Sample records for interface technology initiative

  1. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  2. Interface between Education and Technology: Australia. Education and Polity 1.

    ERIC Educational Resources Information Center

    Birch, Ian; And Others

    The first of three main sections in this review of research covers current and recent developments in the interfacing of education and technology in Australia, with particular attention paid to policy initiatives adopted by governments, industry, academic institutions, and the community with respect to the interface. The second part reviews…

  3. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    PubMed Central

    Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha

    2017-01-01

    With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  4. Adaptive Interfaces

    DTIC Science & Technology

    1990-11-01

    to design and implement an adaptive intelligent interface for a command-and-control-style domain. The primary functionality of the resulting...technical tasks, as follows: 1. Analysis of Current Interface Technologies 2. Dejineation of User Roles 3. Development of User Models 4. Design of Interface...Management Association (FEMA). In the initial version of the prototype, two distin-t user models were designed . One type of user modeled by the system is

  5. Who Needs to Fit In? Who Gets to Stand Out? Communication Technologies Including Brain-Machine Interfaces Revealed from the Perspectives of Special Education School Teachers through an Ableism Lens

    ERIC Educational Resources Information Center

    Diep, Lucy; Wolbring, Gregor

    2013-01-01

    Some new and envisioned technologies such as brain machine interfaces (BMI) that are being developed initially for people with disabilities, but whose use can also be expanded to the general public have the potential to change body ability expectations of disabled and non-disabled people beyond the species-typical. The ways in which this dynamic…

  6. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  7. The development of an intelligent user interface for NASA's scientific databases

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Roelofs, Larry H.

    1986-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI effort is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. This paper presents the design concepts, development approach and evaluation of performance of a prototype Intelligent User Interface Subsystem (IUIS) supporting an operational database.

  8. Computational Study of the Richtmyer-Meshkov Instability with a Complex Initial Condition

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Reilly, David; Greenough, Jeffrey; Ranjan, Devesh

    2014-11-01

    Results are presented for a computational study of the Richtmyer-Meshkov instability with a complex initial condition. This study covers experiments which will be conducted at the newly-built inclined shock tube facility at the Georgia Institute of Technology. The complex initial condition employed consists of an underlying inclined interface perturbation with a broadband spectrum of modes superimposed. A three-dimensional staggered mesh arbitrary Lagrange Eulerian (ALE) hydrodynamics code developed at Lawerence Livermore National Laboratory called ARES was used to obtain both qualitative and quantitative results. Qualitative results are discussed using time series of density plots from which mixing width may be extracted. Quantitative results are also discussed using vorticity fields, circulation components, and energy spectra. The inclined interface case is compared to the complex interface case in order to study the effect of initial conditions on shocked, variable-density flows.

  9. Legal interfaces in telemedicine technology.

    PubMed

    Lott, C M

    1996-05-01

    Telemedicine, an emerging technology which seeks to use advanced telecommunications equipment to enhance medical care, is progressing rapidly in the Department of Defense health care delivery system. This paper recommends that a cautious, preventive law approach be simultaneously initiated to ensure that the technology does not abridge patients' rights to confidentiality or security of medical records, and that agreement on practice parameters be developed. Seven interfaces, in the areas of informed consent, physician liability, non-physician liability, costs, practice parameters, physician-patient relationships, and ergonomics, are discussed in the context of telemedicine. The author recommends that telemedicine pioneers include the legal community's early input in the application of telemedicine technology to help avoid needless litigation.

  10. Energy Technology Investments: Maximizing Efficiency Through a Maritime Energy Portfolio Interface and Decision Aid

    DTIC Science & Technology

    2012-02-09

    Investment (ROI) and Break Even Point ( BEP ). These metrics are essential for determining whether an initiative would be worth pursuing. Balanced...is Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy...Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy Efficiency 4

  11. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  12. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  13. The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

    PubMed Central

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Fazli, Siamac; Sannelli, Claudia; Haufe, Stefan; Maeder, Cecilia; Ramsey, Lenny; Sturm, Irene; Curio, Gabriel; Müller, Klaus-Robert

    2010-01-01

    Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies. PMID:21165175

  14. Commentary on the Federal Government's Role in Influencing E-prescribing Use and Research

    PubMed Central

    Odukoya, Olufunmilola K; Chui, Michelle A

    2012-01-01

    Electronic prescribing (e-prescribing) is one of the most studied areas of health information technology due to advocacy for its use by influential organizations such as the Institute of Medicine (IOM). In the United States, the federal government has played a significant role in encouraging use of e-prescribing technology and in stimulating associated research nationwide. The federal government has increased e-prescribing research initiatives through agencies such as the Agency for Healthcare Research and Quality (AHRQ) and the Health Resources and Services Administration (HRSA). Initial initiatives focused on the development of standards for e-prescribing systems and implementation. In recent times, e-prescribing research initiatives have become more focused on identifying unintended consequences of using this technology and identifying new possibilities of use that were previously not envisioned. Continuous studies of how healthcare professionals are interfacing with this new technology, how systems have been implemented, and the impact of this technology on healthcare processes and outcomes are crucial. PMID:22737095

  15. Space station commonality analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.

  16. Advances in neuroprosthetic learning and control.

    PubMed

    Carmena, Jose M

    2013-01-01

    Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.

  17. Advances in Neuroprosthetic Learning and Control

    PubMed Central

    Carmena, Jose M.

    2013-01-01

    Significant progress has occurred in the field of brain–machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action. PMID:23700383

  18. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    NASA Technical Reports Server (NTRS)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.

  19. In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems

    PubMed Central

    Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; Mol, Johannes M. C.; Head, Ashley R.; Karslıoğlu, Osman; Bluhm, Hendrik; Terryn, Herman; Hauffman, Tom

    2017-01-01

    Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation. PMID:28327587

  20. A Route Towards Sustainability Through Engineered Polymeric Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeja-Jayan, B; Kovacik, P; Yang, R

    2014-05-30

    Chemical vapor deposition (CVD) of polymer films represent the marriage of two of the most important technological innovations of the modern age. CVD as a mature technology for growing inorganic thin films is already a workhorse technology of the microfabrication industry and easily scalable from bench to plant. The low cost, mechanical flexibility, and varied functionality offered by polymer thin films make them attractive for both macro and micro scale applications. This review article focuses on two energy and resource efficient CVD polymerization methods, initiated Chemical Vapor Deposition (iCVD) and oxidative Chemical Vapor Deposition (oCVD). These solvent-free, substrate independent techniquesmore » engineer multi-scale, multi-functional and conformal polymer thin film surfaces and interfaces for applications that can address the main sustainability challenges faced by the world today.« less

  1. Advanced aerosense display interfaces

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.

    1998-09-01

    High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.

  2. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    NASA Astrophysics Data System (ADS)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  3. Low-G fluid behavior technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.

    1974-01-01

    This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.

  4. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics

    PubMed Central

    Szostak, Katarzyna M.; Grand, Laszlo; Constandinou, Timothy G.

    2017-01-01

    Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes—microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges. PMID:29270103

  5. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.

    PubMed

    Szostak, Katarzyna M; Grand, Laszlo; Constandinou, Timothy G

    2017-01-01

    Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes-microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.

  6. In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems

    DOE PAGES

    Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; ...

    2017-03-22

    Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here in this paper, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in themore » Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation.« less

  7. Usability engineering for augmented reality: employing user-based studies to inform design.

    PubMed

    Gabbard, Joseph L; Swan, J Edward

    2008-01-01

    A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.

  8. Hydrogen Highways: Lessons on the Energy Technology-Policy Interface

    ERIC Educational Resources Information Center

    Waegel, Alex; Byrne, John; Tobin, Daniel; Haney, Bryan

    2006-01-01

    The hydrogen economy has received increasing attention recently. Common reasons cited for investigating hydrogen energy options are improved energy security, reduced environmental impacts, and its contribution to a transition to sustainable energy sources. In anticipation of these benefits, national and local initiatives have been launched in the…

  9. Technology-Enhanced Learning and Community with Market Appeal.

    ERIC Educational Resources Information Center

    Young, Brian Alexander

    2000-01-01

    Describes the University of Dayton's Personalized Virtual Room. This Web interface to a virtual space that looks and feels like a campus residence was designed to encourage communication and connectivity among first-year students before they arrive on campus. Discusses the initiative's goals and successes, student reaction, and lessons learned.…

  10. Multimedia Courseware in an Open Systems Environment: A Federal Strategy.

    ERIC Educational Resources Information Center

    Moline, Judi; And Others

    The Portable Courseware Project (PORTCO) of the U.S. Department of Defense (DoD) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby the federal multimedia courseware initiative leverages the open systems movement and the new realities of information technology. The federal…

  11. Interoperability through standardization: Electronic mail, and X Window systems

    NASA Technical Reports Server (NTRS)

    Amin, Ashok T.

    1993-01-01

    Since the introduction of computing machines, there has been continual advances in computer and communication technologies and approaching limits. The user interface has evolved from a row of switches, character based interface using teletype terminals and then video terminals, to present day graphical user interface. It is expected that next significant advances will come in the availability of services, such as electronic mail and directory services, as the standards for applications are developed and in the 'easy to use' interfaces, such as Graphical User Interface for example Window and X Window, which are being standardized. Various proprietary electronic mail (email) systems are in use within organizations at each center of NASA. Each system provides email services to users within an organization, however the support for email services across organizations and across centers exists at centers to a varying degree and is often easy to use. A recent NASA email initiative is intended 'to provide a simple way to send email across organizational boundaries without disruption of installed base.' The initiative calls for integration of existing organizational email systems through gateways connected by a message switch, supporting X.400 and SMTP protocols, to create a NASA wide email system and for implementation of NASA wide email directory services based on OSI standard X.500. A brief overview of MSFC efforts as a part of this initiative are described. Window based graphical user interfaces make computers easy to use. X window protocol has been developed at Massachusetts Institute of Technology in 1984/1985 to provide uniform window based interface in a distributed computing environment with heterogenous computers. It has since become a standard supported by a number of major manufacturers. Z Windows systems, terminals and workstations, and X Window applications are becoming available. However impact of its use in the Local Area Network environment on the network traffic are not well understood. It is expected that the use of X Windows systems will increase at MSFC especially for Unix based systems. An overview of X Window protocol is presented and its impact on the network traffic is examined. It is proposed that an analytical model of X Window systems in the network environment be developed and validated through the use of measurements to generate application and user profiles.

  12. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  13. The need for separate operational and engineering user interfaces for command and control of airborne synthetic aperture radar systems

    NASA Astrophysics Data System (ADS)

    Klein, Laura M.; McNamara, Laura A.

    2017-05-01

    In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.

  14. Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2012-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  15. Meeting Technology and Manpower Needs through the Industry/University Interface. An Aerospace Industry Perspective.

    ERIC Educational Resources Information Center

    Aerospace Industries Association of America, Inc., Washington, DC.

    The Aerospace Industries Association (AIA) examined its member companies and their existing university relationships as an initial step in the process of strengthening these ties. Information drawn from background research, interviews (with company representatives and university, government, and private sector spokesmen), and a formal survey of…

  16. Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Gonzales, D.; Criswell, D.; Heer, E.

    1991-01-01

    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.

  17. Micro-video display with ocular tracking and interactive voice control

    NASA Technical Reports Server (NTRS)

    Miller, James E.

    1993-01-01

    In certain space-restricted environments, many of the benefits resulting from computer technology have been foregone because of the size, weight, inconvenience, and lack of mobility associated with existing computer interface devices. Accordingly, an effort to develop a highly miniaturized and 'wearable' computer display and control interface device, referred to as the Sensory Integrated Data Interface (SIDI), is underway. The system incorporates a micro-video display that provides data display and ocular tracking on a lightweight headset. Software commands are implemented by conjunctive eye movement and voice commands of the operator. In this initial prototyping effort, various 'off-the-shelf' components have been integrated into a desktop computer and with a customized menu-tree software application to demonstrate feasibility and conceptual capabilities. When fully developed as a customized system, the interface device will allow mobile, 'hand-free' operation of portable computer equipment. It will thus allow integration of information technology applications into those restrictive environments, both military and industrial, that have not yet taken advantage of the computer revolution. This effort is Phase 1 of Small Business Innovative Research (SBIR) Topic number N90-331 sponsored by the Naval Undersea Warfare Center Division, Newport. The prime contractor is Foster-Miller, Inc. of Waltham, MA.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurementsmore » indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.« less

  19. Initial utilization of the CVIRB video production facility

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.

    1987-01-01

    Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.

  20. MSFC Propulsion Systems Department Knowledge Management Project

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  1. Applying Registry Services to Spaceflight Technologies to Aid in the Assignment of Assigned Numbers to Disparate Systems and Their Technologies to Further Enable Interoperability

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Nichols, Kelvin F.

    2006-01-01

    To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative a requirement to standardize and control the naming conventions of very disparate systems and technologies are emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation Initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation Initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and birds of a feather activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another

  2. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing state, but then becomes less significant.

  3. Attacking the information access problem with expert systems

    NASA Technical Reports Server (NTRS)

    Ragusa, James M.; Orwig, Gary W.

    1991-01-01

    The results of applications research directed at finding an improved method of storing and accessing information are presented. Twelve microcomputer-based expert systems shells and five laser-optical formats have been studied, and the general and specific methods of interfacing these technologies are being tested in prototype systems. Shell features and interfacing capabilities are discussed, and results from the study of five laser-optical formats are recounted including the video laser, compact, and WORM disks, and laser cards and film. Interfacing, including laser disk device driver interfacing, is discussed and it is pointed out that in order to control the laser device from within the expert systems application, the expert systems shell must be able to access the device driver software. Potential integrated applications are investigated and an initial list is provided including consumer services, travel, law enforcement, human resources, marketing, and education and training.

  4. Interface Technology for Geometrically Nonlinear Analysis of Multiple Connected Subdomains

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    1997-01-01

    Interface technology for geometrically nonlinear analysis is presented and demonstrated. This technology is based on an interface element which makes use of a hybrid variational formulation to provide for compatibility between independently modeled connected subdomains. The interface element developed herein extends previous work to include geometric nonlinearity and to use standard linear and nonlinear solution procedures. Several benchmark nonlinear applications of the interface technology are presented and aspects of the implementation are discussed.

  5. Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces

    PubMed Central

    Andresen, Elena M.; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L.

    2016-01-01

    Purpose The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology for individuals with severe speech and physical impairments (SSPI). Method In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Results Most items (79%) mapped to the ICF environmental domain; over half (53%) mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: Quality of Life (QOL) and Assistive Technology. Component domains and themes were identified for each. Conclusions Preliminary constructs, domains, and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. PMID:25806719

  6. Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces.

    PubMed

    Andresen, Elena M; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L

    2016-10-01

    The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology (AT) for individuals with severe speech and physical impairments (SSPI). In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Most items (79%) were mapped to the ICF environmental domain; over half (53%) were mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: quality of life (QOL) and AT. Component domains and themes were identified for each. Preliminary constructs, domains and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. Implications for Rehabilitation Adapted interview methods allow people with severe speech and physical impairments to participate in patient-centered outcomes research. Patient-centered outcome measures are needed to evaluate the clinical implementation of brain-computer interface as an assistive technology.

  7. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  8. Progress in amorphous silicon based large-area multijunction modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Bennett, M.; Chen, L.-F.; Jansen, K.; Li, Y.-M.; Maley, N.; Morris, J.; Newton, J.; Oswald, R. S.; Rajan, K.; Vezzetti, D.; Willing, F.; Yang, L.

    1996-01-01

    Solarex, a business unit of Amoco/Enron Solar, is scaling up its a-Si:H/a-SiGe:H tandem device technology for the production of 8 ft2 modules. The current R&D effort is focused on improving the performance, reliability and cost-effectiveness of the tandem junction technology by systematically optimizing the materials and interfaces in small-area single- and tandem junction cells. Average initial conversion efficiencies of 8.8% at 85% yield have been obtained in pilot production runs with 4 ft2 tandem modules.

  9. Unmanned Ground Vehicle

    DTIC Science & Technology

    2001-11-01

    Systems ( JAUGS ). JAUGS is a JRP technology initiative under the cognizance of the Aviation and Missile Command Research, Development and Engineering Center...AMRDEC). The JAUGS focus is on developing a high-level command and control architecture for UGVs. As defined in the JRP Glossary, “ JAUGS is an upper...vehicle platforms and missions. JAUGS uses the Society of Automotive Engineers Generic Open Architecture framework to classify UGV interfaces and

  10. The impact of interface design during an initial high-technology AAC experience: a collective case study of people with aphasia.

    PubMed

    Dietz, Aimee; Weissling, Kristy; Griffith, Julie; McKelvey, Miechelle; Macke, Devan

    2014-12-01

    The purpose of this collective case study was to describe the communication behaviors of five people with chronic aphasia when they retold personal narratives to an unfamiliar communication partner using four variants of a visual scene display (VSD) interface. The results revealed that spoken language comprised roughly 70% of expressive modality units; variable patterns of use for other modalities emerged. Although inconsistent across participants, several people with aphasia experienced no trouble sources during the retells using VSDs with personally relevant photographs and text boxes. Overall, participants perceived the personally relevant photographs and the text as helpful during the retells. These patterns may serve as a springboard for future experimental investigations regarding how interface design influences the communicative and linguistic performance of people with aphasia.

  11. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  12. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill process to develop an analytical model of No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing stage, but then becomes less significant.

  13. Technology: Catalyst for Enhancing Chemical Education for Pre-service Teachers

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Bedell, Julia Yang; Seed, Allen H.

    1999-05-01

    A DOE/KYEPSCoR-funded project enabled us to introduce a new curricular initiative aimed at improving the chemical education of pre-service elementary teachers. The new curriculum was developed in collaboration with the School of Education faculty. A new course for the pre-service teachers, "Discovering Chemistry with Lab" (CHE 105), was developed. The integrated lecture and lab course covers basic principles of chemistry and their applications in daily life. The course promotes reasoning and problem-solving skills and utilizes hands-on, discovery/guided-inquiry, and cooperative learning approaches. This paper describes the implementation of technology (computer-interfacing and simulation experiments) in the lab. Results of two assessment surveys conducted in the laboratory are also discussed. The key features of the lab course are eight new experiments, including four computer-interfacing/simulation experiments involving the use of Macintosh Power PCs, temperature and pH probes, and a serial box interface, and use of household materials. Several experiments and the midterm and final lab practical exams emphasize the discovery/guided-inquiry approach. The results of pre- and post-surveys showed very significant positive changes in students' attitude toward the relevancy of chemistry, use of technology (computers) in elementary school classrooms, and designing and teaching discovery-based units. Most students indicated that they would be very interested (52%) or interested (36%) in using computers in their science teaching.

  14. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    NASA Astrophysics Data System (ADS)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.

  15. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  16. Mapping of medical acronyms and initialisms to Medical Subject Headings (MeSH) across selected systems

    PubMed Central

    Shultz, Mary

    2006-01-01

    Introduction: Given the common use of acronyms and initialisms in the health sciences, searchers may be entering these abbreviated terms rather than full phrases when searching online systems. The purpose of this study is to evaluate how various MEDLINE Medical Subject Headings (MeSH) interfaces map acronyms and initialisms to the MeSH vocabulary. Methods: The interfaces used in this study were: the PubMed MeSH database, the PubMed Automatic Term Mapping feature, the NLM Gateway Term Finder, and Ovid MEDLINE. Acronyms and initialisms were randomly selected from 2 print sources. The test data set included 415 randomly selected acronyms and initialisms whose related meanings were found to be MeSH terms. Each acronym and initialism was entered into each MEDLINE MeSH interface to determine if it mapped to the corresponding MeSH term. Separately, 46 commonly used acronyms and initialisms were tested. Results: While performance differed widely, the success rates were low across all interfaces for the randomly selected terms. The common acronyms and initialisms tested at higher success rates across the interfaces, but the differences between the interfaces remained. Conclusion: Online interfaces do not always map medical acronyms and initialisms to their corresponding MeSH phrases. This may lead to inaccurate results and missed information if acronyms and initialisms are used in search strategies. PMID:17082832

  17. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  18. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  19. Health care reform and care at the behavioral health--primary care interface.

    PubMed

    Druss, Benjamin G; Mauer, Barbara J

    2010-11-01

    The historic passage of the Patient Protection and Affordable Care Act in March 2010 offers the potential to address long-standing deficits in quality and integration of services at the interface between behavioral health and primary care. Many of the efforts to reform the care delivery system will come in the form of demonstration projects, which, if successful, will become models for the broader health system. This article reviews two of the programs that might have a particular impact on care on the two sides of that interface: Medicaid and Medicare patient-centered medical home demonstration projects and expansion of a Substance Abuse and Mental Health Services Administration program that colocates primary care services in community mental health settings. The authors provide an overview of key supporting factors, including new financing mechanisms, quality assessment metrics, information technology infrastructure, and technical support, that will be important for ensuring that initiatives achieve their potential for improving care.

  20. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  1. Electrohydrodynamic simulation of an electrospray in a colloid thruster

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Forget, Martin; Malardier-Jugroot, Cecile

    2012-02-01

    A precise understanding of electrosprays is highly interesting as the complexity of micro-technology (such as nano-material processing, spacecraft propulsion and mass-spectrometers) systems increases. A multi-component CFD-based model coupling fluid dynamics, charged species dynamics and electric field is developed. The simulations describe the charged fluid interface with emphasis on the Taylor cone formation and cone-jet transition under the effect of a electric field. The goal is to recapture this transition from a rounded liquid interface into a Taylor cone from an initial uniform distribution, without making assumptions on the behaviour, geometry or charge distribution of the system. The time evolution of the interface highlights the close interaction among space charge, coulombic forces and the surface tension, which appear as governing and competing processes in the transition. The results from the coupled formalism provide valuable insights on the physical phenomena and will be applied to a colloid thruster for small spacecrafts.

