. Here we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However, some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, and tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress, suggesting that the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.
Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge
NASA Astrophysics Data System (ADS)
Sato, T.; Oda, K.; Tsutsumi, N.
2018-06-01
Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.
Li, Longbiao
2015-01-01
The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e., fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted. PMID:28793728
Li, Longbiao
2015-12-09
The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e. , fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted.
NASA Astrophysics Data System (ADS)
Gong, Jianhua; McGuire, Jeffrey J.
2018-01-01
The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected there.
NASA Astrophysics Data System (ADS)
Noda, A.; Saito, T.; Fukuyama, E.
2017-12-01
In southwest Japan, great thrust earthquakes occurred on the plate interface along the Nankai trough with a recurrence time of about 100 yr. Most studies estimated slip deficits on the seismogenic zone from interseismic GNSS velocity data assuming elastic slip-response functions (e.g. Loveless and Meade, 2016; Yokota et al., 2016). The observed surface velocities, however, include effects of viscoelastic relaxation in the asthenosphere caused by slip history of seismic cycles on the plate interface. Following Noda et al. (2013, GJI), the interseismic surface velocities due to seismic cycle can be represented by the superposition of (1) completely relaxed viscoelastic response to steady slip rate over the whole plate interface, (2) completely relaxed viscoelastic response to steady slip deficit rate in the seismogenic zone, and (3) surface velocity due to viscoelastic stress relaxation after the last interplate earthquake. Subtracting calculated velocities due to steady slip (1) from velocity data observed after the postseismic stress relaxation (3) decays sufficiently, we can formulate an inverse problem of estimating slip deficit rates from the residual velocities using completely relaxed slip-response functions. In an elastic (lithosphere) - viscoelastic (asthenosphere) layered half-space, the completely relaxed responses do not depend on the viscosity of asthenosphere, but depend on the thickness of lithosphere. In this study, we investigate the effects of structure model on the estimation of slip deficit rate distribution. First, we analyze GNSS daily coordinate data (GEONET F3 Solution, GSI), and obtain surface velocity data for overlapped periods of 6 yr (1996-2002, 1999-2005, 2002-2008, 2005-2011). There is no significant temporal change in the velocity data, which suggests that postseismic stress relaxations after the 1944 Tonankai and the 1946 Nankai earthquakes decayed sufficiently. Next, we estimate slip deficit rate distribution from velocity data from 2005 to 2011 together with seafloor geodetic data (Yokota et al., 2016). There is a significant difference between the results using elastic and completely relaxed responses. While the result using elastic responses shows high slip-deficit rate zone in coastal regions, they are located trenchward if using completely relaxed responses.
NASA Astrophysics Data System (ADS)
Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime
2018-02-01
It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.
NASA Astrophysics Data System (ADS)
Ruff, Larry J.
2001-04-01
The deep creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the overlying lithosphere in subduction zones. Seismogenic/deep creep zone interaction during the earthquake cycle produces spatial and temporal variations in strains within the surrounding elastic material. Strain observations in the Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic observations has been a 2-D Savage-type model where a plate interface is placed in an elastic half-space and co-seismic slip occurs in the upper seismogenic portion of the interface, while inter-seismic deformation is modeled by a locked seismogenic zone and a constant slip velocity across the deep creep interface. Here, I use the simplest possible 2-D mechanical model with just two blocks to study the stress interaction between the seismogenic and deep creep zones. The seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear constitutive law for the deep creep zone connects the shear stress (σ) to the slip velocity across the plate interface (s') with the material property of interface viscosity (ζ ) as: σ = ζ s'. The analytic solution for the steady-state two-block model produces simple formulas that connect some spatially-averaged geodetic observations to model quantities. Aside from the basic subduction zone geometry, the key observed parameter is τ, the characteristic time of the rapid post-seismic slip in the deep creep interface. Observations of τ range from about 5 years (Nankai and Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from 8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting on deep creep interface averaged over the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile). These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops. Since the great earthquake recurrence time ( T recur) is much larger than τ for Nankai, Alaska, and Chile, the model predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change; geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) ≫1, the model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about (2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent with a deep creep rate of R rather than (2/3) R. This discrepancy is quite puzzling and is difficult to explain in the context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.
Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.
Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E
2015-12-01
The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p < 0.05) lower than at the interface of the RBA-RCS. Secondly, at 300 seconds and 6 hours the interface contraction stress magnitude of the RMGIBA-RCS was significantly (p < 0.05) lower than the stress of all assessed RBA-RCS. Thirdly, from 300 seconds to 6 hours both the magnitude and rate of interface stress of the RMGIBA-RCS continued to decline over the 6 hours from the 300 seconds peak. The use of resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.
NASA Technical Reports Server (NTRS)
Hansen, R. F. (Principal Investigator)
1981-01-01
The use of the wheat stress indicator model CCAD data base interface driver is described. The purpose of this system is to interface the wheat stress indicator model with the CCAD operational data base. The interface driver routine decides what meteorological stations should be processed and calls the proper subroutines to process the stations.
Determination of fiber-matrix interface failure parameters from off-axis tests
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1993-01-01
Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.
Brownian thermal noise in functional optical surfaces
NASA Astrophysics Data System (ADS)
Kroker, S.; Dickmann, J.; Rojas Hurtado, C. B.; Heinert, D.; Nawrodt, R.; Levin, Y.; Vyatchanin, S. P.
2017-07-01
We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor. This paper shows how to relate this form factor to Maxwell's stress tensor computed on all interfaces of the moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013), 10.1103/PhysRevD.88.042001] utilizing a simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those of the exact analysis in the present paper. The relation between the form factor and Maxwell's stress tensor implies a close correlation between the optical properties of functional optical surfaces and thermal noise.
On the influence of dynamic stress variations on strain accumulation in fault zones
NASA Astrophysics Data System (ADS)
Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.
2015-10-01
In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.
NASA Astrophysics Data System (ADS)
Chen, Jianwei; Zhao, Yang; Ma, Jian
2015-04-01
The residual stress of electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings (TBC) is complex and difficult to be obtained. In this paper, the interface morphology of TBCs subjected to cyclic heating and cooling was observed by SEM. Based on the thermal elastic-plastic finite method, corresponding interface model of TBCs was established. The residual stress of EB-PVD TBCs with different interface morphologies and TGO thicknesses was calculated using the FE method without regard to the presence of cracks and defects. The result shows that the distribution of residual stress is significantly affected by the interface morphology, and the growth of TGO also has influence on the residual stress of TC and TGO.
Al-Fakih, Ebrahim A; Abu Osman, Noor Azuan; Mahmad Adikan, Faisal Rafiq
2016-07-20
The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket.
Al-Fakih, Ebrahim A.; Abu Osman, Noor Azuan; Mahmad Adikan, Faisal Rafiq
2016-01-01
The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket. PMID:27447646
Stress Intensity Formulas for Three Dimensional Crack in the Vicinity of an Interface
NASA Astrophysics Data System (ADS)
Noda, Nao-Aki; Liang, Bin; Xu, Chunhui
2008-02-01
In this study, stress intensity factors are considered by using exact solutions available for cracks near an interface. The effect of crack shape on the stress intensity factors is studied with varying the aspect ratio of the cracks. Then, the stress intensity factors are expressed as formulas useful for engineering applications. The stress intensity factors for interface cracks and a crack in a functionally graded material are also discussed.
NASA Astrophysics Data System (ADS)
Akbarov, S. D.; Ipek, C.
This work studies the influence of the imperfectness of the interface conditions on the dispersion of the axisymmetric longitudinal waves in the pre-strained bi-material hollow cylinder. The investigations are made within the 3D linearized theory of elastic waves in elastic bodies with initial stresses. It is assumed that the materials of the layers of the hollow cylinder are made from hyper elastic compressible materials and the elasticity relations of those are given through the harmonic potential. The shear spring type imperfectness of the interface conditions is considered and the degree of this imperfectness is estimated by the shear-spring parameter. Numerical results on the influence of this parameter on the behavior of the dispersion curves are presented and discussed.
Hertzberg, Tuva Kolstad; Rø, Karin Isaksson; Vaglum, Per Jørgen Wiggen; Moum, Torbjørn; Røvik, Jan Ole; Gude, Tore; Ekeberg, Øivind; Tyssen, Reidar
2016-01-01
The importance of work-home interface stress can vary throughout a medical career and between genders. We studied changes in work-home interface stress over 5 yr, and their prediction of emotional exhaustion (main dimension of burn-out), controlled for other variables. A nationwide doctor cohort (NORDOC; n=293) completed questionnaires at 10 and 15 yr after graduation. Changes over the period were examined and predictors of emotional exhaustion analyzed using linear regression. Levels of work-home interface stress declined, whereas emotional exhaustion stayed on the same level. Lack of reduction in work-home interface stress was an independent predictor of emotional exhaustion in year 15 (β=-0.21, p=0.001). Additional independent predictors were reduction in support from colleagues (β=0.11, p=0.04) and emotional exhaustion at baseline (β=0.62, p<0.001). Collegial support was a more important predictor for men than for women. In separate analyses, significant adjusted predictors were lack of reduction in work-home interface stress among women, and reduction of collegial support and lack of reduction in working hours among men. Thus, change in work-home interface stress is a key independent predictor of emotional exhaustion among doctors 15 yr after graduation. Some gender differences in predictors of emotional exhaustion were found.
NASA Astrophysics Data System (ADS)
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-12-01
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.
Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane
2014-08-19
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu 2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less
The evolution of slip pulses within bimaterial interfaces with rupture velocity
NASA Astrophysics Data System (ADS)
Shlomai, H.; Fineberg, J.
2017-12-01
The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. Our experiments study the rupture of a spatially extended interface formed by brittle plastics whose shear wave speeds differ by 30%. Any slip within a bimaterial interface will break the stress symmetry across the interface. One important result of this is that local values of normal stress variations at the interface couple to interface slip, `bimaterial coupling'. The sign of the coupling depends on the front propagation direction. When we consider ruptures propagating in the direction of motion of the more compliant material, the `positive' direction, slip reduces the normal stress. We focus on this direction. We show that, in this direction, interface ruptures develop from crack-like behavior at low rupture velocities, whose structure corresponds to theoretical predictions: As the ruptures accelerate towards their asymptotic speed, the structures of the strain and stress fields near the rupture tip deviate significantly from this crack-like form, and systematically sharpen to a pulse-like rupture mode called slip-pulses. We conclude with a description of slip-pulse properties.
Influence of interfaces density and thermal processes on mechanical stress of PECVD silicon nitride
NASA Astrophysics Data System (ADS)
Picciotto, A.; Bagolini, A.; Bellutti, P.; Boscardin, M.
2009-10-01
The paper focuses on a particular silicon nitride thin film (SiN x) produced by plasma enahanced chemical vapor deposition (PECVD) technique with high deposition rate (26 nm/min) and low values of mechanical stress (<100 MPa). This was perfomed with mixed frequency procedure varying the modulation of high frequency at 13.56 MHz and low frequency at 308 kHz of RF power supply during the deposition, without changing the ratio of reaction gases. Low stress silicon nitride is commonly obtained by tailoring the thickness ratio of high frequency vs. low frequency silicon nitride layers. The attention of this work was directed to the influence of the number of interfaces per thickness unit on the stress characteristics of the deposited material. Two sets of wafer samples were deposited with low stress silicon nitride, with a thickness of 260 nm and 2 μm, respectively. Thermal annealing processes at 380 and 520 °C in a inert enviroment were also performed on the wafers. The Stoney-Hoffman model was used to estimate the stress values by wafer curvature measurement with a mechanical surface profilometer: the stress was calculated for the as-deposited layer, and after each annealing process. The thickness and the refractive index of the SiN x were also measured and charaterized by variable angle spectra elliposometry (VASE) techinique. The experimental measurements were performed at the MT-LAB, IRST (Istituto per la Ricerca Scientifica e Tecnologica) of Bruno Kessler Foundation for Research in Trento.
Skin-stiffener interface stresses in composite stiffened panels
NASA Technical Reports Server (NTRS)
Wang, J. T. S.; Biggers, S. B.
1984-01-01
A model and solution method for determining the normal and shear stresses in the interface between the skin and the stiffener attached flange were developed. An efficient, analytical solution procedure was developed and incorporated in a sizing code for stiffened panels. The analysis procedure described provides a means to study the effects of material and geometric design parameters on the interface stresses. These stresses include the normal stress, and the shear stresses in both the longitudinal and the transverse directions. The tendency toward skin/stiffener separation may therefore be minimized by choosing appropriate values for the design variables. The most important design variables include the relative bending stiffnesses of the skin and stiffener attached flange, the bending stiffness of the stiffener web, and the flange width. The longitudinal compressive loads in the flange and skin have significant effects on the interface stresses.
Thermal conductivity of hydrate-bearing sediments
Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.
2009-01-01
A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.
NASA Astrophysics Data System (ADS)
Apu, Md. Jakaria; Islam, Md. Shahidul
2016-07-01
Bi-material joint is often used in many advanced materials and structures. Determination of the bonding strength at the interface is very difficult because of the presence of the stress singularity. In this paper, the displacement and stress fields of a transversely isotropic bi-material joint around an interface edge are determined. Autodesk Simulation Mechanical 2015 is used to carry out the numerical computations. Stress and displacement fields demonstrate that the values near the edge of joint where the stress singularity occurs are larger than that at the inner portion. From the numerical results, it is suggested that de-bonding of the interface may occur at the interface edge of the joint due to the higher stress concentration at the free edge.
HERTZBERG, Tuva Kolstad; RØ, Karin Isaksson; VAGLUM, Per Jørgen Wiggen; MOUM, Torbjørn; RØVIK, Jan Ole; GUDE, Tore; EKEBERG, Øivind; TYSSEN, Reidar
2015-01-01
The importance of work-home interface stress can vary throughout a medical career and between genders. We studied changes in work-home interface stress over 5 yr, and their prediction of emotional exhaustion (main dimension of burn-out), controlled for other variables. A nationwide doctor cohort (NORDOC; n=293) completed questionnaires at 10 and 15 yr after graduation. Changes over the period were examined and predictors of emotional exhaustion analyzed using linear regression. Levels of work-home interface stress declined, whereas emotional exhaustion stayed on the same level. Lack of reduction in work-home interface stress was an independent predictor of emotional exhaustion in year 15 (β=−0.21, p=0.001). Additional independent predictors were reduction in support from colleagues (β=0.11, p=0.04) and emotional exhaustion at baseline (β=0.62, p<0.001). Collegial support was a more important predictor for men than for women. In separate analyses, significant adjusted predictors were lack of reduction in work-home interface stress among women, and reduction of collegial support and lack of reduction in working hours among men. Thus, change in work-home interface stress is a key independent predictor of emotional exhaustion among doctors 15 yr after graduation. Some gender differences in predictors of emotional exhaustion were found. PMID:26538002
Interface stresses in fiber-reinforced materials with regular fiber arrangements
NASA Astrophysics Data System (ADS)
Mueller, W. H.; Schmauder, S.
The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.
Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples
NASA Astrophysics Data System (ADS)
Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.
2012-12-01
Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.
Atomistic calculations of interface elastic properties in noncoherent metallic bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi Changwen; Jun, Sukky; Kouris, Demitris A.
2008-02-15
The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less
ERIC Educational Resources Information Center
Berkley, Jeannette; Cates, Ward Mitchell
This paper examines the benefits of a metaphorical graphical user interface (GUI) and discusses how metaphorical interfaces can be used to deliver instruction on stress management. A computer-based instructional (CBI) program for college students was developed on the fundamentals of stress and the role of time management as a coping strategy. The…
Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.
NASA Technical Reports Server (NTRS)
Jansson, S.; Leckie, F. A.
1990-01-01
The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.
Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures.
Tanino, Fuminori; Hayakawa, Iwao; Hirano, Shigezo; Minakuchi, Shunsuke
2007-01-01
The purpose of this study was to examine the effect of stress-breaking attachments at the connections between maxillary palateless overdentures and implants. Three-dimensional finite element models were used to reproduce an edentulous human maxilla with an implant-retained overdenture. Two-implant models (in the canine tooth positions on both sides) and four-implant models (in the canine and second premolar tooth positions on both sides) were examined. Stress-breaking material connecting the implants and denture was included around each abutment. Axial loads of 100 N were applied to the occlusal surface at the left first molar tooth positions. In each model, the influence of the stress-breaking attachments was compared by changing the elastic modulus from 1 to 3,000 MPa and the thickness of the stress-breaking material from 1 to 3 mm. Maximum stress at the implant-bone interface and stress at the cortical bone surface just under the loading point were calculated. In all models, maximum stress at the implant-bone interface with implants located in the canine tooth position was generated at the peri-implant bone on the loading side. As the elastic modulus of the stress-breaking materials increased, the stress increased at the implant-bone interface and decreased at the cortical bone surface. Moreover, stress at the implant-bone interface with 3-mm-thick stress-breaking material was smaller than that with 1-mm-thick material. Within the limitations of this experiment, stress generated at the implant-bone interface could be controlled by altering the elastic modulus and thickness of the stress-breaking materials.
Push-off tests and strength evaluation of joints combining shrink fitting with bonding
NASA Astrophysics Data System (ADS)
Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi
1997-03-01
Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Wilt, Thomas E.
1992-01-01
Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.
Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa
2007-07-01
To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.
Creep and stress relaxation induced by interface diffusion in metal matrix composites
NASA Astrophysics Data System (ADS)
Li, Yinfeng; Li, Zhonghua
2013-03-01
An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).
An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1972-01-01
The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.
[Stress distribution in press-fit orthodontic microimplant bone interface].
Wu, Jian-chao; Huang, Ji-na; Zhao, Shi-fang; Xu, Xue-jun
2006-12-01
The goal of this study is to analyse the stress distribution in the press-fit microimplant-bone interface and its indications for immediate loading of orthodontic microimplant. Three-dimensional finite element models were created of a 20 mm section of posterior mandible simplified in isosceles trapezoid shape, 30 mm in height, 10mm in upper side width, 14 mm in lower side width,with a single microimplant, 1.2 mm in diameter, 6 mm in length embedded in the bone. The cortical bone thickness was assumed as 1.6 mm. Cortical and cancellous bone were modeled as transversely isotropic and linearly elastic materials. Titanium was modeled as isotropic and linearly elastic material. Perfect bonding was assumed at microimplant- bone interfaces. ANSYS 9.0 finite element analysis software was used to generate the simplified finite element models of the local mandible-implant complex. 0 mm, 0.05 mm and 0.1 mm press-fit were arbitrarily set to the implant-bone interface to mimic the situation of immediate placement of microimplant. Stresses in the microimplant-bone interface were calculated under these "press-fit". Stresses distributed mainly in the cortical bone interface. At Omm press-fit, the stress was 0 MPa. For 0.05mm press-fit, the stress was 1648 MPa in mesio-distal direction, 1782MPa in occluso-gingival direction;and for 0.1 mm, it reached 2012MPa in mesio-distal direction, 2110MPa in occluso-gingival direction. As the "press-fit" increased, the stresses increased accordingly. Values of initial stress in the microimplant-bone interface due to press-fit generated by immediately placed microimplant were very high in these limited and simplified three dimensional finite element models. It reminded us that the initial stress be taken into consideration when immediate loading of the microimplant is planned. Supported by Research Fund of Health Bureau of Zhejiang Province (2005B104).
Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)
NASA Technical Reports Server (NTRS)
Pojman, John A.; Bessonov, Nicholas; Volpert, Vitaly; Wilke, Hermann
2003-01-01
Almost one hundred years ago Korteweg published a theory of how stresses could be induced in miscible fluids by concentration gradients, causing phenomena that would appear to be the same as with immiscible fluids. Miscible fluids could manifest a transient or effective interfacial tension (EIT). To this day, there has been no definitive experiment to confirm Korteweg's model but numerous fascinating and suggestive experiments have been reported. The goal of TIPMPS is to answer the question: Can concentration and temperature gradients in miscible materials induce stresses that cause convection? Many polymer processes involving miscible monomer and polymer systems could be affected by fluid flow and so this work could help understand miscible polymer processing, not only in microgravity, but also on earth. Demonstrating the existence of this phenomenon in miscible fluids will open up a new area of study for materials science. The science objectives of TIPMPS are: (1) Determine if convection can be induced by variation of the width of a miscible interface; (2) Determine if convection can be induced by variation of temperature along a miscible interface; (3) Determine if convection can be induced by variation of conversion along a miscible interface An interface between two miscible fluids can best be created via a spatially-selective photopolymerization of dodecyl acrylate with a photoinitiator, which allows the creation of precise and accurate concentration gradients between polymer and monomer. Optical techniques will be used to measure the refractive index variation caused by the resultant temperature and concentration fields. The viscosity of the polymer will be measured from the increase in the fluorescence of pyrene. Because the large concentration and temperature gradients cause buoyancy-driven convection that prevents the observation of the predicted flows, the experiment must be done in microgravity. In this report, we will consider our efforts to estimate the square gradient parameter, k, and our use of the estimates in modeling of the planned TIPMPS experiments. We developed a model consisting of the heat and diffusion equations with convective terms and of the Navier-Stokes equations with an additional volume force written in the form of the Korteweg stresses arising from nonlocal interaction in the fluid. The fluid's viscosity dependence on polymer conversion and temperature was taken from measurements of poly(dodecyl acrylate). Numerical modeling demonstrated that significant flows would arise for conditions corresponding to the planned experiments.
Bi-material plane with interface crack for the model of semi-linear material
NASA Astrophysics Data System (ADS)
Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.
2018-05-01
The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.
Effect of welding on creep damage evolution in P91B steel
NASA Astrophysics Data System (ADS)
Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.
2017-07-01
Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.
Analysis on annealing-induced stress of blind-via TSV using FEM
NASA Astrophysics Data System (ADS)
Shao, Jie; Shi, Tielin; Du, Li; Su, Lei; Lu, Xiangning; Liao, Guanglan
2017-07-01
Copper-filled through silicon via (TSV) is a promising material owing to its application in high-density three-dimensional (3D) packaging. However, in TSV manufacturing, thermo-mechanical stress is induced during the annealing process, often causing reliability issues. In this paper, the finite element method is employed to investigate the impacts of via shape and SiO2 liner uniformity on the thermo-mechanical properties of copper- filled blind-via TSV after annealing. Top interface stress analysis on the TSV structure shows that the curvature of via openings releases stress concentration that leads to 60 MPa decrease of normal stresses, σ xx and σ yy , in copper and 70 MPa decrease of σ xx in silicon. Meanwhile, the vertical interface analysis shows that annealing-induced stress at the SiO2/Si interface depends heavily on SiO2 uniformity. By increasing the thickness of SiO2 linear, the stress at the vertical interface can be significantly reduced. Thus, process optimization to reduce the annealing-induced stress becomes feasible. The results of this study help us gain a better understanding of the thermo-mechanical behavior of the annealed TSV in 3D packaging.
Transitional Benthic Boundary Layers and their Influence on Nutrient Flux in Tidal Estuaries
NASA Astrophysics Data System (ADS)
Koetje, K. M.; Foster, D. L.; Lippmann, T. C.; Kalnejais, L. H.
2016-12-01
Quantifying the coupled physical and geochemical processes in the fluid-sediment interface is critical to managing coastal resources. This is of particular importance during times of enhanced hydrodynamic forcing where extreme tide or wind events can have a significant impact on water quality. A combination of field and laboratory experiments were used to examine the relationship between large-scale fluid shear stresses and geochemical fluxes at the fluid-sediment interface in the Great Bay Estuary, New Hampshire. Sediment geochemical measurements paired with flow field observations along estuary-wide transects over several tidal cycles provide nutrient load estimates that can be scaled to represent the whole Bay. Three-dimensional flow field measurements collected using a maneuverable personal watercraft were used to determine the spatial and temporal variability of the shear stress throughout the Bay. High-resolution bottom boundary layer dynamics were observed using a suite of acoustic Doppler current profilers (ADCP) in order to improve the accuracy of diffusive flux estimates by directly measuring the thickness of the benthic boundary layer. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak mean flows ranged from 0.2 m/s to 1 m/s at the sampling sites. The dominant contribution of hydrodynamic forcing to the Bay is due to tidal flows, which are largely unidirectional during flood tide. Sediment grain size analysis characterized the bed at sampling sites as fine-grained sandy mud (d50 = 47 μm). Sampling during typical tidal flow conditions, a smooth turbulent flow field was observed and the threshold of motion was not exceeded. Along with sediment characterization, porosity profiles and erosion chamber experiments were used to characterize nutrient release. This host of data provides shear stress estimates that can constrain nutrient loads under variable hydrodynamic conditions.
Effect of interfacial stresses in an elastic body with a nanoinclusion
NASA Astrophysics Data System (ADS)
Vakaeva, Aleksandra B.; Grekov, Mikhail A.
2018-05-01
The 2-D problem of an infinite elastic solid with a nanoinclusion of a different from circular shape is solved. The interfacial stresses are acting at the interface. Contact of the inclusion with the matrix satisfies the ideal conditions of cohesion. The generalized Laplace - Young law defines conditions at the interface. To solve the problem, Gurtin - Murdoch surface elasticity model, Goursat - Kolosov complex potentials and the boundary perturbation method are used. The problem is reduced to the solution of two independent Riemann - Hilbert's boundary problems. For the circular inclusion, hypersingular integral equation in an unknown interfacial stress is derived. The algorithm of solving this equation is constructed. The influence of the interfacial stress and the dimension of the circular inclusion on the stress distribution and stress concentration at the interface are analyzed.
Li, Longbiao
2016-01-01
In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures. PMID:28773966
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Bello, Martiniano; Pérez-Hernández, Gerardo; Fernández-Velasco, D Alejandro; Arreguín-Espinosa, Roberto; García-Hernández, Enrique
2008-03-01
Transient protein-protein interactions are functionally relevant as a control mechanism in a variety of biological processes. Analysis of the 3D structure of protein-protein complexes indicates that water molecules trapped at the interface are very common; however, their role in the stability and specificity of protein homodimer interactions has been not addressed yet. To provide new insights into the energetic bases that govern the formation of highly hydrated interfaces, the dissociation process of bovine beta lg variant A at a neutral pH was characterized here thermodynamically by conducting dilution experiments with an isothermal titration calorimeter. Association was enthalpically driven throughout the temperature range spanned. DeltaH and deltaC(p) were significantly more negative than estimates based on surface area changes, suggesting the occurrence of effects additional to the dehydration of the contact surfaces between subunits. Near-UV CD spectra proved to be independent of protein concentration, indicating a rigid body-like association. Furthermore, the process proved not to be coupled to significant changes in the protonation state of ionizable groups or counterion exchange. In contrast, both osmotic stress experiments and a computational analysis of the dimer's 3D structure indicated that a large number of water molecules are incorporated into the interface upon association. Numerical estimates considering the contributions of interface area desolvation and water immobilization accounted satisfactorily for the experimental deltaC(p). Thus, our study highlights the importance of explicitly considering the effects of water sequestering to perform a proper quantitative analysis of the formation of homodimers with highly hydrated interfaces. 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Brown, William L.
1989-07-01
Albite glide pseudotwins related to grain-boundary stresses have been observed in an exsolved peristerite (Brown 1989). The glide operation transposes the pre-existing periodic oligoclase/albite lamellae and interfaces into a position rotated by only ˜0.5° in the pseudotwins, but transforms the indices from (1bar 80) outside to ( 081) inside the pseudotwin. The pseudotwin is anti-ordered with respect to Al and Si and both it and the transposed interface are unstable. They should revert to the initial state on stress removal. If however the stresses are maintained for a sufficiently long time, the pseudotwins are stabilized by inversion of Si,Al order and re-orientation of the interface by an angle of about 30° into a position close to \\underline {(1bar 80)} . The continuous lamellae break up into a series of discs by diffusion of NaSi and CaAl, the minimum diffusion path being about the same as the thickness of the lamellae. On extrapolating available interdiffusion data in Ab-rich plagioclases to low temperatures, possible diffusion times may be calculated. The calculated times are long so that either the peristerite miscibility gap must be at a higher temperature than previously supposed or the low-temperature interdiffusion coefficients must be higher than the extrapolated experimental ones, or both. From recent data on ordering in albite, the crest of the gap is estimated to lie close to 650 625° C at low pressure and it is possible that interdiffusion under natural conditions is facilitated by hydrogen (protons) in feldspars.
Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry
NASA Technical Reports Server (NTRS)
Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)
2002-01-01
While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).
NASA Astrophysics Data System (ADS)
Longbiao, Li
2018-02-01
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.
Mehdi, Ghalem; Belarbi, Abderrahmane; Mansouri, Bensmaine; Azari, Zitouni
2015-01-01
This paper focused on optimal stress distribution in the mandibular bone surrounding a dental implant and is devoted to the development of a modified Osteoplant® implant type in order to minimize stress concentration in the bone-implant interface. This study investigated 0.4 mm thick layers of two elastomeric stress barriers incorporated into the dental implant using 3-D finite element analysis. Overall, this proposed implant provoked lower load transfer in bone-implant interface due to the effect of the elastomers as stress absorbers. The stress level in the bone was reduced between 28% and 42% for three load cases: 75 N, 60 N and 27 N in corono-apical, linguo-buccal and disto-mesial direction, respectively. The proposed model provided an acceptable solution for load transfer reduction to the mandible. This investigation also permitted to choose how to incorporate two elastomers into the Osteoplant® implant system.
NASA Astrophysics Data System (ADS)
Sueoka, K.; Nakamura, K.; Vanhellemont, J.
2017-09-01
For the development of crystal pulling processes for 450 mm-diameter defect-free Si crystals, it is important to evaluate the impact of thermal stress on intrinsic point defect behavior during crystal growth. In a crystal growing from a melt, the melt/solid interface can be considered as being stress-free. Due to that the thermal stress in the growing substrate near the interface is internal plane stress. Previously, we evaluated the impact of (001) planar-isotropic stress on the formation enthalpy (Hf) of the vacancy (V) and the self-interstitial (I) using density functional theory (DFT) calculations, and explained quantitatively the published experimental values of the so-called ;Voronkov criterion;. The thermal stress in a growing crystal is indeed planar but is not isotropic in the plane except for the central region of the crystal. The purpose of the present study is to estimate the impact of planar-anisotropic stress on the formation enthalpy Hf of V and I. It is found that the three stress dependencies of σx: σy=1: 1 (planar-isotropic), 2: 1, 5: 1 (planar-anisotropic) are close to each other, independent of the assumption of isotropic or anisotropic planar stress. This is the reason why the experimental results obtained over the whole radial direction of the crystal are well reproduced by the calculated results assuming planar-isotropic stress. A uniaxial stress dependence which is a good assumption for the crystal peripheral region, leads also to results that are close to those for the planar stress dependence. Also the mechanisms behind the experimentally observed impact of interstitial oxygen (Oi), introduced during Czochralski Si growth, on V and I concentrations are clarified. DFT calculations are performed to obtain the formation energies (Ef) of V and I at all sites within a sphere with 5 Å radius around the Oi atom. Formation (vibration) entropy (Sf) calculations for V and I are also performed. It is found that both EfV and SfV of V in the zigzag-bond (1st, 2nd, 5th) including the Oi atom decrease while EfI of I is not affected by the Oi atom. ;Total V; is defined as the sum of free V and V trapped by the Oi atoms. The total V concentration at the melting point is evaluated by considering the EfV and SfV at each site. The calculated V concentration increases by about 2.9% with 1×1018 Oi cm-3 and agrees well with the experimentally estimated value of a few % increase with 1×1018 Oi cm-3.
A simple method for determining stress intensity factors for a crack in bi-material interface
NASA Astrophysics Data System (ADS)
Morioka, Yuta
Because of violently oscillating nature of stress and displacement fields near the crack tip, it is difficult to obtain stress intensity factors for a crack between two dis-similar media. For a crack in a homogeneous medium, it is a common practice to find stress intensity factors through strain energy release rates. However, individual strain energy release rates do not exist for bi-material interface crack. Hence it is necessary to find alternative methods to evaluate stress intensity factors. Several methods have been proposed in the past. However they involve mathematical complexity and sometimes require additional finite element analysis. The purpose of this research is to develop a simple method to find stress intensity factors in bi-material interface cracks. A finite element based projection method is proposed in the research. It is shown that the projection method yields very accurate stress intensity factors for a crack in isotropic and anisotropic bi-material interfaces. The projection method is also compared to displacement ratio method and energy method proposed by other authors. Through comparison it is found that projection method is much simpler to apply with its accuracy comparable to that of displacement ratio method.
Calculation of skin-stiffener interface stresses in stiffened composite panels
NASA Technical Reports Server (NTRS)
Cohen, David; Hyer, Michael W.
1987-01-01
A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.
NASA Astrophysics Data System (ADS)
Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.
2014-12-01
Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth and fail catastrophically by tooth failure, whereas larger tip angles exhibit a shear failure of the interfaces. Therefore, larger tip angles and trapezoidal or triangular geometries promote graceful failure, and smaller tip angles and anti-trapezoidal geometries promote more brittle-like failure. This dependence is reminiscent of biological systems, which exhibit a range of failure behaviors with limited materials and varied geometry. Triangular geometries uniquely exhibit uniform stress distributions in its teeth and promote the greatest amplification of mechanical properties. In both the bonded and unbonded cases, the predictions from the presented analytical models and experimental results on 3D printed prototypes show excellent agreement. This validates the analytical models and allows for the models to be used as a tool for the design of new materials and interfaces with tailored mechanical behavior.
Misra, Anil; Spencer, Paulette; Marangos, Orestes; Wang, Yong; Katz, J. Lawrence
2005-01-01
A finite element (FE) model has been developed based upon the recently measured micro-scale morphological, chemical and mechanical properties of dentin–adhesive (d–a) interfaces using confocal Raman microspectroscopy and scanning acoustic microscopy (SAM). The results computed from this FE model indicated that the stress distributions and concentrations are affected by the micro-scale elastic properties of various phases composing the d–a interface. However, these computations were performed assuming isotropic material properties for the d–a interface. The d–a interface components, such as the peritubular and intertubular dentin, the partially demineralized dentin and the so-called ‘hybrid layer’ adhesive-collagen composite, are probably anisotropic. In this paper, the FE model is extended to account for the probable anisotropic properties of these d–a interface phases. A parametric study is performed to study the effect of anisotropy on the micromechanical stress distributions in the hybrid layer and the peritubular dentin phases of the d–a interface. It is found that the anisotropy of the phases affects the region and extent of stress concentration as well as the location of the maximum stress concentrations. Thus, the anisotropy of the phases could effect the probable location of failure initiation, whether in the peritubular region or in the hybrid layer. PMID:16849175
Structural optimization of dental restorations using the principle of adaptive growth.
Couegnat, Guillaume; Fok, Siu L; Cooper, Jonathan E; Qualtrough, Alison J E
2006-01-01
In a restored tooth, the stresses that occur at the tooth-restoration interface during loading could become large enough to fracture the tooth and/or restoration and it has been estimated that 92% of fractured teeth have been previously restored. The tooth preparation process for a dental restoration is a classical optimization problem: tooth reduction must be minimized to preserve tooth tissue whilst stress levels must be kept low to avoid fracture of the restored unit. The objective of the present study was to derive alternative optimized designs for a second upper premolar cavity preparation by means of structural shape optimization based on the finite element method and biological adaptive growth. Three models of cavity preparations were investigated: an inlay design for preparation of a premolar tooth, an undercut cavity design and an onlay preparation. Three restorative materials and several tooth/restoration contact conditions were utilized to replicate the in vitro situation as closely as possible. The optimization process was run for each cavity geometry. Mathematical shape optimization based on biological adaptive growth process was successfully applied to tooth preparations for dental restorations. Significant reduction in stress levels at the tooth-restoration interface where bonding is imperfect was achieved using optimized cavity or restoration shapes. In the best case, the maximum stress value was reduced by more than 50%. Shape optimization techniques can provide an efficient and effective means of reducing the stresses in restored teeth and hence has the potential of prolonging their service lives. The technique can easily be adopted for optimizing other dental restorations.
NASA Astrophysics Data System (ADS)
Yang, Fan; Fang, Dai-Ning; Liu, Bin
2012-01-01
An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.
NASA Astrophysics Data System (ADS)
Song, Won-Seok; Kim, Seung-Gyu; Kim, Young-Cheon; Kwon, Dongil
2015-03-01
In this paper we propose a novel method, spherical indentation, for evaluation of the plastic properties of combined structures. Three-dimensional (3D) printed products, for example gradient metal alloys consisting of different kinds of material, contain interfaces that can act as weak points and threaten the mechanical reliability of products. Combined structures containing an interface between Cu alloy and Ag were prepared for testing. Samples were heat-treated at 100°C and 200°C for 3 h to optimize processing conditions. The indentation tensile properties of the samples were estimated by analyzing multiple loading-unloading curves obtained by use of the representative stress and strain method. A continuous increase in both yield strength and tensile strength was observed for the Cu alloy and the Cu/Ag interface after heat treatment at up to 200°C, because of precipitation hardening. These experimental results show that mechanical characterization of combined structures by spherical indentation is highly useful on the nano and micro scales.
NASA Astrophysics Data System (ADS)
Graham, Shannon E.