  2. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  3. Applying Registry Services to Spaceflight Technologies to Aid in the Assignment of Assigned Numbers to Disparate Systems and their Technologies to Further Enable Interoperability

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Nichols, Kelvin F.; Witherspoon, Keith R.

    2006-01-01

    To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative, a requirement to standardize and control the naming conventions of very disparate systems and technologies is emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and Birds of a Feather (BoF) activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another standards body or technologies that are currently not standardized. For activities one through three, we will provide the analysis by either discipline or technology with rationale, identification and brief description of requirements and precedence. For activity four, we will provide a list of current standards bodies e.g. IETF and a list of potential candidates.

  4. Application of Interface Technology in Nonlinear Analysis of a Stitched/RFI Composite Wing Stub Box

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Ransom, Jonathan B.

    1997-01-01

    A recently developed interface technology was successfully employed in the geometrically nonlinear analysis of a full-scale stitched/RFI composite wing box loaded in bending. The technology allows mismatched finite element models to be joined in a variationally consistent manner and reduces the modeling complexity by eliminating transition meshing. In the analysis, local finite element models of nonlinearly deformed wide bays of the wing box are refined without the need for transition meshing to the surrounding coarse mesh. The COMET-AR finite element code, which has the interface technology capability, was used to perform the analyses. The COMET-AR analysis is compared to both a NASTRAN analysis and to experimental data. The interface technology solution is shown to be in good agreement with both. The viability of interface technology for coupled global/local analysis of large scale aircraft structures is demonstrated.

  5. Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-11-15

    Weakly nonlinear (WN) Rayleigh-Taylor instability (RTI) initiated by single-mode cosinusoidal interface and velocity perturbations is investigated analytically up to the third order. Expressions of the temporal evolutions of the amplitudes of the first three harmonics are derived. It is shown that there are coupling between interface and velocity perturbations, which plays a prominent role in the WN growth. When the 'equivalent amplitude' of the initial velocity perturbation, which is normalized by its linear growth rate, is compared to the amplitude of the initial interface perturbation, the coupling between them dominates the WN growth of the RTI. Furthermore, the RTI wouldmore » be mitigated by initiating a velocity perturbation with a relative phase shift against the interface perturbation. More specifically, when the phase shift between the interface perturbation and the velocity perturbation is {pi} and their equivalent amplitudes are equal, the RTI could be completely quenched. If the equivalent amplitude of the initial velocity perturbation is equal to the initial interface perturbation, the difference between the WN growth of the RTI initiated by only an interface perturbation and by only a velocity perturbation is found to be asymptotically negligible. The dependence of the WN growth on the Atwood numbers and the initial perturbation amplitudes is discussed. In particular, we investigate the dependence of the saturation amplitude (time) of the fundamental mode on the Atwood numbers and the initial perturbation amplitudes. It is found that the Atwood numbers and the initial perturbation amplitudes play a crucial role in the WN growth of the RTI. Thus, it should be included in applications where the seeds of the RTI have velocity perturbations, such as inertial confinement fusion implosions and supernova explosions.« less

  6. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  7. Open architecture CMM motion controller

    NASA Astrophysics Data System (ADS)

    Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John

    2001-12-01

    Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.

  8. The development of a prototype intelligent user interface subsystem for NASA's scientific database systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Roelofs, Larry H.; Short, Nicholas M., Jr.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components the development of an Intelligent User Interface (IUI).The intent of the latter is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. The purpose is to support the large number of potential scientific and engineering users presently having need of space and land related research and technical data but who have little or no experience in query languages or understanding of the information content or architecture of the databases involved. This technical memorandum presents prototype Intelligent User Interface Subsystem (IUIS) using the Crustal Dynamics Project Database as a test bed for the implementation of the CRUDDES (Crustal Dynamics Expert System). The knowledge base has more than 200 rules and represents a single application view and the architectural view. Operational performance using CRUDDES has allowed nondatabase users to obtain useful information from the database previously accessible only to an expert database user or the database designer.

  9. Digital Interface Board to Control Phase and Amplitude of Four Channels

    NASA Technical Reports Server (NTRS)

    Smith, Amy E.; Cook, Brian M.; Khan, Abdur R.; Lux, James P.

    2011-01-01

    An increasing number of parts are designed with digital control interfaces, including phase shifters and variable attenuators. When designing an antenna array in which each antenna has independent amplitude and phase control, the number of digital control lines that must be set simultaneously can grow very large. Use of a parallel interface would require separate line drivers, more parts, and thus additional failure points. A convenient form of control where single-phase shifters or attenuators could be set or the whole set could be programmed with an update rate of 100 Hz is needed to solve this problem. A digital interface board with a field-programmable gate array (FPGA) can simultaneously control an essentially arbitrary number of digital control lines with a serial command interface requiring only three wires. A small set of short, high-level commands provides a simple programming interface for an external controller. Parity bits are used to validate the control commands. Output timing is controlled within the FPGA to allow for rapid update rates of the phase shifters and attenuators. This technology has been used to set and monitor eight 5-bit control signals via a serial UART (universal asynchronous receiver/transmitter) interface. The digital interface board controls the phase and amplitude of the signals for each element in the array. A host computer running Agilent VEE sends commands via serial UART connection to a Xilinx VirtexII FPGA. The commands are decoded, and either outputs are set or telemetry data is sent back to the host computer describing the status and the current phase and amplitude settings. This technology is an integral part of a closed-loop system in which the angle of arrival of an X-band uplink signal is detected and the appropriate phase shifts are applied to the Ka-band downlink signal to electronically steer the array back in the direction of the uplink signal. It will also be used in the non-beam-steering case to compensate for phase shift variations through power amplifiers. The digital interface board can be used to set four 5-bit phase shifters and four 5-bit attenuators and monitor their current settings. Additionally, it is useful outside of the closed-loop system for beamsteering alone. When the VEE program is started, it prompts the user to initialize variables (to zero) or skip initialization. After that, the program enters into a continuous loop waiting for the telemetry period to elapse or a button to be pushed. A telemetry request is sent when the telemetry period is elapsed (every five seconds). Pushing one of the set or reset buttons will send the appropriate command. When a command is sent, the interface status is returned, and the user will be notified by a pop-up window if any error has occurred. The program runs until the End Program button is depressed.

  10. The influence of the compression interface on the failure behavior and size effect of concrete

    NASA Astrophysics Data System (ADS)

    Kampmann, Raphael

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.

  11. Serious Gaming Technologies Support Human Factors Investigations of Advanced Interfaces for Semi-Autonomous Vehicles

    DTIC Science & Technology

    2006-06-01

    conventional camera vs. thermal imager vs. night vision; camera field of view (narrow, wide, panoramic); keyboard + mouse vs. joystick control vs...motorised platform which could scan the immediate area, producing a 360o panorama of “stitched-together” digital pictures. The picture file, together with...VBS was used to automate the process of creating a QuickTime panorama (.mov or .qt), which includes the initial retrieval of the images, the

  12. Knowledge-based control of an adaptive interface

    NASA Technical Reports Server (NTRS)

    Lachman, Roy

    1989-01-01

    The analysis, development strategy, and preliminary design for an intelligent, adaptive interface is reported. The design philosophy couples knowledge-based system technology with standard human factors approaches to interface development for computer workstations. An expert system has been designed to drive the interface for application software. The intelligent interface will be linked to application packages, one at a time, that are planned for multiple-application workstations aboard Space Station Freedom. Current requirements call for most Space Station activities to be conducted at the workstation consoles. One set of activities will consist of standard data management services (DMS). DMS software includes text processing, spreadsheets, data base management, etc. Text processing was selected for the first intelligent interface prototype because text-processing software can be developed initially as fully functional but limited with a small set of commands. The program's complexity then can be increased incrementally. The intelligent interface includes the operator's behavior and three types of instructions to the underlying application software are included in the rule base. A conventional expert-system inference engine searches the data base for antecedents to rules and sends the consequents of fired rules as commands to the underlying software. Plans for putting the expert system on top of a second application, a database management system, will be carried out following behavioral research on the first application. The intelligent interface design is suitable for use with ground-based workstations now common in government, industrial, and educational organizations.

  13. ECLSS evolution: Advanced instrumentation interface requirements. Volume 3: Appendix C

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An Advanced ECLSS (Environmental Control and Life Support System) Technology Interfaces Database was developed primarily to provide ECLSS analysts with a centralized and portable source of ECLSS technologies interface requirements data. The database contains 20 technologies which were previously identified in the MDSSC ECLSS Technologies database. The primary interfaces of interest in this database are fluid, electrical, data/control interfaces, and resupply requirements. Each record contains fields describing the function and operation of the technology. Fields include: an interface diagram, description applicable design points and operating ranges, and an explaination of data, as required. A complete set of data was entered for six of the twenty components including Solid Amine Water Desorbed (SAWD), Thermoelectric Integrated Membrane Evaporation System (TIMES), Electrochemical Carbon Dioxide Concentrator (EDC), Solid Polymer Electrolysis (SPE), Static Feed Electrolysis (SFE), and BOSCH. Additional data was collected for Reverse Osmosis Water Reclaimation-Potable (ROWRP), Reverse Osmosis Water Reclaimation-Hygiene (ROWRH), Static Feed Solid Polymer Electrolyte (SFSPE), Trace Contaminant Control System (TCCS), and Multifiltration Water Reclamation - Hygiene (MFWRH). A summary of the database contents is presented in this report.

  14. The Human Interface Technology Laboratory.

    ERIC Educational Resources Information Center

    Washington Univ., Seattle. Washington Technology Center.

    This booklet contains information about the Human Interface Technology Laboratory (HITL), which was established by the Washington Technology Center at the University of Washington to transform virtual world concepts and research into practical, economically viable technology products. The booklet is divided into seven sections: (1) a brief…

  15. Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin

    Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  16. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor-acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V-1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.

  17. Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films

    DOE PAGES

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; ...

    2017-01-27

    Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  18. Inviscid linear stability analysis of two fluid columns of different densities subject to gravity

    NASA Astrophysics Data System (ADS)

    Prathama, Aditya; Pantano, Carlos

    2017-11-01

    We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.

  19. Investigations of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-03-14

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of four graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  20. Investigation of the Richtmyer-Meshkov instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-12-22

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of three graduate students is in line with themore » national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.« less

  1. An overview of emerging technologies in contemporary decision support system development

    NASA Astrophysics Data System (ADS)

    Nursal, Ahmad Taufik; Omar, Mohd Faizal; Nawi, Mohd Nasrun Mohd

    2014-12-01

    The rapid development of Web technology has opened a new approach to Decision Support System (DSS) development. For instance, Social Media is one of the Web 2.0 digital platforms that allow the creation and exchanges of user-generate content through an interactive interface, high user control and mass participation. The concept and characteristics of Web 2.0 such as remote, platform-independent, context-rich and easy to use, which is fulfill the concept and purpose of DSS. This paper outlines some of the elementary concepts of Web 2.0 and social media technology which can be potentially integrated within DSS to enhance the decision-making process. Our initial investigation indicates that there is limited study attempt to embed Web 2.0 into DSS. Thus, this paper highlights the importance of Web 2.0 technology in order to foster the betterment of DSS development and its usability.

  2. Embedded Web Technology: Applying World Wide Web Standards to Embedded Systems

    NASA Technical Reports Server (NTRS)

    Ponyik, Joseph G.; York, David W.

    2002-01-01

    Embedded Systems have traditionally been developed in a highly customized manner. The user interface hardware and software along with the interface to the embedded system are typically unique to the system for which they are built, resulting in extra cost to the system in terms of development time and maintenance effort. World Wide Web standards have been developed in the passed ten years with the goal of allowing servers and clients to intemperate seamlessly. The client and server systems can consist of differing hardware and software platforms but the World Wide Web standards allow them to interface without knowing about the details of system at the other end of the interface. Embedded Web Technology is the merging of Embedded Systems with the World Wide Web. Embedded Web Technology decreases the cost of developing and maintaining the user interface by allowing the user to interface to the embedded system through a web browser running on a standard personal computer. Embedded Web Technology can also be used to simplify an Embedded System's internal network.

  3. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    PubMed

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra

    2017-10-23

    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  4. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  5. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less

  6. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  7. An Architectural Experience for Interface Design

    ERIC Educational Resources Information Center

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  8. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  9. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  10. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the ontology, supports SPARQL queries, allows for modifications based on successive discoveries, and provides an accessible knowledge base on the Web.

  11. A Literature Review on Operator Interface Technologies for Network Enabled Operational Environments Using Complex System Analysis

    DTIC Science & Technology

    2009-05-30

    d’interface fondées sur le comportement et sur la psychologie , ainsi que des méthodes de conception et de mise en œuvre d’interfaces multi-agents. On a mis...réseaucentriques. Ces technologies comprennent des approches de conception d’interface fondées sur le comportement et sur la psychologie , ainsi que des

  12. Epilepsy in Ireland: towards the primary-tertiary care continuum.

    PubMed

    Varley, Jarlath; Delanty, Norman; Normand, Charles; Coyne, Imelda; McQuaid, Louise; Collins, Claire; Boland, Michael; Grimson, Jane; Fitzsimons, Mary

    2010-01-01

    Epilepsy is a chronic neurological disease affecting people of every age, gender, race and socio-economic background. The diagnosis and optimal management relies on contribution from a number of healthcare disciplines in a variety of healthcare settings. To explore the interface between primary care and specialist epilepsy services in Ireland. Using appreciative inquiry, focus groups were held with healthcare professionals (n=33) from both primary and tertiary epilepsy specialist services in Ireland. There are significant challenges to delivering a consistent high standard of epilepsy care in Ireland. The barriers that were identified are: the stigma of epilepsy, unequal access to care services, insufficient human resources, unclear communication between primary-tertiary services and lack of knowledge. Improving the management of people with epilepsy requires reconfiguration of the primary-tertiary interface and establishing clearly defined roles and formalised clinical pathways. Such initiatives require resources in the form of further education and training and increased usage of information communication technology (ICT). Epilepsy services across the primary-tertiary interface can be significantly enhanced through the implementation of a shared model of care underpinned by an electronic patient record (EPR) system and information communication technology (ICT). Better chronic disease management has the potential to halt the progression of epilepsy with ensuing benefits for patients and the healthcare system. Copyright 2009 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Key technology issues for space robotic systems

    NASA Technical Reports Server (NTRS)

    Schappell, Roger T.

    1987-01-01

    Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.

  14. Advances in anesthesia technology are improving patient care, but many challenges remain.

    PubMed

    John Doyle, D; Dahaba, Ashraf; LeManach, Yannick

    2018-04-13

    Although significant advances in clinical monitoring technology and clinical practice development have taken place in the last several decades, in this editorial we argue that much more still needs to be done. We begin by identifying many of the improvements in perioperative technology that have become available in recent years; these include electroencephalographic depth of anesthesia monitoring, bedside ultrasonography, advanced neuromuscular transmission monitoring systems, and other developments. We then discuss some of the perioperative technical challenges that remain to be satisfactorily addressed, such as products that incorporate poor software design or offer a confusing user interface. Finally we suggest that the journal support initiatives to help remedy this problem by publishing reports on the evaluation of medical equipment as a means to restore the link between clinical research and clinical end-users.

  15. Multiscale crack initiator promoted super-low ice adhesion surfaces.

    PubMed

    He, Zhiwei; Xiao, Senbo; Gao, Huajian; He, Jianying; Zhang, Zhiliang

    2017-09-27

    Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.

  16. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  17. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  18. TangibleCubes — Implementation of Tangible User Interfaces through the Usage of Microcontroller and Sensor Technology

    NASA Astrophysics Data System (ADS)

    Setscheny, Stephan

    The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.

  19. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  20. Open Architecture Standard for NASA's Software-Defined Space Telecommunications Radio Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Johnson, Sandra K.; Kacpura, Thomas J.; Hall, Charles S.; Smith, Carl R.; Liebetreu, John

    2008-01-01

    NASA is developing an architecture standard for software-defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer. This paper presents the initial Space Telecommunications Radio System (STRS) Architecture for NASA missions to provide the desired software abstraction and flexibility while minimizing the resources necessary to support the architecture.

  1. 75 FR 6414 - Consumer Interface With the Smart Grid

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Consumer Interface With the Smart Grid AGENCY: Office of Science and Technology Policy (OSTP), Executive Office of the President. ACTION: Notice; request for public comment. SUMMARY: With this notice, the Office of Science and Technology Policy (OSTP) within the...

  2. 75 FR 7526 - Consumer Interface With the Smart Grid

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Consumer Interface With the Smart Grid AGENCY: Office of Science and Technology Policy (OSTP), Executive Office of the President. ACTION: Notice; request for public comment. SUMMARY: With this notice, the Office of Science and Technology Policy (OSTP) within the...

  3. Conservative multizonal interface algorithm for the 3-D Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Molvik, G. A.

    1991-01-01

    A conservative zonal interface algorithm using features of both structured and unstructured mesh CFD technology is presented. The flow solver within each of the zones is based on structured mesh CFD technology. The interface algorithm was implemented into two three-dimensional Navier-Stokes finite volume codes and was found to yield good results.

  4. Evaluating success levels of mega-projects

    NASA Technical Reports Server (NTRS)

    Kumaraswamy, Mohan M.

    1994-01-01

    Today's mega-projects transcend the traditional trajectories traced within national and technological limitations. Powers unleashed by internationalization of initiatives, in for example space exploration and environmental protection, are arguably only temporarily suppressed by narrower national, economic, and professional disagreements as to how best they should be harnessed. While the world gets its act together there is time to develop the technologies of such supra-mega-project management that will synergize truly diverse resources and smoothly mesh their interfaces. Such mega-projects and their management need to be realistically evaluated, when implementing such improvements. This paper examines current approaches to evaluating mega-projects and questions the validity of extrapolations to the supra-mega-projects of the future. Alternatives to improve such evaluations are proposed and described.

  5. Human/Computer Interfacing in Educational Environments.

    ERIC Educational Resources Information Center

    Sarti, Luigi

    1992-01-01

    This discussion of educational applications of user interfaces covers the benefits of adopting database techniques in organizing multimedia materials; the evolution of user interface technology, including teletype interfaces, analogic overlay graphics, window interfaces, and adaptive systems; application design problems, including the…

  6. Brain-Computer Interfaces in Medicine

    PubMed Central

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  7. Current status and future perspectives of electron interactions with molecules, clusters, surfaces, and interfaces [Workshop on Fundamental challenges in electron-driven chemistry; Workshop on Electron-driven processes: Scientific challenges and technological opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.

    2000-09-01

    This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices andmore » other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.« less

  8. Introduction to special section on The U.S. IOOS Coastal and Ocean Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Luettich, Richard A.; Wright, L. Donelson; Signell, Richard; Friedrichs, Carl; Friedrichs, Marjy; Harding, John; Fennel, Katja; Howlett, Eoin; Graves, Sara; Smith, Elizabeth; Crane, Gary; Baltes, Rebecca

    2013-12-01

    Strong and strategic collaborations among experts from academia, federal operational centers, and industry have been forged to create a U.S. IOOS Coastal and Ocean Modeling Testbed (COMT). The COMT mission is to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improved operational ocean products and services. This is achieved via the evaluation of existing technology or the development of new technology depending on the status of technology within the research community. The initial phase of the COMT has addressed three coastal and ocean prediction challenges of great societal importance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A fourth effort concentrated on providing and refining the cyberinfrastructure and cyber tools to support the modeling work and to advance interoperability and community access to the COMT archive. This paper presents an overview of the initiation of the COMT, the findings of each team and a discussion of the role of the COMT in research to operations and its interface with the coastal and ocean modeling community in general. Detailed technical results are presented in the accompanying series of 16 technical papers in this special issue.

  9. Product Development as a Fuzzy Interface between Technical and Non-technical Education.

    ERIC Educational Resources Information Center

    Masarnau, Juan

    1988-01-01

    Discusses a product development structure, including marketing, design, technology, industrial manufacturing, reasoning, and objects. Describes needs of the interface in terms of marketing, industrial design, technology, and industry. (YP)

  10. Nursing acceptance of a speech-input interface: a preliminary investigation.

    PubMed

    Dillon, T W; McDowell, D; Norcio, A F; DeHaemer, M J

    1994-01-01

    Many new technologies are being developed to improve the efficiency and productivity of nursing staffs. User acceptance is a key to the success of these technologies. In this article, the authors present a discussion of nursing acceptance of computer systems, review the basic design issues for creating a speech-input interface, and report preliminary findings of a study of nursing acceptance of a prototype speech-input interface. Results of the study showed that the 19 nursing subjects expressed acceptance of the prototype speech-input interface.

  11. Cooperative analysis expert situation assessment research

    NASA Technical Reports Server (NTRS)

    Mccown, Michael G.

    1987-01-01

    For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.

  12. Power and Thermal Technologies for Air and Space-Scientific Research Program. Delivery Order 0012: High-Temperature Superconductor Performance Enhancement

    DTIC Science & Technology

    2010-06-01

    house to grow CNTs. Initially the CNTs were grown at atmospheric pressure using C2H2/Ar mixtures. Prior to deposition, the quartz tube of the reactor...imaged clearly. It appears that there could be some amorphous carbon present on the surface of the tubes with the present set of conditions used and...chip cooling with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal interface materials were also

  13. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Annunzio, Julie; Slezak, Lee; Conley, John Jason

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology andmore » interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.« less

  14. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal conversion processing steps, major improvement in video noise reduction, and an added capability to pass audio/embedded digital data within the digital video signal stream are the significant performance increases associated with the incorporation of digital video interface standards. By analyzing the historical progression of military CMS developments, establishing a systems engineering process for CMS design, tracing the commercial evolution of video signal standardization, adopting commercial video signal terminology/definitions, and comparing/contrasting CMS architecture modifications using digital video interfaces; this paper provides a technical explanation on how a systems engineering process approach to video interface standardization can result in extendible and affordable cockpit management systems.