Using surface deformation measured by GPS stations within Mexico and Central America, I model coseismic slip, Coulomb stress changes, postseismic afterslip, and slow slip events in order to increase our knowledge of the earthquake deformation cycle in seismically hazardous regions. In Chapter 1, I use GPS data to estimate coseismic slip due to the May 28, 2009 Swan Islands fault earthquake off the coast of Honduras and then use the slip distribution to calculate Coulomb stress changes for the earthquake. Coulomb stress change calculations resolve stress transfer to the seismically hazardous Motagua fault and further show an unclamping of normal faults in northern Honduras. In Chapter 2, the focus shifts to southern Mexico, where continuous GPS measurements since the mid-1990s are revolutionizing our understanding of the flatly subducting Cocos plate. I perform a time-dependent inversion of continuous GPS observations of the 2011-2012 slow slip event (SSE) to estimate the location and magnitude of slow slip preceding the March 20, 2012 Ometepec earthquake. Coulomb stress changes as a result of slip during the SSE are consistent with the hypothesis that the SSE triggered the Ometepec earthquake. Chapter 3 describes inversions for slip both during and after the Ometepec earthquake. Time-dependent modeling of the first six months of postseismic deformation reveals that fault afterslip extended ˜250 km inland to depths of ˜50 km along the Cocos plate subduction. The postseismic afterslip and previous SSEs in southern Mexico occur at similar depths down-dip from the seismogenic zone, indicating that transitional areas of the subduction interface underlie much of southern Mexico. Finally, I perform the first time-dependent modeling of SSEs below Mexico and the first to exploit all available continuous GPS stations in southern and central Mexico. The results provide a more complete and consistent catalog of modeled SSE for the Mexico subduction zone (MSZ) than is currently available and add to our understanding of how SSEs on the subduction interface evolve in time, migrate in space, and possibly interact. I find that slow slip along the MSZ migrates across the gap between the Guerrero and Oaxaca regions, contrary to previous results.
Liao, Sheng-hui; Zhu, Xing-hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi
2016-01-01
The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers. PMID:27403424
Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi
2016-01-01
The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.
NASA Astrophysics Data System (ADS)
Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.
2017-12-01
It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vailionis, A.; Boschker, H.; Max Planck Institute for Solid State Research, 70569 Stuttgart
2014-09-29
Distinct MnO{sub 6} octahedral distortions near and away from the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3}(001) (LSMO/STO) interface are quantified using synchrotron x-ray diffraction and dynamical x-ray diffraction simulations. Three structural regions of stress accommodation throughout the film thickness were resolved: near the LSMO/STO interface, intermediate region farther from the interface, and the main layer away from the interface. The results show that within the first two unit cells stress is accommodated by the suppression of octahedral rotations in the film, leading to the expansion of the c-axis lattice parameter. Farther from the interface film structure acquires octahedral tilts similar tomore » thicker perovskite films under tensile stress, leading to a reduced c-axis parameter. We demonstrate that these regions are related to two different strain coupling mechanisms: symmetry mismatch at the interface and lattice mismatch in the rest of the film. The findings suggest new routes for strain engineering in correlated perovskite heterostructures.« less
Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys.
Jones, R D; Di Gioacchino, F; Lim, H; Edwards, T E J; Schwalbe, C; Battaile, C C; Clegg, W J
2018-06-06
When a material that contains precipitates is deformed, the precipitates and the matrix may strain plastically by different amounts causing stresses to build up at the precipitate-matrix interfaces. If premature failure is to be avoided, it is therefore essential to reduce the difference in the plastic strain between the two phases. Here, we conduct nanoscale digital image correlation to measure a new variable that quantifies this plastic strain difference and show how its value can be used to estimate the associated interfacial stresses, which are found to be approximately three times greater in an Fe-Ni 2 AlTi steel than in the more ductile Ni-based superalloy CMSX-4 ® . It is then demonstrated that decreasing these stresses significantly improves the ability of the Fe-Ni 2 AlTi microstructure to deform under tensile loads without loss in strength.
Dynamics and Instabilities of Acoustically Stressed Interfaces
NASA Astrophysics Data System (ADS)
Shi, William Tao
An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may involve this coupling. The dynamical behavior of a stressed drop can be determined in terms of a given form of an incident sound field and three dimensionless quantities. Thus, the behavior of a complex dynamic system has been clarified, permitting the exploration and interpretation of the nature of liquid surface phenomena.
Advanced Software for Analysis of High-Speed Rolling-Element Bearings
NASA Technical Reports Server (NTRS)
Poplawski, J. V.; Rumbarger, J. H.; Peters, S. M.; Galatis, H.; Flower, R.
2003-01-01
COBRA-AHS is a package of advanced software for analysis of rigid or flexible shaft systems supported by rolling-element bearings operating at high speeds under complex mechanical and thermal loads. These loads can include centrifugal and thermal loads generated by motions of bearing components. COBRA-AHS offers several improvements over prior commercial bearing-analysis programs: It includes innovative probabilistic fatigue-life-estimating software that provides for computation of three-dimensional stress fields and incorporates stress-based (in contradistinction to prior load-based) mathematical models of fatigue life. It interacts automatically with the ANSYS finite-element code to generate finite-element models for estimating distributions of temperature and temperature-induced changes in dimensions in iterative thermal/dimensional analyses: thus, for example, it can be used to predict changes in clearances and thermal lockup. COBRA-AHS provides an improved graphical user interface that facilitates the iterative cycle of analysis and design by providing analysis results quickly in graphical form, enabling the user to control interactive runs without leaving the program environment, and facilitating transfer of plots and printed results for inclusion in design reports. Additional features include roller-edge stress prediction and influence of shaft and housing distortion on bearing performance.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-06-01
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.
Bonded orthotropic strips with cracks
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.
Crack growth in bonded elastic half planes
NASA Technical Reports Server (NTRS)
Goree, J. G.
1975-01-01
Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.
Stress intensity factors for bonded orthotropic strips with cracks
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1978-01-01
The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. Cracks fully imbedded into the homogenous strips were analyzed as well as the singular behavior of the stresses for two special crack geometries. The analysis of cracks crossing interfaces indicates that, for certain orthotropic material combinations, the stress state at the point of intersection of a crack and an interface may be bounded. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters.
Laser and acoustic lens for lithotripsy
Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.
2002-01-01
An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.
Adhesive and Cohesive Strength in FeB/Fe2B Systems
NASA Astrophysics Data System (ADS)
Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.
2018-05-01
In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.
Analysis of Stress in Steel and Concrete in Cfst Push-Out Test Samples
NASA Astrophysics Data System (ADS)
Grzeszykowski, Bartosz; Szadkowska, Magdalena; Szmigiera, Elżbieta
2017-09-01
The paper presents the analysis of stress in steel and concrete in CFST composite elements subjected to push-out tests. Two analytical models of stress distribution are presented. The bond at the interface between steel and concrete in the initial phase of the push-out test is provided by the adhesion. Until the force reach a certain value, the slip between both materials does not occur or it is negligibly small, what ensures full composite action of the specimen. In the first analytical model the full bond between both materials was assumed. This model allows to estimate value of the force for which the local loss of adhesion in given cross section begins. In the second model it was assumed that the bond stress distribution is constant along the shear transfer length of the specimen. Based on that the formulas for triangle distribution of stress in steel and concrete for the maximum push-out force were derived and compared with the experimental results. Both models can be used to better understand the mechanisms of interaction between steel and concrete in composite steel-concrete columns.
NASA Astrophysics Data System (ADS)
Bergamini, A.; Christen, R.; Motavalli, M.
2007-04-01
The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.
Shear elasticity and shear relaxation in glass-forming polymer melts and films
NASA Astrophysics Data System (ADS)
Baschnagel, Jorg
The shear modulus G can be thought of as an order parameter distinguishing the liquid (G = 0) from the glass (solid, G > 0). Here we present results from molecular dynamics simulations for the temperature (T) dependence of G. Our simulations examine a coarse-grained polymer model for bulk polymer melts and free-standing films of various thicknesses. For the bulk we apply two methods to calculate G (T) : a method based on the fluctuations of the wave-vector dependent strain and the ``stress-fluctuation formalism'' which determines G from the fluctuations of the shear stress (in different thermodynamic ensembles). We discuss both methods, show that they give consistent results, and also compare the resulting G with estimates of the nonergodicity parameter from the shear-stress auto-correlation function and the monomer mean-square displacement. The analysis is then extended to free-standing films. We find that the presence of the free interfaces weakens the shear rigidity of the polymer glass relative to the bulk. We discuss the dependence of this effect on film thickness and on the distance to the free interface and compare our results to similar findings in the literature. in collaboration with I. Kriuchevskyi, J. P. Wittmer, H. Meyer (all Université de Strasbourg, Institut Charles Sadron) and H. Xu (Institut Jean Barriol, Université de Lorraine & CNRS, France).
[Influence of trabecular microstructure modeling on finite element analysis of dental implant].
Shen, M J; Wang, G G; Zhu, X H; Ding, X
2016-09-01
To analyze the influence of trabecular microstructure modeling on the biomechanical distribution of implant-bone interface with a three-dimensional finite element mandible model of trabecular structure. Dental implants were embeded in the mandibles of a beagle dog. After three months of the implant installation, the mandibles with dental implants were harvested and scaned by micro-CT and cone-beam CT. Two three-dimensional finite element mandible models, trabecular microstructure(precise model) and macrostructure(simplified model), were built. The values of stress and strain of implant-bone interface were calculated using the software of Ansys 14.0. Compared with the simplified model, the precise models' average values of the implant bone interface stress increased obviously and its maximum values did not change greatly. The maximum values of quivalent stress of the precise models were 80% and 110% of the simplified model and the average values were 170% and 290% of simplified model. The maximum and average values of equivalent strain of precise models were obviously decreased, and the maximum values of the equivalent effect strain were 17% and 26% of simplified model and the average ones were 21% and 16% of simplified model respectively. Stress and strain concentrations at implant-bone interface were obvious in the simplified model. However, the distributions of stress and strain were uniform in the precise model. The precise model has significant effect on the distribution of stress and strain at implant-bone interface.
NASA Astrophysics Data System (ADS)
Li, L. B.
2017-01-01
The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.
Interface Characteristics and the Mechanical Properties of Metal Matrix Composites.
1987-09-28
of Composites ’" 18 Appendix B Interfaces in Aluminum Metal Matrix Composites g 28 Appendix C Interface Failure in Planar Aluminum-Graphite Composites...Appendix G Residual Stresses in Composite Materials: An Overview of Measurements Used 92 Appendix H Raman Microprobe Measurements of Residual Stresses at...In addition .. to this direct electrostatic attraction, the space charge establishes an electric field of 2 S.. % ° °° % " ° " g
NASA Astrophysics Data System (ADS)
Ma, Ronghui; Zhang, Hui; Larson, David J.; Mandal, Krishna C.
2004-05-01
The growth process of potassium bromide (KBr) single crystals in a vertical Bridgman furnace has been studied numerically using an integrated model that combines formulation of global heat transfer and thermal elastic stresses. The global heat transfer sub-model accounts for conduction, convection and interface movement in the multiphase system. Using the elastic stress sub-model, thermal stresses in the growing crystal caused by the non-uniform temperature distribution is predicted. Special attention is directed to the interaction between the crystal and the ampoule. The global temperature distribution in the furnace, the flow pattern in the melt and the interface shapes are presented. We also investigate the effects of the natural convection and rotational forced convection on the shape of the growth fronts. Furthermore, the state of the thermal stresses in the crystal is studied to understand the plastic deformation mechanisms during the cooling process. The influence of the wall contact on thermal stresses is also addressed.
Bahrami, Babak; Shahrbaf, Shirin; Mirzakouchaki, Behnam; Ghalichi, Farzan; Ashtiani, Mohammed; Martin, Nicolas
2014-04-01
To investigate, by means of FE analysis, the effect of surface roughness treatments on the distribution of stresses at the bone-implant interface in immediately loaded mandibular implants. An accurate, high resolution, digital replica model of bone structure (cortical and trabecular components) supporting an implant was created using CT scan data and image processing software (Mimics 13.1; Materialize, Leuven, Belgium). An anatomically accurate 3D model of a mandibular-implant complex was created using a professional 3D-CAD modeller (SolidWorks, DassaultSystèmes Solid Works Corp; 2011). Finite element models were created with one of the four roughness treatments on the implant fixture surface. Of these, three were surface treated to create a uniform coating determined by the coefficient of friction (μ); these were either (1) plasma sprayed or porous-beaded (μ=1.0), (2) sandblasted (μ=0.68) or (3) polished (μ=0.4). The fourth implant had a novel two-part surface roughness consisting of a coronal polished component (μ=0.4) interfacing with the cortical bone, and a body plasma treated surface component (μ=1) interfacing with the trabecular bone. Finite element stress analysis was carried out under vertical and lateral forces. This investigation showed that the type of surface treatment on the implant fixture affects the stress at the bone-implant interface of an immediately loaded implant complex. Von Mises stress data showed that the two-part surface treatment created the better stress distribution at the implant-bone interface. The results from this FE computational analysis suggest that the proposed two-part surface treatment for IL implants creates lower stresses than single uniform treatments at the bone-implant interface, which might decrease peri-implant bone loss. Future investigations should focus on mechanical and clinical validation of these FE results. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Feasibility study on the ultra-small launch vehicle
NASA Astrophysics Data System (ADS)
Hayashi, T.; Matsuo, H.; Yamamoto, H.; Orii, T.; Kimura, A.
1986-10-01
An idea for a very small satellite launcher and a very small satellite is presented. The launcher is a three staged solid rocket based on a Japanese single stage sounding rocket S-520. Its payload capability is estimated to be 17 kg into 200 x 1000 km elliptical orbit. The spin-stabilized satellite with sun-pointing capability, though small, has almost all functions necessary for usual satellites. In its design, universality is stressed to meet various kinds of mission interface requirements; it can afford 5 kg to mission instruments.
On the problem of stress singularities in bonded orthotropic materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Delale, F.
1976-01-01
The problem of stress singularities at the leading edge of a crack lying in the neighborhood of a bimaterial interface in bonded orthotropic materials is considered. The main objective is to study the effect of material orthotropy on the singular behavior of the stress state when the crack touches or intersects the interface. The results indicate that, due to the large number of material constants involved, in orthotropic materials, the power of stress singularity as well as the stress intensity factor can be considerably different than that found in the isotropic materials with the same stiffness ratio perpendicular to the crack.
Stress-free end problem in layered materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Bakioglu, M.
1977-01-01
In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.
Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory
Selvadurai, Paul A.; Glaser, Steven D.
2015-01-01
A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930
A finite element model to assess transtibial prosthetic sockets with elastomeric liners.
Cagle, John C; Reinhall, Per G; Allyn, Kate J; McLean, Jake; Hinrichs, Paul; Hafner, Brian J; Sanders, Joan E
2017-12-13
People with transtibial amputation often experience skin breakdown due to the pressures and shear stresses that occur at the limb-socket interface. The purpose of this research was to create a transtibial finite element model (FEM) of a contemporary prosthesis that included complete socket geometry, two frictional interactions (limb-liner and liner-socket), and an elastomeric liner. Magnetic resonance imaging scans from three people with characteristic transtibial limb shapes (i.e., short-conical, long-conical, and cylindrical) were acquired and used to develop the models. Each model was evaluated with two loading profiles to identify locations of focused stresses during stance phase. The models identified five locations on the participants' residual limbs where peak stresses matched locations of mechanically induced skin issues they experienced in the 9 months prior to being scanned. The peak contact pressure across all simulations was 98 kPa and the maximum resultant shear stress was 50 kPa, showing reasonable agreement with interface stress measurements reported in the literature. Future research could take advantage of the developed FEM to assess the influence of changes in limb volume or liner material properties on interface stress distributions. Graphical abstract Residual limb finite element model. Left: model components. Right: interface pressures during stance phase.
Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Zhihong; Huang Peiyan; Guo Yongchang
2010-05-21
A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectivelymore » utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.« less
Thermal residual stresses in silicon-carbide/titanium (0/90) laminate
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1992-01-01
The current work formulated a micromechanical analysis of a cross-ply laminate and calculated the thermal residual stress in a very thick (0/90)(sub 2n) silicon-carbide/titanium laminate. Results were also shown for a unidirectional laminate of the same material. Discrete fiber-matrix models assuming a rectangular array of fibers with a fiber volume fraction of 32.5 percent and a three-dimensional, finite-element analysis were used. Significant differences in the trends and magnitudes for the fiber, matrix, and interface stresses were calculated for unidirectional and (0/90) models. Larger hoop stresses calculated for the (0/90) model indicate that it may be more susceptible to radial cracking when subjected to mechanical loading than the unidirectional model. The axial stresses in the matrix were calculated to be slightly larger for the (0/90) model. The compressive axial stresses in the fiber were significantly larger in the (0/90) model. The presence of the cross-ply in the (0/90) model reduced the constraint on the fiber, producing radial interface stresses that were less compressive, which could lead to earlier failure of the fiber-matrix interface.
Influence of peak oral temperatures on veneer–core interface stress state
Marrelli, Massimo; Pujia, Antonella; Apicella, Davide; Sansalone, Salvatore; Tatullo, Marco
2015-01-01
Abstract Objective: There is a growing interest for the use of Y-TZP zirconia as core material in veneered all-ceramic prostheses. The objective of this study was to evaluate the influence of CET on the stress distribution of a porcelain layered to zirconia core single crowns by finite elements analysis. Material and methods: CET of eight different porcelains was considered during the analysis. Results: Results of this study indicated that the mismatch in CET between the veneering porcelain and the Y-TZP zirconia core has to be minimum (0.5–1 μm/mK) so as to decrease the growing of residual stresses which could bring chipping. Conclusions: The stress state due to temperature variation should be carefully taken into consideration while studying the effect of mechanical load on zirconia core crown by FEA. The interfacial stress state can be increased by temperature variation up to 20% with respect to the relative failure parameter (interface strength in this case). This means that stress due to mechanical load combined to temperature variation-induced stress can lead porcelain veneer–zirconia core interfaces to failure. PMID:28642897
Young-Laplace equation for liquid crystal interfaces
NASA Astrophysics Data System (ADS)
Rey, Alejandro D.
2000-12-01
This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.
Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-jun
2018-02-01
In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.
Non-volcanic tremor driven by large transient shear stresses
Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.
2007-01-01
Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.
Non-volcanic tremor driven by large transient shear stresses.
Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D
2007-08-02
Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress.
Lopez; Hirsa
2000-09-15
A canonical flow geometry was utilized for a fundamental study of the coupling between bulk flow and a Newtonian gas-liquid interface in the presence of an insoluble surfactant. We develop a Navier-Stokes numerical model of the flow in the deep-channel surface viscometer geometry, which consists of stationary inner and outer cylinders, a floor rotating at a constant angular velocity, and an interface covered initially by a uniformly distributed surfactant. Here, the floor of the annular channel is rotated fast enough so the flow is nonlinear and drives the film toward the inner cylinder. The boundary conditions at the interface are functions of the surface tension, surface shear viscosity, and surface dilatational viscosity, as described by the Boussinesq-Scriven surface model. A physical surfactant system, namely hemicyanine, an insoluble monolayer on an air-water interface, with measured values of surface tension and surface shear viscosity versus concentration, was used in this study. We find that a surfactant front can form, depending on the Reynolds number and the initial surfactant concentration. The stress balance in the radial direction was found to be dominated by the Marangoni stress, but the azimuthal stress was only due to the surface shear viscosity. Numerical studies are presented comparing results of surfactant-influenced interface cases implementing the derived viscoelastic interfacial stress balance with those using a number of idealized stress balances, as well as a rigid no-slip surface, providing added insight into the altered dynamics that result from the presence of a surfactant monolayer. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Zhu, Guo; Sun, Jiangping; Zhang, Libin; Gan, Zhiyin
2018-06-01
The temperature effects on the growth of Cu thin film on Si (0 0 1) in the context of magnetron sputtering deposition were systematically studied using molecular dynamics (MD) method. To improve the comparability of simulation results at varying temperatures, the initial status data of incident Cu atoms used in all simulations were read from an identical file via LAMMPS-Python interface. In particular, crystalline microstructure, interface mixing and internal stress of Cu thin film deposited at different temperatures were investigated in detail. With raising the substrate temperature, the interspecies mixed volume and the proportion of face-centered cubic (fcc) structure in the deposited film both increased, while the internal compressive stress decreased. It was found that the fcc structure in the deposited Cu thin films was 〈1 1 1〉 oriented, which was reasonably explained by surface energy minimization and the selectivity of bombardment energy to the crystalline planes. The quantified analysis of interface mixing revealed that the diffusion of Cu atoms dominated the interface mixing, and the injection of incident Cu atoms resulted in the densification of phase near the film-substrate interface. More important, the distribution of atomic stress indicated that the compressive stress was mainly originated from the film-substrate interface, which might be attributed to the densification of interfacial phase at the initial stage of film deposition.
NASA Astrophysics Data System (ADS)
Kawai, E.; Umeno, Y.
2017-05-01
As weight reduction of turbines for aircraft engines is demanded to improve fuel consumption and curb emission of carbon dioxide, silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC) are drawing enormous attention as high-pressure turbine materials. For preventing degradation of SiC/SiC, environmental barrier coatings (EBC) for ceramics are deposited on the composites. The purpose of this study is to establish theoretical guidelines for structural design which ensures the mechanical reliability of EBC. We conducted finite element method (FEM) analysis to calculate energy release rates (ERRs) for interface crack initiation due to thermal stress in EBC consisting of Si-based bond coat, Mullite and Ytterbium (Yb)-silicate layers on a SiC/SiC substrate. In the FEM analysis, the thickness of one EBC layer was changed from 25 μm to 200 μm while the thicknesses of the other layers were fixed at 25 μm, 50 μm and 100 μm. We compared ERRs obtained by the FEM analysis and a simple theory for interface crack in a single-layered structure where ERR is estimated as nominal strain energy in the coating layers multiplied by a constant factor (independent of layer thicknesses). We found that, unlike the case of single-layered structures, the multiplication factor is no longer a constant but is determined by the combination of consisting coating layer thicknesses.
NASA Astrophysics Data System (ADS)
Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh
2018-02-01
In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.
Non-random walk diffusion enhances the sink strength of semicoherent interfaces
Vattré, A.; Jourdan, T.; Ding, H.; ...
2016-01-29
Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migrationmore » barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Lastly, such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.« less
Phase nucleation and evolution mechanisms in heterogeneous solids
NASA Astrophysics Data System (ADS)
Udupa, Anirudh
Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed nucleation theory. The experimental results are consistent with the developed theory and show that the theory of entropic dissipation is incorrect. A diffuse-interface computational technique was then developed to simulate the problem of electromigration driven void nucleation and growth in arbitrary geometries. Experimentally known results such as Black's law, existence of the Blech length, effect of interface adhesion energy were reproduced. The simulations were also used to infer the numerical value of the nucleation criterion, based on experimental results in the literature. The problem of electromigration is the result of species diffusion due to imparted momentum from the electrons, and the resulting motion of interface is influenced by surface diffusion along the interface, bulk diffusion, and the current density. Similarly, the formation of intermetallic compounds (IMC) and the resulting interface shape in many systems is the result of limiting effects of bulk diffusion, interfacial reaction, surface energy, and surface diffusion. Thus, the dynamics and stability of the interface formed when Cu and Sn react to form the IMC compound Cu6Sn5 is explored next. This system is of significant relevance to modern microelectronic chip assemblies, where solder joints with significant Cu6Sn5 volume fraction are known to be prone to brittle fracture and shorter useful life. Prior experimental observations have shown the interface to possess either a scalloped, flat or needle shaped morphology. The governing mechanism leading to the observed shape of the interface is not clearly known, and is the focus of the present study. In research unrelated to diffusion driven phase evolution, but involving interfaces nevertheless, in the appendix, the problem of interfacial delamination in Through Silicon Vias (TSV) is studied analytically. Three-dimensional (3D) packages utilizing TSVs are seen as enablers of increased performance and "More than Moore" functionality at the present time. However, the use of TSVs introduce a set of reliability concerns, one of which is the thermo-mechanical stress caused by the mismatch in coefficient of thermal expansion (CTE) between the copper via and the surround- ing silicon. The CTE mismatch, causes high stress zones in and around the copper TSVs, which in turn impede the mobility of electrons in the regions surrounding the TSVs. Further, proximal placing of TSVs for improved electrical performance may be restricted by additional stress induced by TSV-TSV interaction. The increased stress of the region surrounding the TSV also increases the risk of interfacial delamination. In order to ensure reliable functioning of 3D chip stacks, design guidelines are necessary on the excluded "keep-out" zone where stress induced by TSVs will impede transistor functionality. Towards this end, we analytically derive, using elasticity theory, the stress field in and around a doubly periodic arrangement of TSVs subjected to a uniform thermal excursion. The model for stress is used to analytically estimate the conditions for interfacial cracks to propagate, as a function of the system geometry and material properties. (Abstract shortened by ProQuest.).
Internal stresses at the crystalline scale in textured ZrO2 films before lateral cracking
NASA Astrophysics Data System (ADS)
Berdin, Clotilde; Pascal, Serge; Tang, Yan
2015-05-01
Zirconium oxide layers are submitted to internal stresses that play a role in damage of the layer. Lateral cracking is often observed during Zr alloys oxidation. In this paper, we investigated the influence of the microstresses at the crystalline scale on the lateral cracking within a growing oxide on a plane substrate. A parametric study was carried out taking into account the crystallographic texture of the oxide and the presence of a tetragonal zirconia at the metal-oxide interface. Macroscopic computations and polycrystalline aggregate computations were performed. The result indicating the (1 0 6 bar) fiber texture as the most favorable was recovered. It was found that under macroscopic compressive stresses parallel to the plane metal-oxide interface, positive microstresses perpendicular to the interface develops. They can trigger the lateral cracking and the phenomenon is promoted by the presence of tetragonal zirconia at the metal-oxide interface.
Time-dependent deformation of titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.
1995-01-01
A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-08-01
In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.
Hartung, Doreen; Hahlweg, Kurt
2011-01-01
Workplace Triple P (WPTP) is a group-based parenting skills training specifically designed to meet the needs of employed parents. Several randomized controlled trials have demonstrated the training's efficacy. This study examined possible mechanisms of change that account for the stress reduction effects of this parenting skills training at the work-family interface. It was hypothesized that reductions in dysfunctional parenting (DP) behavior and increases in parental self-efficacy would mediate the stress-reducing effects of WPTP. The mediator effects were analyzed in a German pre- and postcompleter sample (N = 97 parents; 74 mothers and 23 fathers; treatment condition: n = 42 parents; waitlist-control condition n = 55 parents). The results indicate that individual stress- (IS) level reductions were mediated by decreased levels of DP. In addition, changes in IS levels mediated the effects of the training on work-related stress. The discussion focuses on the importance of understanding mechanisms of change to effectively implement interventions at the work-family interface.
Degradation of Au-Ti contacts of SiGe HBTs during electromagnetic field stress
NASA Astrophysics Data System (ADS)
Alaeddine, A.; Genevois, C.; Kadi, M.; Cuvilly, F.; Daoud, K.
2011-02-01
This paper addresses electromagnetic field stress effects on SiGe heterojunction bipolar transistors (HBTs)' reliability issues, focusing on the relationship between the stress-induced current and device structure degradations. The origin of leakage currents and electrical parameter shifts in failed transistors has been studied by complementary failure analysis techniques. Characterization of the structure before and after ageing was performed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). For the stressed samples, interface deformations of the titanium (Ti) thin film around all gold (Au) contacts have been clearly detected. These degradations include localized interface reaction between Au and Ti layers as well as their lateral atomic migration causing a significant reduction of Ti thickness. EDS analysis of the disordered region which is near the Si3N4 interface has shown significant signals from Au. These observations could be attributed to the coupling between high current densities induced by stress and thermal effects due to local heating effects.
NASA Astrophysics Data System (ADS)
Hashima, A.; Matsu'Ura, M.
2006-12-01
We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate subduction and back-arc spreading is crucial to understand the development of back-ark spreading.
The energetics of adhesion in composite materials
NASA Astrophysics Data System (ADS)
Harding, Philip Hiram
Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the silane organofunctional group. The effects of thermal residual stresses on interfacial strength are also investigated using the SPC technique. Processing conditions, i.e., time-temperature profiles, are used to systematically vary the thermal residual stresses within the polymeric matrix. The interfaces studied are deleteriously affected by increases in thermal residual stresses.
Development of a MEMS dual-axis differential capacitance floating element shear stress sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, Casey; Griffin, Benjamin
A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds rangingmore » up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.« less
NASA Astrophysics Data System (ADS)
Wang, Hao; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori
2017-01-01
Tensile deformation and failure of Σ9 tilt grain boundaries (GBs) in Al and Cu have been examined by first-principles tensile tests (FPTTs). Local-energy and local-stress schemes were applied to clarify the variations of local energies and local hydrostatic stresses for all atoms during the deformation process. The GBs in Al and Cu exhibited quite different tensile behaviours in the FPTTs, despite their similar initial configurations. For the Al GB, there are two stages of deformation before failure. In the first stage, the back bonds of the interfacial bonds are mainly stretched, due to special high strength of the interfacial reconstructed bonds. In the second stage, the interfacial bonds begin to be significantly stretched due to high concentrated stresses, while stretching of the back bonds is suppressed. The atoms at the interfacial, back and bulk bonds have very different variations of local energies and local stresses during each stage, because the behaviour of each atom is significantly dependent on each local structural change due to the high sensitivity of sp electrons to the local environment in Al. The Cu GB has much higher tensile strength, and a natural introduction of stacking faults (SFs) occurs via the {111}< 112> shear slip in the bulk regions between the interfaces before the maximum stress is reached. This is caused by the smaller SF energy and lower ideal shear strength of Cu than Al, and is triggered by highly accumulated local energies and stress at the interface atoms. The local-energy distribution around the SF is consistent with the previous theoretical estimation. After the introduction of the SF, the local energies and stresses of all the atoms in the Cu GB supercell tend to become similar to each other during the tensile process, in contrast to the inhomogeneity in the Al GB. The origins of the different tensile behaviours observed for Al and Cu GBs are discussed with respect to the different bonding natures of Al and Cu, which are dominated by three sp valence electrons per atom for Al and by fully occupied d bands and s electrons for Cu.
Constituent Effects on the Stress-Strain Behavior of Woven Melt-Infiltrated SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Eldridge, Jeff I.; Levine, Stanley (Technical Monitor)
2001-01-01
The stress-strain behavior of 2D woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with BN interphases were studied for composites fabricated with different fiber tow ends per unit length, different composite thickness, and different numbers of plies. In general, the stress-strain behavior, i.e., the 'knee' in the curve and the final slope of the stress-strain curve, was controlled by the volume fraction of fibers. Some of the composites exhibited debonding and sliding in between the interphase and the matrix rather than the more common debonding and sliding interface between the fiber and the interphase. Composites that exhibited this 'outside debonding' interface, in general, had lower elastic moduli and higher ultimate strains as well as longer pull-out lengths compared to the 'inside debonding' interface composites. Stress-strain curves were modeled where matrix crack formation as a function of stress was approximated from the acoustic emission activity and the measured crack density from the failed specimens. Interfacial shear strength measurements from individual fiber push-in tests were in good agreement with the interfacial shear strength values used to model the stress-strain curves.
Dielectric cracking produced by electromigration in microelectronic interconnects
NASA Astrophysics Data System (ADS)
Chiras, S.; Clarke, D. R.
2000-12-01
The development of stress during electromigration along Al lines, constrained within a dielectric in a coplanar test configuration, is measured. It is shown that, above a certain threshold current density, cracking of the dielectric is induced in the vicinity of the anode. Cracking of the dielectric leads to loss of mechanical constraint on the aluminum conductor which, in turn, leads to increases in electrical resistance with continued current flow. The electromigration-induced stresses are determined from the measured frequency shifts induced in a novel ruby strain sensor embedded immediately beneath the interconnect line on a sapphire substrate. The transparency of the sapphire substrate also facilitated the observation of a hitherto unreported form of dielectric cracking, namely cracking from the interconnect along internal interfaces. The observations of dielectric cracking are in agreement with a recent fracture mechanics model. Analysis of the stress data, together with the results of finite element calculations of the strain energy release rate for crack extension, gives a quantitative estimate of the effective valence Z*(=1.3±0.2) for aluminum.
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1974-01-01
The stresses and strains in a uniaxially loaded sheet with an unloaded interference-fit bolt were calculated by an elastoplastic finite-element analysis. The material properties represented a 7075-T6 aluminum alloy sheet and a steel bolt. The analysis considered the two ideal cases of no slip and no friction at the bolt-sheet interface for a single combination of bolt diameter, interference level, and cyclic loading. When the bolt was inserted, the sheet deformed plastically near the hole; the first tensile load cycle produced additional yielding, but subsequent cycles to the same level caused only elastic cyclic stresses. These stresses together with fatigue data for unnotched specimens were used to estimate crack initiation periods and initiation sites. The cases analyzed with interference-fit bolts were predicted to have crack initiation periods which were about 50 times that for a clearance-fit bolt. Crack initiation was predicted to occur on the transverse axis at a distance of about one radius from the hole.
NASA Astrophysics Data System (ADS)
Dasgupta, Suman
2011-12-01
Carbon fiber reinforced polymers are excellent candidates for aerospace, automobile and other mobile applications due to their high specific strength and modulus. The most prominent aerospace application of carbon fiber composites in recent times is the Boeing 787 Dreamliner, which is the world's first major commercial airliner to extensively use composite materials. The critical issue, which needs to be addressed hereby, is long-term safety. Hence, long-term durability of composite materials in such applications becomes a point of concern. Conventional polymer matrices, such as thermosetting resins, which are used as matrix material in carbon fiber composites, are susceptible to degradation in the form of chemical corrosion, UV degradation and moisture, in severe environmental conditions. Fluorinated polymers offer a viable alternative as matrix material, due to their reduced susceptibility to environmental degradation. The epoxy system used in this study is fluorinated Tetra-glycidyl methylene di-aniline (6F-TGMDA), which was developed by polymer scientists at NASA Langley Research Center. The hydrophobic nature of this epoxy makes it a potential matrix material in aerospace applications. However, its compatibility in carbon fiber-reinforced composites remains to be investigated. This study aims to characterize the interfacial properties in carbon fiber reinforced fluorinated epoxy composites. Typical interfacial characterization parameters, like interfacial shear strength, estimated from the microbond test, proved to be inadequate in accurately estimating adhesion since it assumes a uniform distribution of stresses along the embedded fiber length. Also, it does not account for any residual stresses present at the interface, which might arise due to thermal expansion differences and Poisson's ratio differences of the fiber and matrix. Hence, an analytical approach, which calculates adhesion pressure at the interface, was adopted. This required determination of the unknown mechanical and physical properties of the resin, the relaxation modulus (determined using nano-indentation) and coefficient of thermal expansion (determined using coherent gradient sensing). The adhesional pressure for 6F TGMDA-carbon fiber interface was found to be 135.48 MPa compared to 138.47 MPa for the Diamino diphenyl sulphone (DDS) cured TGMDA-carbon fiber interface. The fact that the adhesional pressure does not show significant decrease upon fluorination of the epoxy system is an advantage. The hydrophobicity of fluorine can be utilized to manufacture environmentally resistant composites while keeping the level of interfacial adhesion the same as in the case of conventional epoxy system, DDS cured TGMDA.
The Dynamics of Miscible Interfaces: Simulations
NASA Technical Reports Server (NTRS)
Meiburg, Eckart
2002-01-01
The goal of this experimental/computational investigation (joint with Prof Maxworthy at USC) has been to study the dynamics of miscible interfaces, both from a scientific and a practical point of view, and to prepare a related experiment to be flown on the International Space Station. In order to address these effects, we have focused experimental and computational investigations on miscible displacements in cylindrical capillary tubes, as well as in Hele-Shaw cells. Regarding the flow in a capillary tube, the question was addressed as to whether Korteweg stresses and/or divergence effects can potentially account for discrepancies observed between conventional Stokes flow simulations and experiments for miscible flows in capillary tubes. An estimate of the vorticity and streamfunction fields induced by the Kortewegs stresses was derived, which shows these stresses to result in the formation of a vortex ring structure near the tip of the concentration front. Through this mechanism the propagation velocity of the concentration front is reduced, in agreement with the experimental observations. Divergence effects, on the other hand, were seen to be very small, and they have a negligible influence on the tip velocity. As a result, it can be concluded that they are not responsible for the discrepancies between experiments and conventional Stokes simulations. A further part of our investigation focussed on the development of high-accuracy three-dimensional spectral element simulation techniques for miscible flows in capillary tubes, including the effects of variable density and viscosity. Towards this end, the conservation equations are treated in cylindrical coordinates.
NASA Astrophysics Data System (ADS)
Uenishi, Koji
2018-06-01
We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Arnold, Steven M.
2000-01-01
The generalized method of cells micromechanics model is utilized to analyze the tensile stress-strain response of a representative titanium matrix composite with weak interfacial bonding. The fiber/matrix interface is modeled through application of a displacement discontinuity between the fiber and matrix once a critical debonding stress has been exceeded. Unidirectional composites with loading parallel and perpendicular to the fibers are examined, as well as a cross-ply laminate. For each of the laminates studied, analytically obtained results are compared to experimental data. The application of residual stresses through a cool-down process was found to have a significant effect on the tensile response. For the unidirectional laminate with loading applied perpendicular to the fibers, fiber packing and fiber shape were shown to have a significant effect on the predicted tensile response. Furthermore, the interface was characterized through the use of semi-emperical parameters including an interfacial compliance and a "debond stress;" defined as the stress level across the interface which activates fiber/matrix debonding. The results in this paper demonstrate that if architectural factors are correctly accounted for and the interface is appropriately characterized, the macro-level composite behavior can be correctly predicted without modifying any of the fiber or matrix constituent properties.
Momeni, Kasra; Levitas, Valery I
2016-04-28
A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.
Interface test series: An in situ study of factors affecting the containment of hydraulic fractures
NASA Astrophysics Data System (ADS)
Warpinski, N. R.; Finley, S. J.; Vollendorf, W. C.; Obrien, M.; Eshom, E.
1982-02-01
In situ experiments, which are accessible for direct observation by mineback, were conducted to determine the effect that material-property interfaces and in situ stress differences have on hydraulic fracture propagation and the resultant overall geometry. These experiments show conclusively that a difference in elastic modulus at a geologic interface has little or no effect on crack growth and, therefore, is not a feature which would promote containment of fractures within a specified reservoir zone. However, differences in the in situ stress between adjacent layers is shown to have a considerable influence on fracture propagation. Experiments were conducted in a low modulus ash-fall tuff which contained two layers of high minimum principal in situ stress and which was overlain by a formation with at least a factor of 5 increase in elastic modulus. Fractures were observed to terminate in regions of high minimum principal in situ stress in nearly every case.
Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.
Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B
2016-01-01
The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical elemental shifts recorded in the veneering ceramic did not suffice to draw definitive conclusions regarding potential chemical interaction of the veneering ceramic with zirconia. Sandblasting damaged the zirconia surface and induced phase transformation that also resulted in residual compressive stress. Difference in CTE of zirconia versus that of the veneering ceramic resulted in an unfavorable residual tensile stress at the zirconia-veneering ceramic interface. © International & American Associations for Dental Research 2015.
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin
2016-11-01
Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.
Analog VLSI system for active drag reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, B.; Goodman, R.; Jiang, F.
1996-10-01
In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuatorsmore » in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.« less
The dynamic natures of implant loading.
Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E
2009-06-01
A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.
Fuh, Lih-Jyh; Hsu, Jui-Ting; Huang, Heng-Li; Chen, Michael Y C; Shen, Yen-Wen
2013-01-01
Bone stress and interfacial sliding at the bone-implant interface (BII) were analyzed in zirconia and titanium implants with various thread designs and interface conditions (bonded BII and contact BIIs with different frictional coefficients) for both conventional and immediately loaded treatments. A total of 18 finite element models comprising two implant materials (zirconia and titanium), three thread designs (different shapes and pitches), and three interface conditions (bonded and contact BIIs) were analyzed to assess the effects on bone stresses and on sliding at the BII. The material properties of the bone model were anisotropic, and a lateral force of 130 N was applied as the loading condition. In the immediately loaded implant, the stress was highly concentrated at one site of the peri-implant bone. The peak bone stress was more than 20% lower in zirconia implants than in titanium implants for a bonded BII and 14% to 20% lower for a contact BII. The bone stresses did not differ significantly between implants with V-shaped threads and square threads. However, sliding at the BII was more than 25% lower with square-thread implants than with V-shaped-thread implants for titanium implants and 36% lower for zirconia implants. Reducing the thread size and pitch in cortical bone (via two V-shaped threads with different pitches) decreased the bone stress by 13%. Increasing the frictional coefficient reduced sliding at the BII in both zirconia and titanium implants. As an implant material, zirconia can reduce the bone stress in the crestal cortical region. Bone stress and sliding at the BII are heavily dependent on the thread design and the frictional coefficient at the BII of immediately loaded implants.
Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature
NASA Astrophysics Data System (ADS)
Yue, Mengkun; Dong, Xuelin; Fang, Xufei; Feng, Xue
2018-04-01
High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.
Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan
2012-09-04
Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.
Kermanshah, Hamid; Geramy, Allahyar; Ebrahimi, Shahram Farzin; Bitaraf, Tahereh
2012-12-01
This study evaluated von Mises stress distribution, flexural strength and interface micrographs of IPS-Empress II (IPS) inlay-retained fixed partial dentures (IRFPD) reinforced with Zirconia bars (Zb). In the Finite element analysis, six three-dimensional models of IRFPD were designed using Solid Works 2006. Five models were reinforced with different Zb and a model without Zb was considered as a control. The bridges were loaded by 200 and 500 N forces at the middle of the pontic on the occlusal surface. Subsequently, von Mises stress and displacement of the models were evaluated along a defined path. In the experimental part, 21 bar shape specimens were fabricated from lithium disilicate and zirconia ceramic in three different designs. The zirconia-IPS interfaces and the fractured surfaces of flexural test were observed using SEM. In the connector area, von Mises stress and displacement of the models with Zb under a load of 500 N were decreased compared to the model without the Zb; however, this difference was not considerable at a load of 200 N. In the mesial connector, Von Mises stress and displacement was decreased from 12.5 Mpa for the control model tested at 500 N to 7.0 Mpa for the model with Zb and from 0.0050-0.0041 mm, respectively. SEM analyses showed that, before fracture, interfacial gaps were not observed along the interfaces, but initiated cracks propagated along the interfaces after flexural loading. IPS IRFPD reinforced by Zb can tolerate higher stresses while still functioning effectively and the interfaces may have desirable adaption.
Mapping the rheology of the Central Chile subduction zone with aftershocks
NASA Astrophysics Data System (ADS)
Frank, William B.; Poli, Piero; Perfettini, Hugo
2017-06-01
The postseismic deformation following a large (Mw >7) earthquake is expressed both seismically and aseismically. Recent studies have appealed to a model that suggests that the aseismic slip on the plate interface following the mainshock can be the driving factor in aftershock sequences, reproducing both the geodetic (afterslip) and seismic (aftershocks) observables of postseismic deformation. Exploiting this model, we demonstrate how a dense catalog of aftershocks following the 2015 Mw 8.3 Illapel earthquake in Central Chile can constrain the frictional and rheological properties of the creeping regions of the subduction interface. We first expand the aftershock catalog via a 19 month continuous matched-filter search and highlight the log-time expansion of seismicity following the mainshock, suggestive of afterslip as the main driver of aftershock activity. We then show how the time history of aftershocks can constrain the temporal evolution of afterslip. Finally, we use our dense aftershock catalog to estimate the rate and state rheological parameter (a - b)σ as a function of depth and demonstrate that this low value is compatible either with a nearly velocity-neutral friction (a≈b) in the regions of the megathrust that host afterslip, or an elevated pore fluid pressure (low effective normal stress σ) along the plate interface. Our results present the first snapshot of rheology in depth together with the evolution of the tectonic stressing rate along a plate boundary. The framework described here can be generalized to any tectonic context and provides a novel way to constrain the frictional properties and loading conditions of active faults.
Chaudry, Beenish Moalla; Connelly, Kay; Siek, Katie A; Welch, Janet L
2013-12-01
Chronically ill people, especially those with low literacy skills, often have difficulty estimating portion sizes of liquids to help them stay within their recommended fluid limits. There is a plethora of mobile applications that can help people monitor their nutritional intake but unfortunately these applications require the user to have high literacy and numeracy skills for portion size recording. In this paper, we present two studies in which the low- and the high-fidelity versions of a portion size estimation interface, designed using the cognitive strategies adults employ for portion size estimation during diet recall studies, was evaluated by a chronically ill population with varying literacy skills. The low fidelity interface was evaluated by ten patients who were all able to accurately estimate portion sizes of various liquids with the interface. Eighteen participants did an in situ evaluation of the high-fidelity version incorporated in a diet and fluid monitoring mobile application for 6 weeks. Although the accuracy of the estimation cannot be confirmed in the second study but the participants who actively interacted with the interface showed better health outcomes by the end of the study. Based on these findings, we provide recommendations for designing the next iteration of an accurate and low literacy-accessible liquid portion size estimation mobile interface.
Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Doghri, I.; Leckie, F. A.
1991-01-01
The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.
NASA Astrophysics Data System (ADS)
Ben-Zion, Y.; McGuire, J.
2003-04-01
Natural fault systems have interfaces that separate different media. There are fundamental differences between in-plane ruptures on planar faults that separate similar and dissimilar elastic solids. In a linear isotropic homogeneous solid, slip does not change the normal stress on the rupture plane. However, if the fault separates different materials in-plane slip can produce strong variations of normal stress on the fault. The interaction between slip and normal stress along a material interface can reduce dynamically the frictional strength, making material interfaces mechanically favored surfaces for rupture propagation. Analytical and numerical works (Weertman, 1980; Adams, 1995; Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998) have shown that rupture along a material interface occurs as a narrow wrinkle-like pulse propagating spontaneously only in one direction, that of slip in the more compliant medium. Characteristic features of the wrinkle-like pulse include: (1) Strong correlation between variations of normal stress and slip. (2) Asymmetric motion on different sides of the fault. (3) Preferred direction of rupture propagation. (4) Self-sharpening and divergent behavior with propagation distance. These characteristics can be important to a number of fundamental issues, including trapping of rupture in structures with material interfaces, the heat flow paradox, short rise-time of earthquake slip, possible existence of tensile component of rupture, and spatial distribution of seismic shaking. Rubin and Gillard (2000), Rubin (2002) and McGuire et al. (2002) presented some seismological evidence that rupture propagation along the San Andreas and other large faults is predominantly unidirectional. Features (1)-(4) are consistent with observations from lab sliding and fracture experiments (Anooshehpoor and Brune, 1999; Schallamach, 1971; Samudrala and Rosakis, 2000). Cochard and Rice (2000) performed calculations of rupture along a material interface governed by a regularized friction having a gradual response of strength to an abrupt variation of normal stress. Their calculations confirmed features (1)-(3) and showed hints of feature (4). The latter was not fully developed in their results because the calculations did not extend long enough in time. Ben-Zion and Huang (2002) simulated dynamic rupture on an interface governed by the regularized friction between a low velocity layer and a surrounding host rock. The results show that the self-sharpening and divergent behavior exists also with the regularized friction for large enough propagation distance. The simulations of Ben-Zion and Huang suggest that in fault structures having a low velocity layer, rupture initiated by failing of an asperity with size not larger than the layer width can become a self-sustaining wrinkle-like pulse. However, if the initial asperity is much larger than the layer width, the rupture will not propagate as a self-sustaining pulse (unless there is also an overall contrast across the fault). The Bear Valley section of the San Andreas Fault separates high velocity block on the SW from a low-velocity material on the NE. This contrast is expected to generate a preference for rupture to the SE and fault zone head-waves on the NE block. Using seismograms from a high density temporary array (Thurber et al., 1997), we measured differential travel-times of head-waves along with the geometrical distribution of the stations at which they arrive prior to the direct P-wave. The travel-time data and spatial distribution of events and stations associated with headwave first arrivals are compatible with the theoretical results of Ben-Zion (1989). We are now modeling waveforms to obtain high resolution image of the fault-zone structure. To test the prediction of unidirectional rupture propagation, we estimate the space-time variances of the moment-release distribution of magnitude 2.5-3.0 events using a variation of the Empirical Green's Function technique. Initial results for a few small events indicate rupture propagation in both directions. We are developing a catalog that will hopefully be large enough to provide clear results on this issue.
Farhoudi, Hamidreza; Fallahnezhad, Khosro; Oskouei, Reza H; Taylor, Mark
2017-11-01
This paper investigates the mechanical response of a modular head-neck interface of hip joint implants under realistic loads of level walking. The realistic loads of the walking activity consist of three dimensional gait forces and the associated frictional moments. These forces and moments were extracted for a 32mm metal-on-metal bearing couple. A previously reported geometry of a modular CoCr/CoCr head-neck interface with a proximal contact was used for this investigation. An explicit finite element analysis was performed to investigate the interface mechanical responses. To study the level of contribution and also the effect of superposition of the load components, three different scenarios of loading were studied: gait forces only, frictional moments only, and combined gait forces and frictional moments. Stress field, micro-motions, shear stresses and fretting work at the contacting nodes of the interface were analysed. Gait forces only were found to significantly influence the mechanical environment of the head-neck interface by temporarily extending the contacting area (8.43% of initially non-contacting surface nodes temporarily came into contact), and therefore changing the stress field and resultant micro-motions during the gait cycle. The frictional moments only did not cause considerable changes in the mechanical response of the interface (only 0.27% of the non-contacting surface nodes temporarily came into contact). However, when superposed with the gait forces, the mechanical response of the interface, particularly micro-motions and fretting work, changed compared to the forces only case. The normal contact stresses and micro-motions obtained from this realistic load-controlled study were typically in the range of 0-275MPa and 0-38µm, respectively. These ranges were found comparable to previous experimental displacement-controlled pin/cylinder-on-disk fretting corrosion studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido; Department of Electrical Engineering, KU Leuven, Leuven
2015-08-31
In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress ismore » highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.« less
Li, Longbiao
2016-01-01
In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544
Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero
2018-05-16
Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.
NASA Astrophysics Data System (ADS)
Tega, Naoki; Miki, Hiroshi; Mine, Toshiyuki; Ohmori, Kenji; Yamada, Keisaku
2014-03-01
It is demonstrated from a statistical perspective that the generation of random telegraph noise (RTN) changes before and after the application of negative-bias temperature instability (NBTI) stress. The NBTI stress generates a large number of permanent interface traps and, at the same time, a large number of RTN traps causing temporary RTN and one-time RTN. The interface trap and the RTN trap show different features in the recovery process. That is, a re-passivation of interface states is the minor cause of the recovery after the NBTI stress, and in contrast, rapid disappearance of the temporary RTN and the one-time RTN is the main cause of the recovery. The RTN traps are less likely to become permanent. This two-type trap, namely, the interface trap and RTN trap, model simply explains NBTI degradation and recovery in scaled p-channel metal-oxide-semiconductor field-effect transistors.
Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.
2014-08-01
In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesismore » of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.« less
NASA Astrophysics Data System (ADS)
Li, L. B.
2018-05-01
The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.
NASA Astrophysics Data System (ADS)
Sekiguchi, Atsuko; Koike, Junichi
2008-01-01
Mechanical processes of the nanoscratch test are investigated using a finite element analysis of Cu/Ta/SiO2/Si multilayer films. The calculated stress distribution at the moment of delamination suggests that delamination occurs in a small region of approximately 100 nm. The driving force for delamination is the stress concentration due to strain-incompatibility at the Cu/Ta interface resulting from the large plastic deformation in Cu. The degree of stress concentration is found to depend on internal variables, such as plastic deformation, residual stress, and the elastic modulus, and on the magnitude of lateral force.
NASA Astrophysics Data System (ADS)
Wang, Chunying; Sun, Enwei; Liu, Yingchun; Zhang, Rui; Yang, Bin; Cao, Wenwu
2016-09-01
Interface stresses strongly influence the functional property of 1-3 piezoelectric composites. Using the translucent nature of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, we have studied stress distributions and domain configuration changes during poling inside the crystal rods by polarizing light microscopy and piezoresponse force microscopy. It was found that the interface stresses due to interaction with polymeric filler led a deformed rhombohedral phase and caused incomplete poling near rod-edges. Compared with "hard" epoxy (Epotek301) filler, "soft" epoxy (Stycast) filler showed weaker impact on the crystals rods and less influence on domain configurations. We also show that high temperature poling (70 °C) can substantially improve the piezoelectric coefficient of composites filled with hard epoxy due to creeping above the glass transition Tg. Analytic stress distribution equations based on cylinder rods were modified to explain the physical principle and to predict the stress distribution for square rods case, which was verified by finite element simulation to be accurate within 5%.
Activated Very Low Frequency Earthquakes By the Slow Slip Events in the Ryukyu Subduction Zone
NASA Astrophysics Data System (ADS)
Nakamura, M.; Sunagawa, N.
2014-12-01
The Ryukyu Trench (RT), where the Philippine Sea plate is subducting, has had no known thrust earthquakes with a Mw>8.0 in the last 300 years. However, the rupture source of the 1771 tsunami has been proposed as an Mw > 8.0 earthquake in the south RT. Based on the dating of tsunami boulders, it has been estimated that large tsunamis occur at intervals of 150-400 years in the south Ryukyu arc (RA) (Araoka et al., 2013), although they have not occurred for several thousand years in the central and northern Ryukyu areas (Goto et al., 2014). To address the discrepancy between recent low moment releases by earthquakes and occurrence of paleo-tsunamis in the RT, we focus on the long-term activity of the very low frequency earthquakes (VLFEs), which are good indicators of the stress release in the shallow plate interface. VLFEs have been detected along the RT (Ando et al., 2012), which occur on the plate interface or at the accretionary prism. We used broadband data from the F-net of NIED along the RT and from the IRIS network. We applied two filters to all the raw broadband seismograms: a 0.02-0.05 Hz band-pass filter and a 1 Hz high-pass filter. After identification of the low-frequency events from the band-pass-filtered seismograms, the local and teleseismic events were removed. Then we picked the arrival time of the maximum amplitude of the surface wave of the VLFEs and determined the epicenters. VLFEs occurred on the RA side within 100 km from the trench axis along the RT. Distribution of the 6670 VLFEs from 2002 to 2013 could be divided to several clusters. Principal large clusters were located at 27.1°-29.0°N, 25.5°-26.6°N, and 122.1°-122.4°E (YA). We found that the VLFEs of the YA are modulated by repeating slow slip events (SSEs) which occur beneath south RA. The activity of the VLFEs increased to two times of its ordinary rate in 15 days after the onset of the SSEs. Activation of the VLFEs could be generated by low stress change of 0.02-20 kPa increase in Coulomb failure stress. The strain in the plate interface where the VLFEs occur frequently would be released by small change in stress. Cluster of the VLFEs is complementally to the historical tsunami source area and locked area. Continuous activity of VLFEs would release the stress patchily in the plate interface and give the constraint to the maximum size of large thrust earthquakes.
Hydrogen Peroxide Formation and pH Changes at Rock-Water Interface during Stressing
NASA Astrophysics Data System (ADS)
Xie, S.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Balk, M.; Rothschild, L. J.; Freund, F. T.
2008-12-01
Common igneous and high-grade metamorphic rocks contain dormant defects, which become activated when stressed. They release electronic charge carriers, in particular defect electrons associated with O- states in a matrix of O2-. Known as 'positive holes' or pholes for short, the O- states can spread out of the stressed rock volume, travel along stress gradients over distances on the order of meters in the lab and probably over kilometers in the field. They carry a current, which can flow through meters of rock in the laboratory, probably tens of kilometers in the field. At rock-water interfaces the O- states turn into O radicals, which subtract H from H2O, forming OH- in the rock surface and PH radicals in the water. Two OH combine to H2O2. In the process the pH becomes more acidic. The discovery of H2O2 formation at rock-water interfaces as part of stress- activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life.
Residual thermal stresses in composites for dimensionally stable spacecraft applications
NASA Technical Reports Server (NTRS)
Bowles, David E.; Tompkins, Stephen S.; Funk, Joan G.
1992-01-01
An overview of NASA LaRC's research on thermal residual stresses and their effect on the dimensional stability of carbon fiber reinforced polymer-matrix composites is presented. The data show that thermal residual stresses can induce damage in polymer matrix composites and significantly affect the dimensional stability of these composites by causing permanent residual strains and changes in CTE. The magnitude of these stresses is primarily controlled by the laminate configuration and the applied temperature change. The damage caused by thermal residual stresses initiates at the fiber/matrix interface and micromechanics level analyses are needed to accurately predict it. An increased understanding of fiber/matrix interface interactions appears to be the best approach for improving a composite's resistance to thermally induced damage.
Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N
2005-01-01
Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis). PMID:16045807
Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS
NASA Astrophysics Data System (ADS)
Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai
2017-12-01
To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.
Meziane, A; Norris, A N; Shuvalov, A L
2011-10-01
Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America
Drainage Asperities on Subduction Megathrusts
NASA Astrophysics Data System (ADS)
Sibson, R. H.
2012-12-01
Geophysical observations coupled with force-balance analyses suggest that the seismogenic shear zone interface of subduction megathrusts is generally fluid-overpressured to near-lithostatic values (λv = Pf/σv > 0.9) below the forearc hanging-wall, strongly modulating the profile of frictional shear resistance. Fluid sources include the accretionary prism at shallow levels and, with increasing depth, metamorphic dehydration of material entrained within the subduction shear zone together with progressive metamorphism of oceanic crust in the downgoing slab. Solution transfer in fine-grained material contained within the deeper subduction shear zone (150 < T < 350°C) likely contributes to hydrothermal sealing of fractures. A dramatic difference may therefore exist between low prefailure permeability surrounding the megathrust and high postfailure fracture permeability along the rupture zone and adjacent areas of aftershock activity. Observed postseismic changes in the velocity structure of the fore-arc hanging-wall led Husen and Kissling (2001) to propose massive fluid loss across the subduction interface following the 1995 Antofagasta, Chile, Mw8.0 megathrust rupture. Such trans-megathrust discharges represent a variant of 'fault-valve' action in which the subduction interface itself acts as a seal trapping overpressured fluids derived from metamorphic dehydration beneath. In low-permeability assemblages the maximum sustainable overpressure is limited by the activation or reactivation of brittle faults and fractures under the prevailing stress state. Highest overpressures tend to occur at low differential stress in compressional stress regimes. Loci for fluid discharge are likely determined by stress heterogeneities along the megathrust (e.g. the hangingwall of the rupture at its downdip termination). Discharge sites may be defined by swarm aftershocks defining activated fault-fracture meshes. However, fluid loss across a subduction interface will be enhanced when the stress-state in the forearc hanging-wall switches from compressional reverse-slip faulting before failure to extensional normal-slip faulting postfailure, as occurred during the 2011 Mw9.0 Tohoku megathrust rupture. Mean stress and fault-normal stress then change from being greater than vertical stress prefailure, to less than vertical stress postfailure. Postfailure reductions in overpressure are expected from a combination of poroelastic effects and fluid loss through fault-fracture networks, enhancing vertical permeability. Mineralised fault-fracture meshes in exhumed fore-arc assemblages (e.g. the Alaska-Juneau Au-quartz vein swarm) testify to the episodic discharge of substantial volumes of hydrothermal fluid (< tens of km3). Localized drainage from the subduction interface shear zone increases frictional strength significantly, giving rise to a postfailure strength asperities. Anticipated strength increases from such fluid discharge depends on the magnitude of the drop in overpressure but are potentially large (< hundreds of MPa). Time to the subsequent failure is then governed by reaccumulation of fluid overpressure as well as shear stress along the subduction interface.
NASA Technical Reports Server (NTRS)
Shbeeh, N. I.; Binienda, W. K.
1999-01-01
The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.
Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.
Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P
2016-08-05
The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.
Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding
NASA Astrophysics Data System (ADS)
Fox, M. R.; Ghosh, A. K.
2001-08-01
Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.
EEG-based workload estimation across affective contexts
Mühl, Christian; Jeunet, Camille; Lotte, Fabien
2014-01-01
Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive tool to adapt the human–computer interaction to the user state. To create systems that reliably work in the complexity of the real world, a robustness against contextual changes (e.g., mood), has to be achieved. To study the resilience of state-of-the-art EEG-based workload classification against stress we devise a novel experimental protocol, in which we manipulated the affective context (stressful/non-stressful) while the participant solved a task with two workload levels. We recorded self-ratings, behavior, and physiology from 24 participants to validate the protocol. We test the capability of different, subject-specific workload classifiers using either frequency-domain, time-domain, or both feature varieties to generalize across contexts. We show that the classifiers are able to transfer between affective contexts, though performance suffers independent of the used feature domain. However, cross-context training is a simple and powerful remedy allowing the extraction of features in all studied feature varieties that are more resilient to task-unrelated variations in signal characteristics. Especially for frequency-domain features, across-context training is leading to a performance comparable to within-context training and testing. We discuss the significance of the result for neurophysiology-based workload detection in particular and for the construction of reliable passive brain–computer interfaces in general. PMID:24971046
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Mingyuan; Mead, James; Wu, Yueqin
In this study, a nanoindentation-based microcantilever bending technique was utilized to investigate the interfacial properties of a β-Mg{sub 17}Al{sub 12}/AZ91 Mg alloy film/substrate system under tensile loading conditions. Finite element analysis (FEA) was first undertaken to optimise the design of cantilever structures for inducing high tensile stresses at the interface. Cantilevers consisting of a necked region or notch at the interface were determined to be the most successful designs. Microcantilevers containing the β-Mg{sub 17}Al{sub 12}/AZ91 interface were then made using focused ion beam (FIB) milling technique. Necks were made in the cantilevers to intensify the tension at the interface andmore » notches were used to introduce a stress concentration to the interface. During bending, the cantilevers were deflected to failure. Subsequent analysis of the deformed cantilevers using electron microscopies revealed that plastic deformation, and subsequent ductile rupture, of the AZ91 phase was the dominant failure mechanism. When the β-Mg{sub 17}Al{sub 12}/AZ91 film/substrate system was subjected to tension, the softer AZ91 phase failed prior to interfacial delamination, demonstrating that the strength of the interface exceeded the stresses that caused ductile failure in the substrate material. - Highlights: •Microcantilever bending was used to study the property of film/substrate interface. •FEA was used to optimise cantilever design for achieving high interfacial tension. •The intermetallic coatings on AZ91 substrate have strong interfacial adhesion.« less
Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity
NASA Astrophysics Data System (ADS)
Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu
2013-12-01
The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.
Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses
NASA Astrophysics Data System (ADS)
Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.
2016-07-01
Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.
Hirata, K.; Geist, E.; Satake, K.; Tanioka, Y.; Yamaki, S.
2003-01-01
We inverted 13 tsunami waveforms recorded in Japan to estimate the slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1), which occurred southeast off Hokkaido along the southern Kuril subduction zone. The previously estimated source area determined from tsunami travel times [Hatori, 1973] did not coincide with the observed aftershock distribution. Our results show that a large amount of slip occurred in the aftershock area east of Hatori's tsunami source area, suggesting that a portion of the interplate thrust near the trench was ruptured by the main shock. We also found more than 5 m of slip along the deeper part of the seismogenic interface, just below the central part of Hatori's tsunami source area. This region, which also has the largest stress drop during the main shock, had few aftershocks. Large tsunami heights on the eastern Hokkaido coast are better explained by the heterogeneous slip model than previous uniform-slip fault models. The total seismic moment is estimated to be 1.87 ?? 1021 N m, giving a moment magnitude of Mw = 8.1. The revised tsunami source area is estimated to be 25.2 ?? 103 km2, ???3 times larger than the previous tsunami source area. Out of four large earthquakes with M ??? 7 that subsequently occurred in and around the rupture area of the 1952 event, three were at the edges of regions with relatively small amount of slip. We also found that a subducted seamount near the edge of the rupture area possibly impeded slip along the plate interface.
Characterization of AFB sapphire single crystal composites for infrared window application
NASA Astrophysics Data System (ADS)
Lee, H.-C.; Meissner, H. E.
2007-04-01
Next generation weapons platforms may require 30" x 30" sapphire windows. Since these sizes exceed what can be manufactured directly, a concept is proposed and experimental data are furnished in this report on the viability of increasing the window dimensions by Adhesive-Free-Bonding (AFB®) of smaller starting components by their edges. The bonding scheme has been evaluated for single crystal sapphire but is expected to also work equally well for other IR window materials. The bonding mechanism is explained with Van der Waals theory of attractive forces and confirmed experimentally by applying the bending plate theory. The gap at the interface between two components is deduced from the measured roughness of the polished surfaces that are brought into optical contact and subsequently heat-treated, and is estimated to be about 2 Å rms. Stress relief at AFB® interfaces has been established. Experimental data of flexural strength determined by four-point bending at room temperature is reported. The data indicates that AFB® composite specimens and equivalently prepared blank samples fracture at statistically same loads under standardized testing conditions. Failure of composites has not been observed at the interface and only at random flaws that are a result of sample preparation.
3D-characterization of the veneer-zirconia interface using FIB nano-tomography.
Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme
2013-02-01
The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering
Lu, Helen H.; Thomopoulos, Stavros
2014-01-01
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244
Hollenstein, Jérôme; Terrier, Alexandre; Cory, Esther; Chen, Albert C.; Sah, Robert L.; Pioletti, Dominique P.
2016-01-01
The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone–hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone–hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone–hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone–hydrogel interface and second, it reduces the stress at this interface. PMID:23706035
Nanoparticle monolayers under stress: mechanically forced desorption from a fluid-fluid interface
NASA Astrophysics Data System (ADS)
Garbin, Valeria; Crocker, John C.; Stebe, Kathleen J.
2011-11-01
Nanoparticle-laden interfaces are studied for applications to materials with tunable electronic and optical properties, as emulsion stabilizers, and in catalysis. The mechanical response of nanoparticle monolayers under applied stress is of emerging interest since it impacts the success of these applications. Here we focus on the response of nanoparticle-laden interfaces to compression. A monolayer of nanoparticles is allowed to spontaneously form by adsorption from an aqueous suspension onto a pendant drop of oil. The effective surface pressure Π of the composite interface is monitored by pendant drop tensiometry. As the drop is compressed, the nanoparticles are mechanically forced out of the interface into the aqueous phase. A new optical method is developed to measure the nanoparticle area density in situ. We show that desorption occurs at a coverage that corresponds to close packing of the ligand-capped particles, suggesting that ligand-induced repulsion plays a crucial role in the desorption process.
NASA Technical Reports Server (NTRS)
Kim, W. M.; Koczak, M. J.; Lawley, A.
1979-01-01
The microstructural and interface stability of FPalpha-Al203/Al-Li composites are investigated as a function of isothermal exposure at 500 C or thermal cycling between 140 and 500 C with hold time at Tmax. Interfacial morphology, growth kinetics, crystal structure, and composition of interfacial reaction products are characterized. Strength is monitored in the transverse orientation, and fracture mechanics is analyzed in terms of interface reaction products. The interfacial reaction product in FP/Al is Li2O.5Al2O3. Significant fiber-matrix reaction occurs during fabrication. The number of thermal cycles rather than total time at Tmax is the determining factor in strength degradation, thermal cycling giving rise to voids at the fiber-matrix interface. Extensive interface failures occur at composite fracture stresses below about 128 MPa; above this stress level failure is attributed to ductile matrix fracture.
Estimation of In Situ Stress and Permeability from an Extended Leak-off Test
NASA Astrophysics Data System (ADS)
Nghiep Quach, Quoc; Jo, Yeonguk; Chang, Chandong; Song, Insun
2016-04-01
Among many parameters needed to analyze a variety of geomechanical problems related to subsurface CO2 storage projects, two important ones are in situ stress states and permeability of the storage reservoirs and cap rocks. In situ stress is needed for investigating potential risk of fault slip in the reservoir systems and permeability is needed for assessing reservoir flow characteristics and sealing capability of cap rocks. We used an extended leak-off test (XLOT), which is often routinely conducted to assess borehole/casing integrity as well as fracture gradient, to estimate both in situ least principal stress magnitude and in situ permeability in a CO2 storage test site, offshore southeast Korea. The XLOT was conducted at a casing shoe depth (700 m below seafloor) within the cap rock consisting of mudstone, approximately 50 m above the interface between cap rock and storage reservoir. The test depth was cement-grouted and remained for 4 days for curing. Then the hole was further drilled below the casing shoe to create a 4 m open-hole interval at the bottom. Water was injected using hydraulic pump at an approximately constant flowrate into the bottom interval through the casing, during which pressure and flowrate were recorded continuously at the surface. The interval pressure (P) was increased linearly with time (t) as water was injected. At some point, the slope of P-t curve deviated from the linear trend, which indicates leak-off. Pressure reached its peak upon formation breakdown, followed by a gradual pressure decrease. Soon after the formation breakdown, the hole was shut-in by pump shut-off, from which we determined the instantaneous shut-in pressure (ISIP). The ISIP was taken to be the magnitude of the in situ least principal stress (S3), which was determined to be 12.1 MPa. This value is lower than the lithostatic vertical stress, indicating that the S3 is the least horizontal principal stress. The determined S3 magnitude will be used to characterize the stress regime with the information of the maximum principal stress that will be estimated based on borehole breakout geometry analysis. To estimate the in situ permeability from the XLOT data, we derived a theoretical equation that relates the slope of pressure versus injected water volume (P-V) curve to permeability based on the Darcy's law. The equation is expressed in terms of permeability as a function of some key parameters such as open-hole dimensions, flowrate, porosity, pressure change and injected water volume. We applied this equation to the early stage of the P-V curves prior to the leak-off point to prevent the effect of induced fractures on permeability. The estimated in situ permeability was (3.1±0.4)×10-17m2, which turns out to be quite similar to the laboratory measurements in recovered cores.
Element soil behaviour during pile installation simulated by 2D-DEM
NASA Astrophysics Data System (ADS)
Ji, Xiaohui; Cheng, Yi Pik; Liu, Junwei
2017-06-01
The estimation of the skin friction of onshore or offshore piles in sand is still a difficult problem for geotechnical engineers. It has been accepted by many researchers that the mechanism of driving piles in the soil has shared some similarities with that of an element shear test under the constant normal stiffness (CNS) condition. This paper describes the behaviour of an element of soil next to a pile during the process of pile penetration into dense fine sand using the 2D-DEM numerical simulation software. A new CNS servo was added to the horizontal boundary while maintaining the vertical stress constant. This should simulate the soil in a similar manner to that of a CNS pile-soil interface shear test, but allowing the vertical stress to remain constant which is more realistic to the field situation. Shear behaviours observed in these simulations were very similar to the results from previous researchers' lab shearing tests. With the normal stress and shear stress obtained from the virtual models, the friction angle and the shaft friction factor β mentioned in the API-2007 offshore pile design guideline were calculated and compared with the API recommended values.
Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake
NASA Astrophysics Data System (ADS)
Miyazaki, Shin'ichi; Segall, Paul; McGuire, Jeffery J.; Kato, Teruyuki; Hatanaka, Yuki
2006-03-01
We investigate an ongoing silent thrust event in the Tokai seismic gap along the Suruga-Nankai Trough, central Japan. Prior to the event, continuous GPS data from April 1996 to the end of 1999 show that this region displaced ˜2 cm/yr to the northwest relative to the landward plate. The GPS time series show an abrupt change in rate in mid-June 2000 that continues as of mid-2005. We model this transient deformation, which we refer to as the Tokai slow thrust slip event, as caused by slip on the interface between the Philippine Sea and Amurian plates. The spatial and temporal distribution of slip rate is estimated with Kalman filter based inversion methods. Our inversions reveal two slow subevents. The first initiated in late June 2000 slightly before the Miyake-jima eruption. The locus of slip then propagated southeast in the second half of 2000, with maximum slip rates of about 15 cm/yr through 2001. A second locus of slip initiated to the northeast in early 2001. The depth of the slip zone is about 25 km, which may correspond to the transition zone from a seismogenic to a freely sliding zone. The cumulative moment magnitude of the slow slip event up to November 2002 is Mw ˜ 6.8. We calculate shear stress changes on the plate interface from the slip histories. Stress change as a function of slip rate shows trajectories similar to that inferred for high-speed ruptures; however, the maximum velocity is 8 orders of magnitude less than in normal earthquakes.
NASA Astrophysics Data System (ADS)
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
Interface crack in a nonhomogeneous elastic medium
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1988-01-01
The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.
Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang
2010-06-01
This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.
Interfacial stress state present in a 'thin-slice' fibre push-out test
NASA Technical Reports Server (NTRS)
Kallas, M. N.; Koss, D. A.; Hahn, H. T.; Hellmann, J. R.
1992-01-01
An analysis of the stress distributions along the fiber-matrix interface in a 'thin-slice' fiber push-out test is presented for selected test geometries. For the small specimen thicknesses often required to displace large-diameter fibers with high interfacial shear strengths, finite element analysis indicates that large bending stresses may be present. The magnitude of these stresses and their spatial distribution can be very sensitive to the test configuration. For certain test geometries, the specimen configuration itself may alter the interfacial failure process from one which initiates due to a maximum in shear stress near the top surface adjacent to the indentor, to one which involves mixed mode crack growth up from the bottom surface and/or yielding within the matrix near the interface.
Fracture and Failure at and Near Interfaces Under Pressure
1998-06-18
realistic data for comparison with improved analytical results, and to 2) initiate a new computational approach for stress analysis of cracks at and near...new computational approach for stress analysis of cracks in solid propellants at and near interfaces, which analysis can draw on the ever expanding...tactical and strategic missile systems. The most important and most difficult component of the system analysis has been the predictability or
NASA Astrophysics Data System (ADS)
Chen, H. Z.; Jiang, W.; Zou, W.; Luo, J. M.; Chen, J. Y.; Tu, C. Q.; Xing, B. B.; Gu, Z. W.; Zhang, X. D.
2008-11-01
The biomechanical behavior of the uniting interface between the allograft bone and the autogenetic bone plays an important role in the treatment of the proximal femur massive defects with artificial tumor arthrosis/allograft prosthetic composite (TAAPC). According to the CT data of a patient, a 3D medical treatment model of TAAPC was established. Under the loads of 1.5 and 2.5 times standard body weight (70 kg), the mechanical behavior of the treatment model was analyzed by finite element analysis (FEA) for three typical healing periods. The results show that there are significant differences in the stress values and distribution in different healing periods. With healing of osteotomy, the hardness of the tissue of the uniting interface increases, the stress in uniting area was increased greatly and the stress concentration decreased. After cured the stress almost reached the level of normal bone. In the initial stage of healing, the healing training is not encouraged because there is an obvious risk of fracture of prosthesis and bone cement. In addition, porous hydroxyapatite (HA) ceramic used as bone tissue scaffold for this case, not only facilitates the generation of new bone, but also can avoid this risk caused by the non-uniting interface.
A damage mechanics based general purpose interface/contact element
NASA Astrophysics Data System (ADS)
Yan, Chengyong
Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against laboratory test data presented in the literature. The results demonstrate that the proposed element and the damage law perform very well. The most important scientific contribution of this dissertation is the proposed damage criterion based on second law of thermodynamic and entropy of the system. The proposed general purpose interface/contact element is another contribution of this research. Compared to the previous adhoc interface elements proposed in the literature, the new one is, much more powerful and includes creep, plastic deformations, sliding, temperature, damage, cyclic behavior and fatigue life in a unified formulation.
Yamaguchi, Yoko; Shiota, Makoto; FuJii, Masaki; Sekiya, Michi; Ozeki, Masahiko
2016-01-01
Primary stability after implant placement is essential for osseointegration. It is important to understand the bone/implant interface for analyzing the influence of implant design on primary stability. In this study rigid polyurethane foam is used as artificial bone to evaluate the bone-implant interface and to identify where the torque is being generated during placement. Five implant systems-Straumann-Standard (ST), Straumann-Bone Level (BL), Straumann-Tapered Effect (TE), Nobel Biocare-Brånemark MKIII (MK3), and Nobel Biocare-Brånemark MKIV (MK4)-were used for this experiment. Artificial bone blocks were prepared and the implant was installed. After placement, a metal jig and one side artificial bone block were removed and then the implant embedded in the artificial bone was exposed for observing the bone-implant interface. A digital micro-analyzer was used for observing the contact interface. The insertion torque values were 39.35, 23.78, 12.53, 26.35, and 17.79 N cm for MK4, BL, ST, TE, and MK3, respectively. In ST, MK3, TE, MK4, and BL the white layer areas were 61 × 103 μm(2), 37 × 103 μm(2), 103 × 103 μm(2) in the tapered portion and 84 × 03 μm(2) in the parallel portion, 134 × 103 μm(2), and 98 × 103 μm(2) in the tapered portion and 87 × 103 μm(2) in the parallel portion, respectively. The direct observation method of the implant/artificial bone interface is a simple and useful method that enables the identification of the area where implant retention occurs. A white layer at the site of stress concentration during implant placement was identified and the magnitude of the stress was quantitatively estimated. The site where the highest torque occurred was the area from the thread crest to the thread root and the under and lateral aspect of the platform. The artificial bone debris created by the self-tapping blade accumulated in both the cutting chamber and in the space between the threads and artificial bone.