  15. The crustal dynamics intelligent user interface anthology

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M., Jr.; Campbell, William J.; Roelofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views.

  16. Regional convergence platforms in Europe—Innovation for space through technology partnerships

    NASA Astrophysics Data System (ADS)

    Bütfering, Peter

    2010-05-01

    Upcoming European and national space exploration programs and projects require new capabilities and scientific-technological solutions, and therefore external contributions to innovation. On the other hand European core (industrial) regions are searching of partners for innovation to strengthen their regional economy. In this context the German-based company European Space Innovation AG (former Adam Alva Neil)—highly experienced in the area of convergence activities between space and other sectors—has developed the model of regional convergence platforms (named 'SpaceInnovation'). These platforms are designed to foster technology partnerships between regional companies and institutes from 'non-space' and the space sector (agencies/industry). The article reflects this regional approach and shows examples in three different directions: SpaceInnovation Saar, an benchmark convergence platform initiated by the Saarland region. SpaceInnovation Europe, an European regions network approach. European SpaceInnovation Agent, an interface approach for systematic and sustainable convergence activities.

  17. Systems and technologies for high-speed inter-office/datacenter interface

    NASA Astrophysics Data System (ADS)

    Sone, Y.; Nishizawa, H.; Yamamoto, S.; Fukutoku, M.; Yoshimatsu, T.

    2017-01-01

    Emerging requirements for inter-office/inter-datacenter short reach links for data center interconnects (DCI) and metro transport networks have led to various inter-office and inter-datacenter optical interface technologies. These technologies are bringing significant changes to systems and network architectures. In this paper, we present a system and ZR optical interface technologies for DCI and metro transport networks, then introduce the latest challenges facing the system framework. There are two trends in reach extension; one is to use Ethernet and the other is to use digital coherent technologies. The first approach achieves reach extension while using as many existing Ethernet components as possible. It offers low costs as reuses the cost-effective components created for the large Ethernet market. The second approach adopts low-cost and low power coherent DSPs that implement the minimal set long haul transmission functions. This paper introduces an architecture that integrates both trends. The architecture satisfies both datacom and telecom needs with a common control and management interface and automated configuration.

  18. Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2004-01-01

    An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.

  19. A unified approach for composite cost reporting and prediction in the ACT program

    NASA Technical Reports Server (NTRS)

    Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid

    1991-01-01

    The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.

  20. Usability in the real world: assessing medical information technologies in patients' homes.

    PubMed

    Kaufman, David R; Patel, Vimla L; Hilliman, Charlyn; Morin, Philip C; Pevzner, Jenia; Weinstock, Ruth S; Goland, Robin; Shea, Steven; Starren, Justin

    2003-01-01

    This paper presents an approach to usability evaluation of computer-based health care systems designed for patient use in their homes. Although such devices are becoming more prevalent, there is very little known about their usability. The theoretical foundations for the methods are discussed. The approach incorporates a cognitive walkthrough usability evaluation and new methods for usability testing that can be conducted in patient's homes. The method was applied to the IDEATel intervention, a multi-institution randomized controlled trial of the feasibility, acceptability, and clinical utility of a home-based telemedicine system for diabetic Medicare population. The usability study was designed to assess barriers to optimal use of the system. The focus was both on dimensions of the interface and on dimensions of patient skills and competency. The usability field research involved testing 25 patients in their homes using the system. The analysis included a range of video-analytic methods of varying levels of granularity. The usability evaluation revealed aspects of the interface that were sub-optimal and impeded the performance of certain tasks. It also found a range of patient-related factors such as numeracy and psychomotor skills that constituted barriers to productive use. A multifaceted usability approach provided important insight regarding use of technology by an elderly chronic-care patient population and more generally, for understanding how home health initiatives can more effectively use such technology.

  1. Graphical Requirements for Force Level Planning. Volume 2

    DTIC Science & Technology

    1991-09-01

    technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice

  2. Nonlinear theory of classical cylindrical Richtmyer-Meshkov instability for arbitrary Atwood numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wan Hai; HEDPS and CAPT, Peking University, Beijing 100871; Ping Yu, Chang, E-mail: champion-yu@163.com

    2014-06-15

    A nonlinear theory is developed to describe the cylindrical Richtmyer-Meshkov instability (RMI) of an impulsively accelerated interface between incompressible fluids, which is based on both a technique of Padé approximation and an approach of perturbation expansion directly on the perturbed interface rather than the unperturbed interface. When cylindrical effect vanishes (i.e., in the large initial radius of the interface), our explicit results reproduce those [Q. Zhang and S.-I. Sohn, Phys. Fluids 9, 1106 (1996)] related to the planar RMI. The present prediction in agreement with previous simulations [C. Matsuoka and K. Nishihara, Phys. Rev. E 73, 055304(R) (2006)] leads usmore » to better understand the cylindrical RMI at arbitrary Atwood numbers for the whole nonlinear regime. The asymptotic growth rate of the cylindrical interface finger (bubble or spike) tends to its initial value or zero, depending upon mode number of the initial cylindrical interface and Atwood number. The explicit conditions, directly affecting asymptotic behavior of the cylindrical interface finger, are investigated in this paper. This theory allows a straightforward extension to other nonlinear problems related closely to an instable interface.« less

  3. The Strength of the Metal. Aluminum Oxide Interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1984-01-01

    The strength of the interface between metals and aluminum oxide is an important factor in the successful operation of devices found throughout modern technology. One finds the interface in machine tools, jet engines, and microelectronic integrated circuits. The strength of the interface, however, should be strong or weak depending on the application. The diverse technological demands have led to some general ideas concerning the origin of the interfacial strength, and have stimulated fundamental research on the problem. Present status of our understanding of the source of the strength of the metal - aluminum oxide interface in terms of interatomic bonds are reviewed. Some future directions for research are suggested.

  4. Evolving from Planning and Scheduling to Real-Time Operations Support: Design Challenges

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Ludowise, Melissa; McCurdy, Michael; Li, Jack

    2010-01-01

    Versions of Scheduling and Planning Interface for Exploration (SPIFe) have supported a variety of mission operations across NASA. This software tool has evolved and matured over several years, assisting planners who develop intricate schedules. While initially conceived for surface Mars missions, SPIFe has been deployed in other domains, where people rather than robotic explorers, execute plans. As a result, a diverse set of end-users has compelled growth in a new direction: supporting real-time operations. This paper describes the new needs and challenges that accompany this development. Among the key features that have been built for SPIFe are current time indicators integrated into the interface and timeline, as well as other plan attributes that enable execution of scheduled activities. Field tests include mission support for the Lunar CRater Observation and Sensing Satellite (LCROSS), NASA Extreme Environment Mission Operations (NEEMO) and Desert Research and Technology Studies (DRATS) campaigns.

  5. Technical Requirements Analysis and Control Systems (TRACS) Initial Operating Capability (IOC) documentation

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.

    1991-01-01

    The Technical Requirements Analysis and Control Systems (TRACS) software package is described. TRACS offers supplemental tools for the analysis, control, and interchange of project requirements. This package provides the fundamental capability to analyze and control requirements, serves a focal point for project requirements, and integrates a system that supports efficient and consistent operations. TRACS uses relational data base technology (ORACLE) in a stand alone or in a distributed environment that can be used to coordinate the activities required to support a project through its entire life cycle. TRACS uses a set of keyword and mouse driven screens (HyperCard) which imposes adherence through a controlled user interface. The user interface provides an interactive capability to interrogate the data base and to display or print project requirement information. TRACS has a limited report capability, but can be extended with PostScript conventions.

  6. Morphological characterization of dental prostheses interfaces using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda L.; Ionita, Ciprian; Marsavina, Liviu; Negru, Radu; Caplescu, Cristiana; Bradu, Adrian; Topala, Florin; Rominu, Roxana O.; Petrescu, Emanuela; Leretter, Marius; Rominu, Mihai; Podoleanu, Adrian G.

    2010-03-01

    Fixed partial prostheses as integral ceramic, polymers, metal-ceramic or metal-polymers bridges are mainly used in the frontal part of the dental arch (especially the integral bridges). They have to satisfy high stress as well as esthetic requirements. The masticatory stress may induce fractures of the bridges. These may be triggered by initial materials defects or by alterations of the technological process. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. Dental interfaces represent one of the most significant aspects in the strength of the dental prostheses under the masticatory load. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) to characterize the dental prostheses interfaces. The materials used were several fixed partial prostheses integral ceramic, polymers, metal-ceramic and metal-polymers bridges. It is important to produce both C-scans and B-scans of the defects in order to differentiate morphological aspects of the bridge infrastructures. The material defects observed with OCT were investigated with micro-CT in order to prove their existence and positions. In conclusion, it is important to have a non invasive method to investigate dental prostheses interfaces before the insertion of prostheses in the oral cavity.

  7. Search of the Deep and Dark Web via DARPA Memex

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2015-12-01

    Search has progressed through several stages due to the increasing size of the Web. Search engines first focused on text and its rate of occurrence; then focused on the notion of link analysis and citation then on interactivity and guided search; and now on the use of social media - who we interact with, what we comment on, and who we follow (and who follows us). The next stage, referred to as "deep search," requires solutions that can bring together text, images, video, importance, interactivity, and social media to solve this challenging problem. The Apache Nutch project provides an open framework for large-scale, targeted, vertical search with capabilities to support all past and potential future search engine foci. Nutch is a flexible infrastructure allowing open access to ranking; URL selection and filtering approaches, to the link graph generated from search, and Nutch has spawned entire sub communities including Apache Hadoop and Apache Tika. It addresses many current needs with the capability to support new technologies such as image and video. On the DARPA Memex project, we are creating create specific extensions to Nutch that will directly improve its overall technological superiority for search and that will directly allow us to address complex search problems including human trafficking. We are integrating state-of-the-art algorithms developed by Kitware for IARPA Aladdin combined with work by Harvard to provide image and video understanding support allowing automatic detection of people and things and massive deployment via Nutch. We are expanding Apache Tika for scene understanding, object/person detection and classification in images/video. We are delivering an interactive and visual interface for initiating Nutch crawls. The interface uses Python technologies to expose Nutch data and to provide a domain specific language for crawls. With the Bokeh visualization library the interface we are delivering simple interactive crawl visualization and plotting techniques for exploring crawled information. The platform classifies, identify, and thwart predators, help to find victims and to identify buyers in human trafficking and will deliver technological superiority in search engines for DARPA. We are already transitioning the technologies into Geo and Planetary Science, and Bioinformatics.

  8. Integrated nanoscale tools for interrogating living cells

    NASA Astrophysics Data System (ADS)

    Jorgolli, Marsela

    The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.

  9. Concept of software interface for BCI systems

    NASA Astrophysics Data System (ADS)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  10. ICT Integration in Nigeria and the Quest for Indigenous Contents: Prospects of the i-CLAP Model Design Initiative

    NASA Astrophysics Data System (ADS)

    Azi, J. I.; Nkom, A. A.; Schweppe, M.

    2012-10-01

    Advances in Information and Communication Technology (ICT) is transforming the 21st century learning environment, from its traditional face-to-face, structured curriculum, fixed location and teacher-centered nature, into a more flexible and self-directed process. For instance, variously designed and developed instructional multimedia contents and interfaces in forms of (i) productivity, (ii) educational or (iii) gaming software, enable active learning access as mobile or classroom technologies, interactive tutorials, online discussions, internet conferencing and online databases. However, while this article considers these recent developments such as Intellimedia, NEPAD e-School, OLPC and Intel Classmate projects and so on as trendy and groundbreaking. It observes with discontent that the design of their contents and interfaces seem to be targeted at cross-cultural audiences, with very little or no consideration for minorities like Africa. The authors opine therefore that if the challenge of ICT integration towards bridging the digital divides in Africa must be taken very serious, the task transcends merely supplying networked computer hardware to local schools. Digital contents are required that reflect the beauty and riches of Africaís culture and heritage like music, fashion, architecture, arts and crafts. Against which backdrop, the Interactive Child Learning Aid Project (i-CLAP) model was initiated as a potential indigenous resource, for enhancing pre-primary education in Nigeria adapting the ADDIE model structure. The researchers observe that while 'customizationí of ICT applications targeted at local audience is commendable, integrating relevant indigenous contents has the potential to enhance efficacy and consequently raise the motivational level of local learners.

  11. Research on Collaborative Technology in Distributed Virtual Reality System

    NASA Astrophysics Data System (ADS)

    Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi

    2018-01-01

    Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.

  12. Safety and Security Interface Technology Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

    Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. “Supporting Excellence in Operations Through Safety Analysis,” (workshop theme)more » includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is “Safeguards/Security Integration with Safety.” This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis/Security Documentation Integration, Configuration Control, and development of a shared ‘tool box’ of information/successes. Specific Benefits. The expectation or end state resulting from the topical report and associated implementation plan includes: (1) A recommended process for handling the documentation of the security and safety disciplines, including an appropriate change control process and participation by all stakeholders. (2) A means to package security systems with sufficient information to help expedite the flow of that system through the process. In addition, a means to share successes among sites, to include information and safety basis to the extent such information is transportable. (3) Identification of key security systems and associated essential security elements being installed and an arrangement for the sites installing these systems to host an appropriate team to review a specific system and determine what information is exportable. (4) Identification of the security systems’ essential elements and appropriate controls required for testing of these essential elements in the facility. (5) The ability to help refine and improve an agreed to control set at the manufacture stage.« less

  13. Temporal patterns of mental model convergence: implications for distributed teams interacting in electronic collaboration spaces.

    PubMed

    McComb, Sara; Kennedy, Deanna; Perryman, Rebecca; Warner, Norman; Letsky, Michael

    2010-04-01

    Our objective is to capture temporal patterns in mental model convergence processes and differences in these patterns between distributed teams using an electronic collaboration space and face-to-face teams with no interface. Distributed teams, as sociotechnical systems, collaborate via technology to work on their task. The way in which they process information to inform their mental models may be examined via team communication and may unfold differently than it does in face-to-face teams. We conducted our analysis on 32 three-member teams working on a planning task. Half of the teams worked as distributed teams in an electronic collaboration space, and the other half worked face-to-face without an interface. Using event history analysis, we found temporal interdependencies among the initial convergence points of the multiple mental models we examined. Furthermore, the timing of mental model convergence and the onset of task work discussions were related to team performance. Differences existed in the temporal patterns of convergence and task work discussions across conditions. Distributed teams interacting via an electronic interface and face-to-face teams with no interface converged on multiple mental models, but their communication patterns differed. In particular, distributed teams with an electronic interface required less overall communication, converged on all mental models later in their life cycles, and exhibited more linear cognitive processes than did face-to-face teams interacting verbally. Managers need unique strategies for facilitating communication and mental model convergence depending on teams' degrees of collocation and access to an interface, which in turn will enhance team performance.

  14. Brain-computer interfaces in medicine.

    PubMed

    Shih, Jerry J; Krusienski, Dean J; Wolpaw, Jonathan R

    2012-03-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    NASA Astrophysics Data System (ADS)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  16. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  17. Using hub technology to facilitate information system integration in a health-care enterprise.

    PubMed

    Gendler, S M; Friedman, B A; Henricks, W H

    1996-04-01

    The deployment and maintenance of multiple point-to-point interfaces between a clinical information system, such as a laboratory information system, and other systems within a healthcare enterprise is expensive and time consuming. Moreover, the demand for such interfaces is increasing as hospitals consolidate and clinical laboratories participate in the development of regional laboratory networks and create host-to-host links with laboratory outreach clients. An interface engine, also called a hub, is an evolving technology that could replace multiple point-to-point interfaces from a laboratory information system with a single interface to the hub, preferably HL7 based. The hub then routes and translates laboratory information to other systems within the enterprise. Changes in application systems in an enterprise where a centralized interface engine has been implemented then amount to thorough analysis, an update of the enterprise's data dictionary, purchase of a single new vendor-supported interface, and table-based parameter changes on the hub. Two other features of an interface engine, support for structured query language and information store-and-forward, will facilitate the development of clinical data repositories and provide flexibility when interacting with other host systems. This article describes the advantages and disadvantages of an interface engine and lists some problems not solved by the technology. Finally, early developmental experience with an interface engine at the University of Michigan Medical Center and the benefits of the project on system integration efforts are described, not the least of which has been the enthusiastic adoption of the HL7 standard for all future interface projects.

  18. Lunar rover technology demonstrations with Dante and Ratler

    NASA Technical Reports Server (NTRS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-01-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  19. AIAA spacecraft GN&C interface standards initiative: Overview

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian

    1995-01-01

    The American Institute of Aeronautics and Astronautics (AIAA) has undertaken an important standards initiative in the area of spacecraft guidance, navigation, and control (GN&C) subsystem interfaces. The objective of this effort is to establish standards that will promote interchangeability of major GN&C components, thus enabling substantially lower spacecraft development costs. Although initiated by developers of conventional spacecraft GN&C, it is anticipated that interface standards will also be of value in reducing the development costs of micro-engineered spacecraft. The standardization targets are specifically limited to interfaces only, including information (i.e. data and signal), power, mechanical, thermal, and environmental interfaces between various GN&C components and between GN&C subsystems and other subsystems. The current emphasis is on information interfaces between various hardware elements (e.g., between star trackers and flight computers). The poster presentation will briefly describe the program, including the mechanics and schedule, and will publicize the technical products as they exist at the time of the conference. In particular, the rationale for the adoption of the AS1773 fiber-optic serial data bus and the status of data interface standards at the application layer will be presented.

  20. Passive sensor technology interface to assess elder activity in independent living.

    PubMed

    Alexander, Gregory L; Wakefield, Bonnie J; Rantz, Marilyn; Skubic, Marjorie; Aud, Myra A; Erdelez, Sanda; Ghenaimi, Said Al

    2011-01-01

    The effectiveness of clinical information systems to improve nursing and patient outcomes depends on human factors, including system usability, organizational workflow, and user satisfaction. The aim of this study was to examine to what extent residents, family members, and clinicians find a sensor data interface used to monitor elder activity levels usable and useful in an independent living setting. Three independent expert reviewers conducted an initial heuristic evaluation. Subsequently, 20 end users (5 residents, 5 family members, 5 registered nurses, and 5 physicians) participated in the evaluation. During the evaluation, each participant was asked to complete three scenarios taken from three residents. Morae recorder software was used to capture data during the user interactions. The heuristic evaluation resulted in 26 recommendations for interface improvement; these were classified under the headings content, aesthetic appeal, navigation, and architecture, which were derived from heuristic results. Total time for elderly residents to complete scenarios was much greater than for other users. Family members spent more time than clinicians but less time than residents did to complete scenarios. Elder residents and family members had difficulty interpreting clinical data and graphs, experienced information overload, and did not understand terminology. All users found the sensor data interface useful for identifying changing resident activities. Older adult users have special needs that should be addressed when designing clinical interfaces for them, especially information as important as health information. Evaluating human factors during user interactions with clinical information systems should be a requirement before implementation.

  1. The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective.

    PubMed

    Guo, Liang

    2016-01-01

    Brain-computer interfaces represent one of the most astonishing technologies in our era. However, the grand challenge of chronic instability and limited throughput of the electrode-tissue interface has significantly hindered the further development and ultimate deployment of such exciting technologies. A multidisciplinary research workforce has been called upon to respond to this engineering need. In this paper, I briefly review this multidisciplinary pursuit of chronically reliable neural interfaces from a materials perspective by analyzing the problem, abstracting the engineering principles, and summarizing the corresponding engineering strategies. I further draw my future perspectives by extending the proposed engineering principles.

  2. Advanced automation of a prototypic thermal control system for Space Station

    NASA Technical Reports Server (NTRS)

    Dominick, Jeff

    1990-01-01

    Viewgraphs on an advanced automation of a prototypic thermal control system for space station are presented. The Thermal Expert System (TEXSYS) was initiated in 1986 as a cooperative project between ARC and JCS as a way to leverage on-going work at both centers. JSC contributed Thermal Control System (TCS) hardware and control software, TCS operational expertise, and integration expertise. ARC contributed expert system and display expertise. The first years of the project were dedicated to parallel development of expert system tools, displays, interface software, and TCS technology and procedures by a total of four organizations.

  3. Review of progress in quantitative NDE

    NASA Astrophysics Data System (ADS)

    s of 386 papers and plenary presentations are included. The plenary sessions are related to the national technology initiative. The other sessions covered the following NDE topics: corrosion, electromagnetic arrays, elastic wave scattering and backscattering/noise, civil structures, material properties, holography, shearography, UT wave propagation, eddy currents, coatings, signal processing, radiography, computed tomography, EM imaging, adhesive bonds, NMR, laser ultrasonics, composites, thermal techniques, magnetic measurements, nonlinear acoustics, interface modeling and characterization, UT transducers, new techniques, joined materials, probes and systems, fatigue cracks and fracture, imaging and sizing, NDE in engineering and process control, acoustics of cracks, and sensors. An author index is included.

  4. OBPR Product Lines, Human Research Initiative, and Physics Roadmap for Exploration

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf

    2004-01-01

    The pace of change has increased at NASA. OBPR s focus is now on the Human interface as it relates to the new Exploration vision. The fundamental physics community must demonstrate how we can contribute. Many opportunities exist for physicists to participate in addressing NASA's cross-disciplinary exploration challenges: a) Physicists can contribute to elucidating basic operating principles for complex biological systems; b) Physics technologies can contribute to developing miniature sensors and systems required for manned missions to Mars. NASA Codes other than OBPR may be viable sources of funding for physics research.

  5. Maximization of orbiter altitude at ALT interface airspeed, mission planning, mission analysis and software

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.

    1976-01-01

    The determination of the separation initial conditions (i.e. incidence angle) that maximize orbiter altitude at the ALT interface airspeed is considered. Optimum altitude airspeed profiles are generated for each orbiter incidence angle and tailcone configuration. Results show that the highest separation altitude does not result in the highest altitude at ALT interface airspeed. The altitude attainable at ALT interface airspeed should therefore be considered in the selection of the initial conditions (i.e. incidence angle). Without violating any known constraints, the incidence angles that maximize orbiter altitude at the ALT interface airspeeds are 7.0 deg for ALT free flight 1 and 5.5 deg for ALT free flight 6.

  6. Time to address the problems at the neural interface

    NASA Astrophysics Data System (ADS)

    Durand, Dominique M.; Ghovanloo, Maysam; Krames, Elliot

    2014-04-01

    Neural engineers have made significant, if not remarkable, progress in interfacing with the nervous system in the last ten years. In particular, neuromodulation of the brain has generated significant therapeutic benefits [1-5]. EEG electrodes can be used to communicate with patients with locked-in syndrome [6]. In the central nervous system (CNS), electrode arrays placed directly over or within the cortex can record neural signals related to the intent of the subject or patient [7, 8]. A similar technology has allowed paralyzed patients to control an otherwise normal skeletal system with brain signals [9, 10]. This technology has significant potential to restore function in these and other patients with neural disorders such as stroke [11]. Although there are several multichannel arrays described in the literature, the workhorse for these cortical interfaces has been the Utah array [12]. This 100-channel electrode array has been used in most studies on animals and humans since the 1990s and is commercially available. This array and other similar microelectrode arrays can record neural signals with high quality (high signal-to-noise ratio), but these signals fade and disappear after a few months and therefore the current technology is not reliable for extended periods of time. Therefore, despite these major advances in communicating with the brain, clinical translation cannot be implemented. The reasons for this failure are not known but clearly involve the interface between the electrode and the neural tissue. The Defense Advanced Research Project Agency (DARPA) as well as other federal funding agencies such as the National Science Foundation (NSF) and the National Institutes of Health have provided significant financial support to investigate this problem without much success. A recent funding program from DARPA was designed to establish the failure modes in order to generate a reliable neural interface technology and again was unsuccessful at producing a robust interface with the CNS. In 2013, two symposia were held independently to discuss this problem: one was held at the International Neuromodulation Society's 11th World Congress in Berlin and supported by the International Neuromodulation Society1 and the other at the 6th International Neural Engineering conference in San Diego2 and was supported by the NSF. Clearly, the neuromodulation and the neural engineering communities are keen to solve this problem. Experts from the field were assembled to discuss the problems and potential solutions. Although many important points were raised, few emerged as key issues. (1) The ability to access remotely and reliably internal neural signals . Although some of the technological problems have already been solved, this ability to access neural signals is still a significant problem since reliable and robust transcutaneous telemetry systems with large numbers of signals, each with wide bandwidth, are not readily available to researchers. (2) A translation strategy taking basic research to the clinic . The lack of understanding of the biological response to implanted constructs and the inability to monitor the sites and match the mechanical properties of the probe to the neural tissue properties continue to be an unsolved problem. In addition, the low levels of collaboration among neuroscientists, clinicians, patients and other stakeholders throughout different phases of research and development were considered to be significant impediments to progress. (3) Fundamental tools development procedures for neural interfacing . There are many laboratories testing various devices with different sets of criteria, but there is no consensus on the failure modes. The reliability, robustness of metrics and testing standards for such devices have not been established, either in academia or in industry. To start addressing this problem, the FDA has established a laboratory to test the reliability of some neural devices. Although the discussion was mostly centered on interfacing with the CNS, it has recently become clear that the peripheral nervous system (PNS) could be an important target for interfacing, perhaps even more accessible for interfacing than the CNS. A recent initiative called Bioelectronic Medicines3 is a step in that direction. A recent summit held in New York was organized to investigate novel and disruptive neural technologies to interface specifically with the PNS in order to restore health and biological function to organs. With significant interest in neurotechnology for neural interfacing (see footnotes 1, 2 and 3) and uncovering new ways to treat, prevent and cure brain disorders (President Obama's brain initiative4), it seems clear that the problems at the interface will not remain unsolved for long. Finding solutions to the problem at the neural interface for interacting with the nervous system (PNS and CNS) is crucial for understanding and restoring brain function. This would in turn have a significant impact on health care and quality of life for patients with neural disorders. References [1] Follett K A et al 2010 Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease New Engl. J. Med. 362 2077-91 [2] Holtzheimer P E et al 2012 Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression Arch. Gen. Psychiatry 69 150 [3] Carron R, Chabardes S and Hammond C 2012 Mechanisms of action of high-frequency deep brain stimulation. A review of the literature and current concepts NeuroChirurgie 58 209-17 [4] Vidailhet M et al 2005 Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia New Engl. J. Med. 352 459-67 [5] Theodore W H and Fisher R S 2004 Brain stimulation for epilepsy Lancet Neurol. 3 111-8 [6] Kübler A, Kotchoubey B, Kaiser J, Wolpaw J R and Birbaumer N 2001 Brain-computer communication: unlocking the locked Psychol. Bull. 127 358-75 [7] Schalk G, Miller K J, Anderson N R, Wilson J A, Smyth M D, Ojemann J G, Moran D W, Wolpaw J R and Leuthardt E C 2008 Two-dimensional movement control using electrocorticographic signals in humans J. Neural Eng. 5 75 [8] Serruya M D, Hatsopoulos N G, Paninski L, Fellows M R and Donoghue J P 2002 Brain-machine interface: instant neural control of a movement signal Nature 416 141-2 [9] Hochberg L R, Serruya M D, Friehs G M, Mukand J A, Saleh M, Caplan A H, Branner A, Chen D, Penn R D and Donoghue J P 2006 Neuronal ensemble control of prosthetic devices by a human with tetraplegia Nature 442 164-71 [10] Collinger J L et al 2013 High-performance neuroprosthetic control by an individual with tetraplegia Lancet 381 557-64 [11] Leuthardt E C, Schalk G, Wolpaw J R, Ojemann J G and Moran D W 2004 A brain-computer interface using electrocorticographic signals in humans J. Neural Eng. 1 63 [12] Maynard E M, Nordhausen C T and Normann R A 1997 The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces Electroencephalogr. Clin. Neurophysiol. 102 228-39 1 www.neuromodulation.com/8-june-2013 2 http://neuro.embs.org/wp-content/uploads/sites/2/2013/05/SymposiumAdvert1.pdf 3 www.gsk.com/explore-gsk/how-we-do-r-and-d/bioelectronics.html 4 www.whitehouse.gov/share/brain-initiative

  7. An electronic flight bag for NextGen avionics

    NASA Astrophysics Data System (ADS)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  8. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  9. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  10. Surface and interface modification science and technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.-H.

    1999-07-19

    Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.

  11. The Role of Trust in Information Science and Technology.

    ERIC Educational Resources Information Center

    Marsh, Stephen; Dibben, Mark R.

    2003-01-01

    Discusses the notion of trust as it relates to information science and technology, specifically user interfaces, autonomous agents, and information systems. Highlights include theoretical meaning of trust; trust and levels of analysis, including organizational trust; electronic commerce, user interfaces, and static trust; dynamic trust; and trust…

  12. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  13. Integration of an intelligent systems behavior simulator and a scalable soldier-machine interface

    NASA Astrophysics Data System (ADS)

    Johnson, Tony; Manteuffel, Chris; Brewster, Benjamin; Tierney, Terry

    2007-04-01

    As the Army's Future Combat Systems (FCS) introduce emerging technologies and new force structures to the battlefield, soldiers will increasingly face new challenges in workload management. The next generation warfighter will be responsible for effectively managing robotic assets in addition to performing other missions. Studies of future battlefield operational scenarios involving the use of automation, including the specification of existing and proposed technologies, will provide significant insight into potential problem areas regarding soldier workload. The US Army Tank Automotive Research, Development, and Engineering Center (TARDEC) is currently executing an Army technology objective program to analyze and evaluate the effect of automated technologies and their associated control devices with respect to soldier workload. The Human-Robotic Interface (HRI) Intelligent Systems Behavior Simulator (ISBS) is a human performance measurement simulation system that allows modelers to develop constructive simulations of military scenarios with various deployments of interface technologies in order to evaluate operator effectiveness. One such interface is TARDEC's Scalable Soldier-Machine Interface (SMI). The scalable SMI provides a configurable machine interface application that is capable of adapting to several hardware platforms by recognizing the physical space limitations of the display device. This paper describes the integration of the ISBS and Scalable SMI applications, which will ultimately benefit both systems. The ISBS will be able to use the Scalable SMI to visualize the behaviors of virtual soldiers performing HRI tasks, such as route planning, and the scalable SMI will benefit from stimuli provided by the ISBS simulation environment. The paper describes the background of each system and details of the system integration approach.

  14. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    PubMed

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  15. Real-Time X-Ray Transmission Microscopy of Solidifying Al-In Alloys

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Kaukler, William F.

    1997-01-01

    Real-time observations of transparent analog materials have provided insight, yet the results of these observations are not necessarily representative of opaque metallic systems. In order to study the detailed dynamics of the solidification process, we develop the technologies needed for real-time X ray microscopy of solidifying metallic systems, which has not previously been feasible with the necessary resolution, speed, and contrast. In initial studies of Al-In monotectic alloys unidirectionally solidified in an X-ray transparent furnace, in situ records of the evolution of interface morphologies, interfacial solute accumulation, and formation of the monotectic droplets were obtained for the first time: A radiomicrograph of Al-30In grown during aircraft parabolic maneuvers is presented, showing the volumetric phase distribution in this specimen. The benefits of using X-ray microscopy for postsolidification metallography include ease of specimen preparation, increased sensitivity, and three-dimensional analysis of phase distribution. Imaging of the solute boundary layer revealed that the isoconcentration lines are not parallel (as is often assumed) to the growth interface. Striations in the solidified crystal did not accurately decorate the interface position and shape. The monotectic composition alloy under some conditions grew in an uncoupled manner.

  16. SWMM5 Application Programming Interface and PySWMM: A Python Interfacing Wrapper

    EPA Science Inventory

    In support of the OpenWaterAnalytics open source initiative, the PySWMM project encompasses the development of a Python interfacing wrapper to SWMM5 with parallel ongoing development of the USEPA Stormwater Management Model (SWMM5) application programming interface (API). ...

  17. Transient Dupuit Interface Flow with partially penetrating features

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    1998-11-01

    A comprehensive potential is presented for Dupuit interface flow in coastal aquifers where both the fresh water and salt water are moving. The resulting potential flow problem may be solved, for incompressible confined aquifers, using analytic functions. The vertical velocity of the interface may then be computed analytically and the change of the position of the interface may be simulated by numerical integration through time, starting with a known (or estimated) initial position. The upconing of the interface below a partially penetrating ditch or well may be studied if Dupuit solutions for such features are available. A new Dupuit solution is derived for a ditch that penetrates the aquifer partially from above; a Dupuit solution for a partially penetrating well may be obtained following a similar derivation. The new Dupuit solution is combined with the interface solution to simulate the upconing of an initially horizontal interface below a series of partially penetrating ditches; the interface converges to the known steady state position.

  18. Brain-computer interface users speak up: the Virtual Users' Forum at the 2013 International Brain-Computer Interface Meeting.

    PubMed

    Peters, Betts; Bieker, Gregory; Heckman, Susan M; Huggins, Jane E; Wolf, Catherine; Zeitlin, Debra; Fried-Oken, Melanie

    2015-03-01

    More than 300 researchers gathered at the 2013 International Brain-Computer Interface (BCI) Meeting to discuss current practice and future goals for BCI research and development. The authors organized the Virtual Users' Forum at the meeting to provide the BCI community with feedback from users. We report on the Virtual Users' Forum, including initial results from ongoing research being conducted by 2 BCI groups. Online surveys and in-person interviews were used to solicit feedback from people with disabilities who are expert and novice BCI users. For the Virtual Users' Forum, their responses were organized into 4 major themes: current (non-BCI) communication methods, experiences with BCI research, challenges of current BCIs, and future BCI developments. Two authors with severe disabilities gave presentations during the Virtual Users' Forum, and their comments are integrated with the other results. While participants' hopes for BCIs of the future remain high, their comments about available systems mirror those made by consumers about conventional assistive technology. They reflect concerns about reliability (eg, typing accuracy/speed), utility (eg, applications and the desire for real-time interactions), ease of use (eg, portability and system setup), and support (eg, technical support and caregiver training). People with disabilities, as target users of BCI systems, can provide valuable feedback and input on the development of BCI as an assistive technology. To this end, participatory action research should be considered as a valuable methodology for future BCI research. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-01

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  20. Speech and gesture interfaces for squad-level human-robot teaming

    NASA Astrophysics Data System (ADS)

    Harris, Jonathan; Barber, Daniel

    2014-06-01

    As the military increasingly adopts semi-autonomous unmanned systems for military operations, utilizing redundant and intuitive interfaces for communication between Soldiers and robots is vital to mission success. Currently, Soldiers use a common lexicon to verbally and visually communicate maneuvers between teammates. In order for robots to be seamlessly integrated within mixed-initiative teams, they must be able to understand this lexicon. Recent innovations in gaming platforms have led to advancements in speech and gesture recognition technologies, but the reliability of these technologies for enabling communication in human robot teaming is unclear. The purpose for the present study is to investigate the performance of Commercial-Off-The-Shelf (COTS) speech and gesture recognition tools in classifying a Squad Level Vocabulary (SLV) for a spatial navigation reconnaissance and surveillance task. The SLV for this study was based on findings from a survey conducted with Soldiers at Fort Benning, GA. The items of the survey focused on the communication between the Soldier and the robot, specifically in regards to verbally instructing them to execute reconnaissance and surveillance tasks. Resulting commands, identified from the survey, were then converted to equivalent arm and hand gestures, leveraging existing visual signals (e.g. U.S. Army Field Manual for Visual Signaling). A study was then run to test the ability of commercially available automated speech recognition technologies and a gesture recognition glove to classify these commands in a simulated intelligence, surveillance, and reconnaissance task. This paper presents classification accuracy of these devices for both speech and gesture modalities independently.

  1. Learner-Interface Interaction for Technology-Enhanced Active Learning

    ERIC Educational Resources Information Center

    Sinha, Neelu; Khreisat, Laila; Sharma, Kiron

    2009-01-01

    Neelu Sinha, Laila Khreisat, and Kiron Sharma describe how learner-interface interaction promotes active learning in computer science education. In a pilot study using technology that combines DyKnow software with a hardware platform of pen-enabled HP Tablet notebook computers, Sinha, Khreisat, and Sharma created dynamic learning environments by…

  2. Using SysML to model complex systems for security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, Lester Arturo

    2010-08-01

    As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: Capturing Requirements: Defining Hardware Interfaces: Defining Software Interfaces: Integrating Technologies: Radio Systems: Voice Over IP Systems: Situational Awareness Systems.

  3. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  4. A pilot demonstration project of technology application from the aerospace industry to city management (four cities program)

    NASA Technical Reports Server (NTRS)

    Ervin, G. F.; Blomeyer, L. S.

    1972-01-01

    The Four Cities Program has completed the first year of the planned two-year program. At the beginning of the first year, a variety of program initiation activities were accomplished. Contracts were negotiated; science and technology advisors were interviewed, selected and assigned; general indoctrination and integration of the advisors into city affairs occurred; technical needs were identified and related projects pursued; pilot projects for the second year were identified; inter-city coordination on technical problems began to emerge; and the general soundness of the four cities program seems to have been established. Above all, the inter-personal relationships between the advisors and their interfaces in city government appear to be functioning smoothly. The establishment of such mutual respect, trusts, and confidences are believed essential to the success of the program.

  5. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Contingency Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Contingency Management. This was performed through a review of Contingency Management-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Contingency Management Work Package were considered. Beginning with HSI high-level functional requirements for Contingency Management, and Contingency Management technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of system failures and associated contingency procedures, and (2) the control capability needed by the pilot to obtain system status and procedure information. Fundamentally, these requirements provide the candidate Contingency Management technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Contingency Management operations and functions should interface with the pilot to provide the necessary Contingency Management functionality to the UA-pilot system. Requirements and guidelines for Contingency Management are partitioned into four categories: (1) Health and Status and (2) Contingency Management. Each requirement is stated and is supported with a rationale and associated reference(s).

  6. Step 1:Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Collision Avoidance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This document provides definition of technology human interface requirements for Collision Avoidance (CA). This was performed through a review of CA-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Access 5 CA work package were considered... Beginning with the HSI high-level functional requirement for CA, and CA technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge CA system status, and (2) the control capability needed by the pilot to obtain CA information and affect an avoidance maneuver. Fundamentally, these requirements provide the candidate CA technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how CA operations and functions should interface with the pilot to provide the necessary CA functionality to the UA-pilot system .Requirements and guidelines for CA are partitioned into four categories: (1) General, (2) Alerting, (3) Guidance, and (4) Cockpit Display of Traffic Information. Each requirement is stated and is supported with a rationale and associated reference(s).

  7. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  8. STAR Online Meta-Data Collection Framework: Integration with the Pre-existing Controls Infrastructure

    NASA Astrophysics Data System (ADS)

    Arkhipkin, D.; Lauret, J.

    2017-10-01

    One of the STAR experiment’s modular Messaging Interface and Reliable Architecture framework (MIRA) integration goals is to provide seamless and automatic connections with the existing control systems. After an initial proof of concept and operation of the MIRA system as a parallel data collection system for online use and real-time monitoring, the STAR Software and Computing group is now working on the integration of Experimental Physics and Industrial Control System (EPICS) with MIRA’s interfaces. This integration goals are to allow functional interoperability and, later on, to replace the existing/legacy Detector Control System components at the service level. In this report, we describe the evolutionary integration process and, as an example, will discuss the EPICS Alarm Handler conversion. We review the complete upgrade procedure starting with the integration of EPICS-originated alarm signals propagation into MIRA, followed by the replacement of the existing operator interface based on Motif Editor and Display Manager (MEDM) with modern portable web-based Alarm Handler interface. To achieve this aim, we have built an EPICS-to-MQTT [8] bridging service, and recreated the functionality of the original Alarm Handler using low-latency web messaging technologies. The integration of EPICS alarm handling into our messaging framework allowed STAR to improve the DCS alarm awareness of existing STAR DAQ and RTS services, which use MIRA as a primary source of experiment control information.

  9. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    VanDam, Andries (Principal Investigator)

    1996-01-01

    The focus of this grant was to experiment with novel user interfaces for scientific visualization applications using both desktop and virtual reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past three years, and subsumes all prior reports.

  10. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  11. Proteomics Standards Initiative: Fifteen Years of Progress and Future Work

    PubMed Central

    2017-01-01

    The Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) has now been developing and promoting open community standards and software tools in the field of proteomics for 15 years. Under the guidance of the chair, cochairs, and other leadership positions, the PSI working groups are tasked with the development and maintenance of community standards via special workshops and ongoing work. Among the existing ratified standards, the PSI working groups continue to update PSI-MI XML, MITAB, mzML, mzIdentML, mzQuantML, mzTab, and the MIAPE (Minimum Information About a Proteomics Experiment) guidelines with the advance of new technologies and techniques. Furthermore, new standards are currently either in the final stages of completion (proBed and proBAM for proteogenomics results as well as PEFF) or in early stages of design (a spectral library standard format, a universal spectrum identifier, the qcML quality control format, and the Protein Expression Interface (PROXI) web services Application Programming Interface). In this work we review the current status of all of these aspects of the PSI, describe synergies with other efforts such as the ProteomeXchange Consortium, the Human Proteome Project, and the metabolomics community, and provide a look at future directions of the PSI. PMID:28849660

  12. Proteomics Standards Initiative: Fifteen Years of Progress and Future Work.

    PubMed

    Deutsch, Eric W; Orchard, Sandra; Binz, Pierre-Alain; Bittremieux, Wout; Eisenacher, Martin; Hermjakob, Henning; Kawano, Shin; Lam, Henry; Mayer, Gerhard; Menschaert, Gerben; Perez-Riverol, Yasset; Salek, Reza M; Tabb, David L; Tenzer, Stefan; Vizcaíno, Juan Antonio; Walzer, Mathias; Jones, Andrew R

    2017-12-01

    The Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) has now been developing and promoting open community standards and software tools in the field of proteomics for 15 years. Under the guidance of the chair, cochairs, and other leadership positions, the PSI working groups are tasked with the development and maintenance of community standards via special workshops and ongoing work. Among the existing ratified standards, the PSI working groups continue to update PSI-MI XML, MITAB, mzML, mzIdentML, mzQuantML, mzTab, and the MIAPE (Minimum Information About a Proteomics Experiment) guidelines with the advance of new technologies and techniques. Furthermore, new standards are currently either in the final stages of completion (proBed and proBAM for proteogenomics results as well as PEFF) or in early stages of design (a spectral library standard format, a universal spectrum identifier, the qcML quality control format, and the Protein Expression Interface (PROXI) web services Application Programming Interface). In this work we review the current status of all of these aspects of the PSI, describe synergies with other efforts such as the ProteomeXchange Consortium, the Human Proteome Project, and the metabolomics community, and provide a look at future directions of the PSI.

  13. Investigation into Z-Pin Reinforced Composite Skin/Stiffener Debond under Monotonic and Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi

    2018-02-01

    Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.