Comninou contact zones for a crack parallel to an interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, P.F.; Gadi, K.S.; Erdogen, F.
One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. Thismore » model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.« less
NASA Technical Reports Server (NTRS)
Bassani, J. L.; Erdogan, F.
1979-01-01
The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.
NASA Technical Reports Server (NTRS)
Bassani, J. L.; Erdogan, F.
1978-01-01
The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.
Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-11-01
Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tim; Wolff, Jan
2016-01-01
This computational study investigates the effect of shape (defect contour curvature) and bone-implant interface (osteotomy angle) on the stress distribution within PMMA skull implants. Using finite element methodology, 15 configurations--combinations of simplified synthetic geometric shapes (circular, square, triangular, irregular) and interface angulations--were simulated under 50N static loads. Furthermore, the implant fixation devices were modelled and analysed in detail. Negative osteotomy configurations demonstrated the largest stresses in the implant (275 MPa), fixation devices (1258 MPa) and bone strains (0.04). The circular implant with zero and positive osteotomy performed well with maximum observed magnitudes of--implant stress (1.2 MPa and 1.2 MPa), fixation device stress (11.2 MPa and 2.2 MPa), bone strain (0.218e-3 and 0.750e-4). The results suggest that the preparation of defect sites is a critical procedure. Of the greatest importance is the angle at which the edges of the defect are sawed. If under an external load, the implant has no support from the interface and the stresses are transferred to the fixation devices. This can endanger their material integrity and lead to unphysiological strains in the adjacent bone, potentially compromising the bone morphology required for anchoring. These factors can ultimately weaken the stability of the entire implant assembly. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Sarfaraz, Hasan; Paulose, Anoopa; Shenoy, K. Kamalakanth; Hussain, Akhter
2015-01-01
Aims: The aim of the study was to evaluate the stress distribution pattern in the implant and the surrounding bone for a passive and a friction fit implant abutment interface and to analyze the influence of occlusal table dimension on the stress generated. Materials and Methods: CAD models of two different types of implant abutment connections, the passive fit or the slip-fit represented by the Nobel Replace Tri-lobe connection and the friction fit or active fit represented by the Nobel active conical connection were made. The stress distribution pattern was studied at different occlusal dimension. Six models were constructed in PRO-ENGINEER 05 of the two implant abutment connection for three different occlusal dimensions each. The implant and abutment complex was placed in cortical and cancellous bone modeled using a computed tomography scan. This complex was subjected to a force of 100 N in the axial and oblique direction. The amount of stress and the pattern of stress generated were recorded on a color scale using ANSYS 13 software. Results: The results showed that overall maximum Von Misses stress on the bone is significantly less for friction fit than the passive fit in any loading conditions stresses on the implant were significantly higher for the friction fit than the passive fit. The narrow occlusal table models generated the least amount of stress on the implant abutment interface. Conclusion: It can thus be concluded that the conical connection distributes more stress to the implant body and dissipates less stress to the surrounding bone. A narrow occlusal table considerably reduces the occlusal overload. PMID:26929518
Khanday, M A; Hussain, Fida
2015-02-01
During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simultaneous measurements of concentration and velocity in the Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Reese, Dan; Ames, Alex; Noble, Chris; Oakley, Jason; Rothamer, David; Bonazza, Riccardo
2017-11-01
The Richtmyer-Meshkov instability (RMI) is studied experimentally in the Wisconsin Shock Tube Laboratory (WiSTL) using a broadband, shear layer initial condition at the interface between a helium-acetone mixture and argon. This interface (Atwood number A=0.7) is accelerated by either a M=1.6 or M=2.2 planar shock wave, and the development of the RMI is investigated through simultaneous planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements at the initial condition and four post-shock times. Three Reynolds stresses, the planar turbulent kinetic energy, the Taylor microscale are calculated from the concentration and velocity fields. The external Reynolds number is estimated from the Taylor scale and the velocity statistics. The results suggest that the flow transitions to fully developed turbulence by the third post-shock time for the high Mach number case, while it may not at the lower Mach number. The authors would like to acknowledge the support of the Department of Energy.
Tan, Fabing; Yang, Chongshi; Huang, Yuanding
2017-01-01
Introduction Osseointegration is required for prosthetic implant, but the various bone-implant interfaces of orthodontic miniscrews would be a great interest for the orthodontist. There is no clear consensus regarding the minimum amount of bone-implant osseointegration required for a stable miniscrew. The objective of this study was to investigate the influence of different bone-implant interfaces on the miniscrew and its surrounding tissue. Methods Using finite element analysis, an advanced approach representing the bone-implant interface is adopted herein, and different degrees of bone-implant osseointegration were implemented in the FE models. A total of 26 different FE analyses were performed. The stress/strain patterns were calculated and compared, and the displacement of miniscrews was also evaluated. Results The stress/strain distributions are changing with the various bone-implant interfaces. In the scenario of 0% osseointegration, a rather homogeneous distribution was predicted. After 15% osseointegration, the stress/strains were gradually concentrated on the cortical bone region. The miniscrew experienced the largest displacement under the no osseointegra condition. The maximum displacement decreases sharply from 0% to 3% and tends to become stable. Conclusion From a biomechanical perspective, it can be suggested that orthodontic loading could be applied on miniscrews after about 15% osseointegration without any loss of stability. PMID:29065641
Basu, Swastik; Suresh, Shravan; Ghatak, Kamalika; Bartolucci, Stephen F; Gupta, Tushar; Hundekar, Prateek; Kumar, Rajesh; Lu, Toh-Ming; Datta, Dibakar; Shi, Yunfeng; Koratkar, Nikhil
2018-04-25
High specific capacity anode materials such as silicon (Si) are increasingly being explored for next-generation, high performance lithium (Li)-ion batteries. In this context, Si films are advantageous compared to Si nanoparticle based anodes since in films the free volume between nanoparticles is eliminated, resulting in very high volumetric energy density. However, Si undergoes volume expansion (contraction) under lithiation (delithiation) of up to 300%. This large volume expansion leads to stress build-up at the interface between the Si film and the current collector, leading to delamination of Si from the surface of the current collector. To prevent this, adhesion promotors (such as chromium interlayers) are often used to strengthen the interface between the Si and the current collector. Here, we show that such approaches are in fact counter-productive and that far better electrochemical stability can be obtained by engineering a van der Waals "slippery" interface between the Si film and the current collector. This can be accomplished by simply coating the current collector surface with graphene sheets. For such an interface, the Si film slips with respect to the current collector under lithiation/delithiation, while retaining electrical contact with the current collector. Molecular dynamics simulations indicate (i) less stress build-up and (ii) less stress "cycling" on a van der Waals slippery substrate as opposed to a fixed interface. Electrochemical testing confirms more stable performance and much higher Coulombic efficiency for Si films deposited on graphene-coated nickel (i.e., slippery interface) as compared to conventional nickel current collectors.
Burner liner thermal/structural load modeling: TRANCITS program user's manual
NASA Technical Reports Server (NTRS)
Maffeo, R.
1985-01-01
Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) is discussed. The TRANCITS code satisfies all the objectives for transferring thermal data between heat transfer and structural models of combustor liners and it can be used as a generic thermal translator between heat transfer and stress models of any component, regardless of the geometry. The TRANCITS can accurately and efficiently convert the temperature distributions predicted by the heat transfer programs to those required by the stress codes. It can be used for both linear and nonlinear structural codes and can produce nodal temperatures, elemental centroid temperatures, or elemental Gauss point temperatures. The thermal output of both the MARC and SINDA heat transfer codes can be interfaced directly with TRANCITS, and it will automatically produce stress model codes formatted for NASTRAN and MARC. Any thermal program and structural program can be interfaced by using the neutral input and output forms supported by TRANCITS.
Extraction method of interfacial injected charges for SiC power MOSFETs
NASA Astrophysics Data System (ADS)
Wei, Jiaxing; Liu, Siyang; Li, Sheng; Song, Haiyang; Chen, Xin; Li, Ting; Fang, Jiong; Sun, Weifeng
2018-01-01
An improved novel extraction method which can characterize the injected charges along the gate oxide interface for silicon carbide (SiC) power metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. According to the different interface situations of the channel region and the junction FET (JFET) region, the gate capacitance versus gate voltage (Cg-Vg) curve of the device can be divided into three relatively independent parts, through which the locations and the types of the charges injected in to the oxide above the interface can be distinguished. Moreover, the densities of these charges can also be calculated by the amplitudes of the shifts in the Cg-Vg curve. The correctness of this method is proved by TCAD simulations. Moreover, experiments on devices stressed by unclamped-inductive-switching (UIS) stress and negative bias temperature stress (NBTS) are performed to verify the validity of this method.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-10-01
In this paper, the synergistic effects of loading frequency and testing temperature on the fatigue damage evolution and life prediction of cross-ply SiC/MAS ceramic-matrix composite have been investigated. The damage parameters of the fatigue hysteresis modulus, fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of SiC/MAS composite. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/MAS composite under the loading frequency of 1 and 10 Hz at 566 °C and 1093 °C in air condition have been predicted. The synergistic effects of the loading frequency and testing temperature on the degradation rate of fatigue hysteresis dissipated energy and the interface shear stress have been analyzed.
Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT
NASA Astrophysics Data System (ADS)
Malik, Amit; Sharma, Chandan; Laishram, Robert; Bag, Rajesh Kumar; Rawal, Dipendra Singh; Vinayak, Seema; Sharma, Rajesh Kumar
2018-04-01
This article reports negative shift in the threshold-voltage in AlGaN/GaN high electron mobility transistor (HEMT) with application of reverse gate bias stress. The device is biased in strong pinch-off and low drain to source voltage condition for a fixed time duration (reverse gate bias stress), followed by measurement of transfer characteristics. Negative threshold voltage shift after application of reverse gate bias stress indicates the presence of more carriers in channel as compared to the unstressed condition. We propose the presence of AlGaN/GaN interface states to be the reason of negative threshold voltage shift, and developed a process to electrically characterize AlGaN/GaN interface states. We verified the results with Technology Computer Aided Design (TCAD) ATLAS simulation and got a good match with experimental measurements.
Prinos, Scott T.
2017-07-11
The inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, was mapped in 2011. Since that time, the saltwater interface has continued to move inland. The interface is near several active well fields; therefore, an updated approximation of the inland extent of saltwater and an improved understanding of the rate of movement of the saltwater interface are necessary. A geographic information system was used to create a map using the data collected by the organizations that monitor water salinity in this area. An average rate of saltwater interface movement of 140 meters per year was estimated by dividing the distance between two monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the travel time. The travel time was determined by estimating the dates of arrival of the saltwater interface at the wells and computing the difference. This estimate assumes that the interface is traveling east to west between the two monitoring wells. Although monitoring is spatially limited in this area and some of the wells are not ideally designed for salinity monitoring, the monitoring network in this area is improving in spatial distribution and most of the new wells are well designed for salinity monitoring. The approximation of the inland extent of the saltwater interface and the estimated rate of movement of the interface are dependent on existing data. Improved estimates could be obtained by installing uniformly designed monitoring wells in systematic transects extending landward of the advancing saltwater interface.
Do uniform tangential interfacial stresses enhance adhesion?
NASA Astrophysics Data System (ADS)
Menga, Nicola; Carbone, Giuseppe; Dini, Daniele
2018-03-01
We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.
NASA Astrophysics Data System (ADS)
Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang
2011-02-01
A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.
Investigation of AlGaN/GaN HEMTs degradation with gate pulse stressing at cryogenic temperature
NASA Astrophysics Data System (ADS)
Wang, Ning; Wang, Hui; Lin, Xinpeng; Qi, Yongle; Duan, Tianli; Jiang, Lingli; Iervolino, Elina; Cheng, Kai; Yu, Hongyu
2017-09-01
Degradation on DC characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) after applying pulsed gate stress at cryogenic temperatures is presented in this paper. The nitrogen vacancy near to the AlGaN/GaN interface leads to threshold voltage of stress-free sample shifting positively at low temperature. The anomalous behavior of threshold voltage variation (decrease first and then increase) under gate stressing as compared to stress-free sample is observed when lowing temperature. This can be correlated with the pre-existing electron traps in SiNX layer or at SiNX/AlGaN interface which can be de-activated and the captured electrons inject back to channel with lowering temperature, which counterbalances the influence of nitrogen vacancy on threshold voltage shift.
NASA Astrophysics Data System (ADS)
Reinsch, Thomas; Thurley, Tom; Jousset, Philippe
2017-12-01
In recent years, fiber optic cables are increasingly used for the acquisition of dynamic strain changes for seismic surveys. When considering seismic amplitudes, one of the first questions arising is the mechanical coupling between optical fiber and the surrounding medium. Here we analyse the interaction of ground movement with a typical telecom-grade fiber optic cable from an existing telecommunication network deployed in a sand filled trench at the surface. Within the cable, the optical fiber is embedded in a gel-filled plastic tube. We apply Hooke’s law to calculate the stress needed to strain the optical fiber throughout the cable structure. In case the stress magnitude at the cable-sand interface as well as the gel-optical fiber interface is below the yield strength of the respective material, sand and gel, it can be regarded as an elastic medium. Hence, a multilayer radial symmetric model can be used to calculate the coupling of the optical fiber with the surrounding medium. We show that the transfer function has a -3 dB lower cut-off wavelength of about 22 m. The magnitude response of this telecom-grade fiber optic cable is therefore almost perfect at typical low frequency seismic waves. The approach presented here can be applied to various cable designs to estimate the strain transfer between ground movement and an optical fiber.
Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation.
Duerkop, Mark; Berger, Eva; Dürauer, Astrid; Jungbauer, Alois
2018-03-25
The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α-lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by +68.9%, hemoglobin +4%, and human serum albumin +2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air-liquid interface induced the aggregation of GCSF by +94.5%, hemoglobin +35.5%, and human serum albumin (HSA) +31.1%. The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid-induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 10 8 s -1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Intermetallic Compound Growth and Stress Development in Al-Cu Diffusion Couple
NASA Astrophysics Data System (ADS)
Mishler, M.; Ouvarov-Bancalero, V.; Chae, Seung H.; Nguyen, Luu; Kim, Choong-Un
2018-01-01
This paper reports experimental observations evidencing that the intermetallic compound phase interfaced with Cu in the Al-Cu diffusion couple is most likely α2-Cu3Al phase, not γ-Cu9Al4 phase as previously assumed, and that its growth to a critical thickness may result in interface failure by stress-driven fracture. These conclusions are made based on an interdiffusion study of a diffusion couple made of a thick Cu plate coated with ˜ 2- μm-thick Al thin film. The interface microstructure and lattice parameter were characterized using scanning electron microscopy and x-ray diffraction analysis. Specimens aged at temperature between 623 K (350°C) and 723 K (450°C) for various hours produced consistent results supporting the main conclusions. It is found that disordered α2-Cu3Al phase grows in a similar manner to solid-state epitaxy, probably owing to its structural similarity to the Cu lattice. The increase in the interface strain that accompanies the α2-Cu3Al phase growth ultimately leads to interface fracture proceeding from crack initiation and growth along the interface. This mechanism provides the most consistent explanation for interface failures observed in other studies.
Belli, Sema; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan
The aim of this finite-element stress analysis (FEA) was to determine the effect of degradation due to water storage on stress distributions in root-filled premolar models restored with composite using either a self-etch (SE) or an etch-and-rinse (E&R) adhesive. Four premolar FEA models including root filling, MOD cavity, and composite restorations were created. The cavities were assumed to be treated by SE or E&R adhesives and stored in water for 18 months. The elastic properties of the adhesive-dentin interface after 24-h and 18-month water storage were obtained from the literature and applied to the FEA models. A 300-N load was applied on the functional cusps of the models. The SolidWorks/Cosmosworks structural analysis program was used and the results were presented considering the von Mises stresses. Stresses in the cervical region increased over time on the load-application side of the main tooth models (SE: 84.11 MPa to 87.51 MPa; E&R: 100.24 MPa to 120.8 MPa). When the adhesive interfaces (hybrid layer, adhesive layer) and dentin were evaluated separately, the stresses near the root canal orifices increased over time in both models; however, this change was more noticeable in the E&R models. Stresses at the cavity corners decreased in the E&R model (within the adhesive layer), while SE models showed the opposite (within the hybrid layer). Change in the elastic modulus of the adhesive layer, hybrid layer, and dentin due to water storage has an effect on stresses in root-filled premolar models. The location and the level of the stresses differed depending on the adhesive used.
Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket.
Zhang, Linlin; Zhu, Ming; Shen, Ling; Zheng, Feng
2013-01-01
Transfemoral amputees need prosthetic devices after amputation surgery, and the interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. The purpose of this study was to build a nonlinear finite element model to investigate the interface pressure between the above-knee residual limb and its prosthetic socket. The model was three-dimensional (3D) with consideration of nonlinear boundary conditions. Contact analysis was used to simulate the friction conditions between skin and the socket. The normal stresses up to 80.57 kPa at the distal end of the soft tissue. The longitudinal and circumferential shear stress distributions at the limb-socket interface were also simulated. This study explores the influences of load transfer between trans-femoral residual limb and its prosthetic socket.
Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface
NASA Astrophysics Data System (ADS)
Keitzl, T.; Mellado, J. P.; Notz, D.
2016-12-01
The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.
A mechanism for crustal recycling on Venus
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.
1993-01-01
Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.
Grinding damage assessment for CAD-CAM restorative materials.
Curran, Philippe; Cattani-Lorente, Maria; Anselm Wiskott, H W; Durual, Stéphane; Scherrer, Susanne S
2017-03-01
To assess surface/subsurface damage after grinding with diamond discs on five CAD-CAM restorative materials and to estimate potential losses in strength based on crack size measurements of the generated damage. The materials tested were: Lithium disilicate (LIT) glass-ceramic (e.max CAD), leucite glass-ceramic (LEU) (Empress CAD), feldspar ceramic (VM2) (Vita Mark II), feldspar ceramic-resin infiltrated (EN) (Enamic) and a composite reinforced with nano ceramics (LU) (Lava Ultimate). Specimens were cut from CAD-CAM blocs and pair-wise mirror polished for the bonded interface technique. Top surfaces were ground with diamond discs of respectively 75, 54 and 18μm. Chip damage was measured on the bonded interface using SEM. Fracture mechanics relationships were used to estimate fracture stresses based on average and maximum chip depths assuming these to represent strength limiting flaws subjected to tension and to calculate potential losses in strength compared to manufacturer's data. Grinding with a 75μm diamond disc induced on a bonded interface critical chips averaging 100μm with a potential strength loss estimated between 33% and 54% for all three glass-ceramics (LIT, LEU, VM2). The softer materials EN and LU were little damage susceptible with chips averaging respectively 26μm and 17μm with no loss in strength. Grinding with 18μm diamond discs was still quite detrimental for LIT with average chip sizes of 43μm and a potential strength loss of 42%. It is essential to understand that when grinding glass-ceramics or feldspar ceramics with diamond discs surface and subsurface damage are induced which have the potential of lowering the strength of the ceramic. Careful polishing steps should be carried out after grinding especially when dealing with glass-ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
On the stress calculation within phase-field approaches: a model for finite deformations
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta
2017-08-01
Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.
This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.
Gomez, Steven P.; Sobolik, Steve R.; Matteo, Edward N.; ...
2016-11-16
This research aims to describe the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. Here, a wellbore system mock-up was used for lab-scale testing, and was subjected to confining and casing pressures in a pressure vessel while measuring gas flow along the specimen’s axis. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical joint models were used to calculate stress and displacement conditions of the microannulus region, where the mechanical stiffness and hydraulic aperture were altered in response to the imposed stress state and displacement across the joint interface.
Stochastic modelling of a large subduction interface earthquake in Wellington, New Zealand
NASA Astrophysics Data System (ADS)
Francois-Holden, C.; Zhao, J.
2012-12-01
The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. A potential cause of significant earthquake loss in the Wellington region is a large magnitude (perhaps 8+) "subduction earthquake" on the Australia-Pacific plate interface, which lies ~23 km beneath Wellington City. "It's Our Fault" is a project involving a comprehensive study of Wellington's earthquake risk. Its objective is to position Wellington city to become more resilient, through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. As part of the "It's Our Fault" project, we are working on estimating ground motions from potential large plate boundary earthquakes. We present the latest results on ground motion simulations in terms of response spectra and acceleration time histories. First we characterise the potential interface rupture area based on previous geodetically-derived estimates interface of slip deficit. Then, we entertain a suitable range of source parameters, including various rupture areas, moment magnitudes, stress drops, slip distributions and rupture propagation directions. Our comprehensive study also includes simulations from historical large world subduction events translated into the New Zealand subduction context, such as the 2003 M8.3 Tokachi-Oki Japan earthquake and the M8.8 2010 Chili earthquake. To model synthetic seismograms and the corresponding response spectra we employed the EXSIM code developed by Atkinson et al. (2009), with a regional attenuation model based on the 3D attenuation model for the lower North-Island which has been developed by Eberhart-Phillips et al. (2005). The resulting rupture scenarios all produce long duration shaking, and peak ground accelerations that, typically range between 0.2-0.7 g in Wellington city. Many of these scenarios also produce long period motions that are currently not captured by the current NZ design spectra.
Stress analysis of different post-luting systems: a three-dimensional finite element analysis.
Romeed, S A; Dunne, S M
2013-03-01
The longevity of endodontically treated teeth is usually determined by the adequacy of root canal treatments, coronal seal and favourable stress distribution within the remaining tooth tissues. The aim of this study was to investigate the influence of post material and luting cement on the biomechanics of endodontically treated teeth using three-dimensional finite element analysis (3-D FEA). A 3 mm section of endodontically treated canine tooth was scanned and reconstructed for 3-D modelling and FE analyses. A metal post (MP) and a glass fibre post (GFP) were tested individually with four luting cements [zinc phosphate (ZPH), glass ionomer (GI), resin modified glass ionomer (RMGI) and resin based cements (RC)]. A push-out test was conducted by subjecting all models to 100 N perpendicular loading at the post. The maximum stresses generated along the MP-cement interface were significantly higher than corresponding stresses in the GFP-cement interface regardless of the cement type. GFP generated seven times higher stresses within the root dentine than metal posts when ZPH and GI were used, and three times higher when RMGI and RC were used. The displacement of GFP was double (50 μ) the displacement of MP (20 μ) in all groups. The low elastic modulus of GFP generated lower stresses along its interface and higher stresses within the root dentine, therefore the probability of debonding and root fracture in the GFP group was lower. © 2013 Australian Dental Association.
Experimental evidence of non-Amontons behaviour at a multi-contact interface
NASA Astrophysics Data System (ADS)
Scheibert, J.; Prevost, A.; Frelat, J.; Rey, P.; Debrégeas, G.
2008-08-01
We report on normal stress field measurements at the multicontact interface between a rough elastomeric film and a smooth glass sphere under normal load, using an original MEMS-based stress-sensing device. These measurements are compared to Finite-Elements Method (FEM) calculations with boundary conditions obeying locally Amontons' rigid-plastic-like friction law with a uniform friction coefficient. In dry contact conditions, significant deviations are observed which decrease with increasing load. In lubricated conditions, the measured profile recovers almost perfectly the predicted profile. These results are interpreted as a consequence of the finite compliance of the multicontact interface, a mechanism which is not taken into account in Amontons' law.
Statistics of surface divergence and their relation to air-water gas transfer velocity
NASA Astrophysics Data System (ADS)
Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.
2012-05-01
Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.
Interlaminar stress singularities at a straight free edge in composite laminates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Crews, J. H., Jr.
1980-01-01
A quasi three dimensional finite element analysis was used to analyze the edge stress problem in four-ply, composite laminates. Convergence studies were made to explore the existence of stress singularities near the free edge. The existence of stress singularities at the intersection of the interface and the free edge is confirmed.
The crack problem in bonded nonhomogeneous materials
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.
1988-01-01
The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.
The crack problem in bonded nonhomogeneous materials
NASA Technical Reports Server (NTRS)
Erdogan, F.; Joseph, P. F.; Kaya, A. C.
1991-01-01
The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.
Seki, Hirofumi; Yoshikawa, Masanobu; Kobayashi, Takuma; Kimoto, Tsunenobu; Ozaki, Yukihiro
2017-05-01
Fourier transform infrared (FT-IR) spectra were measured for thermal oxides with different electrical properties grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by 5 cm -1 as the oxide-layer thickness decreased to 3 nm. The blue shift of the TO mode indicates interfacial compressive stress in the oxide. Comparison of data for the oxide on a SiC substrate with that for similar oxides on a Si substrate implies that the peak shift of the TO mode at the SiO 2 /SiC interface is larger than that of SiO 2 /Si, which suggests that the interfacial stress for the oxide on the SiC substrate is larger than that on the Si substrate. For the SiO 2 /SiC interfacial region (<3 nm oxide thickness), despite the fact that the blue shift of the TO modes becomes larger while approaching the oxide/SiC interface, the peak frequency of the TO modes red-shifts at the oxide/SiC interface. The peak-frequency shift of the TO mode for the sample without post-oxidation annealing was larger than that for the samples post-annealed in a nitric oxide atmosphere. The channel mobilities are correlated with the degree of shift of the TO mode when the oxide thickness is <3 nm. It appears that the compressive stress at the SiO 2 /SiC interface generates silicon suboxide components and weakens the Si-O bonds. As the result, the TO mode was red-shifted and the oxygen deficiency increased to relax the compressive stress in the oxide with <3 nm thickness. Fourier transform infrared spectroscopy measurements provide unique and useful information about stress and inhomogeneity at the oxide/SiC interface.
Jörn, Daniela; Kohorst, Philipp; Besdo, Silke; Borchers, Lothar; Stiesch, Meike
2016-01-01
Since bacterial leakage along the implant-abutment interface may be responsible for peri-implant infections, a realistic estimation of the interface gap width during function is important for risk assessment. The purpose of this study was to compare two methods for investigating microgap formation in a loaded dental implant, namely, microcomputed tomography (micro-CT) and three-dimensional (3D) nonlinear finite element analysis (FEA); additionally, stresses to be expected during loading were also evaluated by FEA. An implant-abutment complex was inspected for microgaps between the abutment and implant in a micro-CT scanner under an oblique load of 200 N. A numerical model of the situation was constructed; boundary conditions and external load were defined according to the experiment. The model was refined stepwise until its load-displacement behavior corresponded sufficiently to data from previous load experiments. FEA of the final, validated model was used to determine microgap widths. These were compared with the widths as measured in micro-CT inspection. Finally, stress distributions were evaluated in selected regions. No microgaps wider than 13 μm could be detected by micro-CT for the loaded implant. FEA revealed gap widths up to 10 μm between the implant and abutment at the side of load application. Furthermore, FEA predicted plastic deformation in a limited area at the implant collar. FEA proved to be an adequate method for studying microgap formation in dental implant-abutment complexes. FEA is not limited in gap width resolution as are radiologic techniques and can also provide insight into stress distributions within the loaded complex.
Bonded orthotropic strips with cracks
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1978-01-01
The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. First, the problem of cracks fully imbedded into the homogeneous strips is considered. Then, the singular behavior of the stresses for two special crack geometries is studied in some detail. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Finally, some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.
Oomori, H; Imura, S; Gesso, H
1992-04-01
To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.
Determination of stress intensity factors for interface cracks under mixed-mode loading
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.
Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R
2015-10-15
Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar
Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurementsmore » indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.« less
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
Sakamoto, Harumi; Doi, Hisashi; Kobayashi, Equo; Yoneyama, Takayuki; Suzuki, Yoshiaki; Hanawa, Takao
2007-07-01
The objective of this study was to investigate the structure and strength at the bonding interface of a titanium (Ti)-segmented polyurethane (SPU) composite through (3-trimethoxysilyl) propyl methacrylate (gamma-MPS) for artificial organs. The effects of the thickness of the gamma-MPS layer on the shear bonding strength between Ti and SPU were investigated. Ti disks were immersed in various concentrations of gamma-MPS solutions for several immersion times. The depth profiles of elements and the thickness of the gamma-MPS layer were determined by glow discharge optical emission spectroscopy and ellipsometry, respectively. The bonding stress at the Ti/gamma-MPS/SPU interface was evaluated with a shear bonding test. Furthermore, the fractured surface of a Ti-SPU composite was observed by optical microscopy and characterized using X-ray photoelectron spectroscopy. Consequently, the thickness of the gamma-MPS layer was controlled by the concentration of the gamma-MPS solution and immersion time. The shear bonding stress at the interface increased with the increase of the thickness of the gamma-MPS layer. Therefore, the control of the thickness of the gamma-MPS layer is significant to increase the shear bonding stress at the Ti/gamma-MPS/SPU interface. These results are significant to create composites for artificial organs consisting of other metals and polymers. Copyright 2007 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Johnson, Joseph A., III
1996-01-01
Our research and technology are focused on nonlinear issues in the aerothermochemistry of gases and materials and the associated physics and dynamics of interfaces. Our program is now organized to aggressively support the NASA Aeronautics Enterprise so as to: (a) develop a new generation of environmentally compatible, economic subsonic aircraft; (b) develop the technology base for an economically viable and environmentally compatible high-speed civil transport; (c) develop the technology options for new capabilities in high-performance aircraft; (d) develop hypersonic technologies for air-breathing flight; and (e) develop advanced concepts, understanding of physical phenomena, and theoretical, experimental, and computational tools for advanced aerospace systems. The implications from our research for aeronautical and aerospace technology have been both broad and deep. For example, using advanced computational techniques, we have determined exact solutions for the Schrodinger equation in electron-molecule scattering allowing us to evaluate atmospheric models important to reentry physics. We have also found a new class of exact solutions for the Navier Stokes equations. In experimental fluid dynamics, we have found explicit evidence of turbulence modification of droplet sizes in shock tube flow with condensation. We have developed a new diagnostic tool for the direct estimation of flow velocities at MHz sampling rates in quasi-one dimensional turbulent flow. This procedure suggests an unexpected confirmation of the possibility of 'natural' closure in Reynolds stresses with deep implications for the development of turbulent models. A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of the expected relaminarization. A unique diamond-shaped nozzle has been designed for a detailed investigation of the effect of significant streamwise vorticity on the acoustic and IR characteristics of supersonic jets. Our results provide convincing evidence of the significant effect of vorticity on the far-field noise for the diamond jet as compared to the conventional round jets. We have found that the countercurrent shear layer mixes much more efficiently than conventional coflowing shear layers. We also developed the fluid thrust vectoring procedures which use counter flow to vector a jet. Our materials research has shown that the steep stress gradients at the fiber-matrix interface could be the primary cause of interface cracks after the processing of metallic and intermetallic matrix composites. New techniques have been evolved for: the microcharacterization of materials including microplastic strain and, point by point, the misorientation and plasticity for matrix composites; thermally induced stress measurements and load relaxation; the growth and characterization of metallic matrix composite interfaces; and for the growth of ferrite materials by pulsed laser deposition. The FAMU commitment to the HBCU Research Center also continues to be broad and deep.
Structural analyses of a rigid pavement overlaying a sub-surface void
NASA Astrophysics Data System (ADS)
Adam, Fatih Alperen
Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on average, amplified considerably: 80% and 150%, respectively, by the presence of the void and more severe in a bonded pavement system compared to an un-bonded system. The sub-surface void also significantly affects the layer moduli back-calculation. The equivalent moduli of the layers are reduced considerably when a sub-surface void is present. However, the results indicate the back-calculated moduli derived using surface deflection, and longitudinal stress basins did not yield equivalent layer moduli under mechanical loading; the back-calculated deflection-based moduli were larger than the stress-based moduli, leading to stress calculations that were lower than those found in the real system.
Low-frequency variability of the exchanged flows through the Strait of Gibraltar during CANIGO
NASA Astrophysics Data System (ADS)
Lafuente, Jesús García.; Delgado, Javier; Vargas, Juan Miguel; Vargas, Manuel; Plaza, Francisco; Sarhan, Tarek
Time series of the exchanged flows through the Strait of Gibraltar at the eastern section have been estimated from current-meter observations taken between October 1995 and May 1998 within the Canary Islands Azores Gibraltar Observations (CANIGO) project. The inflow exhibits a clear annual signal that peaks in late summer simultaneously with a deepening of the interface. The cycle seems to be driven by the seasonal signal of the density contrast between the surface Atlantic water that forms the inflow and the deep Mediterranean water of the outflow. The outflow and the depth of the interface have predominant semiannual signals and a smaller annual one whose phase agrees with that of the density contrast as well. Local wind stress and atmospheric pressure difference between the Atlantic and the Western Mediterranean to less extent have clear semiannual signal, so that the possibility that the semiannual cycle of the outflow and of the depth of the interface are forced by them was analyzed. The composite Froude number in this section is well below the critical value, suggesting submaximal exchange. Therefore, the conditions in the Alboran basin influence the exchange and some evidence that the size and location of the Western Alboran Gyre contribute to the observed signals, both annual and semiannual, is provided.
Reducing Stressful Aspects of Information Technology in Public Services.
ERIC Educational Resources Information Center
Quinn, Brian
1995-01-01
Identifies sources of technological stress for public services librarians and patrons and proposes ways to reduce stress, including communicating with staff, implementing a system gradually, providing adequate training, creating proper documentation, planning, considering ergonomics in hardware and software selection, selecting a good interface,…
Effect of Wheel/Rail Loads on Concrete Tie Stresses and Rail Rollover.
DOT National Transportation Integrated Search
2011-09-21
As a result of vertical and lateral wheel/rail forces, high contact stresses can develop at the interface between the rail base and tie. Under certain conditions, these stresses can exceed the strength of the concrete tie and result in deterioration ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat
Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less
Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat; ...
2016-08-10
Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less
Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W
2006-05-25
We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <--> delta cycles, as predicted by theory; (f) beta <--> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta --> alpha and alpha --> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur.
NASA Astrophysics Data System (ADS)
Amertha Sanjiwani, I. D. M.; En, C. K.; Anjasmara, I. M.
2017-12-01
A seismic gap on the interface along the Sunda subduction zone has been proposed among the 2000, 2004, 2005 and 2007 great earthquakes. This seismic gap therefore plays an important role in the earthquake risk on the Sunda trench. The Mw 7.6 Padang earthquake, an intraslab event, was occurred on September 30, 2009 located at ± 250 km east of the Sunda trench, close to the seismic gap on the interface. To understand the interaction between the seismic gap and the Padang earthquake, twelves continuous GPS data from SUGAR are adopted in this study to estimate the source model of this event. The daily GPS coordinates one month before and after the earthquake were calculated by the GAMIT software. The coseismic displacements were evaluated based on the analysis of coordinate time series in Padang region. This geodetic network provides a rather good spatial coverage for examining the seismic source along the Padang region in detail. The general pattern of coseismic horizontal displacements is moving toward epicenter and also the trench. The coseismic vertical displacement pattern is uplift. The highest coseismic displacement derived from the MSAI station are 35.0 mm for horizontal component toward S32.1°W and 21.7 mm for vertical component. The second largest one derived from the LNNG station are 26.6 mm for horizontal component toward N68.6°W and 3.4 mm for vertical component. Next, we will use uniform stress drop inversion to invert the coseismic displacement field for estimating the source model. Then the relationship between the seismic gap on the interface and the intraslab Padang earthquake will be discussed in the next step. Keyword: seismic gap, Padang earthquake, coseismic displacement.
NASA Astrophysics Data System (ADS)
Vattré, A.
2017-08-01
A parametric energy-based framework is developed to describe the elastic strain relaxation of interface dislocations. By means of the Stroh sextic formalism with a Fourier series technique, the proposed approach couples the classical anisotropic elasticity theory with surface/interface stress and elasticity properties in heterogeneous interface-dominated materials. For any semicoherent interface of interest, the strain energy landscape is computed using the persistent elastic fields produced by infinitely periodic hexagonal-shaped dislocation configurations with planar three-fold nodes. A finite element based procedure combined with the conjugate gradient and nudged elastic band methods is applied to determine the minimum-energy paths for which the pre-computed energy landscapes yield to elastically favorable dislocation reactions. Several applications on the Au/Cu heterosystems are given. The simple and limiting case of a single set of infinitely periodic dislocations is introduced to determine exact closed-form expressions for stresses. The second limiting case of the pure (010) Au/Cu heterophase interfaces containing two crossing sets of straight dislocations investigates the effects due to the non-classical boundary conditions on the stress distributions, including separate and appropriate constitutive relations at semicoherent interfaces and free surfaces. Using the quantized Frank-Bilby equation, it is shown that the elastic strain landscape exhibits intrinsic dislocation configurations for which the junction formation is energetically unfavorable. On the other hand, the mismatched (111) Au/Cu system gives rise to the existence of a minimum-energy path where the fully strain-relaxed equilibrium and non-regular intrinsic hexagonal-shaped dislocation rearrangement is accompanied by a significant removal of the short-range elastic energy.
Fracture mechanics analysis for various fiber/matrix interface loadings
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1991-01-01
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.
Fracture mechanics analysis for various fiber/matrix interface loadings
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, theory avoiding fractional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.
Fracture mechanics analysis for various fiber/matrix interface loadings
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1991-01-01
Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. An F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.
Evaluation of asphalt pavement interface conditions for enhanced bond performance.
DOT National Transportation Integrated Search
2017-05-01
This project describes a comprehensive modeling effort aimed at examining the potential impact of interface debonding on near-surface longitudinal cracking in the wheelpath of asphalt pavements. A critical zone defined by high shear stress coupled wi...
Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa
2008-08-01
In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.
An upper bound on the particle-laden dependency of shear stresses at solid-fluid interfaces
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2018-03-01
In modern advanced manufacturing processes, such as three-dimensional printing of electronics, fine-scale particles are added to a base fluid yielding a modified fluid. For example, in three-dimensional printing, particle-functionalized inks are created by adding particles to freely flowing solvents forming a mixture, which is then deposited onto a surface, which upon curing yields desirable solid properties, such as thermal conductivity, electrical permittivity and magnetic permeability. However, wear at solid-fluid interfaces within the machinery walls that deliver such particle-laden fluids is typically attributed to the fluid-induced shear stresses, which increase with the volume fraction of added particles. The objective of this work is to develop a rigorous strict upper bound for the tolerable volume fraction of particles that can be added, while remaining below a given stress threshold at a fluid-solid interface. To illustrate the bound's utility, the expression is applied to a series of classical flow regimes.
NASA Astrophysics Data System (ADS)
Li, Longbiao
2017-12-01
The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.
Active microrheology and simultaneous visualization of sheared phospholipid monolayers
Choi, S.Q.; Steltenkamp, S.; Zasadzinski, J.A.; Squires, T.M.
2011-01-01
Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries. PMID:21587229
NASA Astrophysics Data System (ADS)
Tse, I.; Poindexter, C.; Variano, E. A.
2013-12-01
Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapozhnikov, K.V.; Vetrov, V.V.; Pulnev, S.A.
1996-05-15
Internal friction (IF) during temperature-induced thermoelastic martensitic transformation (TMT) has been studied extensively, whereas IF behavior during stress-induced TMT has not attracted much attention so far. It is known that quasistatic flow stress may decrease under superimposition of an oscillatory stress in the case of dislocation plasticity (acoustoplastic or Blaha effect). Strain originating from the reversible TMT (so-called transformation pseudoelasticity), in contrast to the dislocation plastic strain, may be completely reversible, however, accompanied by macroscopic hysteresis. The existence of the pseudoelastic hysteresis is usually attributed to the presence of obstacles impeding the mobility of interfaces during stress-induced transformation. A numbermore » of theories also consider the mobility of interfaces as the main source of IF during TMT. As a consequence, one should expect certain interconnection between the ADIF during stress-induced TMT and the macroscopically observed hysteresis. Thus the purpose of present paper is to study in a wide oscillatory strain amplitude range the ADIF during stress-induced TMT and the effect of ultrasound on this mode of deformation.« less
NASA Astrophysics Data System (ADS)
Tra, Tran Hung; Okazaki, Masakazu
2017-08-01
A forged INCONEL 718 and a cast MAR-M247 alloy were joined by a friction welding process. The creep-fatigue strength of this joint was investigated. The life of the joint was significantly shorter than that of the base alloys. The joint failed near the interface of the INCONEL 718 side, although the life of INCONEL 718 was longer than that of MAR-M247. To understand this behavior, the stress field in the welding was numerically analyzed using a visco-elastic model. The results suggested that triaxiality in the stress state could be promoted near the welded interface and lead to an acceleration of creep-fatigue crack nucleation.
Stiffener-skin interactions in pressure-loaded composite panels
NASA Technical Reports Server (NTRS)
Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.
1986-01-01
The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.
Recent work on material interface reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosso, S.J.; Swartz, B.K.
1997-12-31
For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interfacemore » was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.« less
Error estimation and adaptive mesh refinement for parallel analysis of shell structures
NASA Technical Reports Server (NTRS)
Keating, Scott C.; Felippa, Carlos A.; Park, K. C.
1994-01-01
The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.
ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS
Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne
2015-01-01
Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318
Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang
2016-01-01
Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.
Space Charge Modulated Electrical Breakdown
Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George
2016-01-01
Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577
NASA Technical Reports Server (NTRS)
Smith, C. W.
1997-01-01
The present study was undertaken in order to develop test methods and procedures for measuring the variation of the stress intensity factor through the thickness in bimaterial specimens containing cracks within and parallel to the bond line using the frozen stress photoelastic method. Since stress freezing materials are incompressible above critical temperature, and since thick plates are to be employed which tend to produce a state of plane strain near the crack tip, the interface near tip fracture equations reduce to the classic form for homogeneous materials. Moreover, zero thickness interfaces do not exist when materials are bonded together. It was decided early on that it would be important to insure a uniform straight and accurate crack tip region through the thickness of the body to reduce scatter in the SIF distribution through the thickness. It was also observed that rubberlike materials which were desired to be modeled exhibited significant tip blunting prior to crack extension and that some blunting of the tip would provide a more realistic model. It should be noted that, in normal stress freezing photoelastic work, it is considered good practice to avoid utilizing data near bond lines in photoelastic models due to the bond line stresses which inevitably develop when two parts are bonded together. Thus, the present study involves certain exploratory aspects in deviating from standard practice in stress freezing work. With the above ideas in mind, several different test methods were investigated and are described in the following sections and appendices. The geometry selected for the program was a thick, edge cracked specimen containing a bond line.
Zhang, Fan; Xu, Hao-Cheng; Yin, Bo; Xia, Xin-Lei; Ma, Xiao-Sheng; Wang, Hong-Li; Yin, Jun; Shao, Ming-Hao; Lyu, Fei-Zhou; Jiang, Jian-Yuan
2016-08-01
To evaluate the biomechanical characteristics of endplate-conformed cervical cages by finite element method (FEM) analysis and cadaver study. Twelve specimens (C2 -C7 ) and a finite element model (C3 -C7 ) were subjected to biomechanical evaluations. In the cadaver study, specimens were randomly assigned to intact (I), endplate-conformed (C) and non-conformed (N) groups with C4-5 discs as the treated segments. The morphologies of the endplate-conformed cages were individualized according to CT images of group C and the cages fabricated with a 3-D printer. The non-conformed cages were wedge-shaped and similar to commercially available grafts. Axial pre-compression loads of 73.6 N and moment of 1.8 Nm were used to simulate flexion (FLE), extension (EXT), lateral bending (LB) and axial rotation (AR). Range of motion (ROM) at C4-5 of each specimen was recorded and film sensors fixed between the cages and C5 superior endplates were used to detect interface stress. A finite element model was built based on the CT data of a healthy male volunteer. The morphologies of the endplate-conformed and wedge-shaped, non-conformed cervical cages were both simulated by a reverse engineering technique and implanted at the segment of C4-5 in the finite element model for biomechanical evaluation. Force loading and grouping were similar to those applied in the cadaver study. ROM of C4-5 in group I were recorded to validate the finite element model. Additionally, maximum cage-endplate interface stresses, stress distribution contours on adjoining endplates, intra-disc stresses and facet loadings at adjacent segments were measured and compared between groups. In the cadaver study, Group C showed a much lower interface stress in all directions of motion (all P < 0.05) and the ROM of C4-5 was smaller in FLE-EXT (P = 0.001) but larger in AR (P = 0.017). FEM analysis produced similar results: the model implanted with an endplate-conformed cage presented a lower interface stress with a more uniform stress distribution than that implanted with a non-conformed cage. Additionally, intra-disc stress and facet loading at the adjacent segments were obviously increased in both groups C and N, especially those at the supra-jacent segments. However, stress increase was milder in group C than in group N for all directions of motion. Endplate-conformed cages can decrease cage-endplate interface stress in all directions of motion and increase cervical stability in FLE-EXT. Additionally, adjacent segments are possibly protected because intra-disc stress and facet loading are smaller after endplate-conformed cage implantation. However, axial stability was reduced in group C, indicating that endplate-conformed cage should not be used alone and an anterior plate system is still important in anterior cervical discectomy and fusion. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
It's Our Fault: better defining earthquake risk in Wellington, New Zealand
NASA Astrophysics Data System (ADS)
Van Dissen, R.; Brackley, H. L.; Francois-Holden, C.
2012-12-01
The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. In its short historic period (ca. 160 years), the region has been impacted by large earthquakes on the strike-slip faults, but has yet to bear the brunt of a subduction interface rupture directly beneath the capital city. It's Our Fault is a comprehensive study of Wellington's earthquake risk. Its objective is to position the capital city of New Zealand to become more resilient through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. It's Our Fault is jointly funded by New Zealand's Earthquake Commission, Accident Compensation Corporation, Wellington City Council, Wellington Region Emergency Management Group, Greater Wellington Regional Council, and Natural Hazards Research Platform. The programme has been running for six years, and key results to date include better definition and constraints on: 1) location, size, timing, and likelihood of large earthquakes on the active faults closest to Wellington; 2) earthquake size and ground shaking characterization of a representative suite of subduction interface rupture scenarios under Wellington; 3) stress interactions between these faults; 4) geological, geotechnical, and geophysical parameterisation of the near-surface sediments and basin geometry in Wellington City and the Hutt Valley; and 5) characterisation of earthquake ground shaking behaviour in these two urban areas in terms of subsoil classes specified in the NZ Structural Design Standard. The above investigations are already supporting measures aimed at risk reduction, and collectively they will facilitate identification of additional actions that will have the greatest benefit towards further increasing the region's resilience to earthquakes. We present latest results on ground motion simulations for large plate interface earthquakes under Wellington in terms of response spectra and acceleration time histories. We derive realistic broadband accelerograms based on a stochastic modelling technique. First we characterise the potential interface rupture area based on previous geodetically-derived estimates interface of slip deficit. Then, we entertain a suitable range of source parameters, including various rupture areas, moment magnitudes, stress drops, slip distributions and rupture propagation directions. The resulting rupture scenarios all produce long duration shaking, and peak ground accelerations that, typically, range between 0.2-0.7 g in Wellington city. Many of these scenarios also produce long period motions that are currently not captured by the current NZ design spectra.
Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models
Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei
2014-01-01
Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189
Current development in selected stress and thermal analysis software interfaces with PRO-ENGINEER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, J.
1993-06-01
Ever since PRO-ENGINEER has become a dominating CAD package available to the public, some of us have been saying, ``Gee, if only I could export my geometry to a stress analysis program without having to recreate any of the details already created, wouldn`t that be spectacular?`` Well, much to the credit of the major stress and thermal analysis software vendors, some of them have been listening to design engineers like me badger them to furnish a seamless interface between PRO and their stress analysis programs. The down side of this problem is the fact that a lot of problems stillmore » exist with most of the vendors and their interfaces. I want to discuss the interfaces that I feel are currently ``State of the Art``, and how they are developing and the future for finally arriving at a transparent procedure that an engineer at a workstation can utilize in his or her design process. In years past, engineers would develop a design and changes would evolve based on intuition, or somebody else`s critical evaluation. Then the design would be forwarded to the production group, or the stress analysis group for further evaluation and analysis. Maybe data from a preliminary prototype would be collected and an evaluation report made. All of this took time and increased the cost of the item to be manufactured. Today, the engineer must assume responsibility for design and functional capability early on in the design process, if for no other reason than costs associated with diverse channels of critiquing. For that reason, one place to enhance the design process is to have the ability to do preliminary stress and thermal analysis during the initial design phase. This is both cost and time effective. But, as I am sure you are aware, this has been easier said than done.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danchaivijit, S.; Shetty, D.K.; Eldridge, J.
Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress wasmore » in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.« less
Geostatistical applications in ground-water modeling in south-central Kansas
Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.
1999-01-01
This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.
Strong Ground Motion Analysis and Afterslip Modeling of Earthquakes near Mendocino Triple Junction
NASA Astrophysics Data System (ADS)
Gong, J.; McGuire, J. J.
2017-12-01
The Mendocino Triple Junction (MTJ) is one of the most seismically active regions in North America in response to the ongoing motions between North America, Pacific and Gorda plates. Earthquakes near the MTJ come from multiple types of faults due to the interaction boundaries between the three plates and the strong internal deformation within them. Understanding the stress levels that drive the earthquake rupture on the various types of faults and estimating the locking state of the subduction interface are especially important for earthquake hazard assessment. However due to lack of direct offshore seismic and geodetic records, only a few earthquakes' rupture processes have been well studied and the locking state of the subducted slab is not well constrained. In this study we first use the second moment inversion method to study the rupture process of the January 28, 2015 Mw 5.7 strike slip earthquake on Mendocino transform fault using strong ground motion records from Cascadia Initiative community experiment as well as onshore seismic networks. We estimate the rupture dimension to be of 6 km by 3 km and a stress drop of 7 MPa on the transform fault. Next we investigate the frictional locking state on the subduction interface through afterslip simulation based on coseismic rupture models of this 2015 earthquake and a Mw 6.5 intraplate eathquake inside Gorda plate whose slip distribution is inverted using onshore geodetic network in previous study. Different depths for velocity strengthening frictional properties to start at the downdip of the locked zone are used to simulate afterslip scenarios and predict the corresponding surface deformation (GPS) movements onshore. Our simulations indicate that locking depth on the slab surface is at least 14 km, which confirms that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected near the coast.
Receiver function analysis applied to refraction survey data
NASA Astrophysics Data System (ADS)
Subaru, T.; Kyosuke, O.; Hitoshi, M.
2008-12-01
For the estimation of the thickness of oceanic crust or petrophysical investigation of subsurface material, refraction or reflection seismic exploration is one of the methods frequently practiced. These explorations use four-component (x,y,z component of acceleration and pressure) seismometer, but only compressional wave or vertical component of seismometers tends to be used in the analyses. Hence, it is needed to use shear wave or lateral component of seismograms for more precise investigation to estimate the thickness of oceanic crust. Receiver function is a function at a place that can be used to estimate the depth of velocity interfaces by receiving waves from teleseismic signal including shear wave. Receiver function analysis uses both vertical and horizontal components of seismograms and deconvolves the horizontal with the vertical to estimate the spectral difference of P-S converted waves arriving after the direct P wave. Once the phase information of the receiver function is obtained, then one can estimate the depth of the velocity interface. This analysis has advantage in the estimation of the depth of velocity interface including Mohorovicic discontinuity using two components of seismograms when P-to-S converted waves are generated at the interface. Our study presents results of the preliminary study using synthetic seismograms. First, we use three types of geological models that are composed of a single sediment layer, a crust layer, and a sloped Moho, respectively, for underground sources. The receiver function can estimate the depth and shape of Moho interface precisely for the three models. Second, We applied this method to synthetic refraction survey data generated not by earthquakes but by artificial sources on the ground or sea surface. Compressional seismic waves propagate under the velocity interface and radiate converted shear waves as well as at the other deep underground layer interfaces. However, the receiver function analysis applied to the second model cannot clearly estimate the velocity interface behind S-P converted wave or multi-reflected waves in a sediment layer. One of the causes is that the incidence angles of upcoming waves are too large compared to the underground source model due to the slanted interface. As a result, incident converted shear waves have non-negligible energy contaminating the vertical component of seismometers. Therefore, recorded refraction waves need to be transformed from depth-lateral coordinate into radial-tangential coordinate, and then Ps converted waves can be observed clearly. Finally, we applied the receiver function analysis to a more realistic model. This model has not only similar sloping Mohorovicic discontinuity and surface source locations as second model but the surface water layer. Receivers are aligned on the sea bottom (OBS; Ocean Bottom Seismometer survey case) Due to intricately bounced reflections, simulated seismic section becomes more complex than the other previously-mentioned models. In spite of the complexity in the seismic records, we could pick up the refraction waves from Moho interface, after stacking more than 20 receiver functions independently produced from each shot gather. After these processing, the receiver function analysis is justified as a method to estimate the depths of velocity interfaces and would be the applicable method for refraction wave analysis. The further study will be conducted for more realistic model that contain inhomogeneous sediment model, for example, and finally used in the inversion of the depth of velocity interfaces like Moho.
Powder metallurgy processing and deformation characteristics of bulk multimodal nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farbaniec, L., E-mail: lfarban1@jhu.edu; Dirras, G., E-mail: dirras@univ-paris13.fr; Krawczynska, A.
2014-08-15
Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim weremore » observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.« less
Failure Investigation of a Cage Suspension Gear Chain used in Coal Mines
NASA Astrophysics Data System (ADS)
Ghosh, Debashis; Dutta, Shamik; Shukla, Awdhesh Kumar; Roy, Himadri
2016-10-01
This investigation is primarily aimed to examine the probable causes of in-service failure of cage suspension gear chain used in coal mines. Preliminary visual examination, dimensional measurement, chemical analysis, magnetic particle inspection and estimation of mechanical properties are necessary supplement to this investigation. Optical microscopic analysis along with scanning electron microscopy examinations are carried out to understand the metallurgical reasons for failure. The visual examination and magnetic particle investigations reveal presence of fissure cracks at weld joint for both un-failed and failed end link chain. The average hardness value has been found to increase gradually with the distance from the weld interface. The macro and microstructural examinations of the samples prepared from both failed and un-failed specimens depict presence of continuous as well as aligned linear inclusions randomly distributed along with decarburized layer at weld interface/fusion zone. Fractographic examination shows flat fracture covering major portion of cross-section, which is surrounded by a narrow annular metallic fracture surface having a texture different from that of the remaining surface. Fracture mechanics principles have been used to study the fatigue crack growth rate in both weld region and base region of the un-failed gear chain material. Detailed stress analyses are also carried out to evaluate the stress generated along the chain periphery. Finally, it is concluded that presence of serious weld defect due to use of improper welding parameters/procedure caused failure of the end links of the investigated chain link.
NASA Astrophysics Data System (ADS)
Chen, Lin; Yueming, Li
2018-06-01
In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.
Zeng, Y.; Hunter, A.; Beyerlein, I. J.; ...
2015-09-14
In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τ crit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τ crit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results showmore » that the value of τ crit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τ crit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τ crit values.« less
Mechanism of abnormally slow crystal growth of CuZr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, X. Q.; Lü, Y. J., E-mail: yongjunlv@bit.edu.cn; State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027
2015-10-28
Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. Wemore » find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.« less
Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface
NASA Technical Reports Server (NTRS)
Smialek, James L.; Garg, Anita
2014-01-01
Corrosion resistant, strain tolerant MAX phase coatings are of interest for turbine applications. Thin Cr2AlC MAX phase wafers were vacuum diffusion bonded to an advanced turbine disk alloy, LSHR, at 1100 C. The interface, examined by optical and scanning electron microscopy, revealed a primary diffusion zone consisting of 10 micrometers of beta-Ni(Co)Al, decorated with various NiCoCrAl, MC and M3B2 precipitates. On the Cr2AlC side, an additional 40 micrometers Al-depletion zone of Cr7C3 formed in an interconnected network with the beta-Ni(Co)Al. Oxidation of an exposed edge at 800 C for 100 h produced a fine-grained lenticular alumina scale over Cr2AlC and beta-Ni(Co)Al, with coarser chromia granules over the Cr7C3 regions. Subsequent growth of the diffusion layers was only 5 micrometers in total. A residual stress of 500 MPa was estimated for the MAX phase layer, but no interfacial damage was observed. Subsequent tests for 1000 h reveal similar results.
A parameter-free variational coupling approach for trimmed isogeometric thin shells
NASA Astrophysics Data System (ADS)
Guo, Yujie; Ruess, Martin; Schillinger, Dominik
2017-04-01
The non-symmetric variant of Nitsche's method was recently applied successfully for variationally enforcing boundary and interface conditions in non-boundary-fitted discretizations. In contrast to its symmetric variant, it does not require stabilization terms and therefore does not depend on the appropriate estimation of stabilization parameters. In this paper, we further consolidate the non-symmetric Nitsche approach by establishing its application in isogeometric thin shell analysis, where variational coupling techniques are of particular interest for enforcing interface conditions along trimming curves. To this end, we extend its variational formulation within Kirchhoff-Love shell theory, combine it with the finite cell method, and apply the resulting framework to a range of representative shell problems based on trimmed NURBS surfaces. We demonstrate that the non-symmetric variant applied in this context is stable and can lead to the same accuracy in terms of displacements and stresses as its symmetric counterpart. Based on our numerical evidence, the non-symmetric Nitsche method is a viable parameter-free alternative to the symmetric variant in elastostatic shell analysis.
NASA Technical Reports Server (NTRS)
Lu, M.-C.; Erdogan, F.
1983-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429
Striations, duration, migration and tidal response in deep tremor.
Ide, Satoshi
2010-07-15
Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.
Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces
NASA Technical Reports Server (NTRS)
1974-01-01
The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.
The effects of hydroxyapatite coatings on stress distribution near the dental implant bone interface
NASA Astrophysics Data System (ADS)
Jiang, W.; Wang, W. D.; Shi, X. H.; Chen, H. Z.; Zou, W.; Guo, Z.; Luo, J. M.; Gu, Z. W.; Zhang, X. D.
2008-11-01
The effects of different thickness of hydroxyapatite (HA) coatings on bone stress distribution near the dental implant-bone interface are very important factors for the HA-coated dental implant design and clinical application. By means of finite element analysis (FEA), the bone stress distributions near the dental implant coated with different thicknesses from 0 to 200 μm were calculated and analyzed under the 200 N chewing load. In all cases, the maximal von Mises stresses in the bone are at the positions near the neck of dental implant on the lingual side, and decrease with the increase of the HA coatings thickness. The HA coatings weaken the stress concentration and improve the biomechanical property in the bone, however, in HA coatings thickness range of 60-120 μm, the distinctions of that benefit are not obvious. In addition, considering the technical reason of HA coatings, we conclude that thickness of HA coatings range from 60 to 120 μm would be the better choice for clinical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, R.S.
The effect of the 11 vol% losing during reaction of yttrium-aluminas garnet (YAG) and zirconia was observed in zirconia coated single-crystal alumina fiber-YAG matrix composites. The reaction caused plastic deformation in the alumina fibers, and possibly a minor amount of porosity at fiber-matrix interfaces that was usually indistinguishable from matrix porosity. The results were analyzed by models for diffusive cavitation modified to use reaction self-stress. Crack-healing, tensile stress states along the reaction front that approach plane stress, and the small volume of self-stressed material make crack-like pores unlikely at the high temperatures required for reaction. Smaller matrix grains might promotemore » formation of smaller cavities but are also incompatible with high temperature. Both modeling and experiment suggest that sufficient porosity for crack deflection and fiber pullout cannot form unless processing methods that form dense composites at lower temperatures are used.« less
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Brindley, P. K.
1989-01-01
A fiber push-out technique applied at several sample thicknesses was used to determine both the debond shear stress and the frictional shear stress at the fiber-matrix interface at room temperautre for a unidirectional SiC fiber-reinforced T-24Al-11Nb (in at. pct) composite prepared by a powder cloth technique. The push-out technique measures the separate contributions of bond strength and friction to the mechanical shear strength at the fiber-matrix interface. It was found that the fiber-matrix bond shear strength of this material is significantly higher than the fiber-matrix frictional shear stress (119.2 and 47.8 MPa, respectively).
NASA Astrophysics Data System (ADS)
Thangavel, Soundararaj
Discontinuities in Structures are inevitable. One such discontinuity in a plate and cylindrical shell is presence of a hole / holes. In Plates they are used for mounting bolts where as in Cylinder / Pressure Vessel, they provide provision for mounting Nozzles / Instruments. Location of these holes plays a primary role in minimizing the stress acting with out any external reinforcement. In this Thesis work, Location Parameters are optimized for the presence of one or more holes in a plate and cylindrical shell interfacing ANSYS and MATLAB with boundary constraints based on the geometry. Contour plots are generated for understanding stress distribution and analytical solutions are also discussed for some of the classical problems.
Role of interfaces in deformation and fracture of ordered intermetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, M.H.; Fu, C.L.
1996-12-31
While sub- and grain-boundaries are the primary dislocation sources in Ll{sub 2} alloys, yield and flow stresses are strongly influenced by the multiplication and exhaustion of mobile dislocations from the secondary sources. The concept of enhanced microplasticity at grain boundaries due to chemical disordering is well supported by theoretical modeling, but no conclusive direct evidence exist for Ni{sub 3}Al bicrystals. The strong plastic anisotropy reported in TiAl PST (polysynthetically twinned) crystals is attributed in part to localized slip along lamellar interfaces, thus lowering the yield stress for soft orientations. Calculations of work of adhesion suggest that, intrinsically, interfacial cracking ismore » more likely to initiate on {gamma}/{gamma}-type interfaces than on the {alpha}{sub 2}/{gamma} boundary. 70 refs, 5 tabs, 5 figs.« less
NASA Astrophysics Data System (ADS)
Gerde, Eric; Marder, Michael
2001-03-01
We present an atomic scale description of a self-healing crack steadily traveling along a compressed interface between dissimilar solids. The motion is similar to the wrinkle-like Weertman pulse observed by Anooshehpoor in recent foam-rubber sliding experiments. In contrast to the theoretical models of Weertman and Adams, and the numerical calculations of Andrews and Ben-Zion, we do not employ a frictional constitutive law on the interface. Yet the restrictive conditions under which these cracks can propagate make the interface appear to have a static coefficient of friction. By analytically linking atomic and continuum fields, we are able to efficiently and exhaustively explore the conditions under which self-healing cracks can propagate. To a good approximation, they are sustainable only when the interfacial shear stresses are 0.4 times the compressive stresses.
Harinipriya, S; Sangaranarayanan, M V
2006-01-31
The evaluation of the free energy of activation pertaining to the electron-transfer reactions occurring at liquid/liquid interfaces is carried out employing a diffuse boundary model. The interfacial solvation numbers are estimated using a lattice gas model under the quasichemical approximation. The standard reduction potentials of the redox couples, appropriate inner potential differences, dielectric permittivities, as well as the width of the interface are included in the analysis. The methodology is applied to the reaction between [Fe(CN)6](3-/4-) and [Lu(biphthalocyanine)](3+/4+) at water/1,2-dichloroethane interface. The rate-determining step is inferred from the estimated free energy of activation for the constituent processes. The results indicate that the solvent shielding effect and the desolvation of the reactants at the interface play a central role in dictating the free energy of activation. The heterogeneous electron-transfer rate constant is evaluated from the molar reaction volume and the frequency factor.
On the role of weak interface in crack blunting process in nanoscale layered composites
NASA Astrophysics Data System (ADS)
Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian
2018-03-01
Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.
Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli
2018-04-30
An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Thompson, G. A.; Jadaan, Osama M.
Objectives. The purpose of this study was to analyze the stress distribution through the thickness of bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests and to systematically examine how the individual layer thickness influences this stress distribution and the failure origin. Methods. Ring-on-ring tests were performed on In-Ceram Alumina/Vitadur Alpha porcelain bilayered disks with porcelain in the tensile side, and In-Ceram Alumina to porcelain layer thickness ratios of 1:2, 1:1, and 2:1 were used to characterize the failure origins as either surface or interface. Based on the thermomechanical properties and thickness of each layer, the cooling temperaturemore » from glass transition temperature, and the ring-on-ring loading configuration, the stress distribution through the thickness of the bilayer was calculated using closed-form solutions. Finite element analyses were also performed to verify the analytical results. Results. The calculated stress distributions showed that the location of maximum tension during testing shifted from the porcelain surface to the In-Ceram Alumina/porcelain interface when the relative layer thickness ratio changed from 1:2 to 1:1 and to 2:1. This trend is in agreement with the experimental observations of the failure origins. Significance. For bilayered dental ceramics subjected to ring-on-ring tests, the location of maximum tension can shift from the surface to the interface depending upon the layer thickness ratio. The closed-form solutions for bilayers subjected to both thermal stresses and ring-on-ring tests are explicitly formulated which allow the biaxial strength of the bilayer to be evaluated.« less
Trindade, Flávia Zardo; Valandro, Luiz Felipe; de Jager, Niek; Bottino, Marco Antônio; Kleverlaan, Cornelis Johannes
2016-10-03
To determine the elastic properties of five ceramic systems with different compositions (lithium disilicate vs. feldspathic ceramics) and processing methods and compare the stress distribution in premolars in the interface with inlays made with these systems loaded with the maximum normal bite force (665 N) using 3D finite element analysis (FEA). The elastic properties of five ceramic restoration materials (IPS e.max Press, IPS e.max CAD, Vita PM9, Vita Mark II, Vita VM7) were obtained using the ultrasonic pulse-echo method. Three-dimensional FEA simplified models of maxillary premolars restored with these ceramic materials were created. The models were loaded with a load at the two nodes on the occlusal surface in the middle of the tooth, 2 mm from the outside of the tooth, simulating a loading ball with a radius of 6 mm. The means values of density (g/cm³), Young's modulus (GPa), and Poison's ratio was 2.6 ± 0.3, 82.3 ± 18.3, and 0.22 ± 0.01 for IPS e.max Press; 2.3 ± 0.1, 83.5 ± 15.0, and 0.21 ± 0.01 for IPS e.max CAD; 2.5 ± 0.1, 44.4 ± 11.5, and 0.26 ± 0.08 for PM9; 2.4 ± 0.1, 70.6 ± 4.9, and 0.22 ± 0.01 for Vitamark II; 2.4 ± 0.1, 63.3 ± 3.9, and 0.23 ± 0.01 for VM7, respectively. The 3D FEA showed the tensile stress at the interface between the tooth and the inlay was dependent on the elastic properties of the materials, since the Vita PM9 and IPS e.max CAD ceramics presented the lowest and the highest stress concentration in the interface, respectively. The elastic properties of ceramic materials were influenced by composition and processing methods, and these differences influenced the stress concentration at the bonding interface between tooth and restoration. The lower the elastic modulus of inlays, the lower is the stress concentration at the bonding interfaces. © 2016 by the American College of Prosthodontists.
Finite element modeling of frictionally restrained composite interfaces
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.
Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers
Obaid, Numaira; Sain, Mohini
2017-01-01
The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601
Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J
2016-12-01
The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.
High-quality vertical light emitting diodes fabrication by mechanical lift-off technique
NASA Astrophysics Data System (ADS)
Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen
2011-10-01
We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.
NASA Astrophysics Data System (ADS)
Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight
2018-04-01
We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.
High Burn-Up Spent Nuclear Fuel Vibration Integrity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
2015-01-01
The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into localmore » stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.« less
A Clinical Psychology Training Program Interfaces with the Schools.
ERIC Educational Resources Information Center
Winder, Alvin E.
This paper describes how clinical child psychologists are trained in a pediatric psychology program and emphasizes their interface with the school. The need for clinical child psychology training is stressed, and training programs for pediatric psychologists and clinical child psychologists are compared. The collaborative pediatric psychology…
Evolution of Cement-Casing Interface in Wellbore Microannuli under Stress
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Gomez, S. P.; Sobolik, S. R.; Taha, M. R.; Stormont, J.
2017-12-01
Laboratory tests measured the compressibility and flow characteristics of wellbore microannuli. Specimens, consisting of a cement sheath cast on a steel casing with microannuli, were subjected to confining pressures and casing pressures in a pressure vessel that allows simultaneous measurement of gas flow along the axis of the specimen. The flow was interpreted as the hydraulic aperture of the microannuli. We found the hydraulic aperture decreases as confining stress is increased. The larger the initial hydraulic aperture, the more it decreases as confining stress increases. The changes in measured hydraulic aperture correspond to changes of many orders of magnitude in permeability of the wellbore system, suggesting that microannulus response to stress changes may have a significant impact on estimates of wellbore leakage. A finite element model of a wellbore system was developed that included elements representing the microannulus that incorporated the hyperbolic joint model. The thickness of the microannulus elements is equivalent to the hydraulic aperture. The calculated normal stress across the microannulus used in the numerical implementation was found to be similar to the applied confining pressure in the laboratory tests. The microannulus elements were found to reasonably reproduce laboratory behavior during loading from confining pressure increases. The calculated microannulus response to internal casing pressure changes was less stiff than measured, which may be due to hardening of the microannulus during testing. In particular, the microannulus model could be used to estimate CO2 leakage as a function of formation stress changes and/or displacements, or loading from casing expansion or contraction during wellbore operations. Recommendations for future work include an application of the joint model with a thermally active large-scale reservoir coupled with pore pressure caused by dynamic CO2 injection and subsequent microannulus region affects. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8090 A.
Kinetic energy budgets near the turbulent/nonturbulent interface in jets
NASA Astrophysics Data System (ADS)
Taveira, Rodrigo R.; da Silva, Carlos B.
2013-01-01
The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent kinetic energy then becomes the dominating mechanism and the so called "peak production" is located at about one Taylor micro-scale from the T/NT interface. Simple analytical estimates are given for the peaks of pressure strain, turbulent diffusion, and production near the T/NT interface. The growth of kinetic energy across the T/NT interface is an inertial process, since the viscous terms (diffusion and dissipation) are negligible during this process. The present results highlight the importance of the region near the T/NT interface in the entire jet development.
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes
NASA Technical Reports Server (NTRS)
Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.
1986-01-01
An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.
Structural and mechanical design of tissue interfaces in the giant reed Arundo donax.
Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas
2010-03-06
The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy.
Structural and mechanical design of tissue interfaces in the giant reed Arundo donax
Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas
2010-01-01
The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy. PMID:19726440
Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells.
Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu
2011-06-03
Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Interfacial fields in organic field-effect transistors and sensors
NASA Astrophysics Data System (ADS)
Dawidczyk, Thomas J.
Organic electronics are currently being commercialized and present a viable alternative to conventional electronics. These organic materials offer the ability to chemically manipulate the molecule, allowing for more facile mass processing techniques, which in turn reduces the cost. One application where organic semiconductors (OSCs) are being investigated is sensors. This work evaluates an assortment of n- and p-channel semiconductors as organic field-effect transistor (OFET) sensors. The sensor responses to dinitrotoluene (DNT) vapor and solid along with trinitrotoluene (TNT) solid were studied. Different semiconductor materials give different magnitude and direction of electrical current response upon exposure to DNT. Additional OFET parameters---mobility and threshold voltage---further refine the response to the DNT with each OFET sensor requiring a certain gate voltage for an optimized response to the vapor. The pattern of responses has sufficient diversity to distinguish DNT from other vapors. To effectively use these OFET sensors in a circuit, the threshold voltage needs to be tuned for each transistor to increase the efficiency of the circuit and maximize the sensor response. The threshold voltage can be altered by embedding charges into the dielectric layer of the OFET. To study the quantity and energy of charges needed to alter the threshold voltage, charge carriers were injected into polystyrene (PS) and investigated with scanning Kelvin probe microscopy (SKPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using SKPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method. The process was further refined to create lateral heterojunctions that were actual working OFETs, consisting of a PS or poly (3-trifluoro)styrene (F-PS) gate dielectric and a pentacene OSC. The charge storage inside the dielectric was visualized with SKPM, correlated to a threshold voltage shift in the transistor operation, and related to bias stress as well. The SKPM method allows the dielectric/OSC interface of the OFET to be visualized without any alteration of the OFET. Furthermore, this technique allows for the observation of charge distribution between the two dielectric interfaces, PS and F-PS. The SKPM is used to visualize the charge from conventional gate biasing and also as a result of embedding charges deliberately into the dielectric to shift the threshold voltage. Conventional gate biasing shows considerable residual charge in the PS dielectric, which results in gate bias stress. Gate bias stress is one of the major hurdles left in the commercialization of OFETs. To prevent this bias stress, additives of different energy levels were inserted into the dielectric to limit the gate bias stress. Additionally, the dielectrics were pre-charged to try and prevent further bias stress. Neither pre-charging the dielectric or the addition of additive has been used in gate bias prevention, but both methods offer improved resistance to gate bias stress, and help to further refine the dielectric design.
Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H
2016-03-31
Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.
Tang, Jinghua; McGrath, Michael; Hale, Nick; Jiang, Liudi; Bader, Dan; Laszczak, Piotr; Moser, David; Zahedi, Saeed
2017-11-01
The bespoke interface between a lower limb residuum and a prosthetic socket is critical for an amputee's comfort and overall rehabilitation outcomes. Analysis of interface kinematics and kinetics is important to gain full understanding of the interface biomechanics, which could aid clinical socket fit, rehabilitation and amputee care. This pilot study aims to investigate the dynamic correlation between kinematic movement and kinetic stresses at the interface during walking tests on different terrains. One male, knee disarticulation amputee participated in the study. He was asked to walk on both a level surface and a 5° ramped surface. The movement between the residuum and the socket was evaluated by the angular and axial couplings, based on the outputs from a 3D motion capture system. The corresponding kinetic stresses at anterior-proximal (AP), posterior-proximal (PP) and anterior-distal (AD) locations of the residuum were measured, using individual stress sensors. Approximately 8° of angular coupling and up to 32 mm of axial coupling were measured when walking on different terrains. The direction of the angular coupling shows strong correlation with the pressure difference between the PP and AP sensors. Higher pressure was obtained at the PP location than the AP location during stance phase, associated with the direction of the angular coupling. A strong correlation between axial coupling length, L, and longitudinal shear was also evident at the PP and AD locations i.e. the shortening of L corresponds to the increase of shear in the proximal direction. Although different terrains did not affect these correlations in principle, interface kinematic and kinetic values suggested that gait changes can induce modifications to the interface biomechanics. It is envisaged that the reported techniques could be potentially used to provide combined kinematics and kinetics for the understanding of biomechanics at the residuum/socket interface, which may play an important role in the clinical assessment of prosthetic component settings, including socket fit quality. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.
2017-12-01
In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa
2014-01-01
Flow back along a needle track (backflow) can be a problem during direct infusion, e.g. convection-enhanced delivery (CED), of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s) followed by CED of Evans blue albumin (EBA) tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress) before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa) and varied along the length of the needle with smaller average values within white matter (116 Pa) than gray matter (301 Pa) regions. Average pre-stress at 0.2 mm/s (351.7 Pa) was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min), measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.
NASA Technical Reports Server (NTRS)
Emmons, T. E.
1976-01-01
The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.