  14. Towards democracy in spatial planning through spatial information built by communities: The investigation of spatial information built by citizens from participatory mapping to volunteered geographic information in Indonesia

    NASA Astrophysics Data System (ADS)

    Yudono, Adipandang

    2017-06-01

    Recently, crowd-sourced information is used to produce and improve collective knowledge and community capacity building. Triggered by broadening and expanding access to the Internet and cellular telephones, the utilisation of crowd-sourcing for policy advocacy, e-government and e-participation has increased globally [1]. Crowd-sourced information can conceivably support government’s or general social initiatives to inform, counsel, and cooperate, by engaging subjects and empowering decentralisation and democratization [2]. Crowd-sourcing has turned into a major technique for interactive mapping initiatives by urban or rural community because of its capability to incorporate a wide range of data. Continuously accumulated spatial data can be sorted, layered, and envisioned in ways that even beginners can comprehend with ease. Interactive spatial visualization has the possibility to be a useful democratic planning tool to empower citizens participating in spatial data provision and sharing in government programmes. Since the global emergence of World Wide Web (WWW) technology, the interaction between information providers and users has increased. Local communities are able to produce and share spatial data to produce web interfaces with territorial information in mapping application programming interfaces (APIs) public, such as Google maps, OSM and Wikimapia [3][4][5]. In terms of the democratic spatial planning action, Volunteered Geographic Information (VGI) is considered an effective voluntary method of helping people feel comfortable with the technology and other co-participants in order to shape coalitions of local knowledge. This paper has aim to investigate ‘How is spatial data created by citizens used in Indonesia?’ by discussing the characteristics of spatial data usage by citizens to support spatial policy formulation, starting with the history of participatory mapping to current VGI development in Indonesia.

  15. Predictive Model and Methodology for Heat Treatment Distortion Final Report CRADA No. TC-298-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikkel, D. J.; McCabe, J.

    This project was a multi-lab, multi-partner CRADA involving LLNL, Los Alamos National Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, Martin Marietta Energy Systems and the industrial partner, The National Center of Manufacturing Sciences (NCMS). A number of member companies of NCMS participated including General Motors Corporation, Ford Motor Company, The Torrington Company, Gear Research, the Illinois Institute of Technology Research Institute, and Deformation Control Technology •. LLNL was the lead laboratory for metrology technology used for validation of the computational tool/methodology. LLNL was also the lead laboratory for the development of the software user interface , for the computationalmore » tool. This report focuses on the participation of LLNL and NCMS. The purpose of the project was to develop a computational tool/methodology that engineers would use to predict the effects of heat treatment on the _size and shape of industrial parts made of quench hardenable alloys. Initially, the target application of the tool was gears for automotive power trains.« less

  16. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less

  17. Virtual reality applications to automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Hale, Joseph; Oneil, Daniel

    1991-01-01

    Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.

  18. Head-Disk Interface Technology: Challenges and Approaches

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.

  19. Implantable brain computer interface: challenges to neurotechnology translation.

    PubMed

    Konrad, Peter; Shanks, Todd

    2010-06-01

    This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.

  20. Customizing graphical user interface technology for spacecraft control centers

    NASA Technical Reports Server (NTRS)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  1. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.

    PubMed

    Statthaler, Karina; Schwarz, Andreas; Steyrl, David; Kobler, Reinmar; Höller, Maria Katharina; Brandstetter, Julia; Hehenberger, Lea; Bigga, Marvin; Müller-Putz, Gernot

    2017-12-28

    In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.

  2. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  3. Healthtrak(tm): Technology Enhanced Human Interface to the Computerized Patient Record

    DTIC Science & Technology

    2002-07-01

    and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position...34: Technology Enhanced Human Interface to the DAMDI17-02-C-0032 Computerized Patient Record 6. AUTHOR( S ) Azad M. Madni, Ph.D. Doctor Weiwen Lin Carla...C. Madni 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Intelligent Systems Technology, Incorporated

  4. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study

    PubMed Central

    Harrysson, Ola LA; Hosni, Yasser A; Nayfeh, Jamal F

    2007-01-01

    Background Conventional knee and hip implant systems have been in use for many years with good success. However, the custom design of implant components based on patient-specific anatomy has been attempted to overcome existing shortcomings of current designs. The longevity of cementless implant components is highly dependent on the initial fit between the bone surface and the implant. The bone-implant interface design has historically been limited by the surgical tools and cutting guides available; and the cost of fabricating custom-designed implant components has been prohibitive. Methods This paper describes an approach where the custom design is based on a Computed Tomography scan of the patient's joint. The proposed design will customize both the articulating surface and the bone-implant interface to address the most common problems found with conventional knee-implant components. Finite Element Analysis is used to evaluate and compare the proposed design of a custom femoral component with a conventional design. Results The proposed design shows a more even stress distribution on the bone-implant interface surface, which will reduce the uneven bone remodeling that can lead to premature loosening. Conclusion The proposed custom femoral component design has the following advantages compared with a conventional femoral component. (i) Since the articulating surface closely mimics the shape of the distal femur, there is no need for resurfacing of the patella or gait change. (ii) Owing to the resulting stress distribution, bone remodeling is even and the risk of premature loosening might be reduced. (iii) Because the bone-implant interface can accommodate anatomical abnormalities at the distal femur, the need for surgical interventions and fitting of filler components is reduced. (iv) Given that the bone-implant interface is customized, about 40% less bone must be removed. The primary disadvantages are the time and cost required for the design and the possible need for a surgical robot to perform the bone resection. Some of these disadvantages may be eliminated by the use of rapid prototyping technologies, especially the use of Electron Beam Melting technology for quick and economical fabrication of custom implant components. PMID:17854508

  5. Dynamic evolution of interface roughness during friction and wear processes.

    PubMed

    Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L

    2014-01-01

    Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.

  6. Numerical simulations of the process of multiple shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Hua; Dong, Gang; chen, Xiao; Wu, Jin-Tao

    2016-08-01

    Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier-Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer-Meshkov instability (RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated. Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient, thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.

  7. The flight telerobotic servicer: From functional architecture to computer architecture

    NASA Technical Reports Server (NTRS)

    Lumia, Ronald; Fiala, John

    1989-01-01

    After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.

  8. Does Interface Matter? A Study of Web Authoring and Editing by Inexperienced Web Writers

    ERIC Educational Resources Information Center

    Dick, Rodney F.

    2006-01-01

    This study explores the complicated nature of the interface as a mediational tool for inexperienced writers as they composed hypertext documents. Because technology can become so quickly and inextricably connected to people's everyday lives, it is essential to explore the effects on these technologies before they become invisible. Because…

  9. Real-World Neuroimaging Technologies

    DTIC Science & Technology

    2013-05-10

    system enables long-term wear of up to 10 consecutive hours of operation time. The system’s wireless technologies, light weight (200g), and dry sensor ...biomarkers, body sensor networks , brain computer interactionbrain, computer interfaces, data acquisition, electroencephalography monitoring, translational...brain activity in real-world scenarios. INDEX TERMS Behavioral science, biomarkers, body sensor networks , brain computer interfaces, brain computer

  10. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  11. Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies.

    PubMed

    Kulshreshth, Arun; Pfeil, Kevin; LaViola, Joseph J

    2017-01-01

    Three-dimensional (3D) spatial user interface technologies have the potential to make games more immersive and engaging and thus provide a better user experience. Although technologies such as stereoscopic 3D display, head tracking, and gesture-based control are available for games, it is still unclear how their use affects gameplay and if there are any user performance benefits. The authors have conducted several experiments on these technologies in game environments to understand how they affect gameplay and how we can use them to optimize the gameplay experience.

  12. Joint Service Aircrew Mask (JSAM) Rotary Wing (RW): MPU-5 Noise Attenuation Performance

    DTIC Science & Technology

    2016-06-09

    Swayne Ball Aerospace and Technologies Corp. Dayton, OH Hilary Gallagher Warfighter Interface Division Battlespace Acoustics Branch Wright... Acoustics Branch Battlespace Acoustics Branch Warfighter Interface Division //signed// WILLIAM E. RUSSELL Chief, Warfighter Interface...Directorate Warfighter Interface Division Battlespace Acoustics Branch Wright-Patterson AFB OH 45433 711 HPW/RHCB 11. SPONSOR

  13. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  14. Hands in space: gesture interaction with augmented-reality interfaces.

    PubMed

    Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai

    2014-01-01

    Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.

  15. Design of Epidemia - an Ecohealth Informatics System for Integrated Forecasting of Malaria Epidemics

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Bayabil, E.; Beyane, B.; Bishaw, M.; Henebry, G. M.; Lemma, A.; Liu, Y.; Merkord, C. L.; Mihretie, A.; Senay, G. B.; Yalew, W.

    2014-12-01

    Early warning of the timing and locations of malaria epidemics can facilitate the targeting of resources for prevention and emergency response. In response to this need, we are developing the Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) computer system. The system incorporates software for capturing, processing, and integrating environmental and epidemiological data from multiple sources; data assimilation techniques that continually update models and forecasts; and a web-based interface that makes the resulting information available to public health decision makers. This technology will enable forecasts based on lagged responses to environmental risk factors as well as information about recent trends in malaria cases. Environmental driving variables will include a variety of remote-sensed hydrological indicators. EPIDEMIA will be implemented and tested in the Amhara Region of Ethiopia in collaboration with local stakeholders. We conducted an initial co-design workshop in July 2014 that included environmental scientists, software engineers, and participants from the NGO, academic, and public health sectors in Ethiopia. A prototype of the EPIDEMIA web interface was presented and a requirements analysis was conducted to characterize the main use cases for the public health community, identify the critical data requirements for malaria risk modeling, and develop of a list of baseline features for the public health interface. Several critical system features were identified, including a secure web-based interface for uploading and validating surveillance data; a flexible query system to allow retrieval of environmental and epidemiological data summaries as tables, charts, and maps; and an alert system to provide automatic warnings in response to environmental and epidemiological risk factors for malaria. Future system development will involve a cycle of implementation, training, usability testing, and upgrading. This innovative translational bioinformatics approach will allow us to assess the practical effectiveness of these tools as we continually improve the technologies.

  16. Simulation of Interaction of Strong Shocks with Gas Bubbles using the Direct Simulation Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra

    2016-11-01

    The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.

  17. Optical coherence tomography and confocal microscopy investigations of dental prostheses

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Rominu, Mihai; Todea, Carmen; Dobre, George; Podoleanu, Adrian

    2008-09-01

    Dental prostheses are very complex systems, heterogenous in structure, made up from various materials, with different physical properties. An essential question mark is on the physical, chemical and mechanical compatibility between these materials. They have to satisfy high stress requirements as well as esthetic challenges. The masticatory stress may induce fractures of the prostheses, which may be triggered by initial materials defects or by alterations of the technological process. The failures of dental prostheses lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of en-face optical coherence tomography as a possible non-invasive high resolution method in supplying the necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed. We conclude that OCT can successfully be used as a noninvasive analysis method.

  18. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  19. StarTrax --- The Next Generation User Interface

    NASA Astrophysics Data System (ADS)

    Richmond, Alan; White, Nick

    StarTrax is a software package to be distributed to end users for installation on their local computing infrastructure. It will provide access to many services of the HEASARC, i.e. bulletins, catalogs, proposal and analysis tools, initially for the ROSAT MIPS (Mission Information and Planning System), later for the Next Generation Browse. A user activating the GUI will reach all HEASARC capabilities through a uniform view of the system, independent of the local computing environment and of the networking method of accessing StarTrax. Use it if you prefer the point-and-click metaphor of modern GUI technology, to the classical command-line interfaces (CLI). Notable strengths include: easy to use; excellent portability; very robust server support; feedback button on every dialog; painstakingly crafted User Guide. It is designed to support a large number of input devices including terminals, workstations and personal computers. XVT's Portability Toolkit is used to build the GUI in C/C++ to run on: OSF/Motif (UNIX or VMS), OPEN LOOK (UNIX), or Macintosh, or MS-Windows (DOS), or character systems.

  20. Plasma-assisted interface engineering of boron nitride nanostructure films.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-10-28

    Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.

  1. Manipulation of three-dimensional Richtmyer-Meshkov instability by initial interfacial principal curvatures

    NASA Astrophysics Data System (ADS)

    Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng

    2017-03-01

    The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.

  2. A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Raman, K. S.; Huntington, C. M.; MacLaren, S. A.; Wang, P.; Barrios, M. A.; Baumann, T.; Bender, J. D.; Benedetti, L. R.; Doane, D. M.; Felker, S.; Fitzsimmons, P.; Flippo, K. A.; Holder, J. P.; Kaczala, D. N.; Perry, T. S.; Seugling, R. M.; Savage, L.; Zhou, Y.

    2017-07-01

    A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube containing a pre-machined interface between dense and light materials. The strong shock turns the initially solid target into a plasma and the material boundary into a fluid interface with the imprinted initial condition. The interface evolves by action of the RT and RM instabilities, and the growth is imaged with backlit x-ray radiography. We present our first data involving sinusoidal interface perturbations driven from the heavy side to the light side. Late-time radiographic images show the initial conditions reaching the deeply nonlinear regime, and an evolution of fine structure consistent with a transition to turbulence. We show preliminary comparisons with post-shot numerical simulations and discuss the implications for future campaigns.

  3. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  4. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  5. Virtual reality and brain computer interface in neurorehabilitation

    PubMed Central

    Dahdah, Marie; Driver, Simon; Parsons, Thomas D.; Richter, Kathleen M.

    2016-01-01

    The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second study explores the validity of two virtual environments with acquired brain injury as part of an intensive outpatient neurorehabilitation program. These preliminary studies support the feasibility of advanced technologies in the subacute stage of neurorehabilitation. These modalities were well tolerated by participants and could be incorporated into patients' inpatient and outpatient rehabilitation regimens without schedule disruptions. This paper expands the limited literature base regarding the use of advanced technologies in the early stages of recovery for neurorehabilitation populations and speaks favorably to the potential integration of brain computer interface and virtual reality technologies as part of a multidisciplinary treatment program. PMID:27034541

  6. The Evolvable Advanced Multi-Mission Operations System (AMMOS): Making Systems Interoperable

    NASA Technical Reports Server (NTRS)

    Ko, Adans Y.; Maldague, Pierre F.; Bui, Tung; Lam, Doris T.; McKinney, John C.

    2010-01-01

    The Advanced Multi-Mission Operations System (AMMOS) provides a common Mission Operation System (MOS) infrastructure to NASA deep space missions. The evolution of AMMOS has been driven by two factors: increasingly challenging requirements from space missions, and the emergence of new IT technology. The work described in this paper focuses on three key tasks related to IT technology requirements: first, to eliminate duplicate functionality; second, to promote the use of loosely coupled application programming interfaces, text based file interfaces, web-based frameworks and integrated Graphical User Interfaces (GUI) to connect users, data, and core functionality; and third, to build, develop, and deploy AMMOS services that are reusable, agile, adaptive to project MOS configurations, and responsive to industrially endorsed information technology standards.

  7. The Pr 2O 3/Si(0 0 1) interface studied by synchrotron radiation photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmeißer, D.; Müssig, H.-J.

    2003-10-01

    Pr 2O 3 is currently under consideration as a potential replacement for SiO 2 as the gate-dielectric material for sub-0.1 μm complementary metal-oxide-semiconductor (CMOS) technology. We studied the Pr 2O 3/Si(0 0 1) interface by a non-destructive depth profiling using synchrotron radiation photoelectron spectroscopy. Our data suggests that there is no silicide formation at the interface. Based on reported results, a chemical reactive interface exists, consisting of a mixed Si-Pr oxide such as (Pr 2O 3) x(SiO 2) 1- x, i.e. as a silicate phase with variable silicon content. This pseudo-binary alloy at the interface offers large flexibility toward successful integration of Pr 2O 3 into future CMOS technologies.

  8. Does this interface make my sensor look bad? Basic principles for designing usable, useful interfaces for sensor technology operators

    NASA Astrophysics Data System (ADS)

    McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura

    2017-05-01

    Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.

  9. Initiation of and distributed deformation at and around stylolite interfaces: Insights from detailed microstructural analysis

    NASA Astrophysics Data System (ADS)

    Ebner, M.; Piazolo, S.; Koehn, D.

    2009-04-01

    In the present contribution we investigate the microstructure of bedding parallel and bedding normal stylolites in carbonate rocks. We focused our study on micro-stylolites which represent an initial stage of this localised pressure solution process as stylolite roughness amplitude is a function of strain. We use electron backscatter diffraction analysis (EBSD) and orientation contrast imaging to address the following issues: (i) What causes the initiation of stylolite interfaces at a submicroscopic scale, (ii) is there distributed deformation around the stylolite interface and (iii) what is the role of the interface (residuum)? Our findings demonstrate that the characteristic stylolite teeth are initiated at a pre-existing heterogeneity in the host-rock. This quenched noise in carbonate rocks is typically composed of clay particles in the submicron scale. In addition, qtz-grains are present along especially pronounced stylolite peaks. The stylolite interface evolves with increasing strain from individual clay particles separated by grain-grain contacts of calcite along the interface to a continuous layer of clay and oxides. Thickness variation of the residuum along the interface is inferred to be strongly influenced by the pre-existing distribution of pinning particles that are more resistant to dissolution. Another important observation is that a shaped preferred orientation (SPO) exists in a halo around the stylolite. This SPO increases with proximity to the stylolite interface. Within this halo, crystal plastic deformation is expressed by subgrain formation with subgrain boundaries usually aligned parallel to shortening direction. Bedding normal (tectonic) stylolites which overprint already compacted beds i.e. with a pre-existing sedimentary SPO parallel to the bedding plane exhibit a SPO at a high angle to the sedimentary SPO. We conclude that stylolite roughness is primarily caused by pre-existing heterogeneities in the host-rock which are more resistant to dissolution e.g. clay particles and/or qtz grains. Secondly, we demonstrate that stylolite formation is not a process that is restricted to the stylolite interface itself but a process that is active in a broader zone around the actual interface.

  10. Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Fox, M. R.; Ghosh, A. K.

    2001-08-01

    Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.

  11. New Directions for Natural Killer T Cells in the Immunotherapy of Cancer

    PubMed Central

    Teyton, Luc

    2017-01-01

    Natural killer T (NKT) cells have been placed at the interface between innate and adaptive immunity by a long series of experiments that convincingly showed that beyond cytokine secretion and NK cell recruitment, NKT cells were coordinating dendritic cell and B cell maturation through direct membrane contacts and initiate productive responses. As such, NKT cells are the cellular adjuvant of many immune reactions and have functions that go much beyond what their name encapsulates. In addition, the initial discovery of the ligands of NKT cells is deeply linked to cancer biology and therapy. However, for a host of reasons, animal models in which agonists of NKT cells were used did not translate well to human cancers. A systematic reassessment of NKT cells role in tumorigenesis, especially spontaneous one, is now accessible using single cell analysis technologies both in mouse and man, and should be taken advantage of. Similarly, the migration, localization, phenotype of NKT cells following induced expansion after injection of an agonist can be examined at the single cell level. This technological revolution will help evaluate where and how NKT cells can be used in cancer. PMID:29209309

  12. The human role in space (THURIS) applications study. Final briefing

    NASA Technical Reports Server (NTRS)

    Maybee, George W.

    1987-01-01

    The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.

  13. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  14. Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices.

    PubMed

    Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter

    2012-01-01

    Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.

  15. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  16. Open Technology Approaches to Geospatial Interface Design

    NASA Astrophysics Data System (ADS)

    Crevensten, B.; Simmons, D.; Alaska Satellite Facility

    2011-12-01

    What problems do you not want your software developers to be solving? Choosing open technologies across the entire stack of software development-from low-level shared libraries to high-level user interaction implementations-is a way to help ensure that customized software yields innovative and valuable tools for Earth Scientists. This demonstration will review developments in web application technologies and the recurring patterns of interaction design regarding exploration and discovery of geospatial data through the Vertex: ASF's Dataportal interface, a project utilizing current open web application standards and technologies including HTML5, jQueryUI, Backbone.js and the Jasmine unit testing framework.

  17. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    NASA Astrophysics Data System (ADS)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than elimination of the glial scar.

  18. High performance flight computer developed for deep space applications

    NASA Technical Reports Server (NTRS)

    Bunker, Robert L.

    1993-01-01

    The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.

  19. User Interface Design in Medical Distributed Web Applications.

    PubMed

    Serban, Alexandru; Crisan-Vida, Mihaela; Mada, Leonard; Stoicu-Tivadar, Lacramioara

    2016-01-01

    User interfaces are important to facilitate easy learning and operating with an IT application especially in the medical world. An easy to use interface has to be simple and to customize the user needs and mode of operation. The technology in the background is an important tool to accomplish this. The present work aims to creating a web interface using specific technology (HTML table design combined with CSS3) to provide an optimized responsive interface for a complex web application. In the first phase, the current icMED web medical application layout is analyzed, and its structure is designed using specific tools, on source files. In the second phase, a new graphic adaptable interface to different mobile terminals is proposed, (using HTML table design (TD) and CSS3 method) that uses no source files, just lines of code for layout design, improving the interaction in terms of speed and simplicity. For a complex medical software application a new prototype layout was designed and developed using HTML tables. The method uses a CSS code with only CSS classes applied to one or multiple HTML table elements, instead of CSS styles that can be applied to just one DIV tag at once. The technique has the advantage of a simplified CSS code, and a better adaptability to different media resolutions compared to DIV-CSS style method. The presented work is a proof that adaptive web interfaces can be developed just using and combining different types of design methods and technologies, using HTML table design, resulting in a simpler to learn and use interface, suitable for healthcare services.

  20. Visual Basic VPython Interface: Charged Particle in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prayaga, Chandra

    2006-12-01

    A simple Visual Basic (VB) to VPython interface is described and illustrated with the example of a charged particle in a magnetic field. This interface allows data to be passed to Python through a text file read by Python. The first component of the interface is a user-friendly data entry screen designed in VB, in which the user can input values of the charge, mass, initial position and initial velocity of the particle, and the magnetic field. Next, a command button is coded to write these values to a text file. Another command button starts the VPython program, which reads the data from the text file, numerically solves the equation of motion, and provides the 3d graphics animation. Students can use the interface to run the program several times with different data and observe changes in the motion.

  1. Future developments in brain-machine interface research.

    PubMed

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  2. User Interface Developed for Controls/CFD Interdisciplinary Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.

  3. Relaxation, Structure and Properties of Semi-coherent Interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-11-05

    Materials containing high density of interfaces are promising candidates for future energy technologies, because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. Semi-coherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. Lastly, in this article, we review relaxation mechanisms, structure and properties of (111) semi-coherent interfaces in face centered cubic structures.