Adhesion mechanisms of bituminous crack sealant to aggregate and laboratory test development
NASA Astrophysics Data System (ADS)
Hajialiakbari Fini, Elham
Crack sealing is a common pavement maintenance treatment because it extends pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Since current test methods are mostly empirical and only provide a qualitative measure of bond strength, they cannot predict sealant adhesive failure accurately. Hence, there is an urgent need for test methods based on bituminous sealant rheology that can better predict sealant field performance. This study introduces three laboratory tests aimed to assess the bond property of hot-poured crack sealant to pavement crack walls. The three tests are designed to serve the respective needs of producers, engineers, and researchers. The first test implements the principle of surface energy to measure the thermodynamic work of adhesion, which is the energy spent in separating the two materials at the interface. The work of adhesion is reported as a measure of material compatibility at an interface. The second test is a direct adhesion test, a mechanical test which is designed to closely resemble both the installation process and the crack expansion due to thermal loading. This test uses the Direct Tension Test (DTT) device. The principle of the test is to apply a tensile force to detach the sealant from its aggregate counterpart. The maximum load, Pmax, and the energy to separation, E, are calculated and reported to indicate interface bonding. The third test implements the principles of fracture mechanics in a pressurized circular blister test. The apparatus is specifically designed to conduct the test for bituminous crack sealant, asphalt binder, or other bitumen-based materials. In this test, a fluid is injected at a constant rate at the interface between the substrate (aggregate or a standard material) and the adhesive (crack sealant) to create a blister. The fluid pressure and blister height are measured as functions of time; the data is used to calculate Interfacial Fracture Energy (IFE), which is a fundamental property that can be used to predict adhesion. The stable interface debonding process makes this test attractive. This test also may be used to estimate the optimum annealing time, and to quantify other interface characteristics, such as the moisture susceptibility of a bond. In addition, the elastic modulus of the sealant and its residual stresses can be determined analytically. While the direct adhesion test is proposed as part of newly-developed performance-based guidelines for the selection of hot-poured crack sealant, the blister test may be used to estimate the optimum annealing time, in addition to IFE determination.
Krejci, Ivo; Daher, René
2017-04-01
The goal of this short communication is to present finite element analysis comparison of the stress distribution between CAD/CAM full crowns made of Lava Ultimate and of IPS e.max CAD, adhesively luted to natural teeth and to implant abutments with the shape of natural teeth. Six 3D models were prepared using a 3D content-creating software, based on a micro-CT scan of a human mandibular molar. The geometry of the full crown and of the abutment was the same for all models representing Lava Ultimate full crowns (L) and IPS e.max CAD full crowns (E) on three different abutments: prepared natural tooth (n), titanium abutment (t) and zirconia abutment (z). A static load of 400 N was applied on the vestibular and lingual cusps, and fixtures were applied to the base of the models. After running the static linear analysis, the post-processing data we analyzed. The stress values at the interface between the crown and the abutment of the Lt and Lz groups were significantly higher than the stress values at the same interface of all the other models. The high stress concentration in the adhesive at the interface between the crown and the abutment of the Lava Ultimate group on implants might be one of the factors contributing to the reported debondings of crowns.
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.
1998-01-01
Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.
Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces
NASA Astrophysics Data System (ADS)
Khoury, Charbel N.
Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear strength than that of the drying (D) tests. This is believed to be the result of many factors such as: (1) cyclic suction stress loading, (2) water content (less on wetting than drying), and (3) type of soil. The cyclic suction loading may have induced irrecoverable plastic strains, resulting in stiffer samples for wetting tests as compared to drying. Additionally, water may be acting as a lubricant and thus resulting in lower shear strength for test samples D with higher water contents than DW samples. Furthermore, various shear strength models were investigated for their applicability to the experimental data. Models were proposed for the prediction of shear strength with suction based on the SWCC. The models are able to predict the shear strength of unsaturated soil and interfaces due to drying and wetting (i.e. hydraulic hysteresis) by relating directly to the SWCC. The proposed models were used and partly validated by predicting different test results from the literature. In addition, an existing elastoplastic constitutive model was investigated and validated by comparing the predicted and experimental (stress-displacement, volume change behavior) results obtained from rough and geotextile interface tests. This study also explores the effect of hydraulic hysteresis on the resilient modulus (Mr) of subgrade soils. Suction-controlled Mr tests were performed on compacted samples along the primary drying, wetting, secondary drying and wetting paths. Two test types were performed to check the effect of cyclic deviatoric stress loading on the results. First, M r tests were performed on the same sample at each suction (i.e. 25, 50, 75, 100 kPa) value along all the paths (drying, wetting etc.). A relationship between resilient modulus (Mr) and matric suction was obtained and identified as the resilient modulus characteristic curve (MRCC). MRCC results indicated that Mr increased with suction along the drying curve. On the other hand, results on the primary wetting indicated higher Mr than that of the primary drying and the secondary drying. The second type of test was performed at selected suction without subjecting the sample to previous Mr tests. Results indicated that Mr compared favorably with the other type of test (i.e. with previous M r testing), which indicates that the cyclic deviatoric stress loading influence was not as significant as the hydraulic hysteresis (i.e. cyclic suction stress loading). A new model to predict the MRCC results during drying and wetting (i.e., hydraulic hysteresis) is proposed based on the SWCC hysteresis. The model predicted favorably the drying and then the wetting results using the SWCC at all stress levels. (Abstract shortened by UMI.)
Edge Fracture in Complex Fluids.
Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M
2017-07-14
We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.
Protein-Protein Interface Predictions by Data-Driven Methods: A Review
Xue, Li C; Dobbs, Drena; Bonvin, Alexandre M.J.J.; Honavar, Vasant
2015-01-01
Reliably pinpointing which specific amino acid residues form the interface(s) between a protein and its binding partner(s) is critical for understanding the structural and physicochemical determinants of protein recognition and binding affinity, and has wide applications in modeling and validating protein interactions predicted by high-throughput methods, in engineering proteins, and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances in computational approaches to the analysis and prediction of protein-protein interfaces. We point out caveats for objectively evaluating interface predictors, and discuss various applications of data-driven interface predictors for improving energy model-driven protein-protein docking. Finally, we stress the importance of exploiting binding partner information in reliably predicting interfaces and highlight recent advances in this emerging direction. PMID:26460190
Fatigue failure of dentin-composite disks subjected to cyclic diametral compression
Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex
2015-01-01
Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269
An investigation on the deicing of helicopter blades using shear horizontal guided waves
NASA Astrophysics Data System (ADS)
Ramanathan, Srinivasan
Despite all the advances that have made air travel safer than ever, the accumulation of ice on airplane and rotorcraft wings continues to be one of aviation's most challenging problems. Hence the presence of a reliable and efficient deicing or anti-icing system is imperative for their safe operation. The current method used to deice helicopter blades is similar to that available in automobile rear windows. These electro-thermal systems consist of heating coils that run along the span or chord of the rotor-blade. A current source connected via a slip ring configuration heats the coils, which in turn melt the ice on the surface. Due to their enormous power consumption, electro-thermal systems are generally configured to deice one foot of one blade at a time. This makes it hazardous to fly the helicopters under severe icing conditions. Even with the energy saving deicing procedure the electrical power required substantially exceeds the normal helicopter electrical system capacity, necessitating a large secondary electrical system with redundant, dual alternator features. The electro-thermal system for the Bell 412 helicopter weighed 162 lbs and required 26 kW of power for 2 blades! Various types of deicing systems were compared in chapter 1 and electromechanical systems were found to be the most energy efficient and practical for in-flight conditions. A novel approach of breaking the ice-substrate bonds by exceeding their adhesive strength using guided shear horizontal waves was chosen as the deicing mechanism. A comparison of the different electro-mechanical actuation systems pointed towards monolithic shear mode piezoelectric actuators as the choice that would satisfy the energy and dimensional requirements. A survey of literature on the mechanics of ice adhesion, in chapter 2, led to the selection of 1.42MPa as the target adhesive bond strength for the refrigerated icealuminum interface. The static adhesive strength of naturally occurring forms of ice such as rime ice and glaze ice to aluminum (0.12MPa and 0.4MPa respectively) is much lower than that of the refrigerated ice-aluminum adhesive strength (1.42MPa). Therefore, selecting the static adhesive strength of the refrigerated ice-aluminum interface as the bond strength to overcome would enable the system to deice rotor-blades under natural icing conditions. Equivalent circuit analysis was applied to the actuator, aluminum plate and ice layer system to determine an expression for the shear stress at the ice aluminum interface per unit excitation voltage supplied to the actuator and the corresponding electrical power consumed. All the parameters that affected the stress at the ice-aluminum interface were identified from the equivalent circuit model of the system. The parameters were split into control (can be actively changed by user) parameters and material (no user control over the variation of these parameter due to temperature and electric field) parameters. A statistical approach (Design of Experiments) was used to determine the control parameter settings that resulted in the maximum shear stress at the ice aluminum interface per unit actuator excitation voltage. A material parameter design of experiments was carried out to determine the effect of the deviation in the variable parameters on the stress at the ice-aluminum interface and actuator power consumption. A simplified approach to calculate the shear piezoelectric actuator losses under high excitation fields was presented. The experimental results indicated that the adhesive shear strength of the ice-aluminum bond under high frequency dynamic loads is much lower that its static adhesive strength. This was proved by the fact that the ice-aluminum interface bonds were broken at stress values of 0.73MPa as opposed to the target 1.42Mpa. This can be attributed to inherently stochastic nature of ice and the fact that the ice-aluminum bond fails at a much lower stress under dynamic loading as opposed to static loading. The shear mode actuator has a projected power consumption of 0.6kW for the twin bladed Bell 412 (assuming 6 actuators per foot per blade each consuming 50W) if deiced by station as opposed to 26kW for a corresponding electro-thermal system. The shear mode actuator has a projected power consumption of 3.6kW if both blades are deiced simultaneously over the desired length (1/3 rd span from the root) as required in severe icing conditions. The piezoelectric shear mode actuation system (estimated weight of 50 lbs with the actuators themselves accounting for less than 1 lb.) has the potential of delivering this performance while being 70% lighter than a comparable electro-thermal system (weight of 162 lbs). (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Shi, X. H.; Jiang, W.; Chen, H. Z.; Zou, W.; Wang, W. D.; Guo, Z.; Luo, J. M.; Gu, Z. W.; Zhang, X. D.
2008-11-01
The mechanical behaviors of calcar-defected femur and restorations under physiological load are the key factors that will greatly influence the success of femur calcar defect repairing, especially the stress distribution on the bone-restoration interface. 3D finite elements analysis (FEA) was used to analyze the mechanical characters on the interfaces between femoral calcar defects and bone cement or HA restorations. Under the load of two times of a human weight (1436.03 N) and with the increase of the defect dimension from 6 mm to 12 mm, the maximal stresses on the surface of restorations are from 7.06 MPa to 11.89 MPa for bone cement and 2.97-9 MPa for HA separately. In this condition, HA restoration will probably be broken on the bone-restoration interface when the defect diameter is beyond 8 mm. Furthermore, under the load of 1.5 times of a human weight, HA restoration would not be safe unless the defect dimension is smaller than 10 mm, because the maximal stress (4.62 MPa) on the restoration is only a little lower than compressive strength of HA, otherwise the bone fixation device should be applied to ensure the safety. It is relatively safe for all restorations under all the tested defect sizes when the load is just the weight of a human body.
Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Yoshiaki; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp
Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS)more » stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.« less
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Contactless sub-millimeter displacement measurements
NASA Astrophysics Data System (ADS)
Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.
2008-07-01
Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).
Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.
Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme
2018-04-15
At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.
Effects of low-modulus coatings on pin-bone contact stresses in external fixation.
Manley, M T; Hurst, L; Hindes, R; Dee, R; Chiang, F P
1984-01-01
The intent of this study was to investigate the stress distribution in cortical bone around fracture fixation pins and around pins coated with various polymeric and elastomeric materials. Since these interface stresses cannot be measured directly, a photoelastic technique was employed and stresses were measured in two-dimensional bone models fabricated from sheets of epoxy resin. Our results showed that when a fixation pin was loaded in compression, the compressive stress measured in the model was greatest at the pin-model interface. The magnitude of the compressive stress was found to diminish steeply away from the hole in a log decrement distribution which was asymptotic to the value of the average stress in the model. When polymeric and elastomeric materials were applied as pin coatings and the performance of the coated pins was compared to that of uncoated pins of the same overall diameter, a reduction of the maximum stress in the bone model was demonstrated. Among the coatings tested, we found that of the polymeric materials ultrahigh molecular weight polyethylene (UHMWPE) was most effective at reducing the peak cortical stress magnitude. The most effective coating material overall was found to be silicon elastomer. Computation of stress values in models loaded through stainless-steel pins and through pins coated with 1-mm silicon elastomer showed that the presence of the elastomer layer caused a reduction of about 50% in the maximum compressive stress in the model.
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing
Ge, Ting; Grest, Gary S.; Robbins, Mark O.
2014-09-26
Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less
NASA Astrophysics Data System (ADS)
Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu
2017-12-01
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.
Estimating Computer-Based Training Development Times
1987-10-14
beginners , must be sure they interpret terms correctly. As a result of this informal validation, the authors suggest refinements in the tool which...Productivity tools available: automated design tools, text processor interfaces, flowcharting software, software interfaces a Multimedia interfaces e
NESTEM-QRAS: A Tool for Estimating Probability of Failure
NASA Technical Reports Server (NTRS)
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-01-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
NESTEM-QRAS: A Tool for Estimating Probability of Failure
NASA Astrophysics Data System (ADS)
Patel, Bhogilal M.; Nagpal, Vinod K.; Lalli, Vincent A.; Pai, Shantaram; Rusick, Jeffrey J.
2002-10-01
An interface between two NASA GRC specialty codes, NESTEM and QRAS has been developed. This interface enables users to estimate, in advance, the risk of failure of a component, a subsystem, and/or a system under given operating conditions. This capability would be able to provide a needed input for estimating the success rate for any mission. NESTEM code, under development for the last 15 years at NASA Glenn Research Center, has the capability of estimating probability of failure of components under varying loading and environmental conditions. This code performs sensitivity analysis of all the input variables and provides their influence on the response variables in the form of cumulative distribution functions. QRAS, also developed by NASA, assesses risk of failure of a system or a mission based on the quantitative information provided by NESTEM or other similar codes, and user provided fault tree and modes of failure. This paper will describe briefly, the capabilities of the NESTEM, QRAS and the interface. Also, in this presentation we will describe stepwise process the interface uses using an example.
Mechanism of electromigration failure in Damascene processed copper interconnects
NASA Astrophysics Data System (ADS)
Michael, Nancy Lyn
2002-11-01
A major unresolved issue in Cu interconnect reliability is the interface role in the failure mechanism of real structures. The present study investigates failure in single-level damascene Cu interconnects with variations in interface condition, passivation and barrier, and linewidth. In the first phase, accelerated electromigration testing of 0.25mum Cu interconnects capped with SiN or SiCN, shows that lifetime and failure mode vary with capping layer. The first mode, seen primarily in SiN samples, is characterized by gradual resistance increase and extensive interface damage, believed to result from failure led by interface electromigration. The competing failure mode, found in SiCN capped samples, is characterized by abrupt resistance increase and localized voiding. The second phase fixes SiCN as the capping material and varies barrier material and line width. The three barrier materials, Ta, TaN, and Ta/TaN, produce similar lifetime statistics and failure is abrupt. Line width, however, does have a strong influence on failure time. The line width/grain size ratio ranged from 0.53 to 2.2 but does not correlate with mean time to failure (MTF). The strong dependence on interface fraction, combined with the conclusion from phase one that interface electromigration is not rate controlling, suggests another mechanism related to the interface is a controlling factor. The possibility that contamination and defects at the interface are key to this failure mode was investigated using electro-thermal fatigue (ETF). In ETF, where lines are simultaneously subjected to thermal cycling and constant current, damage caused by thermal stress is accelerated. Tests reveal that in 80 nm lines, transient failure occurs at times far below MTF in electromigration tests at higher temperatures. Failure found in ETF is clearly a result of damage growth due to thermal/mechanical stress rather than electromigration. At the stress levels created by the moderate ETF test conditions, the only place voids are likely to nucleate and grow is at pre-existing defects and impurities. In narrower lines, where smaller voids can cause catastrophic damage, defects have a greater effect on MTF. Results from this investigation suggest that impurities and defects in the Cu and at the interface, must be carefully controlled to make reliable narrow Cu interconnects.
NASA Astrophysics Data System (ADS)
Higgins, N.; Lapusta, N.
2014-12-01
Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have lower L). In this heterogeneous rate-and-state fault model, the foreshocks interact with each other and with the overall nucleation process through their postseismic slip. The interplay amongst foreshocks, and between foreshocks and the larger-scale nucleation process, is a topic of our future work.
The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations.
Zhang, Bin W; Cui, Di; Matubayasi, Nobuyuki; Levy, Ronald M
2018-05-03
We use end point simulations to estimate the excess chemical potential of water in the homogeneous liquid and at the interface with a protein in solution. When the pure liquid is taken as the reference, the excess chemical potential of interfacial water is the difference between the solvation free energy of a water molecule at the interface and in the bulk. Using the homogeneous liquid as an example, we show that the solvation free energy for growing a water molecule can be estimated by applying UWHAM to the simulation data generated from the initial and final states (i.e., "the end points") instead of multistate free energy perturbation simulations because of the possible overlaps of the configurations sampled at the end points. Then end point simulations are used to estimate the solvation free energy of water at the interface with a protein in solution. The estimate of the solvation free energy at the interface from two simulations at the end points agrees with the benchmark using 32 states within a 95% confidence interval for most interfacial locations. The ability to accurately estimate the excess chemical potential of water from end point simulations facilitates the statistical thermodynamic analysis of diverse interfacial phenomena. Our focus is on analyzing the excess chemical potential of water at protein receptor binding sites with the goal of using this information to assist in the design of tight binding ligands.
Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification.
Hamed, Hamed A; Marzook, Hamdy A; Ghoneem, Nahed E; El-Anwar, Mohamed I
2018-02-15
This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models' components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Hao; Chason, Eric; Guduru, Pradeep R.
Here, we have previously observed a large transient stress in Sn film anodes at the beginning of the Sn-Li 2Sn 5 phase transformation. To understand this behavior, we use numerical modeling to simulate the kinetics of the 1-D moving boundary and Li diffusion in the Sn anodes. A mixture of diffusion-controlled and interface-controlled kinetics is found. The Li concentration in the Li 2Sn 5 phase remains near a steady-state profile as the phase boundary propagates, whereas the Li diffusion in Sn is more complicated. Li continuously diffuses into the Sn layer and produces a supersaturation; the Li can then diffusemore » toward the Sn/Li 2Sn 5 interface and contribute to further phase transformation. Finally, the evolution of Li concentration in the Sn induces strain which involves rate-dependent plasticity and elastic unloading, resulting in the complex stress evolution that is observed. In the long term, the measured stress is dominated by the stress in the growing Li 2Sn 5 phase.« less
Chen, Chun-Hao; Chason, Eric; Guduru, Pradeep R.
2017-08-02
Here, we have previously observed a large transient stress in Sn film anodes at the beginning of the Sn-Li 2Sn 5 phase transformation. To understand this behavior, we use numerical modeling to simulate the kinetics of the 1-D moving boundary and Li diffusion in the Sn anodes. A mixture of diffusion-controlled and interface-controlled kinetics is found. The Li concentration in the Li 2Sn 5 phase remains near a steady-state profile as the phase boundary propagates, whereas the Li diffusion in Sn is more complicated. Li continuously diffuses into the Sn layer and produces a supersaturation; the Li can then diffusemore » toward the Sn/Li 2Sn 5 interface and contribute to further phase transformation. Finally, the evolution of Li concentration in the Sn induces strain which involves rate-dependent plasticity and elastic unloading, resulting in the complex stress evolution that is observed. In the long term, the measured stress is dominated by the stress in the growing Li 2Sn 5 phase.« less
Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding
NASA Astrophysics Data System (ADS)
Gupta, Vinit; Singh, Arun K.
2018-01-01
In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2018-06-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
The surface and through crack problems in layered orthotropic plates
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Wu, Binghua
1991-01-01
An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.
NASA Astrophysics Data System (ADS)
Liu, P. F.; Li, X. K.
2017-09-01
The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.
Kowalczyk, Piotr
2009-12-01
The aim of the paper is to analyse an influence of the shape of the layers in photo-cured dental restorations of Class I on distribution of shrinkage stresses along the tooth-restoration interface. The study is a continuation of the previous considerations (Kowalczyk and Gambin (2008) [1]), where techniques, which reduce stress concentration at the top of the tooth-restoration interface, were considered. The analysis leads to proposition of new layer forming techniques, which diminish the stress peaks at the interface and prevent the crack propagation process. To find the stress distributions in the dental restoration layers and the tooth tissues the finite element method implemented in the ABAQUS (Simulia, Providence, USA) software is used. For Class I restoration of the premolar tooth, the axisymmetrical model is assumed. The restoration is made of four layers of a photo-cured composite. Between the tooth tissues and the restoration, a layer of bonding agent 0.01mm thick is placed and modeled by FEM with help of the cohesive elements. The assumed model takes into account an influence of changes of elastic properties and viscous effects. For each case of the restoration layers system, the Huber-Mises stresses are analysed. The investigations show that the stresses near the restoration-tooth tissue interface are reduced due to viscous flow of the cured material and due to existence of a thin layer of the bonding agent. However, the stress distribution both, in the restoration and in the tooth tissues, is strongly dependent on a shape of the filling layers. Numerical simulations disclose that stress peaks are located at the top corners of each layer. The top corners of the last layer are the places where microleakage may occur. Stress concentrations at the corners of the preceding layers may lead to a growth of uprising crack. It will be shown that the flat layers in the restoration create relatively high values of the stress peaks. The rounded layers, with shapes close to those used in dental practice, reduce maximal stresses about 40%. According to a common opinion of dentists, the wedge-shaped layers give the best result. In the present paper, another way of the shrinkage stress reduction is proposed. Before the layering, one can cover the surface of the tooth cavity with a thin "pre-layer". Next, the remainder cavity may be filled with flat, rounded or wedged layers. It will be shown, that in the fillings with the pre-layers, stress peaks are reduced up to 75%, with respect to the fillings composed of the rounded layers only. The proposed method considerably reduces the shrinkage stress, both in the tooth restoration, as well as, in the tooth tissues. The fillings with the pre-layer are easy in application and its analysis gives promising results. The pre-layer may be applied with other layers of different shapes, and its thickness may vary. The method is recommended for cavities with a great loss of the tooth tissue.
Westenbroek, Stephen M.
2006-01-01
Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.
Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.
Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J
2007-01-01
High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.
In situ observation of the water-sediment interface in combined sewers, using endoscopy.
Oms, C; Gromaire, M C; Chebbo, G
2003-01-01
A new method for water-sediment interface observation has been designed. This system is based on a small diameter endoscope protected by a graduated plastic tube. It makes it possible to visualise in a non-destructive manner the sediments and the water-sediment interface. The endoscope was used to investigate Le Marais catchment (Paris): an immobile organic layer was observed at the water-sediment interface. This layer appears in pools of gross bed sediment, at the upstream of collectors, in zones where velocity is slow and where bed shear stress is less than 0.03 N/m2.
High temperature ceramic interface study
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1984-01-01
Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.
Making and Shaping Participatory Spaces: Resemiotization and Citizenship Agency in South Africa
ERIC Educational Resources Information Center
Kerfoot, Caroline
2011-01-01
In South Africa, democratic consolidation involves not only building a new state, but also new interfaces between state and society. To strengthen the agency of citizens at these interfaces, recent approaches to development stress the notion of "participatory citizenship." The purpose of this article is to explore the links, rarely…
Electrical properties of nano-resistors made from the Zr-doped HfO2 high-k dielectric film
NASA Astrophysics Data System (ADS)
Zhang, Shumao; Kuo, Yue
2018-03-01
Electrical properties of nano-sized resistors made from the breakdown of the metal-oxide-semiconductor capacitor composed of the amorphous high-k gate dielectric have been investigated under different stress voltages and temperatures. The effective resistance of nano-resistors in the device was estimated from the I-V curve in the high voltage range. It decreased with the increase of the number of resistors. The resistance showed complicated temperature dependence, i.e. it neither behaves like a conductor nor a semiconductor. In the low voltage operation range, the charge transfer was controlled by the Schottky barrier at the nano-resistor/Si interface. The barrier height decreased with the increase of stress voltage, which was probably caused by the change of the nano-resistor composition. Separately, it was observed that the barrier height was dependent on the temperature, which was probably due to the dynamic nano-resistor formation process and the inhomogeneous barrier height distribution. The unique electrical characteristics of this new type of nano-resistors are important for many electronic and optoelectronic applications.
NASA Technical Reports Server (NTRS)
Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.
2005-01-01
A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.
Multilayer multiferroic composites with imperfect interfaces
NASA Astrophysics Data System (ADS)
Kuo, Hsin-Yi; Wu, Tien-Jung; Pan, Ernian
2018-07-01
We study the macroscopic behaviors of multilayered multiferroic composites with interface imperfections by a direct micromechanical approach. Both generalized interface stress type and generalized linear spring type imperfect interfaces are considered. Concise matrix expressions of the overall behaviors of the layered piezoelectric–piezomagnetic composite with contact imperfection are presented. The key step is to observe that the two types of imperfect interface conditions are equivalent to the perfect ones due to the laminated geometry. Numerical calculations are demonstrated for BaTiO3–CoFe2O4 multilayer media, and are shown in good agreement with the more involved interphase model. Furthermore, it is observed that the interface imperfection would reduce the magnitude of the magnetoelectric voltage coefficients as compared to the corresponding perfect interface case. This feature is opposite to that predicted and observed in the corresponding cylindrical composites.
Effect of Jig Design and Assessment of Stress Distribution in Testing Metal-Ceramic Adhesion.
Özcan, Mutlu; Kojima, Alberto Noriyuki; Nishioka, Renato Sussumu; Mesquita, Alfredo Mikail Melo; Bottino, Marco Antonio; Filho, Gilberto Duarte
2016-12-01
In testing adhesion using shear bond test, a combination of shear and tensile forces occur at the interface, resulting in complex stresses. The jig designs used for this kind of test show variations in published studies, complicating direct comparison between studies. This study evaluated the effect of different jig designs on metal-ceramic bond strength and assessed the stress distribution at the interface using finite element analysis (FEA). Metal-ceramic (Metal: Ni-Cr, Wiron 99, Bego; Ceramic: Vita Omega 900, Vita) specimens (N = 36) (diameter: 4 mm, veneer thickness: 4 mm; base diameter: 5 mm, thickness: 1 mm) were fabricated and randomly divided into three groups (n = 12 per group) to be tested using one of the following jig designs: (a) chisel (CH) (ISO 11405), (b) steel strip (SS), (c) piston (PI). Metal-ceramic interfaces were loaded under shear until debonding in a universal testing machine (0.5 mm/min). Failure types were evaluated using scanning electron microscopy (SEM). FEA was used to study the stress distribution using different jigs. Metal-ceramic bond strength data (MPa) were analyzed using ANOVA and Tukey's tests (α = 0.05). The jig type significantly affected the bond results (p = 0.0001). PI type of jig presented the highest results (MPa) (p < 0.05) (58.2 ± 14.8), followed by CH (38.7 ± 7.6) and SS jig type (23.3 ± 4.2) (p < 0.05). Failure types were exclusively a combination of cohesive failure in the opaque ceramic and adhesive interface failure. FEA analysis indicated that the SS jig presented slightly more stress formation than with the CH jig. The PI jig presented small stress concentration with more homogeneous force distribution compared to the CH jig where the stress concentrated in the area where the force was applied. Metal-ceramic bond strength was affected by the jig design. Accordingly, the results of in vitro studies on metal-ceramic adhesion should be evaluated with caution. When adhesion of ceramic materials to metals is evaluated in in vitro studies, it should be noted that the loading jig type affects the results. Clinical observations should report on the location and type of ceramic fractures in metal-ceramic reconstructions so that the most relevant test method can be identified. © 2015 by the American College of Prosthodontists.
Stress transfer mechanisms at the submicron level for graphene/polymer systems.
Anagnostopoulos, George; Androulidakis, Charalampos; Koukaras, Emmanuel N; Tsoukleri, Georgia; Polyzos, Ioannis; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas
2015-02-25
The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼ 2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping.
NASA Astrophysics Data System (ADS)
Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.
2017-02-01
Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.
Deformation in the mantle wedge associated with Laramide flat-slab subduction
NASA Astrophysics Data System (ADS)
Behr, Whitney M.; Smith, Douglas
2016-07-01
Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range ˜550-750°C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 1019-1023 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these rocks are consistent with models that invoke significant basal shear tractions as contributing to Laramide uplift and contraction in the continental interior.
NASA Astrophysics Data System (ADS)
Hjorleifsdottir, V.; Iglesias, A.; Suarez, G.; Santoyo, M. A.; Villafuerte, C. D.; Ji, C.; Franco-Sánchez, S. I.; Singh, S. K.; Cruz-Atienza, V. M.; Ando, R.
2017-12-01
The Mw 8.2 September 8 earthquake occurred in the middle of the "Tehuantepec Gap", a segment of the Mexican subduction zone that has no historical mentions of a large earthquake. It was, however, not the expected subduction megathrust earthquake, but rather an intraplate, normal faulting event, in the subducting oceanic Cocos plate. The earthquake rupture initiated at a depth of 50 km and propagated NW on a near-vertical plane, breaking towards the surface. Most of the slip was concentrated in the distance range 30-100 km from the hypocenter and at depth between 15 and 50 km, with maximum slip of 15m. The earthquake seems to have broken the entire lithosphere, estimated to be 35 km thick. The strike of the fault is about 20 degrees oblique to the trench but aligned with the existing fabric on the incoming oceanic plate, suggesting a structural control by preexisting intraslab fractures and activation by the extensional stress due to the slab bending and pulling. Aftershocks occurred along the fault plane during the first day after the event, with activation of other parallel structures within the subducting plate, towards the east, as well as in upper plate, in the following days. Coulomb stress modeling suggests that the stress on the plate interface above the rupture was significantly increased where shallow thrust aftershoks took place, and reduced updip of the earthquake. There are several other examples of large intraslab normal faulting earthquakes, near the downdip edge (1931 Mw 7.8 and 1999 Mw 7.5, Oaxaca) or directly below (1997 Mw 7.1, Michoacan) the coupled plate interface, along the Mexican subduction zone. The possibility of events of similar magnitude to the 2017 earthquake occurring close to the coastline, all along this part of the subduction zone, cannot be ruled out.
NASA Astrophysics Data System (ADS)
Zeng, Xiaguang; Wei, Yujie
Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.
NASA Astrophysics Data System (ADS)
Kamat, Pritish M.; Wagoner, Brayden W.; Thete, Sumeet S.; Basaran, Osman A.
2018-04-01
Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h ) connects an about-to-form drop to the liquid that remains hanging from the nozzle when the former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering σ , they lower capillary pressure (σ /h ), and second, as surfactant concentration along the interface can be nonuniform, they cause the interface to be subjected to a surface tension gradient or Marangoni stress. Recent studies show that the location where the thread breaks is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off is negligible. We demonstrate by simulations and experiments that surfactants play a major role in drop formation and that Marangoni stresses acting near but not at the pinch point give rise to reduced rates of thread thinning and formation of multiple microthreads that distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling regimes that have heretofore only been observed during pinch-off of threads undergoing creeping flow (Re=0 ) while convection of surfactant is weak compared to its diffusion (Pe<1 ).
Effects of Roughness and Inertia on Precursors to Frictional Sliding
NASA Astrophysics Data System (ADS)
Robbins, Mark O.; Salerno, K. Michael
2012-02-01
Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)
The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone
NASA Technical Reports Server (NTRS)
Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.
1988-01-01
The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.
The mode III crack problem in bonded materials with a nonhomogeneous interfacial zone
NASA Technical Reports Server (NTRS)
Erdogan, F.; Joseph, P. F.; Kaya, A. C.
1991-01-01
The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.
NASA Astrophysics Data System (ADS)
Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime
2018-04-01
The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.
Finite-Element Analysis of Current-Induced Thermal Stress in a Conducting Sphere
NASA Astrophysics Data System (ADS)
Liu, Ming; Yang, Fuqian
2012-02-01
Understanding the electrothermal-mechanical behavior of electronic interconnects is of practical importance in improving the structural reliability of electronic devices. In this work, we use the finite-element method to analyze the Joule-heating-induced thermomechanical deformation of a metallic sphere that is sandwiched between two rigid plates. The deformation behavior of the sphere is elastic-perfectly plastic with Young's modulus and yield stress decreasing with temperature. The mechanical stresses created by Joule heating are found to depend on the thermal and mechanical contact conditions between the sphere and the plates. The temperature rise in the sphere for the diathermal condition between the sphere and the plates deviates from the square relation between Joule heat and electric current, due to the temperature dependence of the electrothermal properties of the material. For large electric currents, the simulations reveal the decrease of von Mises stress near the contact interfaces, which suggests that current-induced structural damage will likely occur near the contact interfaces.
"Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange
NASA Astrophysics Data System (ADS)
Webber, Sam; Ellis, Susan; Fagereng, Åke
2018-04-01
What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.
Numerical investigation of contact stresses for fretting fatigue damage initiation
NASA Astrophysics Data System (ADS)
Bhatti, N. A.; Abdel Wahab, M.
2017-05-01
Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.
Macroscopic Asymmetry of Dynamic Rupture on a Bimaterial Interface With Velocity- Weakening Friction
NASA Astrophysics Data System (ADS)
Ampuero, J.; Ben-Zion, Y.
2006-12-01
Large faults typically separate rocks of different elastic properties. In-plane ruptures on bimaterial interfaces have remarkable dynamic properties that may be relevant to many issues of basic and applied science (e.g., Ben-Zion, 2001). In contrast to slip between similar media, slip along a bimaterial interface generates dynamic changes of normal stress that modify the local fault strength (e.g., Weertman, 1980). One important issue is whether rupture on a bimaterial interface evolves toward a unilateral wrinkle-like pulse in the direction of motion of the compliant medium (the "preferred" direction), or whether it propagates as a symmetric bilateral crack. Some field data suggest that bimaterial interfaces in natural fault zones produce macroscopic rupture asymmetry (Dor et al., 2006; Lewis et al., 2005, 2006); however, this is a subject of ongoing debate. Rubin and Ampuero (2006) performed numerical simulations of bimaterial ruptures under pure slip-weakening friction. They found bilateral crack-like ruptures without significant asymmetry of slip. For ruptures that stopped in low stress areas, there was asymmetry in the final stress distribution, induced by a small scale pulse that detaches from the crack when it stops. This may provide a mechanism for the observed asymmetry of microearthquakes on segments of the San Andreas fault (Rubin and Gillard, 2000). In addition, the results included very prominent asymmetry of slip velocities at the opposite rupture fronts. In calculations with slip-weakening friction the strong asymmetry of slip velocities can not manifest itself into macroscopic rupture asymmetry. However, incorporating in the simulations rate-dependent friction may produce larger stress drop in the preferred direction, leading to macroscopically asymmetric rupture (Ben-Zion, 2006). In this work we study the effect of velocity-weakening friction on rupture along a bimaterial interface, using 2D in-plane simulations with a spectral boundary integral method and a rate-and-state dependent friction law with strong velocity dependence. The law contains slip-weakening or velocity-weakening as limit cases, depending on the length scale in the state evolution law. The steady-state friction coefficient is inversely proportional to slip-rate, mimicking the weakening mechanisms thought to operate on natural faults at high velocities. We examine the behavior of ruptures triggered by a slightly overstressed nucleation zone of size larger than a critical size derived by linear stability analysis. We characterize the range of friction parameters and initial stress values for which ruptures behave as cracks or pulses, decaying or sustained, with subshear or super-shear speeds. All sustained ruptures are initially bilateral. In the range where sub-shear pulse-like rupture is observed, the ruptures develop strong macroscopic asymmetry with continuing propagation along the bimaterial interface. This is manifested by significantly larger seismic potency and propagation distance in the preferred direction, similar to what was found by Shi and Ben-Zion (2006) with strong nucleation phases and slip-weakening friction. The stress asymmetry mechanism described by Rubin and Ampuero (2006) remains in our velocity-weakening simulations as a super-imposed small-scale feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boreyko, Jonathan B; Mruetusatorn, Prachya; Sarles, Stephen A
Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of themore » shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.« less
Silicide formation process of Pt added Ni at low temperature: Control of NiSi2 formation
NASA Astrophysics Data System (ADS)
Ikarashi, Nobuyuki; Masuzaki, Koji
2011-03-01
Transmission electron microscopy (TEM) and ab initio calculations revealed that the Ni-Si reaction around 300 °C is significantly changed by adding Pt to Ni. TEM analysis clarified that NiSi2 was formed in a reaction between Ni thin film (˜1 nm) and Si substrate, while NiSi was formed when Pt was added to the Ni film. We also found that the Ni-adamantane structure, which acts as a precursor for NiSi2 formation around the reaction temperature, was formed in the former reaction but was significantly suppressed in the latter reaction. Theoretical calculations indicated that Pt addition increased stress at the Ni-adamantane structure/Si-substrate interface. The increase in interface stress caused by Pt addition should raise the interface energy to suppress the Ni-adamantane structure formation, leading to NiSi2 formation being suppressed.
NASA Astrophysics Data System (ADS)
Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang
2018-06-01
In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.
A new technique for fire risk estimation in the wildland urban interface
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Qu, J. J.; Hao, X.
A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER
Residual stress at fluid interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.E.
We extend the Navier-Stokes equations to allow for residual stress in Newtonian fluids. A fluid, which undergoes a constrained volume change, will have residual stress. Corresponding to every constrained volume change is an eigenstrain. We present a method to include in the equations of fluid motion the eigenstrain that is a result of the presence in a fluid of a soluble chemical species. This method is used to calculate the residual stress associated with a chemical transformation. 9 refs., 1 fig.
NASA Astrophysics Data System (ADS)
Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching
2017-01-01
This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.
Load transfer mechanics between trans-tibial prosthetic socket and residual limb--dynamic effects.