  4. Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory

    ERIC Educational Resources Information Center

    Jagodzinski, Piotr; Wolski, Robert

    2015-01-01

    Natural User Interfaces (NUI) are now widely used in electronic devices such as smartphones, tablets and gaming consoles. We have tried to apply this technology in the teaching of chemistry in middle school and high school. A virtual chemical laboratory was developed in which students can simulate the performance of laboratory activities similar…

  5. European public deliberation on brain machine interface technology: five convergence seminars.

    PubMed

    Jebari, Karim; Hansson, Sven-Ove

    2013-09-01

    We present a novel procedure to engage the public in ethical deliberations on the potential impacts of brain machine interface technology. We call this procedure a convergence seminar, a form of scenario-based group discussion that is founded on the idea of hypothetical retrospection. The theoretical background of this procedure and the results of five seminars are presented.

  6. Participation as Governmentality? The Effect of Disciplinary Technologies at the Interface of Service Users and Providers, Families and the State

    ERIC Educational Resources Information Center

    McKay, Jane; Garratt, Dean

    2013-01-01

    This paper examines the concept of participation in relation to a range of recently imposed social and education policies. Drawing on recent empirical research, we explore how disciplinary technologies, including government policy, operate at the interface of service users and providers, and examine the interactional aspects of participation where…

  7. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    ERIC Educational Resources Information Center

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  8. Adding a Visualization Feature to Web Search Engines: It’s Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.

    Since the first world wide web (WWW) search engine quietly entered our lives in 1994, the “information need” behind web searching has rapidly grown into a multi-billion dollar business that dominates the internet landscape, drives e-commerce traffic, propels global economy, and affects the lives of the whole human race. Today’s search engines are faster, smarter, and more powerful than those released just a few years ago. With the vast investment pouring into research and development by leading web technology providers and the intense emotion behind corporate slogans such as “win the web” or “take back the web,” I can’t helpmore » but ask why are we still using the very same “text-only” interface that was used 13 years ago to browse our search engine results pages (SERPs)? Why has the SERP interface technology lagged so far behind in the web evolution when the corresponding search technology has advanced so rapidly? In this article I explore some current SERP interface issues, suggest a simple but practical visual-based interface design approach, and argue why a visual approach can be a strong candidate for tomorrow’s SERP interface.« less

  9. Designing for scale: optimising the health information system architecture for mobile maternal health messaging in South Africa (MomConnect)

    PubMed Central

    Seebregts, Christopher; Dane, Pierre; Parsons, Annie Neo; Fogwill, Thomas; Rogers, Debbie; Bekker, Marcha; Shaw, Vincent; Barron, Peter

    2018-01-01

    MomConnect is a national initiative coordinated by the South African National Department of Health that sends text-based mobile phone messages free of charge to pregnant women who voluntarily register at any public healthcare facility in South Africa. We describe the system design and architecture of the MomConnect technical platform, planned as a nationally scalable and extensible initiative. It uses a health information exchange that can connect any standards-compliant electronic front-end application to any standards-compliant electronic back-end database. The implementation of the MomConnect technical platform, in turn, is a national reference application for electronic interoperability in line with the South African National Health Normative Standards Framework. The use of open content and messaging standards enables the architecture to include any application adhering to the selected standards. Its national implementation at scale demonstrates both the use of this technology and a key objective of global health information systems, which is to achieve implementation scale. The system’s limited clinical information, initially, allowed the architecture to focus on the base standards and profiles for interoperability in a resource-constrained environment with limited connectivity and infrastructural capacity. Maintenance of the system requires mobilisation of national resources. Future work aims to use the standard interfaces to include data from additional applications as well as to extend and interface the framework with other public health information systems in South Africa. The development of this platform has also shown the benefits of interoperability at both an organisational and technical level in South Africa. PMID:29713506

  10. Designing for scale: optimising the health information system architecture for mobile maternal health messaging in South Africa (MomConnect).

    PubMed

    Seebregts, Christopher; Dane, Pierre; Parsons, Annie Neo; Fogwill, Thomas; Rogers, Debbie; Bekker, Marcha; Shaw, Vincent; Barron, Peter

    2018-01-01

    MomConnect is a national initiative coordinated by the South African National Department of Health that sends text-based mobile phone messages free of charge to pregnant women who voluntarily register at any public healthcare facility in South Africa. We describe the system design and architecture of the MomConnect technical platform, planned as a nationally scalable and extensible initiative. It uses a health information exchange that can connect any standards-compliant electronic front-end application to any standards-compliant electronic back-end database. The implementation of the MomConnect technical platform, in turn, is a national reference application for electronic interoperability in line with the South African National Health Normative Standards Framework. The use of open content and messaging standards enables the architecture to include any application adhering to the selected standards. Its national implementation at scale demonstrates both the use of this technology and a key objective of global health information systems, which is to achieve implementation scale. The system's limited clinical information, initially, allowed the architecture to focus on the base standards and profiles for interoperability in a resource-constrained environment with limited connectivity and infrastructural capacity. Maintenance of the system requires mobilisation of national resources. Future work aims to use the standard interfaces to include data from additional applications as well as to extend and interface the framework with other public health information systems in South Africa. The development of this platform has also shown the benefits of interoperability at both an organisational and technical level in South Africa.

  11. Development and evaluation of nursing user interface screens using multiple methods.

    PubMed

    Hyun, Sookyung; Johnson, Stephen B; Stetson, Peter D; Bakken, Suzanne

    2009-12-01

    Building upon the foundation of the Structured Narrative Electronic Health Record (EHR) model, we applied theory-based (combined Technology Acceptance Model and Task-Technology Fit Model) and user-centered methods to explore nurses' perceptions of functional requirements for an electronic nursing documentation system, design user interface screens reflective of the nurses' perspectives, and assess nurses' perceptions of the usability of the prototype user interface screens. The methods resulted in user interface screens that were perceived to be easy to use, potentially useful, and well-matched to nursing documentation tasks associated with Nursing Admission Assessment, Blood Administration, and Nursing Discharge Summary. The methods applied in this research may serve as a guide for others wishing to implement user-centered processes to develop or extend EHR systems. In addition, some of the insights obtained in this study may be informative to the development of safe and efficient user interface screens for nursing document templates in EHRs.

  12. Development of the Computer Interface Literacy Measure.

    ERIC Educational Resources Information Center

    Turner, G. Marc; Sweany, Noelle Wall; Husman, Jenefer

    2000-01-01

    Discussion of computer literacy and the rapidly changing face of technology focuses on a study that redefined computer literacy to include competencies for using graphical user interfaces for operating systems, hypermedia applications, and the Internet. Describes the development and testing of the Computer Interface Literacy Measure with…

  13. 78 FR 36642 - Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0021] Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity: Comment Request AGENCY: Veterans... techniques or the use of other forms of information technology. Title: VA Loan Electronic Reporting Interface...

  14. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  15. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry

    2017-11-01

    The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.

  16. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  17. Three-Dimensional User Interfaces for Immersive Virtual Reality

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1997-01-01

    The focus of this grant was to experiment with novel user interfaces for immersive Virtual Reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. Our primary test application was a scientific visualization application for viewing Computational Fluid Dynamics (CFD) datasets. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past year, and extends last year's final report of the first three years of the grant.

  18. Multimode theory of plasmon excitation at a metal - photonic crystal interface

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. I.; Raspopov, N. A.

    2017-12-01

    Surface plasmon excitation at a photonic crystal - metal interface is studied taking into account multiple scattering of an initial light wave on a periodical crystal structure. The analysis is focused on calculating characteristics of the eigenwaves in a one-dimensional crystal, which comprise a set of harmonics with the wavevectors separated from each other by the value of the crystal lattice wavevector. Reflection from the crystal - metal interface binds the amplitudes of propagating and evanescent modes. Calculations show that for the dielectric characteristics of a synthetic opal and a substrate made of a real metal with a ruby laser radiation used as the initial wave, the fulfilment of plasmon resonance conditions leads to a local increase in the surface plasmon amplitude by a factor of 6.4 - 9 as compared to the average amplitude of the initial wave. As a rule, the effect can only be obtained for a single surface wave, all other waves being substantially weaker than the main plasmon. There is a specific case where the resonance condition holds for two modes simultaneously. In this case, two oppositely directed fluxes of equal intensity are generated at the interface. The resonance condition breaks at a small deviation of the incident angle of the initial wave θ from the normal direction (|θ| ⩾ 10-4 rad). In the latter case, the picture is asymmetric: at angles |θ| ⩾ 5 × 10-3 rad, only one plasmon remains intensive. The local density of electromagnetic energy at the photonic crystal - metal interface may exceed the corresponding value of the initial wave by a factor of 40 - 80.

  19. On the influence of dynamic stress variations on strain accumulation in fault zones

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.

    2015-10-01

    In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.

  20. 'Designing Ambient Interactions - Pervasive Ergonomic Interfaces for Ageing Well' (DAI'10)

    NASA Astrophysics Data System (ADS)

    Geven, Arjan; Prost, Sebastian; Tscheligi, Manfred; Soldatos, John; Gonzalez, Mari Feli

    The workshop will focus on novel computer based interaction mechanisms and interfaces, which boost natural interactivity and obviate the need for conventional tedious interfaces. Such interfaces are increasingly used in ambient intelligence environments and related applications, including application boosting elderly cognitive support, cognitive rehabilitation and Ambient Assisted Living (AAL). The aim of the workshop is to provide insights on the technological underpinnings of such interfaces, along with tools and techniques for their design and evaluation.

  1. 10 Management Controller for Time and Space Partitioning Architectures

    NASA Astrophysics Data System (ADS)

    Lachaize, Jerome; Deredempt, Marie-Helene; Galizzi, Julien

    2015-09-01

    The Integrated Modular Avionics (IMA) has been industrialized in aeronautical domain to enable the independent qualification of different application softwares from different suppliers on the same generic computer, this latter computer being a single terminal in a deterministic network. This concept allowed to distribute efficiently and transparently the different applications across the network, sizing accurately the HW equipments to embed on the aircraft, through the configuration of the virtual computers and the virtual network. , This concept has been studied for space domain and requirements issued [D04],[D05]. Experiments in the space domain have been done, for the computer level, through ESA and CNES initiatives [D02] [D03]. One possible IMA implementation may use Time and Space Partitioning (TSP) technology. Studies on Time and Space Partitioning [D02] for controlling resources access such as CPU and memories and studies on hardware/software interface standardization [D01] showed that for space domain technologies where I/O components (or IP) do not cover advanced features such as buffering, descriptors or virtualization, CPU overhead in terms of performances is mainly due to shared interface management in the execution platform, and to the high frequency of I/O accesses, these latter leading to an important number of context switches. This paper will present a solution to reduce this execution overhead with an open, modular and configurable controller.

  2. Digital interface for bi-directional communication between a computer and a peripheral device

    NASA Technical Reports Server (NTRS)

    Bond, H. H., Jr. (Inventor); Franklin, C. R.

    1984-01-01

    For transmission of data from the computer to the peripheral, the computer initially clears a flipflop which provides a select signal to a multiplexer. A data available signal or data strobe signal is produced while tht data is being provided to the interface. Setting of the flipflop causes a gate to provide to the peripherial a signal indicating that the interface has data available for transmission. The peripheral provides an acknowledge or strobe signal to transfer the data to the peripheral. For transmission of data from the peripheral to the computer, the computer presents the initially cleared flipflop. A data request signal from the peripheral indicates that the peripheral has data available for transmission to the computer. An acknowledge signal indicates that the interface is ready to receive data from the peripheral and to strobe that data into the interface.

  3. A 3D metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.

    2016-08-01

    The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.

  4. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.

    PubMed

    Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J

    2013-01-01

    Conventionally, the practice of neurosurgery has been characterized by the removal of pathology, congenital or acquired. The emerging complement to the removal of pathology is surgery for the specific purpose of restoration of function. Advents in neuroscience, technology, and the understanding of neural circuitry are creating opportunities to intervene in disease processes in a reparative manner, thereby advancing toward the long-sought-after concept of neurorestoration. Approaching the issue of neurorestoration from a biomedical engineering perspective is the rapidly growing arena of implantable devices. Implantable devices are becoming more common in medicine and are making significant advancements to improve a patient's functional outcome. Devices such as deep brain stimulators, vagus nerve stimulators, and spinal cord stimulators are now becoming more commonplace in neurosurgery as we utilize our understanding of the nervous system to interpret neural activity and restore function. One of the most exciting prospects in neurosurgery is the technologically driven field of brain-machine interface, also known as brain-computer interface, or neuroprosthetics. The successful development of this technology will have far-reaching implications for patients suffering from a great number of diseases, including but not limited to spinal cord injury, paralysis, stroke, or loss of limb. This article provides an overview of the issues related to neurorestoration using implantable devices with a specific focus on brain-machine interface technology. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Water at Interfaces.

    PubMed

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

  6. A Survey of CAD/CAM Technology Applications in the U.S. Shipbuilding Industry

    DTIC Science & Technology

    1984-01-01

    operation for drafting. Computer Aided Engineering (CAE) analysis is used primarily to determine the validity of design characteristics and produc- tion...include time standard generation, sea trial analysis , and group Systems integration While no systems surveyed Aided Design (CAD) is the technology... analysis . is the largest problem involving software packages. are truly integrated, many are interfaced. Computer most interfaced category with links

  7. Using MIDI: A Staff Development Program Designed To Increase Teacher Awareness of the Technological Applications of Musical Instrument Digital Interface in the Classroom.

    ERIC Educational Resources Information Center

    Neese, Charles Glen

    This practicum report describes an instructional program designed to increase teacher awareness of the technological applications of musical instrument digital interface (MIDI) in the classroom. The primary goal of the study was to assist music teachers in becoming more informed about MIDI, and to enable them to effectively select the appropriate…

  8. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  9. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    PubMed

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  10. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  11. NASA Fuel Tank Wireless Power and Signal Study

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.

  12. Propulsion/flight control integration technology (PROFIT) design analysis status

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.

  13. Investigation of UV photocurable microcapsule inner crosslink extent

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Meng, Shuangshuang; Lai, Weidong; Yu, Haiyang; Fu, Guangsheng

    2008-11-01

    UV photocuring technology has encountered increased applications in recent years, which finds a variety of applications on protective coating of the optical-fiber, ink and optical recording materials. Combined with techniques of photohardenable, microcapsule, heat-sensitive and interface-polymerization method, a novel photoheat sensitive recording material of non-silver salt is explored in this thesis. Microcapsules are particulate substance with a core and shell structure, where photopolymerizable composition, monofunctional/polyfunctional diluents, photopolymerization initiator, photosensitivity enhancing agent and dye precursor are encapsulated as the internal phase. In this paper introduced the characteristics and curing mechanism of photo-sensitive microcapsule materials. The photocuring process may be a complex-function with photopolymerizable compound and photopolymerization initiator. For the sake of high photocuring speed and degree, optimal photo-sensitive materials were selected. In order to match with the light source excitation wavelength and absorb more wider ultraviolet band, combined type of photo-polymerization initiators were employed. With the kinds and dosage of photopolymerization initiator changing, the photocuring speed and quality can be ameliorated. Through studying the UV-visible absorption spectrum and infra-red spectrum of the material , the optical response property of the inner compound can be obtained.

  14. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOEpatents

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  16. Distributed Planning in a Mixed-Initiative Environment

    DTIC Science & Technology

    2008-06-01

    Knowledge Sources Control Remote Blackboard Remote Knowledge Sources Remot e Data Remot e Data Java Distributed Blackboard Figure 3 - Distributed...an interface agent or planning agent and the second type is a critic agent. Agents in the DEEP architecture extend and use the Java Agent...chosen because it is fully implemented in Java , and supports these requirements. 2.3.3 Interface Agents Interface agents are the interfaces through

  17. Intelligent vehicle control: Opportunities for terrestrial-space system integration

    NASA Technical Reports Server (NTRS)

    Shoemaker, Charles

    1994-01-01

    For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.

  18. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    PubMed Central

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  19. Effect of two layouts on high technology AAC navigation and content location by people with aphasia.

    PubMed

    Wallace, Sarah E; Hux, Karen

    2014-03-01

    Navigating high-technology augmentative and alternative communication (AAC) devices with dynamic displays can be challenging for people with aphasia. The purpose of this study was to determine which of two AAC interfaces two people with aphasia could use most efficiently and accurately. The researchers used a BCB'C' alternating treatment design to provide device-use instruction to two people with severe aphasia regarding two personalised AAC interfaces that had different navigation layouts but identical content. One interface had static buttons for homepage and go-back features, and the other interface had static buttons in a navigation ring layout. Throughout treatment, the researchers monitored participants' mastery patterns regarding navigation efficiency and accuracy when locating target messages. Participants' accuracy and efficiency improved with both interfaces given intervention; however, the navigation ring layout appeared more transparent and better facilitated navigation than the homepage layout. People with aphasia can learn to navigate computerised devices; however, interface layout can substantially affect the efficiency and accuracy with which they locate messages. Given intervention incorporating errorless learning principles, people with chronic aphasia can learn to navigate across multiple device levels to locate target sentences. Both navigation ring and homepage interfaces may be used by people with aphasia. Some people with aphasia may be more consistent and efficient in finding target sentences using the navigation ring interface than the homepage interface. Additionally, the navigation ring interface may be more transparent and easier for people with aphasia to master--that is, they may require fewer intervention sessions to learn to navigate the navigation ring interface. Generalisation of learning may result from use of the navigation ring interface. Specifically, people with aphasia may improve navigation with the homepage interface as a result of instruction on the navigation interface, but not vice versa.

  20. NEXUS - Resilient Intelligent Middleware

    NASA Astrophysics Data System (ADS)

    Kaveh, N.; Hercock, R. Ghanea

    Service-oriented computing, a composition of distributed-object computing, component-based, and Web-based concepts, is becoming the widespread choice for developing dynamic heterogeneous software assets available as services across a network. One of the major strengths of service-oriented technologies is the high abstraction layer and large granularity level at which software assets are viewed compared to traditional object-oriented technologies. Collaboration through encapsulated and separately defined service interfaces creates a service-oriented environment, whereby multiple services can be linked together through their interfaces to compose a functional system. This approach enables better integration of legacy and non-legacy services, via wrapper interfaces, and allows for service composition at a more abstract level especially in cases such as vertical market stacks. The heterogeneous nature of service-oriented technologies and the granularity of their software components makes them a suitable computing model in the pervasive domain.

  1. Motion tracking to enable pre-surgical margin mapping in basal cell carcinoma using optical imaging modalities: initial feasibility study using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duffy, M.; Richardson, T. J.; Craythorne, E.; Mallipeddi, R.; Coleman, A. J.

    2014-02-01

    A system has been developed to assess the feasibility of using motion tracking to enable pre-surgical margin mapping of basal cell carcinoma (BCC) in the clinic using optical coherence tomography (OCT). This system consists of a commercial OCT imaging system (the VivoSight 1500, MDL Ltd., Orpington, UK), which has been adapted to incorporate a webcam and a single-sensor electromagnetic positional tracking module (the Flock of Birds, Ascension Technology Corp, Vermont, USA). A supporting software interface has also been developed which allows positional data to be captured and projected onto a 2D dermoscopic image in real-time. Initial results using a stationary test phantom are encouraging, with maximum errors in the projected map in the order of 1-2mm. Initial clinical results were poor due to motion artefact, despite attempts to stabilise the patient. However, the authors present several suggested modifications that are expected to reduce the effects of motion artefact and improve the overall accuracy and clinical usability of the system.

  2. Modifying the Human-Machine Interface Based on Quantitative Measurements of the Level of Awareness

    NASA Technical Reports Server (NTRS)

    Freund, Louis E.; Knapp, Benjamin

    1999-01-01

    This project got underway without funding approved during the summer of 1998. The initial project steps were to identify previously published work in the fields of error classification systems, physiological measurements of awareness, and related topics. This agenda was modified at the request of NASA Ames in August, 1998 to include supporting the new Cargo Air Association (CAA) evaluation of the Human Factors related to the ADS-B technology. Additional funding was promised to fully support both efforts. Work on library research ended in the late Fall, 1998 when the SJSU project directors were informed that NASA would not be adding to the initial funding of the research project as had been initially committed. However, NASA did provide additional funding for the CAA project activity. NASA elected to leave the research grant in place to provide a pathway for the CAA project funding to SJSU (San Jose State University) to support Dr. Freund's work on the CAA tasks. Dr. Knapp essentially terminated his involvement with the project at this time.

  3. Remote surface inspection system

    NASA Astrophysics Data System (ADS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-02-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  4. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    NASA Astrophysics Data System (ADS)

    Sánchez Pineda, A.

    2015-12-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  5. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  6. Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Liu, Wan-Hai; Wang, Xiang; Jiang, Hong-Bin; Ma, Wen-Fang

    2016-04-01

    The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh-Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. Supported by the National Natural Science Foundation of China under Grant Nos. 11472278 and 11372330, the Scientific Research Foundation of Education Department of Sichuan Province under Grant No. 15ZA0296, the Scientific Research Foundation of Mianyang Normal University under Grant Nos. QD2014A009 and 2014A02, and the National High-Tech ICF Committee

  7. Joint Service Aircrew Mask (JSAM) - Strategic Aircraft (SA): Noise Attenuation Performance

    DTIC Science & Technology

    2015-08-25

    Billy Swayne Ball Aerospace and Technologies Corp. Dayton, OH Hilary Gallagher Warfighter Interface Division Battlespace Acoustics Branch...DISTRIBUTION STATEMENT. //signed// //signed// Hilary Gallagher Robert C. McKinley Work Unit Manager Chief, Battlespace Acoustics Branch...Battlespace Acoustics Branch Warfighter Interface Division //signed// William E. Russell, Chief Warfighter Interface Division Human

  8. A "Simple Query Interface" Adapter for the Discovery and Exchange of Learning Resources

    ERIC Educational Resources Information Center

    Massart, David

    2006-01-01

    Developed as part of CEN/ISSS Workshop on Learning Technology efforts to improve interoperability between learning resource repositories, the Simple Query Interface (SQI) is an Application Program Interface (API) for querying heterogeneous repositories of learning resource metadata. In the context of the ProLearn Network of Excellence, SQI is used…

  9. Integrating User Interface and Personal Innovativeness into the TAM for Mobile Learning in Cyber University

    ERIC Educational Resources Information Center

    Joo, Young Ju; Lee, Hyeon Woo; Ham, Yookyoung

    2014-01-01

    This study aims to add new variables, namely user interface, personal innovativeness, and satisfaction in learning, to Davis's technology acceptance model and also examine whether learners are willing to adopt mobile learning. Thus, this study attempted to explain the structural causal relationships among user interface, personal…

  10. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  11. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet

    PubMed Central

    Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide

    2012-01-01

    Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992

  12. Multi-interface level in oil tanks and applications of optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José

    2018-01-01

    On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.

  13. An intelligent multi-media human-computer dialogue system

    NASA Technical Reports Server (NTRS)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  14. Future developments in brain-machine interface research

    PubMed Central

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720

  15. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  16. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  17. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions

    NASA Astrophysics Data System (ADS)

    Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.

    2016-05-01

    The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.

  18. State of the art survey of technologies applicable to NASA's aeronautics, avionics and controls program

    NASA Technical Reports Server (NTRS)

    Smyth, R. K. (Editor)

    1979-01-01

    The state of the art survey (SOAS) covers six technology areas including flightpath management, aircraft control system, crew station technology, interface & integration technology, military technology, and fundamental technology. The SOAS included contributions from over 70 individuals in industry, government, and the universities.

  19. Development of a task analysis tool to facilitate user interface design

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1992-01-01

    A good user interface is one that facilitates the user in carrying out his task. Such interfaces are difficult and costly to produce. The most important aspect in producing a good interface is the ability to communicate to the software designers what the user's task is. The Task Analysis Tool is a system for cooperative task analysis and specification of the user interface requirements. This tool is intended to serve as a guide to development of initial prototypes for user feedback.

  20. Mixing driven by transient buoyancy flows. I. Kinematics

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.; Zhong, H.; Batur, C.

    2018-05-01

    Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose buoyancy-driven motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for a wide range of control parameters encompassing an approximate Hele-Shaw cell to a three-dimensional cavity. Because of the initial configuration of the interface which is parallel to the gravitational field, we show that at critical initial potential energy mixing occurs through the stretching of the interface, which shows frontogenesis, and folding, owing to an overturning motion that results in unstable density stratification and produces an ideal condition for the growth of the single wavelength Rayleigh-Taylor instability. The initial perturbation of the interface and flow field generates the Kelvin-Helmholtz instability and causes kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures that merge and self-organize into the Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that contain small length scales for increasing Peclet numbers. The late stage of the RTM structure unfolds into an internal breakwave that breaks down through wall and internal collision and sets up the condition for self-induced sloshing that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular diffusion.

  1. Marginal Adaptation and Quality of Interfaces in Lithium Disilicate Crowns - Influence of Manufacturing and Cementation Techniques.

    PubMed

    Melo Freire, C A; Borges, G A; Caldas, Dbm; Santos, R S; Ignácio, S A; Mazur, R F

    To evaluate the cement line thickness and the interface quality in milled or injected lithium disilicate ceramic restorations and their influence on marginal adaptation using different cement types and different adhesive cementation techniques. Sixty-four bovine teeth were prepared for full crown restoration (7.0±0.5 mm in height, 8.0 mm in cervical diameter, and 4.2 mm in incisal diameter) and were divided into two groups: CAD/CAM automation technology, IPS e.max CAD (CAD), and isostatic injection by heat technology, IPS e.max Press (PRESS). RelyX ARC (ARC) and RelyX U200 resin cements were used as luting agents in two activation methods: initial self-activation and light pre-activation for one second (tack-cure). Next, the specimens were stored in distilled water at 23°C ± 2°C for 72 hours. The cement line thickness was measured in micrometers, and the interface quality received scores according to the characteristics and sealing aspects. The evaluations were performed with an optical microscope, and scanning electron microscope images were presented to demonstrate the various features found in the cement line. For the cement line thickness, data were analyzed with three-way analysis of variance (ANOVA) and the Games-Howell test (α=0.05). For the variable interface quality, the data were analyzed with the Mann-Whitney U-test, the Kruskal-Wallis test, and multiple comparisons nonparametric Dunn test (α=0.05). The ANOVA presented statistical differences among the ceramic restoration manufacturing methods as well as a significant interaction between the manufacturing methods and types of cement (p<0.05). The U200 presented lower cement line thickness values when compared to the ARC with both cementation techniques (p<0.05). With regard to the interface quality, the Mann-Whitney U-test and the Kruskal-Wallis test demonstrated statistical differences between the ceramic restoration manufacturing methods and cementation techniques. The PRESS ceramics obtained lower scores than did the CAD ceramics when using ARC cement (p<0.05). Milled restorations cemented with self-adhesive resin cement resulted in a thinner cement line that is statistically different from that of CAD or pressed ceramics cemented with resin cement with adhesive application. No difference between one-second tack-cure and self-activation was noted.

  2. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    NASA Astrophysics Data System (ADS)

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-02-01

    Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small group of awake and behaving animals. These unique findings provide preliminary evidence that efferent, volitional motor potentials can be recorded from the microchannel-based peripheral neural interface; a critical requirement for any neural interface intended to facilitate direct neural control of external technologies.

  3. Exposure to indoor air pollution from household energy use in rural China: the interactions of technology, behavior, and knowledge in health risk management.

    PubMed

    Jin, Yinlong; Ma, Xiao; Chen, Xining; Cheng, Yibin; Baris, Enis; Ezzati, Majid

    2006-06-01

    Indoor air pollution (IAP) from household use of biomass and coal is a leading environmental health risk in many developing nations. Much of the initial research on household energy technology overlooked the complex interactions of technological, behavioral, economic, and infrastructural factors that determine the success of environmental health interventions. Consequently, despite enormous interest in reducing the large and inequitable risks associated with household energy use in international development and global health, there is limited empirical research to form the basis for design and delivery of effective interventions. We used data from four poor provinces in China (Gansu, Guizhou, Inner Mongolia, and Shaanxi) to examine the linkages among technology, user knowledge and behavior, and access and infrastructure in exposure to IAP from household energy use. We conclude that broad health risk education is insufficient for successful risk mitigation when exposure behaviors are closely linked to day-to-day activities of households such as cooking and heating, or have other welfare implications, and hence cannot be simply stopped. Rather, there should be emphasis on the economic and infrastructure determinants of access to technology, as well as the details of behaviors that affect exposure. Better understanding of technology-behavior interface would also allow designing technological interventions that account for, and are robust to, behavioral factors or to provide individuals and households with alternative behaviors. Based on the analysis, we present technological and behavioral interventions for these four Chinese provinces.

  4. A web based Radiation Oncology Dose Manager with a rich User Interface developed using AJAX, ruby, dynamic XHTML and the new Yahoo/EXT User Interface Library.

    PubMed

    Vali, Faisal; Hong, Robert

    2007-10-11

    With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.

  5. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  6. The OGC Sensor Web Enablement framework

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Botts, M.

    2006-12-01

    Sensor observations are at the core of natural sciences. Improvements in data-sharing technologies offer the promise of much greater utilisation of observational data. A key to this is interoperable data standards. The Open Geospatial Consortium's (OGC) Sensor Web Enablement initiative (SWE) is developing open standards for web interfaces for the discovery, exchange and processing of sensor observations, and tasking of sensor systems. The goal is to support the construction of complex sensor applications through real-time composition of service chains from standard components. The framework is based around a suite of standard interfaces, and standard encodings for the message transferred between services. The SWE interfaces include: Sensor Observation Service (SOS)-parameterized observation requests (by observation time, feature of interest, property, sensor); Sensor Planning Service (SPS)-tasking a sensor- system to undertake future observations; Sensor Alert Service (SAS)-subscription to an alert, usually triggered by a sensor result exceeding some value. The interface design generally follows the pattern established in the OGC Web Map Service (WMS) and Web Feature Service (WFS) interfaces, where the interaction between a client and service follows a standard sequence of requests and responses. The first obtains a general description of the service capabilities, followed by obtaining detail required to formulate a data request, and finally a request for a data instance or stream. These may be implemented in a stateless "REST" idiom, or using conventional "web-services" (SOAP) messaging. In a deployed system, the SWE interfaces are supplemented by Catalogue, data (WFS) and portrayal (WMS) services, as well as authentication and rights management. The standard SWE data formats are Observations and Measurements (O&M) which encodes observation metadata and results, Sensor Model Language (SensorML) which describes sensor-systems, Transducer Model Language (TML) which covers low-level data streams, and domain-specific GML Application Schemas for definitions of the target feature types. The SWE framework has been demonstrated in several interoperability testbeds. These were based around emergency management, security, contamination and environmental monitoring scenarios.

  7. Nanofluidic interfaces in microfluidic networks

    DOE PAGES

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  8. Display integration for ground combat vehicles

    NASA Astrophysics Data System (ADS)

    Busse, David J.

    1998-09-01

    The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.

  9. Rectangular Ion Funnel: A New Ion Funnel Interface for Structures for Lossless Ion Manipulations

    DOE PAGES

    Chen, Tsung-Chi; Webb, Ian K.; Prost, Spencer A.; ...

    2014-11-19

    A recent achievement in Structures for Lossless Ion Manipulations (SLIM) is the ability for near lossless ion focusing, transfer, and trapping in sub-atmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated bymore » ion simulations, fabricated utilizing printed circuit board technology and tested experimentally. The RIF was integrated to a SLIM-TOFMS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range along with greatly improved SLIM operational stability.« less

  10. The interface of genomic technologies and nursing.

    PubMed

    Loescher, Lois J; Merkle, Carrie J

    2005-01-01

    (a) to summarize views of the interface of technology, genomic technology, and nursing; (b) provide an overview of current and emerging genomic technologies; (c) present clinical exemplars of uses of genomic technology in two disease conditions; and (d) list genomic-focused nursing research on genomic technologies. A discussion of genomic technology in the context of nurses' views of technology, the importance of genomic technology for nurses, linking the central dogma of molecular biology to state-of-the-art tests and assays, and nurses' current use of technologies. Human genome discoveries will continue to be an integral part of disease prevention, diagnosis, treatment, and management. These discoveries also have the potential for being integrated into nursing science. Genomic technologies are becoming a driving force in patient management, so that nurses will be unable to provide quality care without knowledge of the types of genomic technologies, the rationale for their use, and the possible sequelae that can result from genetic diagnosis or treatment. Many nurses already are using genomic technologies to conduct genomic-focused nursing research. The biobehavioral nature of much of this research further indicates the important contributions of nurses in genomics.

  11. Automated Formal Testing of C API Using T2C Framework

    NASA Astrophysics Data System (ADS)

    Khoroshilov, Alexey V.; Rubanov, Vladimir V.; Shatokhin, Eugene A.

    A problem of automated test development for checking basic functionality of program interfaces (API) is discussed. Different technologies and corresponding tools are surveyed. And T2C technology developed in ISPRAS is presented. The technology and associated tools facilitate development of "medium quality" (and "medium cost") tests. An important feature of T2C technology is that it enforces that each check in a developed test is explicitly linked to the corresponding place in the standard. T2C tools provide convenient means to create such linkage. The results of using T2C are considered by example of a project for testing interfaces of Linux system libraries defined by the LSB standard.

  12. Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    PubMed Central

    Sigüenza, Álvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound. PMID:22778643

  13. Sharing human-generated observations by integrating HMI and the Semantic Sensor Web.

    PubMed

    Sigüenza, Alvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current "Internet of Things" concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound.

  14. The Application of Current User Interface Technology to Interactive Wargaming Systems.

    DTIC Science & Technology

    1987-09-01

    components is essential to the Macintosh interface. Apple states that "Consistent visual communication is very powerful in delivering complex messages...interface. A visual interface uses visual objects as the basis of communication. "A visual communication object is some combination S. of text and...graphics used for communication under a system of inter- pretation, or visual language." The benefit of visual communication is V 45 "When humans are faced

  15. Computer Access. Tech Use Guide: Using Computer Technology.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Center for Special Education Technology.

    One of nine brief guides for special educators on using computer technology, this guide focuses on access including adaptations in input devices, output devices, and computer interfaces. Low technology devices include "no-technology" devices (usually modifications to existing devices), simple switches, and multiple switches. High technology input…

  16. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  17. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1985-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  18. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1986-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  19. LWS/SET Technology Experiment Carrier

    NASA Technical Reports Server (NTRS)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be accumulated by the Project and manifested for specific flight opportunities as they become available. The SET Carrier is designed to present a standard set of interfaces to SET technology experiments and to be modular and flexible enough to interface to a variety of possible host spacecraft. The Carrier will have core components and mission unique components. Once the core carrier elements have been developed, only the mission unique components need to be defined and developed for any particular mission. This approach will minimize the mission specific cost and development schedule for a given flight opportunity. The standard set of interfaces provided by SET to experiments allows them to be developed independent of the particulars of a host spacecraft. The Carrier will provide the power, communication, and the necessary monitoring features to operate experiments. The Carrier will also provide all of the mechanical assemblies and harnesses required to adapt experiments to a particular host. Experiments may be hosted locally with the Carrier or remotely on the host spacecraft. The Carrier design will allow a single Carrier to support a variable number of experiments and will include features that support the ability to incrementally add experiments without disturbing the core architecture.

  20. Concepts and Technologies for a Comprehensive Information System for Historical Research and Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Henze, F.; Magdalinski, N.; Schwarzbach, F.; Schulze, A.; Gerth, Ph.; Schäfer, F.

    2013-07-01

    Information systems play an important role in historical research as well as in heritage documentation. As part of a joint research project of the German Archaeological Institute, the Brandenburg University of Technology Cottbus and the Dresden University of Applied Sciences a web-based documentation system is currently being developed, which can easily be adapted to the needs of different projects with individual scientific concepts, methods and questions. Based on open source and standardized technologies it will focus on open and well-documented interfaces to ease the dissemination and re-use of its content via web-services and to communicate with desktop applications for further evaluation and analysis. Core of the system is a generic data model that represents a wide range of topics and methods of archaeological work. By the provision of a concerted amount of initial themes and attributes a cross project analysis of research data will be possible. The development of enhanced search and retrieval functionalities will simplify the processing and handling of large heterogeneous data sets. To achieve a high degree of interoperability with existing external data, systems and applications, standardized interfaces will be integrated. The analysis of spatial data shall be possible through the integration of web-based GIS functions. As an extension to this, customized functions for storage, processing and provision of 3D geo data are being developed. As part of the contribution system requirements and concepts will be presented and discussed. A particular focus will be on introducing the generic data model and the derived database schema. The research work on enhanced search and retrieval capabilities will be illustrated by prototypical developments, as well as concepts and first implementations for an integrated 2D/3D Web-GIS.

  1. Novel Shapes of Miscible Interfaces Observed

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, Ramaswamy; Rashidnia, Nasser

    2001-01-01

    The dynamics of miscible displacements in a cylindrical tube are being investigated experimentally and numerically, with a view to understand the complex processes that occur, for example, in enhanced oil recovery, hydrology, and filtration. We have observed complex shapes of the interface between two liquids that mix with each other when the less viscous liquid is displaced by the more viscous one in a tube. A less viscous fluid that displaces a more viscous fluid is known to propagate in the form of a "finger," and a flight experiment proposed by Maxworthy et al. to investigate the miscible-interface dynamics is currently being developed by NASA. From the current theory of miscible displacements, which was developed for a porous medium satisfying Darcy's law, it can be shown that in the absence of gravity the interface between the fluids is destabilized and thus susceptible to fingering only when a more viscous fluid is displaced by a less viscous one. Therefore, if the interface is initially flat and the more viscous fluid displaces the less viscous fluid, the interface ought to be stable and remain flat. However, numerical simulations by Chen and Meiburg for such displacement in a cylindrical tube show that the interface is unstable and a finger of the more viscous fluid is indeed formed. Preliminary experiments performed at the NASA Glenn Research Center show that not only can fingering occur when the more viscous fluid displaces a less viscous one in a cylindrical tube, but also that under certain conditions the advancing finger achieves a sinuous or snakelike shape. These experiments were performed using silicone oils in a vertical pipette of small diameter. In the initial configuration, the more viscous fluid rested on top of the less viscous one, and the interface was nominally flat. A dye was added to the upper liquid for ease of observation of the interface between the fluids. The flow was initiated by draining the lower fluid from the bottom of the pipette, at speeds less than 0.1 mm/sec.

  2. Beyond qualitative and subjective techniques to assess usability of banking interfaces for senior citizens.

    PubMed

    Laparra-Hernández, José; Medina, Enric; Sancho, María; Soriano, Carolina; Durá, Juanvi; Barberà-Guillem, Ricard; Poveda-Puente, Rakel

    2015-01-01

    Senior citizens can benefit from banking services but the lack of usability hampers this possibility. New approaches based on physiological response, eye tracking and user movement analysis can provide more information during interface interaction. This research shows the differences depending on user knowledge and use of technology, gender and type of interface.

  3. A Communication Device for Interfacing Slide/Audio Tape Programs with the Microcomputer for Computer-Assisted Self-Instruction.

    ERIC Educational Resources Information Center

    Hostetler, Jerry C.; Englert, Duwayne C.

    1987-01-01

    Presents description of an interface device which ties in microcomputers and slide/tape presentations for computer assisted instruction. Highlights include the use of this technology in an introductory undergraduate zoology course; a discussion of authoring languages with emphasis on SuperPILOT; and hardware and software design for the interface.…

  4. Experimental study of an isochorically heated heterogeneous interface. A progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Juan Carlos

    2015-08-20

    Outline of the presentation: Studying possible mix / interface motion between heterogeneous low/high Z interfaces driven by 2-fluid or kinetic plasma effects (Heated to few eV, Sharp (sub µm) interface); Isochoric heating to initialize interface done with Al quasimonoenergetic ion beams on Trident; Have measured isochoric heating in individual materials intended for compound targets; Fielded experiments on Trident to measure interface motion (Gold-diamond, tin-aluminium); Measured heated-sample temperature with streaked optical pyrometry (SOP) (UT Austin led (research contract), SOP tests → heating uniformity Vs thickness on Al foils. Results are being analyzed.

  5. Portable Computer Technology (PCT) Research and Development Program Phase 2

    NASA Technical Reports Server (NTRS)

    Castillo, Michael; McGuire, Kenyon; Sorgi, Alan

    1995-01-01

    The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.

  6. Eureka-DMA: an easy-to-operate graphical user interface for fast comprehensive investigation and analysis of DNA microarray data.

    PubMed

    Abelson, Sagi

    2014-02-24

    In the past decade, the field of molecular biology has become increasingly quantitative; rapid development of new technologies enables researchers to investigate and address fundamental issues quickly and in an efficient manner which were once impossible. Among these technologies, DNA microarray provides methodology for many applications such as gene discovery, diseases diagnosis, drug development and toxicological research and it has been used increasingly since it first emerged. Multiple tools have been developed to interpret the high-throughput data produced by microarrays. However, many times, less consideration has been given to the fact that an extensive and effective interpretation requires close interplay between the bioinformaticians who analyze the data and the biologists who generate it. To bridge this gap and to simplify the usability of such tools we developed Eureka-DMA - an easy-to-operate graphical user interface that allows bioinformaticians and bench-biologists alike to initiate analyses as well as to investigate the data produced by DNA microarrays. In this paper, we describe Eureka-DMA, a user-friendly software that comprises a set of methods for the interpretation of gene expression arrays. Eureka-DMA includes methods for the identification of genes with differential expression between conditions; it searches for enriched pathways and gene ontology terms and combines them with other relevant features. It thus enables the full understanding of the data for following testing as well as generating new hypotheses. Here we show two analyses, demonstrating examples of how Eureka-DMA can be used and its capability to produce relevant and reliable results. We have integrated several elementary expression analysis tools to provide a unified interface for their implementation. Eureka-DMA's simple graphical user interface provides effective and efficient framework in which the investigator has the full set of tools for the visualization and interpretation of the data with the option of exporting the analysis results for later use in other platforms. Eureka-DMA is freely available for academic users and can be downloaded at http://blue-meduza.org/Eureka-DMA.

  7. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  8. OLAP Cube Visualization of Hydrologic Data Catalogs

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Rodriguez, M.; Beran, B.; Valentine, D.; van Ingen, C.; Wallis, J. C.

    2007-12-01

    As part of the CUAHSI Hydrologic Information System project, we assemble comprehensive observations data catalogs that support CUAHSI data discovery services (WaterOneFlow services) and online mapping interfaces (e.g. the Data Access System for Hydrology, DASH). These catalogs describe several nation-wide data repositories that are important for hydrologists, including USGS NWIS and EPA STORET data collections. The catalogs contain a wealth of information reflecting the entire history and geography of hydrologic observations in the US. Managing such catalogs requires high performance analysis and visualization technologies. OLAP (Online Analytical Processing) cube, often called data cubes, is an approach to organizing and querying large multi-dimensional data collections. We have applied the OLAP techniques, as implemented in Microsoft SQL Server 2005, to the analysis of the catalogs from several agencies. In this initial report, we focus on the OLAP technology as applied to catalogs, and preliminary results of the analysis. Specifically, we describe the challenges of generating OLAP cube dimensions, and defining aggregations and views for data catalogs as opposed to observations data themselves. The initial results are related to hydrologic data availability from the observations data catalogs. The results reflect geography and history of available data totals from USGS NWIS and EPA STORET repositories, and spatial and temporal dynamics of available measurements for several key nutrient-related parameters.