Jia, Xiaohong; Zhang, Ming; Lee, Winson C C
2004-09-01
The effects of inertial loads on the interface stresses between trans-tibial residual limb and prosthetic socket were investigated. The motion of the limb and prosthesis was monitored using a Vicon motion analysis system and the ground reaction force was measured by a force platform. Equivalent loads at the knee joint during walking were calculated in two cases with and without consideration of the material inertia. A 3D nonlinear finite element (FE) model based on the actual geometry of residual limb, internal bones and socket liner was developed to study the mechanical interaction between socket and residual limb during walking. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. The prediction results indicated that interface pressure and shear stress had the similar double-peaked waveform shape in stance phase. The average difference in interface stresses between the two cases with and without consideration of inertial forces was 8.4% in stance phase and 20.1% in swing phase. The maximum difference during stance phase is up to 19%. This suggests that it is preferable to consider the material inertia effect in a fully dynamic FE model.
Matthews, Lindsay A.; Selvaratnam, Rajeevan; Jones, Darryl R.; Akimoto, Madoka; McConkey, Brendan J.; Melacini, Giuseppe; Duncker, Bernard P.; Guarné, Alba
2014-01-01
Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules. PMID:24285546
Multibody Simulation Software Testbed for Small-Body Exploration and Sampling
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Mandic, Milan
2011-01-01
G-TAG is a software tool for the multibody simulation of a spacecraft with a robotic arm and a sampling mechanism, which performs a touch-and-go (TAG) maneuver for sampling from the surface of a small celestial body. G-TAG utilizes G-DYN, a multi-body simulation engine described in the previous article, and interfaces to controllers, estimators, and environmental forces that affect the spacecraft. G-TAG can easily be adapted for the analysis of the mission stress cases to support the design of a TAG system, as well as for comprehensive Monte Carlo simulations to analyze and evaluate a particular TAG system design. Any future small-body mission will benefit from using G-TAG, which has already been extensively used in Comet Odyssey and Galahad Asteroid New Frontiers proposals.
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Design of Composite Hip Prostheses Considering the Long-Term Behavior of the Femur
NASA Astrophysics Data System (ADS)
Lim, Jong Wan; Jeong, Jae Youn; Ha, Sung Kyu
A design method for the hip prosthesis is proposed which can alleviate problems associated with stress shielding, proximal loosening and the high stress of bone-implant interfaces after total hip replacement. The stress shielding which may lead to bone resorption, can cause a loosening of the stem and a fracture of femoral bone. Generally the composites were more suitable for hip prosthesis material in the long-term stability than metallic alloy because design cases of composite materials produced less stress shielding than titanium alloy. A bone remodeling algorithm was implemented in a nonlinear finite element program to predict the long-term performance of the hip prosthesis. The three neck shapes and three cross sections of composite hip were examined. It was found that the stress concentration in the distal region of the titanium stem which may cause the patient's thigh pains was reduced using composite material. The head neck shape was closely related with the cortical bone resorption and the cancellous bone apposition at proximal region whereas the cross-section was closely related with the relative micromotion between interfaces. The convex head neck type with the quadrangle cross-section produced less subsidence at proximal region on the medial side than the others. For all composite material cases, the cancellous bone apposition occurred at partial interfaces, which may result in a stable bio-fixation. The design performances of the convex neck head type with the hexagonal cross-section designed to insure the long-term stability were found to be more suitable than the others.
NASA Astrophysics Data System (ADS)
Trantow, T.; Herzfeld, U. C.
2016-12-01
During a surge, sections of a glacier will accelerate 10-100 times their normal flow velocity resulting in sudden changes in the local stress regime. A glacier surface can fracture when a critical stress threshold is exceeded resulting in surface deformation, i.e. crevassing. During a recent field campaign to Bering Glacier, Alaska, in 2011 (and later in 2012, 2013), large scale deformation of the glacier surface was observed, indicating a major surge phase had recently occurred (Herzfeld et al. 2013). In the current study, geostatistical analysis is applied to satellite imagery to characterize the surge-induced crevasses that were present during the surge phase that began in early 2011. Results are compared to a three-dimensional, isothermal, full-Stokes model of Bering Glacier implemented in the open-source finite element software Elmer/Ice, which predicts locations and orientations of crevassing based on a failure criterion involving the magnitude(s) of the principal stress(es). Since most of the movement during a surge is due to basal sliding from decreased friction at the ice-bedrock interface, a relatively accurate representation of the the basal conditions is required to accurately model the ice dynamics and hence its stress regime. To achieve this, we invert velocity data derived from image correlation to attain estimations of the basal friction coefficient that governs basal sliding in the model. The methods employed here provide a procedure to identify discrepancies between observations and models of ice-flow during acceleration events.
NASA Astrophysics Data System (ADS)
Qi, Hui; Zhang, Xi-meng
2017-10-01
With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.
NASA Astrophysics Data System (ADS)
Jung, Haesun; Choi, Sungju; Jang, Jun Tae; Yoon, Jinsu; Lee, Juhee; Lee, Yongwoo; Rhee, Jihyun; Ahn, Geumho; Yu, Hye Ri; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan
2018-02-01
We propose a universal model for bias-stress (BS)-induced instability in the inkjet-printed carbon nanotube (CNT) networks used in field-effect transistors (FETs). By combining two experimental methods, i.e., a comparison between air and vacuum BS tests and interface trap extraction, BS instability is explained regardless of either the BS polarity or ambient condition, using a single platform constituted by four key factors: OH- adsorption/desorption followed by a change in carrier concentration, electron concentration in CNT channel corroborated with H2O/O2 molecules in ambient, charge trapping/detrapping, and interface trap generation. Under negative BS (NBS), the negative threshold voltage shift (ΔVT) is dominated by OH- desorption, which is followed by hole trapping in the interface and/or gate insulator. Under positive BS (PBS), the positive ΔVT is dominated by OH- adsorption, which is followed by electron trapping in the interface and/or gate insulator. This instability is compensated by interface trap extraction; PBS instability is slightly more complicated than NBS instability. Furthermore, our model is verified using device simulation, which gives insights on how much each mechanism contributes to BS instability. Our result is potentially useful for the design of highly stable CNT-based flexible circuits in the Internet of Things wearable healthcare era.
The cohesive law of particle/binder interfaces in solid propellants
NASA Astrophysics Data System (ADS)
Tan, H.
2011-10-01
Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.
Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devoto, D.
2014-11-01
The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.
NASA Technical Reports Server (NTRS)
Ansell, G. S.
1972-01-01
An analytical rationale for the sensitivity-insensitivity of dispersion-strengthened systems to process history is provided. In particular, the research was focussed upon the influence of the particle-matrix interface bond in TD-Nickel and TD-Nichrome, and the manner in which the differences in both elastic constants and thermal expansion coefficients between these phases stress this interface when these alloys are subjected to mechanical and thermal loads upon the mechanical properties of these alloys.
Stress Analysis of Composites.
1981-01-01
agree well at the midsurface , where the maximum positive value of a occurs. The maximum negative value occurs at the 45/-45 interface, where the TFE...results for the E45/-45/0/90Js case. The distribu- tion of a, along the 0/90 interface and along the midsurface are plotted in Figures lla and llb...interface, and z along the midsurface are shown in z Figures 12a and 12b for the .90/0/-45/451s laminate. Again the three analysis agree well up the
GRIZZLY/FAVOR Interface Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Terry L; Williams, Paul T; Yin, Shengjun
As part of the Light Water Reactor Sustainability (LWRS) Program, the objective of the GRIZZLY/FAVOR Interface project is to create the capability to apply GRIZZLY 3-D finite element (thermal and stress) analysis results as input to FAVOR probabilistic fracture mechanics (PFM) analyses. The one benefit of FAVOR to Grizzly is the PROBABILISTIC capability. This document describes the implementation of the GRIZZLY/FAVOR Interface, the preliminary verification and tests results and a user guide that provides detailed step-by-step instructions to run the program.
Effects of Stress Concentrations on the Attenuation by Diffusionally-assisted Grain Boundary Sliding
NASA Astrophysics Data System (ADS)
Lee, L.; Morris, S.; Zohdi, T.
2009-12-01
We report the numerical results from the Raj-Ashby model for diffusionally-assisted grain boundary sliding with finite slope grain interface. The model is a bicrystal consisting of two Hookean elastic layers of finite thickness, separated by a prescribed spatially periodic interface y = f(x). We assume infinitesimal plane deformation. Within the grains, the displacement field u(x,y,t) satisfies the equations of elastostatic equilibrium. At y = f(x), the shear stress σns and normal stress σnn are assumed continuous. Time-derivatives enter the model only through the constitutive equation prescribing the discontinuity in ∂u / ∂t across the grain boundary; the tangential and the normal components of the jump are related to the shear and the normal components of stress respectively by the equations η' [∂us /∂t] = l σns and [∂un /∂t] + (v l D / k T)(∂2σnn / ∂s2) = 0. Here, η', l, v, D, k and T denote respectively the slip (boundary) viscosity, grain boundary thickness, molecular volume, grain boundary diffusivity, Boltzmann constant, and absolute temperature. The equations define two timescales: tv=η' λ / μ l and tD = k T λ3 / v l D μ, where λ and μ are respectively the interface wavelength, and the elastic rigidity of the grains. Consistent with the small-slope (i.e. ɛ = max|df / dx| << 1) analysis by Morris & Jackson (2009), our numerical results of a sawtooth interface show that the mechanical loss L varies as ω-1 at low frequencies (i.e. ω td << 1), whereas at large frequencies (i.e. ω td >> 1), the mechanical loss L decreases slowly with frequency ω. In addition, we also find that the mechanical loss L decreases more rapidly with frequency ω as the interface slope ɛ is increased. For a slope ɛ = 1, which corresponds to a sawtooth sliding plane found in a regular array of hexagonal polycrystals, the mechanical loss spectrum L ˜ ω-1/3, similar to the scaling found experimentally (Jackson et al. 2002), and observed seismically (Shito et al., 2004). We show that this behaviour is an outcome of stress concentrations arising at sharp corners. At low frequencies, the dissipation rate does not depend on frequency ω. Because the time available for dissipation varies inversely with ω, the mechanical loss per cycle L varies as ω-1. At high frequency, the loss decreases more slowly with ω; although the time available for dissipation still varies as ω-1., stress concentrations at triple junction now cause the dissipation-rate to be an increasing function of ω. As a result, the mechanical loss now varies as ω-(2/3)(1 + p). When ɛ = 1, a local analysis by Picu & Gupta (1996) show that p = -0.55 and so, our argument predicts L ˜ ω- 0.3 , close to our numerical results. Thus, the loss spectrum at high frequencies is controlled by the form of stress singularity arising at sharp corners along the grain interface.
Permeability Development at Layer Interfaces in Bedded Rocksalt
NASA Astrophysics Data System (ADS)
Muhammad, N.; Spiers, C. J.; Peach, C. J.; De Bresser, J. H. P.; Liu, W.
2016-12-01
Solution mined salt caverns are of great interest for storage of fluids such as compressed air, natural gas or hydrogen fuel, and are expected to show excellent healing and sealing capacity. However, it is of utmost importance to be able to reliably quantify the permeability of salt cavern walls, so that potential loss of the stored asset may be assessed. Data on dilatancy, permeability and damage development are readily available for pure rocksalt undergoing deformation, but little is known about the permeability development at the bedding interfaces within layered salt under varying differential stresses. Layered salt samples were obtained from the walls of a pilot well in Hubei province China. The natural salt shows alternating layers of rock salt, anhydrite, mudstone and glauberite. Cylindrical samples, 50 mm diameter and 85 mm long, were prepared with layer interfaces oriented vertical, horizontal or obliquely to the core axis. Tests were conducted at room temperature and a confining pressure of 20 and (for shallower depth) 10 MPa, representing in-situ conditions. Axial deformation was performed using a triaxial machine in the HPT-laboratory at Utrecht. Compaction/dilation was measured using a servo control dilatometer for confining pressure control, and, in conjunction, the permeability was measured using Argon gas transient step permeameter. The samples were deformed at a constant displacement rate of 1 µm/s. After reaching 10, 20 and 30 MPa differential stress, deformation was halted and permeability was measured parallel to the compositional interfaces for each of the three geometries. Overall, it was found that during deformation, no shear slippage occurred at interface and the bulk permeability of most specimens decreased, where the absolute permeability value (found in the range 10-15 to <10-21 m2) depending upon the orientation of the bedding interface and composition of the sample. All samples showed a decrease in volume with axial strain, demonstrating progressive compaction with increasing stress values. The microstructural observation revealed local dilatancy near the interface, but this was masked by the bulk compaction as measured by the dilatometer. The results imply that the formation can be a potential candidate for gas storage, with anticipation that deep walls will be lesser permeable.
The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Jy-An John; Wang, Hong
Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less
The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance
Jiang, Hao; Wang, Jy-An John; Wang, Hong
2016-09-26
Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less
Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Saffer, D.
2003-12-01
The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the underthrust section, but the increase is suppressed relative to that expected from normally consolidating sediments. The computed pore pressure increases landward from an overpressure ratio (λ * = hydrostatic pressure divided by the lithostatic overburden) of ˜ 0.6 at the deformation front to ˜ 0.77 where sediments have been subducted 15 km. The results of this preliminary analysis suggest that a 3-dimensional mapping of predicted effective normal stress in the seismic data volume is possible.
NASA Astrophysics Data System (ADS)
Mueller, W. H.; Schmauder, S.
1993-02-01
This paper is concerned with the problem of the calculation of stress-intensity factors at the tips of radial matrix cracks (r-cracks) in fiber-reinforced composites under thermal and/or transverse uniaxial or biaxial mechanical loading. The crack is either located in the immediate vicinity of a single fiber or it terminates at the interface between the fiber and the matrix. The problem is stated and solved numerically within the framework of linear elasticity using Erdogan's integral equation technique. It is shown that the solutions for purely thermal and purely mechanical loading can simply be superimposed in order to obtain the results of the combined loading case. Stress-intensity factors (SIFs) are calculated for various lengths and distances of the crack from the interface for each of these loading conditions. The behavior of the SIFs for cracks growing towards or away from the interface is examined. The role of the elastic mismatch between the fibers and the matrix is emphasized and studied extensively using the so-called Dundurs' parameters. It is shown that an r-crack, which is remotely located from the fiber, can either be stabilized or destabilized depending on both the elastic as well as the thermal mismatch of the fibrous composite. Furthermore, Dundurs' parameters are used to predict the exponent of the singularity of the crack tip elastic field and the behavior of the corresponding SIFs for cracks which terminate at the interface. An analytical solution for the SIFs is derived for all three loading conditions under the assumption that the elastic constants of the matrix and the fiber are equal. It is shown that the analytical solution is in good agreement with the corresponding numerical results. Moreover, another analytical solution from the literature, which is based upon Paris' equation for the calculation of stress-intensity factors, is compared with the numerical results and it is shown to be valid only for extremely short r-cracks touching the interface. The numerical results presented are valid for practical fiber composites with r-cracks close to or terminating at the interface provided the matrix material is brittle and the crack does not interact with other neighboring fibers. They may be applied to predict the transverse mechanical behavior of high strength fiber composites.
Helal, Mohammed Abu; Wang, Zhigang
2017-10-25
To compare equivalent and contact stresses in a mandibular molar restored by all-ceramic crowns through two methods: ceramic endocrowns and ceramic crowns supported by fiber-reinforced composite (FRC) posts and core, by using 3D finite element analysis during normal masticatory load. Three 3D models of a mandibular first molar were made and labeled as such: intact molar with no restoration (A); ceramic endocrown-restored molar (B); ceramic crown supported by FRC posts and core restored molar (C). By using 3D FE analysis with contact components, normal masticatory load was simulated. The mvM stresses in all models were calculated. Maximal mvM stresses in the ceramic of restorations, dentin, and luting cement were contrasted among models and to values of materials' strength. Contact shear and tensile stresses in the restoration/tooth interface around restorations were also calculated. The highest mvM stress levels in the enamel and dentin for the tooth restored by ceramic endocrown were lower in the crown ceramic than in tooth restored with FRC posts and all-ceramic crowns; however, in the resin adhesive cement interface it was lower for ceramic crown supported by FRC posts than the in ceramic endocrown restoration. The maximum contact shear and tensile stress values along the restoration/tooth interface of ceramic endocrowns were lower than those with ceramic crowns supported by FRC posts. Ceramic endocrown restorations presented a lower mvM stress level in dentin than the conventional ceramic crowns supported by FRC posts and core. Ceramic endocrown restorations in molars are less susceptible to damage than those with conventional ceramic crowns retained by FRC posts. Ceramic endocrowns properly cemented in molars must not be fractured or loosen during normal masticatory load. Therefore, ceramic endocrowns are advised as practicable, minimally invasive, and esthetic restorations for root canal treated mandibular molars. © 2017 by the American College of Prosthodontists.
Sources of Seismic Hazard in British Columbia: What Controls Earthquakes in the Crust?
NASA Astrophysics Data System (ADS)
Balfou, Natalie Joy
This thesis examines processes causing faulting in the North American crust in the northern Cascadia subduction zone. A combination of seismological methods, including source mechanism determination, stress inversion and earthquake relocations are used to determine where earthquakes occur and what forces influence faulting. We also determine if forces that control faulting can be monitored using seismic anisotropy. Investigating the processes that contribute to faulting in the crust is important because these earthquakes pose significant hazard to the large population centres in British Columbia and Washington State. To determine where crustal earthquakes occur we apply double-difference earthquake relocation techniques to events in the Fraser River Valley, British Columbia, and the San Juan Islands, Washington. This technique is used to identify "hidden" active structures using both catalogue and waveform cross-correlation data. Results have significantly reduced uncertainty over routine catalogue locations and show lineations in areas of clustered seismicity. In the Fraser River Valley these lineations or streaks appear to be hidden structures that do not disrupt near-surface sediments; however, in the San Juan Islands the identified lineation can be related to recently mapped surface expressions of faults. To determine forces that influence faulting we investigate the orientation and sources of stress using Bayesian inversion results from focal mechanism data. More than ˜600 focal mechanisms from crustal earthquakes are calculated to identify the dominant style of faulting and inverted to estimate the principal stress orientations and the stress ratio. Results indicate the maximum horizontal compressive stress (SHmax) orientation changes with distance from the subduction interface, from margin-normal along the coast to margin-parallel further inland. We relate the margin-normal stress direction to subduction-related strain rates due to the locked interface between the North America and Juan de Fuca plates just west of Vancouver Island. Further from the margin the plates are coupled less strongly and the margin-parallel SHmax relates to the northward push of the Oregon Block. Active faults around the region are generally thrust faults that strike east-west and might accommodate the margin- parallel compression. Finally, we consider whether crustal anisotropy can be used as a stress monitoring tool in this region. We identify sources and variations of crustal anisotropy using shear-wave splitting analysis on local crustal earthquakes. Results show spatial variations in fast directions, with margin-parallel fast directions at most stations and margin-perpendicular fast directions at stations in the northeast of the region. To use seismic anisotropy as a stress indicator requires identifying which stations are pri- marily influenced by stress. We determine the source of anisotropy at each station by comparing fast directions from shear-wave splitting results to the SHmax orientation. Most stations show agreement between these directions suggesting that anisotropy is stress-related. These stations are further analysed for temporal variations and show variation that could be associated with earthquakes (ML 3{5) and episodic tremor and slip events. The combination of earthquake relocations, source mechanisms, stress and anisotropy is unique and provides a better understanding of faulting and stress in the crust of northern Cascadia.
Measurement of interface strength by a laser spallation technique
NASA Astrophysics Data System (ADS)
Gupta, V.; Argon, A. S.; Parks, D. M.; Cornie, J. A.
A LASER spallation experiment has been developed to measure the strength of planar interfaces between a substrate and a thin coating (in the thickness range of 0.3-3 μm). In this technique a laser pulse of a high enough energy and a pre-determined duration is converted into a pressure pulse of a critical amplitude and width that is sent through the substrate toward the free surface with the coating. The reflected tensile wave from the free surface of the coating pries-off the coating. The critical stress amplitude that accomplishes the removal of the coating is determined from a computer simulation of the process. The simulation itself is verified by means of a piezo-electric crystal probe that is capable of mapping out the profile of the stress pulse generated by the laser pulse. Interface strength values ranging from 3.7 to 10.5 GPa were determined for the Si/SiC system. For the interfaces between pyrolytic graphite and SiC coatings an average strength of 7.2 GPA was measured, while the corresponding interface strength between a Pitch-55 type ribbon with a fiber-like morphology and SiC coatings was found to be 0.23 GPa. Intrinsic strengths of SiC coatings and Si crystal were also determined using this technique. These were, on the average, 8.6 GPa for Si crystals and 11.9 GPa for a SiC coating. Furthermore, the potential of the laser technique to determine the interface toughness was also demonstrated, provided well-characterizable flaws can be planted on the interface.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
ten Brink, Uri S.; Lin, J.
2004-01-01
Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.
The Turbulent/Non-Turbulent Interface Bounding a Far-Wake
NASA Technical Reports Server (NTRS)
Bisset, David K.; Hunt, Julian C. R.; Rogers, Michael M.; Kwak, Dochan (Technical Monitor)
2000-01-01
The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations either side of a thin randomly moving interface. Comparisons are made with a wake that is 'forced' by amplifying initial velocity fluctuations. There is also a random temperature field T in the flow; T varies between constant values of 0.0 and 1.0 on the sides of the wake. The value of the Reynolds number based on the centreplane mean velocity defect and halfwidth b of the wake is Re approx. = 2000. It is found that the thickness of the continuous interface is about equal to 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement y(sub I)(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of y(sub I) and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y - y(sub I), the conditional mean velocity (U) and temperature (T) profiles show sharp jumps Delta(U) and Delta(T) at the interface adjacent to a thick zone where (U) and (T) vary much more slowly. Statistics for the vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. Flow fields around the interface, analyzed in terms of the local streamline pattern, confirm previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion. It is argued that because this is an inviscid mechanism the entrainment process is not sensitive to the value of Re, and that small-scale nibbling only plays a subsidiary role. While mean Reynolds stresses decrease gradually in the intermittent zone, conditional stresses are found to decrease sharply towards zero at the interface. Using one-point turbulence models applied to either unconditional or conditional statistics for the turbulent region and then averaged, the entrainment rate E(sub b) would, if calculated exactly, be zero. But if computed with standard computational methods, E(sub b) would be non-zero because of numerical diffusion. It is concluded that the current practice in statistical models of approximating entrainment by a diffusion process is computationally arbitrary and physically incorrect. An analysis shows how E(sub b) is related to Delta(U) and the jump in shear stress at the interface, and correspondingly to Delta(T) and the heat flux.
Fan-head shear rupture mechanism as a source of off-fault tensile cracking
NASA Astrophysics Data System (ADS)
Tarasov, Boris
2016-04-01
This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone; behind this zone static microcracks are left in the wake of the propagating rupture. Unfortunately, the modern technology used in these experiments is not able to identify the shear rupture mechanism itself operated within the narrow rupture interface. However, a special analysis of side effects accompanying the shear rupture propagation (including the off-fault tensile cracking) allows supposing that the failure process was governed by the fan-mechanism. 1. Tarasov, B.G. 2014. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics, 621, 69-84. 2. Griffith, W.A., Rosakis, A., Pollard, D.D. and Ko, C.W., 2009. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures, Geology, pp 795-798. 3. Ngo, D., Huang, Y., Rosakis, A., Griffith, W.A., Pollard D. 2012. Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models. Journal of Geophysical Research, vol. 117, B01307, doi: 10.1029/2011JB008577 (2012).
Quantitative method of medication system interface evaluation.
Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F
2007-01-01
The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.
DOT National Transportation Integrated Search
2016-04-12
In ballasted concrete tie track, the tie-ballast interface can : deteriorate resulting in concrete tie bottom abrasion, ballast : pulverization and/or voids in tie-ballast interfaces. Tie-ballast : voids toward tie ends can lead to unfavorable center...
Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations
2013-04-16
to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the...resulting visco-elastic-plastic stress/strain on the affected soil volume. Pedo transfer functions allow for the calculation of the soil mechanics model
Stress Training and Simulator Complexity: Why Sometimes More Is Less
ERIC Educational Resources Information Center
Tichon, Jennifer G.; Wallis, Guy M.
2010-01-01
Through repeated practice under conditions similar to those in real-world settings, simulator training prepares an individual to maintain effective performance under stressful work conditions. Interfaces offering high fidelity and immersion can more closely reproduce real-world experiences and are generally believed to result in better learning…
Interface structure for hub and mass attachment in flywheel rotors
Deteresa, S.J.; Groves, S.E.
1998-06-02
An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.
Interface structure for hub and mass attachment in flywheel rotors
Deteresa, Steven J.; Groves, Scott E.
1998-06-02
An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.
Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets
NASA Astrophysics Data System (ADS)
Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang
2018-01-01
The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile fracture while the fracture or perforation of the BM is ductile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2015-01-12
A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significantmore » effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar, 2013) to report the framework and findings in tropocollagen-hydroxyapatite based idealized biomaterial interfaces. PHYSICAL FINDINGS 1. Analyses using experiments have revealed that in the case of bone thermal conductivity and thermal diffusivity at micron scale shows significant dependence on compressive stress and temperature. Overall, there is a decrease with respect to increase in temperature and increase with respect to increase in compressive stress. Bio-molecular simulations on idealized tropocollagen-hydroxyapatite interfaces confirm such findings. However, simulations also reveal that thermal diffusivity and thermal conductivity can be significantly tailored by interfacial orientation. More importantly, in inorganic materials, interfaces contribute to reduce thermal conductivity and diffusivity. However, analyses here reveal that both can be increased despite presence of a lot of interfaces. 2. Based on significant role played by interfaces in affecting bone thermal properties, a crustacean-exoskeleton system is examined for thermal diffusivity using the newly developed setup. Special emphasis here is on this system since such arrangement is found to be common in fresh water shrimp as well as in some deep water organisms surviving in environment extremes. Experiments reveal that in such system thermal diffusivity is highly tailorable. 3. Overall, experiments and models have established that in biomaterial interfaces a counterintuitive role of interfaces in mediating thermal conduction as a function of stress and temperature is possible in contrast to inorganic materials where interfaces almost always lead to reduction of thermal conductivity as a function of such factors. More investigations are underway to reveal physical origins of such counter-physical characteristics. Such principles can be significantly useful in developing new and innovative bioenergy and inorganic energy systems where heat dissipation significantly affects system performance.« less
NASA Astrophysics Data System (ADS)
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-06-01
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-06-24
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-01-01
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030
Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin
2017-09-26
The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr
2014-04-07
We report on the generation and characterization of a hump in the transfer characteristics of amorphous indium gallium zinc-oxide thin-film transistors by positive bias temperature stress. The hump depends strongly on the gate bias stress at 100 °C. Due to the hump, the positive shift of the transfer characteristic in deep depletion is always smaller that in accumulation. Since, the latter shift is twice the former, with very good correlation, we conclude that the effect is due to creation of a double acceptor, likely to be a cation vacancy. Our results indicate that these defects are located near the gate insulator/activemore » layer interface, rather than in the bulk. Migration of donor defects from the interface towards the bulk may also occur under PBST at 100 °C.« less
Stress before and after the 2002 Denali fault earthquake
Wesson, R.L.; Boyd, O.S.
2007-01-01
Spatially averaged, absolute deviatoric stress tensors along the faults ruptured during the 2002 Denali fault earthquake, both before and after the event, are derived, using a new method, from estimates of the orientations of the principal stresses and the stress change associated with the earthquake. Stresses are estimated in three regions along the Denali fault, one of which also includes the Susitna Glacier fault, and one region along the Totschunda fault. Estimates of the spatially averaged shear stress before the earthquake resolved onto the faults that ruptured during the event range from near 1 MPa to near 4 MPa. Shear stresses estimated along the faults in all these regions after the event are near zero (0 ?? 1 MPa). These results suggest that deviatoric stresses averaged over a few tens of km along strike are low, and that the stress drop during the earthquake was complete or nearly so.
Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation
2013-02-01
compressive stress at the interface between the composite and steel prior to the sheath’s cut-off. Accordingly, the viscoelastic analysis is used...The hoop-stress profile in figure 6 shows the steel region is in compression , resulting from the winding tension of composite overwrap. The stress...mechanical and thermal loads. Experimental validation of the model is conducted using a high- tensioned composite overwrapped on a steel cylinder. The creep
Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, A
2017-05-01
In a dental implant system, the value of stress and its distribution plays a pivotal role on the strength, durability and life of the implant-bone system. A typical implant consists of a Titanium core and a thin layer of biocompatible material such as the hydroxyapatite. This coating has a wide range of clinical applications in orthopedics and dentistry due to its biocompatibility and bioactivity characteristics. Low bonding strength and sudden variation of mechanical properties between the coating and the metallic layers are the main disadvantages of such common implants. To overcome these problems, a radial distributed functionally graded biomaterial (FGBM) was proposed in this paper and the effect of material property on the stress distribution around the dental implant-bone interface was studied. A three-dimensional finite element simulation was used to illustrate how the use of radial FGBM dental implant can reduce the maximum von Mises stress and, also the stress shielding effect in both the cortical and cancellous bones. The results, of course, give anybody an idea about optimized behaviors that can be achieved using such materials. The finite element solver was validated by familiar methods and the results were compared to previous works in the literature.
Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems
2015-01-01
The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping. PMID:25644121
Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification
Hamed, Hamed A.; Marzook, Hamdy A.; Ghoneem, Nahed E.; El–Anwar, Mohamed I.
2018-01-01
AIM: This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. METHODS: Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models’ components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). RESULTS: Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. CONCLUSION: It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one. PMID:29531612
NASA Astrophysics Data System (ADS)
Tang, Lan-Feng; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Qian, Hui-Min; Zhou, Dong; Zhang, Rong; Zheng, You-Dou; Huang, Xiao-Ming
2015-08-01
The influence of white light illumination on the stability of an amorphous InGaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Comparison of interphase models for a crack in fiber reinforced composite
NASA Astrophysics Data System (ADS)
Kaw, A. K.; Selvarathinam, A. S.; Besterfield, G. H.
1992-07-01
The influence of a nonhomogeneous interphase on fracture mechanics of a fiber reinforced composite is studied. The stress intensity factor at the crack tips, maximum interfacial shear and normal stresses, maximum cleavage stress in the matrix and load diffusion along the length of the fiber are studied as a function of the fiber width, the interphase thickness, and the relative stiffness properties of the fiber, the matrix and the interphase. The normal stresses at the interface, which represents the possibility of debonding of the interface, is lowest for interphase thicknesses of the order of one-tenth of the fiber-diameter, when the crack is in the stiffer material. These normal stresses are highest at such interphase thicknesses if the crack is in the less stiffer material. The results obtained by using the nonhomogeneous interphase model are also compared with five other interphase models used in the literature for the interphase, namely the perfect, the homogeneous, the distributed uncoupled shear and normal springs, and the distributed shear springs. It is found that the trends of the above parameters as a function of interphase thickness are different for the spring and continuum models, if the crack is in a stiffer material.
Li, Longbiao
2017-01-01
In this paper, the fatigue damage and lifetime of 2D SiC/SiC ceramic-matrix composites (CMCs) under cyclic fatigue loading at 750, 1000, 1100, 1200 and 1300 °C in air and in steam atmosphere have been investigated. The damage evolution versus applied cycles of 2D SiC/SiC composites were analyzed using fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain and interface shear stress. The presence of steam accelerated the damage development inside of SiC/SiC composites, which increased the increasing rate of the fatigue hysteresis dissipated energy and the fatigue peak strain, and the decreasing rate of the fatigue hysteresis modulus and the interface shear stress. The fatigue life stress-cycle (S-N) curves and fatigue limit stresses of 2D SiC/SiC composites at different temperatures in air and in steam condition have been predicted. The fatigue limit stresses approach 67%, 28%, 39% 17% and 28% tensile strength at 750, 1000, 1100, 1200 and 1300 °C in air, and 49%, 10%, 9% and 19% tensile strength at 750, 1000, 1200 and 1300 °C in steam conditions, respectively. PMID:28772736
Documentation of the U.S. Geological Survey Stress and Sediment Mobility Database
Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.
2012-01-01
The U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database contains estimates of bottom stress and sediment mobility for the U.S. continental shelf. This U.S. Geological Survey database provides information that is needed to characterize sea floor ecosystems and evaluate areas for human use. The estimates contained in the database are designed to spatially and seasonally resolve the general characteristics of bottom stress over the U.S. continental shelf and to estimate sea floor mobility by comparing critical stress thresholds based on observed sediment texture data to the modeled stress. This report describes the methods used to make the bottom stress and mobility estimates, statistics used to characterize stress and mobility, data validation procedures, and the metadata for each dataset and provides information on how to access the database online.
Desai, Shrikar R; Singh, Rika; Karthikeyan, I
2013-09-01
The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.
Ding, Xi; Zhu, Xing-Hao; Liao, Sheng-Hui; Zhang, Xiu-Hua; Chen, Hong
2009-07-01
To establish a 3D finite element model of a mandible with dental implants for immediate loading and to analyze stress distribution in bone around implants of different diameters. Three mandible models, embedded with thread implants (ITI, Straumann, Switzerland) with diameters of 3.3, 4.1, and 4.8 mm, respectively, were developed using CT scanning and self-developed Universal Surgical Integration System software. The von Mises stress and strain of the implant-bone interface were calculated with the ANSYS software when implants were loaded with 150 N vertical or buccolingual forces. When the implants were loaded with vertical force, the von Mises stress concentrated on the mesial and distal surfaces of cortical bone around the neck of implants, with peak values of 25.0, 17.6 and 11.6 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains (5854, 4903, 4344 muepsilon) were located on the buccal cancellous bone around the implant bottom and threads of implants. The stress and strain were significantly lower (p < 0.05) with the increased diameter of implant. When the implants were loaded with buccolingual force, the peak von Mises stress values occurred on the buccal surface of cortical bone around the implant neck, with values of 131.1, 78.7, and 68.1 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains occurred on the buccal surface of cancellous bone adjacent to the implant neck, with peak values of 14,218, 12,706, and 11,504 microm, respectively. The stress of the 4.1-mm diameter implants was significantly lower (p < 0.05) than those of 3.3-mm diameter implants, but not statistically different from that of the 4.8 mm implant. With an increase of implant diameter, stress and strain on the implant-bone interfaces significantly decreased, especially when the diameter increased from 3.3 to 4.1 mm. It appears that dental implants of 10 mm in length for immediate loading should be at least 4.1 mm in diameter, and uniaxial loading to dental implants should be avoided or minimized.
Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.
Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing
2018-01-10
Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation across the nanofiller/matrix interface. This work provides a new route for the rational design and development of polymer nanocomposites with exceptional mechanical performance.
Three-dimensional finite element analysis of the shear bond test.
DeHoff, P H; Anusavice, K J; Wang, Z
1995-03-01
The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.
NASA Technical Reports Server (NTRS)
Maekawa, S.; Lin, Y. K.
1977-01-01
The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface.
Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The numerical method is given for solving the plane problem for two bonded infinite dissimilar elastic strips which contain cracks of various configurations. The problem is intended to approximate a composite beam or a plate having cracks perpendicular to and on the interface of the two layers.
ERIC Educational Resources Information Center
Simonson, Michael R., Ed.; And Others
1996-01-01
This proceedings volume contains 77 papers. Subjects addressed include: image processing; new faculty research methods; preinstructional activities for preservice teacher education; computer "window" presentation styles; interface design; stress management instruction; cooperative learning; graphical user interfaces; student attitudes,…
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Interface structure and composition of MoO3/GaAs(0 0 1)
NASA Astrophysics Data System (ADS)
Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold
2018-04-01
We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+ oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.
Nonmonotonicity of the Frictional Bimaterial Effect
NASA Astrophysics Data System (ADS)
Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran
2017-10-01
Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.
Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng
2018-04-24
Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.
NASA Astrophysics Data System (ADS)
Hirsa, Amir H.; Lopez, Juan M.; Miraghaie, Reza
2001-09-01
The coupling between a bulk vortical flow and a surfactant-influenced air/water interface has been examined in a canonical flow geometry through experiments and computations. The flow in an annular region bounded by stationary inner and outer cylinders is driven by the constant rotation of the floor and the free surface is initially covered by a uniformly distributed insoluble monolayer. When driven slowly, this geometry is referred to as the deep-channel surface viscometer and the flow is essentially azimuthal. The only interfacial property that affects the flow in this regime is the surface shear viscosity, [mu]s, which is uniform on the surface due to the vanishingly small concentration gradient. However, when operated at higher Reynolds number, secondary flow drives the surfactant film towards the inner cylinder until the Marangoni stress balances the shear stress on the bulk fluid. In general, the flow can be influenced by the surface tension, [sigma], and the surface dilatational viscosity, [kappa]s, as well as [mu]s. However, because of the small capillary number of the present flow, the effects of surface tension gradients dominate the surface viscosities in the radial stress balance, and the effect of [mu]s can only come through the azimuthal stress. Vitamin K1 was chosen for this study since it forms a well-behaved insoluble monolayer on water and [mu]s is essentially zero in the range of concentration on the surface, c, encountered. Thus the effect of Marangoni elasticity on the interfacial stress could be isolated. The flow near the interface was measured in an optical channel using digital particle image velocimetry. Steady axisymmetric flow was observed at the nominal Reynolds number of 8500. A numerical model has been developed using the axisymmetric Navier Stokes equations to examine the details of the coupling between the bulk and the interface. The nonlinear equation of state, [sigma](c), for the vitamin K1 monolayer was measured and utilized in the computations. Agreement was demonstrated between the measurements and computations, but the flow is critically dependent on the nonlinear equation of state.
Grain-damage hysteresis and plate tectonic states
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2016-04-01
Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that deforms at a given stress can acquire two stable deformation regimes indicative of plate-like flows, i.e., it permits the coexistence of both slowly deforming plate interiors, and rapidly deforming plate boundaries. Earth seems to exist squarely inside the hysteresis loop and thus can have coexisting deformation states, while Venus appears to straddle the end of the loop where only the weakly deforming branch exists.
Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan
2010-01-01
Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.
Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads
NASA Technical Reports Server (NTRS)
Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin
2011-01-01
The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the object. A release agent is applied to the inside surface of the mount just before the binding potting material is injected in the mount. This prevents the potting material from bonding to the mount, and thus prevents stress from being applied, at very low temperatures, to the fragile object being mounted. The potting material mixing and curing is temperature- and humidity-controlled. The mount has radial grooves cut in it that the potting material fills, thus controlling the vertical position of the mounted object. The design can easily be used for long and thin objects, short and wide objects, and any shape in between. The design s advantages are amplified for long and thin fragile objects. The general testing range was 45 to +45 C, but multiple mounts were successfully tested down to 60 and up to 50 C and the design can be adjusted for larger ranges.
Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes
NASA Astrophysics Data System (ADS)
Ahmad, Zeeshan; Viswanathan, Venkatasubramanian
2017-08-01
We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.
High Temperature Mechanical Characterization of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.
1998-01-01
A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory provides the best approximation of the first matrix cracking stress when residual stresses are ignored. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate strength. The enhanced SiC/SiC composite exhibited nonlinear stress/strain behavior from 24 C to 1370 C in air with increased ultimate strain when compared to monolithic SiC. The theory of Yang and Chou with the assumption of a frictional fiber/matrix interface provided the best estimate of the Young's modulus. The theory of Cao and Thouless gave the best estimate for the ultimate strength.
Influence of phase transformation on stress evolution during growth of metal thin films on silicon.
Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P
2010-03-05
In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness.
Interlaminar stress singularities at a straight free edge in composite laminates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Crews, J. H., Jr.
1981-01-01
A quasi-three-dimensional finite-element analysis was used to analyze the edge-stress problem in four-ply, composite laminates. The seven laminates that were considered belong to the laminate family where the outer ply angle is between 0 and 90 deg. Systematic convergence studies were made to explore the existence of stress singularities near the free edge. The present analysis appears to confirm the existence of stress singularities at the intersection of the interface and the free edge. The power of the stress singularity was the same for all seven laminates considered.
Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jong Woo; Nathan, Arokia, E-mail: an299@cam.ac.uk; Barquinha, Pedro
2016-08-15
Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (V{sub TH}) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarizationmore » density. The second type of anomaly is negative V{sub TH} shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H{sub 2}O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.« less
NASA Astrophysics Data System (ADS)
Benyoucef, S.; Tounsi, A.; Yeghnem, R.; Bachir Bouiadjra, M.; Adda Bedia, E. A.
2014-01-01
The strengthening of steel structures in situ with externally bonded fiber-reinforced plastic (FRP) composite sheets is increasingly being used for the repair and rehabilitation of existing structures. The previous researchers have developed several analytical methods to predict the interface performance of bonded repairs. An important feature of a reinforced steel beam is the significant stress concentration in the adhesive at the ends of the FRP plate. In this paper, a closed-form solution for the interfacial shear and normal stresses in simply supported steel beams strengthened with a bonded FRP plate and subjected to thermomechanical loadings is presented. The shear strains of the adherends are included in the present theoretical analysis by assuming a parabolic distribution of shear stress across their thickness. Contrary to some existing studies, the assumption that both adherends have the same curvature is not used in the present study. The results of this numerical study are beneficial for understanding the mechanical behavior of material interfaces and for the design of hybrid FRP-reinforced steel structures.
Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2013-02-01
A procedure able to describe the curing process of a particulate composite material used in a dental restoration is developed in the ANSYS environment. The material under concern is a multifunctional methacrylate-based composite for dental restoration, activated by visible light. The model accounts for the dependence of the viscoelastic functions on temperature and degree of cure. Three geometries have been considered in the analysis that are representative of three different classes of dental restoration and mainly differ by the C (constrained)-factor, (i.e. the bounded to unbounded surface ratio). It was found that the temperature could give a necrosis in the vicinity of the tooth nerve and that the average stress at the interface between the composite and the tooth scales exponentially with the C-factor. The residual stress at the dental restoration interface is also compared with the uniaxial tensile strength of twelve commercially available composite materials: it clearly appears that the level of residual stress may overcome the strength of the composite, especially at high C-factors.
Distribution of peri-implant stresses with a countertorque device.
Sendyk, Claudio Luiz; Lopez, Thais Torralbo; de Araujo, Cleudmar Amaral; Sendyk, Wilson Roberto; Goncalvez, Valdir Ferreira
2013-01-01
To verify the effectiveness of a countertorque device in dental implants in redistributing stress to the bone-implant interface during tightening of the abutment screw. Two prismatic photoelastic samples containing implants were made, one with a 3.75-mm-diameter implant and the other with a 5.0-mm-diameter implant (both implants had an external-hexagon interface) and the respective abutments were attached (CeraOne). The samples were placed in a support and submitted to torques of 10, 20, 32, and 45 Ncm with an electronic torque meter. The torque application was repeated 10 times on each sample (n = 10) with and without a countertorque device. Photoelastic patterns were detected; thus, a photographic register of each test was selected. The fringe patterns were analyzed at discrete points near the implants' external arch. In both implants analyzed, a stress gradient reduction was observed through the implant with the countertorque device. The countertorque device used in this study proved to be effective in reducing the stresses generated in the peri-implant bone tissue during torque application.
Kim, Kyong; Song, Won Kyung; Chong, Woo Suk; Yu, Chang Ho
2018-04-17
The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients, etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement. Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied 250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety factors are computed to be 7.83 and 5.26, confirming the RRTS's mechanical safety. An RRTS with verified structural safety could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.
NASA Astrophysics Data System (ADS)
Gupta, Mohit; Kumara, Chamara; Nylén, Per
2017-08-01
Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Aboudi, Jacob; Arnold, Steven M.
1999-01-01
The effects of interfacial roughness and oxide film thickness on thermally-induced stresses in plasma-sprayed thermal barrier coatings subjected to thermal cycling are investigated using the recently developed higher-order theory for functionally graded materials. The higher-order theory is shown to be a viable alternative to the finite-element approach, capable of modeling different interfacial roughness architectures in the presence of an aluminum oxide layer and capturing the high stress gradients that occur at the top coat/bond coat interface. The oxide layer thickness is demonstrated to have a substantially greater effect on the evolution of residual stresses than local variations in interfacial roughness. Further, the location of delamination initiation in the top coat is predicted to change with increasing oxide layer thickness. This result can be used to optimize the thickness of a pre-oxidized layer introduced at the top coat/bond coat interface in order to enhance TBC durability as suggested by some researchers. The results of our investigation also support a recently proposed hypothesis regarding delamination initiation and propagation in the presence of an evolving bond coat oxidation, while pointing to the importance of interfacial roughness details and specimen geometry in modeling this phenomenon.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Tian, Wenya; Li, Junhui; Zhu, Wenhui
2018-04-01
In order to study the electromigration (EM) behavior of solder joints in electronics packaging, especially under high-current and high-temperature working conditions, line-type Cu/solder/Cu butting samples were prepared to observe the microstructural evolution under 1.0 × 104 A/cm2 current stressing. A prominent polarity effect was found such that the Cu6Sn5 intermetallic compound (IMC) layer at the anode side, which thickened linearly with time, was much thicker than that at the cathode side. Compared to the samples subjected to thermal aging at the same temperature of 180°C, EM enhanced the Cu3Sn growth at both the anode and the cathode. Two distinct types of damage were observed after extended duration of current stressing. Back-flow of Cu into Cu3Sn was found at the Cu3Sn/Cu6Sn5 interface of the anode side, causing large voids, while strip cracks developed at the cathode solder/Cu6Sn5 interface, causing a significant increase of joint electrical resistance. With the mass transport characteristics that determine the IMC growth and vacancy accumulation analyzed in detail at each interface, formation mechanisms of the two types of damages are discussed.
On the curvature effect of thin membranes
NASA Astrophysics Data System (ADS)
Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James
2013-01-01
We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.
Probing embryonic tissue mechanics with laser hole drilling
NASA Astrophysics Data System (ADS)
Ma, Xiaoyan; Lynch, Holley E.; Scully, Peter C.; Hutson, M. Shane
2009-09-01
We use laser hole drilling to assess the mechanics of an embryonic epithelium during development—in vivo and with subcellular resolution. We ablate a subcellular cylindrical hole clean through the epithelium and track the subsequent recoil of adjacent cells (on ms time scales). We investigate dorsal closure in the fruit fly with emphasis on apical constriction of amnioserosa cells. The mechanical behavior of this epithelium falls between that of a continuous sheet and a 2D cellular foam (a network of tensile interfaces). Tensile stress is carried both by cell-cell interfaces and by the cells' apical actin networks. Our results show that stress is slightly concentrated along interfaces (1.6-fold), but only in early closure. Furthermore, closure is marked by a decrease in the recoil power-law exponent, implying a transition to a more solid-like tissue. We use the site and stage dependence of the recoil kinetics to constrain how the cellular mechanics change during closure. We apply these results to test extant computational models.
ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry.
Lohbauer, Ulrich; Scherrer, Susanne S; Della Bona, Alvaro; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, J Robert; Cesar, Paulo F
2017-06-01
This guidance document describes the specific issues involved in dental multilayer ceramic systems. The material interactions with regard to specific thermal and mechanical properties are reviewed and the characteristics of dental tooth-shaped processing parameters (sintering, geometry, thickness ratio, etc.) are discussed. Several techniques for the measurement of bond quality and residual stresses are presented with a detailed discussion of advantages and disadvantages. In essence no single technique is able to describe adequately the all-ceramic interface. Invasive or semi-invasive methods have been shown to distort the information regarding the residual stress state while non-invasive methods are limited due to resolution, field of focus or working depth. This guidance document has endeavored to provide a scientific basis for future research aimed at characterizing the ceramic interface of dental restorations. Along with the methodological discussion it is seeking to provide an introduction and guidance to relatively inexperienced researchers. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A Web-based interface to calculate phonotactic probability for words and nonwords in English
VITEVITCH, MICHAEL S.; LUCE, PAUL A.
2008-01-01
Phonotactic probability refers to the frequency with which phonological segments and sequences of phonological segments occur in words in a given language. We describe one method of estimating phonotactic probabilities based on words in American English. These estimates of phonotactic probability have been used in a number of previous studies and are now being made available to other researchers via a Web-based interface. Instructions for using the interface, as well as details regarding how the measures were derived, are provided in the present article. The Phonotactic Probability Calculator can be accessed at http://www.people.ku.edu/~mvitevit/PhonoProbHome.html. PMID:15641436
Phase transition and strength of vanadium under shock compression up to 88 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuying, E-mail: yuyinyu@caep.cn; Tan, Ye; Dai, Chengda
A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than themore » BCC phase, which is contrast to the findings from DAC experiments and theoretical work.« less
Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Hardt, Steffen
2017-12-01
The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.
Vali, Faisal; Hong, Robert
2007-10-11
With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.
A mobile phone user interface for image-based dietary assessment
NASA Astrophysics Data System (ADS)
Ahmad, Ziad; Khanna, Nitin; Kerr, Deborah A.; Boushey, Carol J.; Delp, Edward J.
2014-02-01
Many chronic diseases, including obesity and cancer, are related to diet. Such diseases may be prevented and/or successfully treated by accurately monitoring and assessing food and beverage intakes. Existing dietary assessment methods such as the 24-hour dietary recall and the food frequency questionnaire, are burdensome and not generally accurate. In this paper, we present a user interface for a mobile telephone food record that relies on taking images, using the built-in camera, as the primary method of recording. We describe the design and implementation of this user interface while stressing the solutions we devised to meet the requirements imposed by the image analysis process, yet keeping the user interface easy to use.
A Mobile Phone User Interface for Image-Based Dietary Assessment
Ahmad, Ziad; Khanna, Nitin; Kerr, Deborah A.; Boushey, Carol J.; Delp, Edward J.
2016-01-01
Many chronic diseases, including obesity and cancer, are related to diet. Such diseases may be prevented and/or successfully treated by accurately monitoring and assessing food and beverage intakes. Existing dietary assessment methods such as the 24-hour dietary recall and the food frequency questionnaire, are burdensome and not generally accurate. In this paper, we present a user interface for a mobile telephone food record that relies on taking images, using the built-in camera, as the primary method of recording. We describe the design and implementation of this user interface while stressing the solutions we devised to meet the requirements imposed by the image analysis process, yet keeping the user interface easy to use. PMID:28572696
A Mobile Phone User Interface for Image-Based Dietary Assessment.
Ahmad, Ziad; Khanna, Nitin; Kerr, Deborah A; Boushey, Carol J; Delp, Edward J
2014-02-02
Many chronic diseases, including obesity and cancer, are related to diet. Such diseases may be prevented and/or successfully treated by accurately monitoring and assessing food and beverage intakes. Existing dietary assessment methods such as the 24-hour dietary recall and the food frequency questionnaire, are burdensome and not generally accurate. In this paper, we present a user interface for a mobile telephone food record that relies on taking images, using the built-in camera, as the primary method of recording. We describe the design and implementation of this user interface while stressing the solutions we devised to meet the requirements imposed by the image analysis process, yet keeping the user interface easy to use.
Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites
NASA Astrophysics Data System (ADS)
Hsueh, Chun-Hway
1992-11-01
Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.
Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces
NASA Astrophysics Data System (ADS)
Ahmad, Zeeshan; Viswanathan, Venkatasubramanian
2017-10-01
We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.
Harmonic elastic inclusions in the presence of point moment
NASA Astrophysics Data System (ADS)
Wang, Xu; Schiavone, Peter
2017-12-01
We employ conformal mapping techniques to design harmonic elastic inclusions when the surrounding matrix is simultaneously subjected to remote uniform stresses and a point moment located at an arbitrary position in the matrix. Our analysis indicates that the uniform and hydrostatic stress field inside the inclusion as well as the constant hoop stress along the entire inclusion-matrix interface (on the matrix side) are independent of the action of the point moment. In contrast, the non-elliptical shape of the harmonic inclusion depends on both the remote uniform stresses and the point moment.
NASA Astrophysics Data System (ADS)
Mueller, W. H.; Schmauder, S.
1993-02-01
The plane stress/plane strain problem of radial matrix cracking in fiber-reinforced composites, due to thermal mismatch and externally applied stress is solved numerically in the framework of linear elasticity, using Erdogan's integral equation technique. It is shown that, in order to obtain the results of the combined loading case, the solutions of purely thermal and purely mechanical loading can simply be superimposed. Stress-intensity factors are calculated for various lengths and distances of the crack from the interface for each of these loading conditions.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin
2017-04-01
Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.
Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.
2011-01-01
The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Scambelluri, Marco; Bebout, Gray E.; Belmonte, Donato; Gilio, Mattia; Campomenosi, Nicola; Collins, Nathan; Crispini, Laura
2016-05-01
Much of the long-term carbon cycle in solid earth occurs in subduction zones, where processes of devolatilization, partial melting of carbonated rocks, and dissolution of carbonate minerals lead to the return of CO2 to the atmosphere via volcanic degassing. Release of COH fluids from hydrous and carbonate minerals influences C recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Several lines of evidence indicate mobility of C, of uncertain magnitude, in forearcs. A poorly constrained fraction of the 40-115 Mt/yr of C initially subducted is released into fluids (by decarbonation and/or carbonate dissolution) and 18-43 Mt/yr is returned at arc volcanoes. Current estimates suggest the amount of C released into subduction fluids is greater than that degassed at arc volcanoes: the imbalance could reflect C subduction into the deeper mantle, beyond subarc regions, or storage of C in forearc/subarc reservoirs. We examine the fate of C in plate-interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite in the Ligurian Alps. Based on petrography, major and trace element concentrations, and carbonate C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550 °C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids and that the interaction of these COH fluids with serpentinite led to the formation of high-P carbonated ultramafic-rock domains (high-P ophicarbonates). We estimate that this could result in the retention of ∼0.5-2.0 Mt C/yr in such rocks along subduction interfaces. As another means of C storage, 1 to 3 km-thick layers of serpentinized forearc mantle wedge containing 50 modal % dolomite could sequester 1.62 to 4.85 Mt C/yr. We stress that lithologically complex interfaces could contain sites of both C release and C addition, further confounding estimates of net C loss at forearc and subarc depths. Sites of C retention, also including carbonate veins and graphite as reduced carbonate, could influence the transfer of slab C to at least the depths beneath volcanic fronts.
Vision-based stress estimation model for steel frame structures with rigid links
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan
2017-07-01
This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.
Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.
2017-05-01
We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.
Seismoelectric field measurements in unconsolidated sediments
NASA Astrophysics Data System (ADS)
Rabbel, Wolfgang; Iwanowski-Strahser, Katja; Strahser, Matthias; Dzieran, Laura; Thorwart, Martin
2017-04-01
Seismoelectric (SE) prospecting has the potential of determining hydraulic permeability in situ. However, the SE response of geological interfaces (IR) is influenced also by porosity, saturation and salinity. We present examples of SE surveys of near-surface unconsolidated sediments showing clear IR arrivals from the shallow groundwater table and laterally consistent IR arrivals from interfaces inside the vadoze zone. Theses measurements are complemented by seismic, GPR and geoelectric surveys for constraining bulk porosity, water saturation and salinity. They show that porosity and water content change at the interfaces generating IR arrivals. The combination of these methods enables us to estimate permeability contrast associated with major IR arrivals via numerical modeling of SE waveform amplitudes. In case of the analyzed field example this contrast is estimated to be of the order of 10 within the vadoze zone and of 100 at the aquifer-aquitard interface.
NASA Astrophysics Data System (ADS)
Izuka, Scot K.; Gingerich, Stephen B.
An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des gradients verticaux de charge à partir des mesures de niveau piézométrique faites en cours de foration d'un puits incomplet; le gradient est alors utilisé pour estimer la profondeur de l'interface. L'application de cette méthode à un système eau douce - eau salée simulé numériquement montre que la méthode est la plus précise lorsque le gradient est mesuré dans un puits pénétrant profondément dans l'aquifère. Même en utilisant un puits peu profond, la méthode estime la position de l'interface avec plus de précision que ne le fait la relation de Ghyben-Herzberg lorsqu'il existe un gradient vertical de charge bien marqué. L'application de la méthode à des données de terrain montre que la foration, les méthodes de mesure de niveau et les hétérogénéités au sein de l'aquifère peuvent être la cause de difficultés, mais que les effets de ces difficultés peuvent être réduits. Resumen Para la estimación de la productividad de pozos en acuíferos costeros y en islas es necesaria una estimación precisa de la profundidad de la interfaz teórica entre agua dulce y agua salada. La relación de Ghyben-Herzberg, usada habitualmente para estimar la profundidad de la interfaz, puede subestimar o sobrestimar el espesor de agua dulce, al asumir la ausencia de flujos y gradientes verticales. La estimación de la profundidad de la interfaz debe considerar tanto estos gradientes verticales, como la posible anisotropía del acuífero. En este artículo se presenta un método para calcular los gradientes verticales de niveles a partir de las medidas obtenidas durante la perforación de un pozo parcialmente penetrante para, a partir de este gradiente, estimar la profundidad de la interfaz. La aplicación del método a un sistema de agua dulce/agua salada simulado numéricamente muestra que el método es más preciso cuando el gradiente se mide en un pozo profundo. Incluso en el caso de un pozo superficial, el método permite una estimación más precisa de la profundidad de la interfaz que la aplicación de la fórmula de Ghyben-Herzberg, en los casos en los que existen gradientes verticales significativos. La aplicación del método a datos reales muestra que la perforación, la recogida de datos de niveles y la heterogeneidad en el acuífero pueden causar dificultades en la aplicación del método, pero que estas pueden minimizarse.
NASA Astrophysics Data System (ADS)
Seyum, S.
2017-12-01
This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on conditions that reproduce measured fracture geometries. The results of this study provide predictive, field-supported fracture geometries for flow models and, with appropriate changes to the parameters, the methodology is applicable to describing fracture geometries in chalk hydrocarbon systems.
Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.
2011-03-01
Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.
NASA Astrophysics Data System (ADS)
Kim, Hee Y.; Maruyama, K.
2003-10-01
The hard-orientated polysynthetically twinned (PST) crystal with the lamellar plates oriented parallel to the compression axis was deformed at 1150 K under the applied stress of 158 to 316 MPa. Microstructural changes were examined quantitatively for the PST crystal during creep deformation. In the as-grown PST crystal of the present study, proportions of α 2/ γ, true twin, pseudotwin, and 120 deg rotational fault interfaces were 12, 59, 12, and 17 pct, respectively. After creep deformation, lamellar coarsening by dissolution of α 2 lamellae and migration of γ/γ interfaces were observed. The acceleration of creep rate after the minimum strain rate in the creep curve was attributed to the lamellar coarsening and destruction of lamellar structure during the creep deformation. Thirty-two percent of α 2/ γ interfaces, 51 pct of true twin interfaces, 74 pct of pseudotwin interfaces, and 80 pct of 120 deg rotational faults disappeared after 4 pct creep strain at 1150 K. The α 2/ γ interface was more stable than γ/γ interfaces during the creep deformation. The pseudotwin interface and 120 deg rotational fault were less thermally stable than the true twin interface for γ/γ interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Shiyang; Nakajima, Anri; Ohashi, Takuo
2005-12-01
The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{submore » ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.« less
1993-04-01
Evans. Zok). Cyclic loading into the stress range at which matrix craiks exist is known to modify the interface sliding stress and may weaken the...Leiske and Duwayne Brodnicky; the engineering staff: Jennifer Heine and Barrie Peters; and the management: Brad Cowles and Doug Nethaway. Mackin et
Zonal PANS: evaluation of different treatments of the RANS-LES interface
NASA Astrophysics Data System (ADS)
Davidson, L.
2016-03-01
The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.
Benchmarking passive seismic methods of estimating the depth of velocity interfaces down to ~300 m
NASA Astrophysics Data System (ADS)
Czarnota, Karol; Gorbatov, Alexei
2016-04-01
In shallow passive seismology it is generally accepted that the spatial autocorrelation (SPAC) method is more robust than the horizontal-over-vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in western Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Depths of this interface intersected in drill holes are between ~27 m and ~300 m. Seismometers were deployed in a three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium Compact 120 s broadband instruments. Data were acquired at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighbourhood algorithm, implemented in the geopsy modelling package (Wathelet, 2005, GRL v35). The HVSR technique yielded depth estimates of the target interface (Vs > 1000 m/s) generally within ±20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments which in turn overlie the target basement. Half of the SPAC estimates showed significantly higher errors than were obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low levels of anthropogenic noise at the benchmark sites. At a few sites SPAC waveform curves showed clear overtones suggesting that more reliable SPAC estimates may be obtained utilizing a multi-modal inversion. Nevertheless, our study indicates that reliable basin thickness estimates in the Australian conditions tested can be obtained utilizing HVSR data from a single seismometer, without a priori knowledge of the surface-wave velocity of the basin material, thereby negating the need to deploy cumbersome arrays.
Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface
NASA Astrophysics Data System (ADS)
Rowe, Gabriel I.; Mamishev, Alexander V.
2004-07-01
Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.
Stress intensity factors in a reinforced thick-walled cylinder
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1984-01-01
An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.
Long-period spectral features of the Sumatra-Andaman 2004 earthquake rupture process
NASA Astrophysics Data System (ADS)
Clévédé, E.; Bukchin, B.; Favreau, P.; Mostinskiy, A.; Aoudia, A.; Panza, G. F.
2012-12-01
The goal of this study is to investigate the spatial variability of the seismic radiation spectral content of the Sumatra-Andaman 2004 earthquake. We determine the integral estimates of source geometry, duration and rupture propagation given by the stress glut moments of total degree 2 of different source models. These models are constructed from a single or a joint use of different observations including seismology, geodesy, altimetry and tide gauge data. The comparative analysis shows coherency among the different models and no strong contradictions are found between the integral estimates of geodetic and altimetric models, and those retrieved from very long period seismic records (up to 2000-3000 s). The comparison between these results and the integral estimates derived from observed surface wave spectra in period band from 500 to 650 s suggests that the northern part of the fault (to the north of 8°N near Nicobar Islands) did not radiate long period seismic waves, that is, period shorter than 650 s at least. This conclusion is consistent with the existing composite short and long rise time tsunami model: with short rise time of slip in the southern part of the fault and very long rise time of slip at the northern part. This complex space-time slip evolution can be reproduced by a simple dynamic model of the rupture assuming a crude phenomenological mechanical behaviour of the rupture interface at the fault scales combining an effective slip-controlled exponential weakening effect, related to possible friction and damage breakdown processes of the fault zone, and an effective linear viscous strengthening effect, related to possible interface lubrication processes. While the rupture front speed remains unperturbed with initial short slip duration, a slow creep wave propagates behind the rupture front in the case of viscous effects accounting for the long slip duration and the radiation characteristics in the northern segment.
Effect of bandage thickness on interface pressure applied by compression bandages.
Al Khaburi, Jawad; Dehghani-Sanij, Abbas A; Nelson, E Andrea; Hutchinson, Jerry
2012-04-01
Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by these bandages using mathematical models. This paper reports on the work carried out to derive the mathematical model used to describe the interface pressure applied by single-layer bandage using two different approaches. The first assumes that the bandage thickness is negligible, whereas the second model includes the bandage thickness. The estimated pressures using the two formulae are then compared, simulated over a 3D representation of a real leg and validated experimentally. Both theoretical and experimental results have shown that taking bandage thickness into consideration while estimating the pressures applied by a medical compression bandage will result in more accurate estimation. However, the additional accuracy is clinically insignificant. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Quasi-dynamic Earthquake Cycle Simulation in a Viscoelastic Medium with Memory Variables
NASA Astrophysics Data System (ADS)
Hirahara, K.; Ohtani, M.; Shikakura, Y.
2011-12-01
Earthquake cycle simulations based on rate and state friction laws have successfully reproduced the observed complex earthquake cycles at subduction zones. Most of simulations have assumed elastic media. The lower crust and the upper mantle have, however, viscoelastic properties, which cause postseismic stress relaxation. Hence the slip evolution on the plate interfaces or the faults in long earthquake cycles is different from that in elastic media. Especially, the viscoelasticity plays an important role in the interactive occurrence of inland and great interplate earthquakes. In viscoelastic media, the stress is usually calculated by the temporal convolution of the slip response function matrix and the slip deficit rate vector, which needs the past history of slip rates at all cells. Even if properly truncating the convolution, it requires huge computations. This is why few simulation studies have considered viscoelastic media so far. In this study, we examine the method using memory variables or anelastic functions, which has been developed for the time-domain finite-difference calculation of seismic waves in a dissipative medium (e.g., Emmerich and Korn,1987; Moczo and Kristek, 2005). The procedure for stress calculation with memory variables is as follows. First, we approximate the time-domain slip response function calculated in a viscoelastic medium with a series of relaxation functions with coefficients and relaxation times derived from a generalized Maxell body model. Then we can define the time-domain material-independent memory variable or anelastic function for each relaxation mechanism. Each time-domain memory variable satisfies the first-order differential equation. As a result, we can calculate the stress simply by the product of the unrelaxed modulus and the slip deficit subtracted from the sum of memory variables without temporal convolution. With respect to computational cost, we can summarize as in the followings. Dividing the plate interface into N cells, in elastic media, the stress at all cells is calculated by the product of the slip response function matrix and the slip deficit vector. The computational cost is O(N**2). With H-matrices method, we can reduce this to O(N)-O(NlogN) (Ohtani et al. 2011). The memory size is also reduced from O(N**2) to O(N). In viscoelastic media, the product of the unrelaxed modulus matrix and the vector of the slip deficit subtracted from the sum of memory variables costs O(N) with H-matrices method, which is the same as in elastic ones. If we use m relaxation functions, m x N differential equations are additionally solved at a time. The increase in memory size is (4m+1) x N**2. For approximation of slip response function, we need to estimate coefficients and relaxation times for m relaxation functions non-linearly with constraints. Because it is difficult to execute the non-linear least square estimation with constraints, we consider only m=2 with satisfying constraints. Test calculations in a layered or 3-D heterogeneous viscoelastic structure show this gives the satisfactory approximation. As an example, we report a 2-D earthquake cycle simulation for the 2011 giant Tohoku earthquake in a layered viscoelastic medium.
NASA Astrophysics Data System (ADS)
Soh, I.; Chang, C.
2017-12-01
The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress magnitude variation.
Desai, Shrikar R.; Singh, Rika; Karthikeyan, I.
2013-01-01
Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm–diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results. PMID:24174759
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.
2018-03-01
Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.
The Dynamics of Miscible Fluids: A Space Flight Experiment (MIDAS)
NASA Technical Reports Server (NTRS)
Maxworthy, T.; Meiburg, E.; Balasubramaniam, R.; Rashidnia, N.; Lauver, R.
2001-01-01
We propose a space flight experiment to study the dynamics of miscible interfaces. A less viscous fluid displaces one of higher viscosity within a tube. The two fluids are miscible in all proportions. An intruding "finger" forms that occupies a fraction of the tube. As time progresses diffusion at the interface combined with flow induced straining between the two fluids modifies the concentration and velocity distributions within the whole tube. Also, under such circumstances it has been proposed that the interfacial stresses could depend on the local concentration gradients (Korteweg stresses) and that the divergence of the velocity need not be zero, even though the flow is incompressible. We have obtained reasonable agreement for the tip velocity between numerical simulations (that ignored the Korteweg stress and divergence effects) and physical experiments only at high Peelet Numbers. However at moderate to low Pe agreement was poor. As one possibility we attributed this lack of agreement to the disregard of these effects. We propose a space experiment to measure the finger shape, tip velocity, and the velocity and concentration fields. From intercomparisons between the experiment and the calculations we can then extract values for the coefficients of the Korteweg stress terms and confirm or deny the importance of these stresses.
The Dynamics of Miscible Fluids: A Space Flight Experiment (MIDAS)
NASA Technical Reports Server (NTRS)
Maxworthy, T.; Meiburg, E.; Balasubramaniam, R.; Rashidnia, N.; Lauver, R.
2001-01-01
We propose a space flight experiment to study the dynamics of miscible interfaces. A less viscous fluid displaces one of higher viscosity within a tube. The two fluids are miscible in all proportions. An intruding "finger" forms that occupies a fraction of the tube. As time progresses diffusion at the interface combined with flow induced straining between the two fluids modifies the concentration and velocity distributions within the whole tube. Also, under such circumstances it has been proposed that the interfacial stresses could depend on the local concentration gradients (Korteweg stresses) and that the divergence of the velocity need not be zero, even though the flow is incompressible. We have obtained reasonable agreement for the tip velocity between numerical simulations (that ignored the Korteweg stress and divergence effects) and physical experiments only at high Peclet Numbers. However at moderate to low Pe agreement was poor. As one possibility we attributed this lack of agreement to the disregard of these effects. We propose a space experiment to measure the finger shape, tip velocity, and the velocity and concentration fields. From intercomparisons between the experiment and the calculations we can then extract values for the coefficients of the Korteweg stress terms and confirm or deny the importance of these stresses.
Krause, Bärbel; Abadias, Gregory; Michel, Anny; Wochner, Peter; Ibrahimkutty, Shyjumon; Baumbach, Tilo
2016-12-21
The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and Mo 1-x Si x films on amorphous Si (a-Si). The simultaneous measurements provide direct evidence of a spontaneous, thickness-dependent amorphous-to-crystalline (a-c) phase transition, associated with tensile stress build-up and surface roughening. This phase transformation is thermodynamically driven, the metastable amorphous layer being initially stabilized by the contributions of surface and interface energies. A quantitative analysis of the XRD data, complemented by simulations of the transformation kinetics, unveils an interface-controlled crystallization process. This a-c phase transition is also dominating the stress evolution. While stress build-up can significantly limit the performance of devices based on nanostructures and thin films, it can also trigger the formation of these structures. The simultaneous in situ access to the stress signal itself, and to its microstructural origins during structure formation, opens new design routes for tailoring nanoscale devices.
Micromechanical combined stress analysis: MICSTRAN, a user manual
NASA Technical Reports Server (NTRS)
Naik, R. A.
1992-01-01
Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.
NASA Astrophysics Data System (ADS)
Mulligan, Ryan P.; Hanson, Jeffrey L.
2016-06-01
Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.
Pan, Qing-Qing; Li, Shuang-Bao; Duan, Ying-Chen; Wu, Yong; Zhang, Ji; Geng, Yun; Zhao, Liang; Su, Zhong-Min
2017-11-29
The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.
2010-01-01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3s1 ÿ s2 2b s x: ð8Þ Note that Eqs. (7) and (8) are nonlinear diffusion equations, and as such possess solitonic ...ðDGh ¼ 0Þ is approached, an Mÿ—Mþ interface splits into Mÿ—A and A—Mþ diffuse interfaces sepa- rated by a layer of A ( soliton splitting – Falk, 1983...in the bottom figure for g1, the dark blue field corresponds to g2 ¼ 1, i.e., with the variant M2. After passing through a complex microstructure
Transverse ductility of metal matrix composites
NASA Technical Reports Server (NTRS)
Gunawardena, S. R.; Jansson, S.; Leckie, F. A.
1991-01-01
The role of the fiber matrix interface bond on the transverse ductility of continuous fiber reinforced composites has been investigated. Two specific systems have been considered: an Aluminum alloy matrix reinforced by Alumina fibers, characterized by a strong interface and a Titanium alloy reinforced by coated Silicon Carbide fibers, characterized by a weak interface. A micro-mechanical study indicates that the bond condition has a significant effect on the state of stress in the matrix which in turn dictates the available matrix ductility. The micro-mechanical predictions are in good agreement with the experimental results for the two systems.
Rupp, Rüdiger
2014-01-01
Brain computer interfaces (BCIs) are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons, or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological impairments supervised by clinical personnel or caregivers. However, clinicians and patients face many challenges in the application of BCIs. This particularly applies to high spinal cord injured patients, in whom artificial ventilation, autonomic dysfunctions, neuropathic pain, or the inability to achieve a sufficient level of control during a short-term training may limit the successful use of a BCI. Additionally, spasmolytic medication and the acute stress reaction with associated episodes of depression may have a negative influence on the modulation of brain waves and therefore the ability to concentrate over an extended period of time. Although BCIs seem to be a promising assistive technology for individuals with high spinal cord injury systematic investigations are highly needed to obtain realistic estimates of the percentage of users that for any reason may not be able to operate a BCI in a clinical setting. PMID:25309420
An analysis of pipe flange connections using epoxy adhesives/anaerobic sealant instead of gaskets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Sasaki, R.; Yoneno, M.
1995-11-01
This paper deals with the strength and the sealing performance of pipe flange connections combining the bonding force of adhesives with the clamping force of bolts. The epoxy adhesives or anaerobic sealants are bonded at the interface partially instead of gaskets in pipe flange connections. The stress distribution in the epoxy adhesives (anaerobic sealant), which governs the sealing performance, and the variations in axial bolt force are analyzed, using an axisymmetrical theory of elasticity, when an internal pressure is applied to a connection in which two pipe flanges are clamped together buy bolts and nuts with an initial clamping forcemore » after being joined by epoxy adhesives or anaerobic sealant. In addition, a method for estimating the strength of the combination connection is demonstrated. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination connections. It can be seen that the strength of connections increases with a decrease in the bolt pitch circle diameter. Furthermore, it is seen that the sealing performance of such combination connections in which the interface is bonded partially is improved over that of pipe flange connections with metallic gaskets.« less
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1998-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.
1999-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.
A geometric exploration of stress in deformed liquid foams
NASA Astrophysics Data System (ADS)
Evans, Myfanwy E.; Schröder-Turk, Gerd E.; Kraynik, Andrew M.
2017-03-01
We explore an alternate way of looking at the rheological response of a yield stress fluid: using discrete geometry to probe the heterogeneous distribution of stress in soap froth. We present quasi-static, uniaxial, isochoric compression and extension of three-dimensional random monodisperse soap froth in periodic boundary conditions and examine the stress and geometry that result. The stress and shape anisotropy of individual cells is quantified by Q, a scalar measure derived from the interface tensor that gauges each cell’s contribution to the global stress. Cumulatively, the spatial distribution of highly deformed cells allows us to examine how stress is internally distributed. The topology of highly deformed cells, how they arrange relative to one another in space, gives insight into the heterogeneous distribution of stress.
NASA Astrophysics Data System (ADS)
Furuta, Mamoru; Kamada, Yudai; Hiramatsu, Takahiro; Li, Chaoyang; Kimura, Mutsumi; Fujita, Shizuo; Hirao, Takashi
2011-03-01
The positive bias instabilities of the zinc oxide thin-film transistors (ZnO TFTs) with a SiOx/SiNx-stacked gate insulator have been investigated. The film quality of a gate insulator of SiOx, which forms an interface with the ZnO channel, was varied by changing the gas mixture ratio of SiH4/N2O/N2 during plasma-enhanced chemical vapor deposition. The positive bias stress endurance of ZnO TFT strongly depended on the deposition condition of the SiOx gate insulator. From the relaxations of the transfer curve shift after imposition of positive bias stress, transfer curves could not be recovered completely without any thermal annealing. A charge trapping in a gate insulator rather than that in bulk ZnO and its interface with a gate insulator is a dominant instability mechanism of ZnO TFTs under positive bias stress.
Mechanical Behavior of a Hi-Nicalon(tm)/SiC Composite Having a Polycarbosilane Derived Matrix
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.
1999-01-01
Polymer infiltration of a rigidized preform, followed by pyrolysis to convert the polymer to a ceramic, potentially offers a lower cost alternative to CVD. It also offers more moderate temperature requirements than melt infiltration approaches, which should minimize potential fiber damage during processing. However, polymer infiltration and pyrolysis results in a more microcracked matrix. Preliminary mechanical property characterization, including elevated temperature (1204 C) tensile, 500 h stress rupture behavior and low cycle fatigue, was conducted on Hi-Nicalon (TM)/Si-C-(O) composites having a dual layer BN/SiC interface and a matrix derived by impregnation and pyrolysis of allylhydridopolycarbosilane (AHPCS). Microstructural evaluation of failure surfaces and of polished transverse and longitudinal cross sections of the failed specimens was used to identify predominant failure mechanisms. In stress rupture testing at 1093 C, the failure was interface dominated, while at 1204 C in both stress rupture and two hour hold/fatigue tests failure was matrix dominated, resulting in specimen delamination.