  9. A method to select human-system interfaces for nuclear power plants

    DOE PAGES

    Hugo, Jacques Victor; Gertman, David Ira

    2015-10-19

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less

  10. Techno-Human Mesh: The Growing Power of Information Technologies.

    ERIC Educational Resources Information Center

    West, Cynthia K.

    This book examines the intersection of information technologies, power, people, and bodies. It explores how information technologies are on a path of creating efficiency, productivity, profitability, surveillance, and control, and looks at the ways in which human-machine interface technologies, such as wearable computers, biometric technologies,…

  11. The rotating movement of three immiscible fluids - A benchmark problem

    USGS Publications Warehouse

    Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.

    2004-01-01

    A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.

  12. Connecting Interface Structure to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    Understanding structure-function relationships at aqueous semiconductor interfaces presents fundamental challenges, including the discovery of the key interface structure motifs themselves. Important examples include the alignment of electrochemical redox levels with the semiconductor band edges and the identification of catalytic active sites. We have developed a multistep approach, initially demonstrated for GaN, ZnO and their alloys, motivated by measured high efficiency for photocatalytic water oxidation. The interface structure is simulated using ab initio molecular dynamics (AIMD). The calculated, average interface dipole is combined with the GW approach from many-body perturbation theory to calculate the energy level alignment between the semiconductor band edges and the centroid of the occupied 1b1 energy level of water and thus, the electrochemical levels. Cluster models are used to study reaction pathways. The emergent interface motif is the full (GaN) or partial (ZnO) dissociated interface water layer. Here I will focus on the aqueous interfaces to the stable TiO2 anatase (101) and rutile (110) facets. The AIMD calculations reveal interface water dissociation and reassociation processes through distinct pathways: one direct at the interface and the other via a spectator water molecule from the hydration layer. Comparisons between the two interfaces shows that the energy landscape for these pathways depends on the local hydrogen bonding patterns and the interplay with the interface template. Combined results from different initial conditions and AIMD temperatures demonstrate a partially dissociated interface water layer in both cases. Specifically for rutile, structure and the GW-based analysis of the interface energy level alignment agree with experiment. Finally, hole localization at different interface structure motifs will be discussed. Work performed in collaboration with J. Lyons, N. Kharche, M. Ertem and J. Muckerman, done in part at the CFN, which is a U.S. DOE Office of Science Facility, at BNL under Contract No. DE-SC0012704 and with resources from NERSC under Contract No. DE-AC02-05CH11231.

  13. Multimedia courseware in an open-systems environment: a DoD strategy

    NASA Astrophysics Data System (ADS)

    Welsch, Lawrence A.

    1991-03-01

    The federal government is about to invest billions of dollars to develop multimedia training materials for delivery on computer-based interactive training systems. Acquisition of a variety of computers and peripheral devices hosting various operating systems and suites of authoring system software will be necessary to facilitate the development of this courseware. There is no single source that will satisfy all needs. Although high-performance, low-cost interactive training hardware is available, the products have proprietary software interfaces. Because the interfaces are proprietary, expensive reprogramming is usually required to adapt such software products to other platforms. This costly reprogramming could be eliminated by adopting standard software interfaces. DoD's Portable Courseware Project (PORTCO) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby PORTCO leverages the open systems movement and the new realities of information technology. These realities encompass changes in the pace at which new technology becomes available, changes in organizational goals and philosophy, new roles of vendors and users, changes in the procurement process, and acceleration toward open system environments. The PORTCO strategy is applicable to all projects and systems that require open systems to achieve mission objectives. The federal goal is to facilitate the creation of an environment in which high quality portable courseware is available as commercial off-the-shelf products and is competitively supplied by a variety of vendors. In order to achieve this goal a system architecture incorporating standards to meet the users' needs must be established. The Request for Architecture (RFA) developed cooperatively by DoD and the National Institute of Standards and Technology (NIST) will generate the PORTCO systems architecture. This architecture must freely integrate the courseware and authoring software from the lower levels of machine architecture and systems service implementation. In addition, the systems architecture will establish how the application-specific technologies relate to other technologies. Further, a computer-based interactive training applications profile must be developed. This profile, along with the systems architecture derived as a result of the RFA, provides the basis for identifying the needed standards. NIST will then accelerate the development of these standards using, but not restricted to, existing standards activities within established standards forums. The federal multimedia courseware effort has adopted the Interactive Multimedia Association (INA) Recommended Practices for Interactive Video Portability as the baseline for the migration of computer-based interactive training systems to an open systems environment based upon international standards. The PORTCO strategy includes an evolutionary migration to a standards-based, Open System Environments (OSE). An important aspect of this migration strategy is to move to open systems via stepwise evolution rather than via quantum leaps. Another area of concern is that of infrastructure issues, such as maintaining and supporting the technologies required for computer-based interactive training. The federal multimedia initiative will use the RFA-based architecture to differentiate between those technologies that can be maintained and supported by existing infrastructure mechanisms and those that require new mechanisms. Existing infrastructure mechanisms will be used and where infrastructure mechanisms do not exist, the approach will be to place high priority on establishing the appropriate mechanisms. Establishing an infrastructure mechanism is a nontrivial task requiring sustained investment of resources.

  14. Conceptual design of data acquisition and control system for two Rf driver based negative ion source for fusion R&D

    NASA Astrophysics Data System (ADS)

    Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.

    2013-02-01

    Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.

  15. Chemical Bonding Technology: Direct Investigation of Interfacial Bonds

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.; Boerio, F. J.; Plueddemann, E. P.; Miller, J.; Willis, P. B.; Cuddihy, E. F.

    1986-01-01

    This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNFmore » are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.« less

  17. Immunization registries in the EMR Era

    PubMed Central

    Stevens, Lindsay A.; Palma, Jonathan P.; Pandher, Kiran K.; Longhurst, Christopher A.

    2013-01-01

    Background: The CDC established a national objective to create population-based tracking of immunizations through regional and statewide registries nearly 2 decades ago, and these registries have increased coverage rates and reduced duplicate immunizations. With increased adoption of commercial electronic medical records (EMR), some institutions have used unidirectional links to send immunization data to designated registries. However, access to these registries within a vendor EMR has not been previously reported. Purpose: To develop a visually integrated interface between an EMR and a statewide immunization registry at a previously non-reporting hospital, and to assess subsequent changes in provider use and satisfaction. Methods: A group of healthcare providers were surveyed before and after implementation of the new interface. The surveys addressed access of the California Immunization Registry (CAIR), and satisfaction with the availability of immunization information. Information Technology (IT) teams developed a “smart-link” within the electronic patient chart that provides a single-click interface for visual integration of data within the CAIR database. Results: Use of the tool has increased in the months since its initiation, and over 20,000 new immunizations have been exported successfully to CAIR since the hospital began sharing data with the registry. Survey data suggest that providers find this tool improves workflow and overall satisfaction with availability of immunization data. (p=0.009). Conclusions: Visual integration of external registries into a vendor EMR system is feasible and improves provider satisfaction and registry reporting. PMID:23923096

  18. Mixed-initiative control of intelligent systems

    NASA Technical Reports Server (NTRS)

    Borchardt, G. C.

    1987-01-01

    Mixed-initiative user interfaces provide a means by which a human operator and an intelligent system may collectively share the task of deciding what to do next. Such interfaces are important to the effective utilization of real-time expert systems as assistants in the execution of critical tasks. Presented here is the Incremental Inference algorithm, a symbolic reasoning mechanism based on propositional logic and suited to the construction of mixed-initiative interfaces. The algorithm is similar in some respects to the Truth Maintenance System, but replaces the notion of 'justifications' with a notion of recency, allowing newer values to override older values yet permitting various interested parties to refresh these values as they become older and thus more vulnerable to change. A simple example is given of the use of the Incremental Inference algorithm plus an overview of the integration of this mechanism within the SPECTRUM expert system for geological interpretation of imaging spectrometer data.

  19. Methods for studying medical device technology and practitioner cognition: the case of user-interface issues with infusion pumps.

    PubMed

    Schraagen, Jan Maarten; Verhoeven, Fenne

    2013-02-01

    The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Starting from a Cognitive Systems Engineering perspective, we developed an Impact Flow Diagram showing the relationship of computer technology, cognition, practitioner behavior, and system failure in the area of medical infusion devices. We subsequently conducted a systematic literature review on user-interface issues with infusion pumps, categorized the studies in terms of methods employed, and noted the usability problems found with particular methods. Next, we assigned usability problems and related methods to the levels in the Impact Flow Diagram. Most study methods used to find user interface issues with infusion pumps focused on observable behavior rather than on how artifacts shape cognition and collaboration. A concerted and theory-driven application of these methods when testing infusion pumps is lacking in the literature. Detailed analysis of one case study provided an illustration of how to apply the Impact Flow Diagram, as well as how the scope of analysis may be broadened to include organizational and regulatory factors. Research methods to uncover use problems with technology may be used in many ways, with many different foci. We advocate the adoption of an Impact Flow Diagram perspective rather than merely focusing on usability issues in isolation. Truly advancing patient safety requires the systematic adoption of a systems perspective viewing people and technology as an ensemble, also in the design of medical device technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Design, Simulation and Characteristics Research of the Interface Circuit based on nano-polysilicon thin films pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang

    2018-03-01

    This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.

  1. A COSTAR interface using WWW technology.

    PubMed Central

    Rabbani, U.; Morgan, M.; Barnett, O.

    1998-01-01

    The concentration of industry on modern relational databases has left many nonrelational and proprietary databases without support for integration with new technologies. Emerging interface tools and data-access methodologies can be applied with difficulty to medical record systems which have proprietary data representation. Users of such medical record systems usually must access the clinical content of such record systems with keyboard-intensive and time-consuming interfaces. COSTAR is a legacy ambulatory medical record system developed over 25 years ago that is still popular and extensively used at the Massachusetts General Hospital. We define a model for using middle layer services to extract and cache data from non-relational databases, and present an intuitive World-Wide Web interface to COSTAR. This model has been implemented and successfully piloted in the Internal Medicine Associates at Massachusetts General Hospital. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9929310

  2. Penalty-Based Finite Element Interface Technology for Analysis of Homogeneous and Composite Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2002-01-01

    An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.

  3. Wireless networks of opportunity in support of secure field operations

    NASA Astrophysics Data System (ADS)

    Stehle, Roy H.; Lewis, Mark

    1997-02-01

    Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.

  4. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.

    PubMed

    Davies, J P; Tse, M K; Harris, W H

    1996-08-01

    Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.

  5. JPRS Report, Science & Technology, USSR: Materials Science, Mechanics and Technology of Metal and Metal Ceramic Composite Material Products

    DTIC Science & Technology

    1990-09-27

    value computed according to an additive rule [1], while on the other hand inelastic ( microplastic ) deformation starts earlier (practically at aw -* 0...and transverse directions. The development of microplastic zones in the matrix and their influence on macroscopic proper- ties are illustrated... microplastic zones starts at the phase interface, while in titanium-boron composites it starts at some distance from the interface. In the first case the

  6. Interfacing with the nervous system: a review of current bioelectric technologies.

    PubMed

    Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W

    2017-10-23

    The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.

  7. Phantoms and pixels, apparitions and apparatus: image guided general surgery.

    PubMed

    Sackier, J M

    1995-01-01

    As eloquently stated by Dr. Richard Bucholz in his introduction to the first edition of this journal, "the concept of image guidance in surgery may initially be deemed a non-sequitur: by definition, we use images perceived by our optic systems to lead us to our surgical decisions and actions." However, the thrust of this journal is to define the relationships between Homo sapiens and the technology that is now an interface between surgeon and patient. In this article I will discuss how such technology effects the general surgeon, including devices and designs currently in use and those that are mere speculation. A leader in this field, Colonel Richard Satava, has stated succinctly, "Predicting the future-trends in any profession jeopardizes the credibility of the author." I have been guilty of such speculation and it is amazing how rapidly concepts move from probability to possibility to implausibility. This is another reason why a journal in this electronic format is so appealing.

  8. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  9. Automated metadata--final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schissel, David

    This report summarizes the work of the Automated Metadata, Provenance Cataloging, and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data Project (MPO Project) funded by the United States Department of Energy (DOE), Offices of Advanced Scientific Computing Research and Fusion Energy Sciences. Initially funded for three years starting in 2012, it was extended for 6 months with additional funding. The project was a collaboration between scientists at General Atomics, Lawrence Berkley National Laboratory (LBNL), and Massachusetts Institute of Technology (MIT). The group leveraged existing computer science technology where possible, and extended or created new capabilities where required. The MPO projectmore » was able to successfully create a suite of software tools that can be used by a scientific community to automatically document their scientific workflows. These tools were integrated into workflows for fusion energy and climate research illustrating the general applicability of the project’s toolkit. Feedback was very positive on the project’s toolkit and the value of such automatic workflow documentation to the scientific endeavor.« less

  10. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    PubMed Central

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  11. RESTful M2M gateway for remote wireless monitoring for district central heating networks.

    PubMed

    Cheng, Bo; Wei, Zesan

    2014-11-27

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented.

  12. The NASA Program Management Tool: A New Vision in Business Intelligence

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Swanson, Keith; Putz, Peter; Bell, David G.; Gawdiak, Yuri

    2006-01-01

    This paper describes a novel approach to business intelligence and program management for large technology enterprises like the U.S. National Aeronautics and Space Administration (NASA). Two key distinctions of the approach are that 1) standard business documents are the user interface, and 2) a "schema-less" XML database enables flexible integration of technology information for use by both humans and machines in a highly dynamic environment. The implementation utilizes patent-pending NASA software called the NASA Program Management Tool (PMT) and its underlying "schema-less" XML database called Netmark. Initial benefits of PMT include elimination of discrepancies between business documents that use the same information and "paperwork reduction" for program and project management in the form of reducing the effort required to understand standard reporting requirements and to comply with those reporting requirements. We project that the underlying approach to business intelligence will enable significant benefits in the timeliness, integrity and depth of business information available to decision makers on all organizational levels.

  13. Fostering learners' interaction with content: A learner-centered mobile device interface

    NASA Astrophysics Data System (ADS)

    Abdous, M.

    2015-12-01

    With the ever-increasing omnipresence of mobile devices in student life, leveraging smart devices to foster students' interaction with course content is critical. Following a learner-centered design iterative approach, we designed a mobile interface that may enable learners to access and interact with online course content efficiently and intuitively. Our design process leveraged recent technologies, such as bootstrap, Google's Material Design, HTML5, and JavaScript to design an intuitive, efficient, and portable mobile interface with a variety of built-in features, including context sensitive bookmarking, searching, progress tracking, captioning, and transcript display. The mobile interface also offers students the ability to ask context-related questions and to complete self-checks as they watch audio/video presentations. Our design process involved ongoing iterative feedback from learners, allowing us to refine and tweak the interface to provide learners with a unified experience across platforms and devices. The innovative combination of technologies built around well-structured and well-designed content seems to provide an effective learning experience to mobile learners. Early feedback indicates a high level of satisfaction with the interface's efficiency, intuitiveness, and robustness from both students and faculty.

  14. Validation results of specifications for motion control interoperability

    NASA Astrophysics Data System (ADS)

    Szabo, Sandor; Proctor, Frederick M.

    1997-01-01

    The National Institute of Standards and Technology (NIST) is participating in the Department of Energy Technologies Enabling Agile Manufacturing (TEAM) program to establish interface standards for machine tool, robot, and coordinate measuring machine controllers. At NIST, the focus is to validate potential application programming interfaces (APIs) that make it possible to exchange machine controller components with a minimal impact on the rest of the system. This validation is taking place in the enhanced machine controller (EMC) consortium and is in cooperation with users and vendors of motion control equipment. An area of interest is motion control, including closed-loop control of individual axes and coordinated path planning. Initial tests of the motion control APIs are complete. The APIs were implemented on two commercial motion control boards that run on two different machine tools. The results for a baseline set of APIs look promising, but several issues were raised. These include resolving differing approaches in how motions are programmed and defining a standard measurement of performance for motion control. This paper starts with a summary of the process used in developing a set of specifications for motion control interoperability. Next, the EMC architecture and its classification of motion control APIs into two classes, Servo Control and Trajectory Planning, are reviewed. Selected APIs are presented to explain the basic functionality and some of the major issues involved in porting the APIs to other motion controllers. The paper concludes with a summary of the main issues and ways to continue the standards process.

  15. Developing the Multimedia User Interface Component (MUSIC) for the Icarus Presentation System (IPS)

    DTIC Science & Technology

    1993-12-01

    AD-A276 341 In-House Report December 1993 DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT ( MUSIC ) FOR THE ICARUS PRESENTATION SYSTEM (IPS) Ingrid...DATEs COVERED 7 December 1993 Ina-House Jun - Aug 93 4 TWLE AM SL1sM1E & FUNDING NUMBERS DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT ( MUSIC ) PE...the Multimedia User Interface Component ( MUSIC ). This report documents the initial research, design and implementation of a prototype of the MUSIC

  16. BCube: Building a Geoscience Brokering Framework

    NASA Astrophysics Data System (ADS)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay

    2014-05-01

    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  17. Novel Bonding Technology for Hermetically Sealed Silicon Micropackage

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Jung; Ju, Byeong-Kwon; Choi, Woo-Beom; Jeong, Jee-Won; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1999-01-01

    We performed glass-to-silicon bonding and fabricated a hermetically sealed silicon wafer using silicon direct bonding followed by anodic bonding (SDAB). The hydrophilized glass and silicon wafers in solution were dried and initially bonded in atmosphere as in the silicon direct bonding (SDB) process, but annealing at high temperature was not performed. Anodic bonding was subsequently carried out for the initially bonded specimens. Then the wafer pairs bonded by the SDAB method were different from those bonded by the anodic bonding process only. The effects of the bonding process on the bonded area and tensile strength were investigated as functions of bonding temperature and voltage. Using scanning electron microscopy (SEM), the cross-sectional view of the bonded interface region was observed. In order to investigate the migration of the sodium ions in the bonding process, the concentration of the bonded glass was compared with that of standard glass. The specimen bonded using the SDAB process had higher efficiency than that using the anodic bonding process only.

  18. Artificial multilayers and nanomagnetic materials.

    PubMed

    Shinjo, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.

  19. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  20. A comparison of high-speed links, their commercial support and ongoing R&D activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.

    Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less

  1. A comparison of high-speed links, their commercial support and ongoing R D activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.

    Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less

  2. A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges.

    PubMed

    Jovanov, E; Milenkovic, A; Otto, C; De Groen, P; Johnson, B; Warren, S; Taibi, G

    2005-01-01

    Recent technological advances in sensors, low-power integrated circuits, and wireless communications have enabled the design of low-cost, miniature, lightweight, intelligent physiological sensor platforms that can be seamlessly integrated into a body area network for health monitoring. Wireless body area networks (WBANs) promise unobtrusive ambulatory health monitoring for extended periods of time and near real-time updates of patients' medical records through the Internet. A number of innovative systems for health monitoring have recently been proposed. However, they typically rely on custom communication protocols and hardware designs, lacking generality and flexibility. The lack of standard platforms, system software support, and standards makes these systems expensive. Bulky sensors, high price, and frequent battery changes are all likely to limit user compliance. To address some of these challenges, we prototyped a WBAN utilizing a common off-the-shelf wireless sensor platform with a ZigBee-compliant radio interface and an ultra low-power microcontroller. The standard platform interfaces to custom sensor boards that are equipped with accelerometers for motion monitoring and a bioamplifier for electrocardiogram or electromyogram monitoring. Software modules for on-board processing, communication, and network synchronization have been developed using the TinyOS operating system. Although the initial WBAN prototype targets ambulatory monitoring of user activity, the developed sensors can easily be adapted to monitor other physiological parameters. In this paper, we discuss initial results, implementation challenges, and the need for standardization in this dynamic and promising research field.

  3. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes

    DOE PAGES

    Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre; ...

    2015-10-26

    Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in-situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S-filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbonmore » proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li 2S/S interface. Density of states (DOS) calculations further confirmed this hypothesis. In-situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li 2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C-S nanocomposites for high specific energy Li-S batteries. As a result, the proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in-situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the on-going problems in battery technology.« less

  4. Secure Web-based Ground System User Interfaces over the Open Internet

    NASA Technical Reports Server (NTRS)

    Langston, James H.; Murray, Henry L.; Hunt, Gary R.

    1998-01-01

    A prototype has been developed which makes use of commercially available products in conjunction with the Java programming language to provide a secure user interface for command and control over the open Internet. This paper reports successful demonstration of: (1) Security over the Internet, including encryption and certification; (2) Integration of Java applets with a COTS command and control product; (3) Remote spacecraft commanding using the Internet. The Java-based Spacecraft Web Interface to Telemetry and Command Handling (Jswitch) ground system prototype provides these capabilities. This activity demonstrates the use and integration of current technologies to enable a spacecraft engineer or flight operator to monitor and control a spacecraft from a user interface communicating over the open Internet using standard World Wide Web (WWW) protocols and commercial off-the-shelf (COTS) products. The core command and control functions are provided by the COTS Epoch 2000 product. The standard WWW tools and browsers are used in conjunction with the Java programming technology. Security is provided with the current encryption and certification technology. This system prototype is a step in the direction of giving scientist and flight operators Web-based access to instrument, payload, and spacecraft data.

  5. Training to use a commercial brain-computer interface as access technology: a case study.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  6. Control Robotics Programming Technology. Technology Learning Activity. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This Technology Learning Activity (TLA) for control robotics programming technology in grades 6-10 is designed to teach students to construct and program computer-controlled devices using a LEGO DACTA set and computer interface and to help them understand how control technology and robotics affect them and their lifestyle. The suggested time for…

  7. 3D hybrid electrode structure as implantable interface for a vestibular neural prosthesis in humans.

    PubMed

    Hoffmann, Klaus-P; Poppendieck, Wigand; Tätzner, Simon; DiGiovanna, Jack; Kos, Maria Izabel; Guinand, Nils; Guyot, Jean-P; Micera, Silvestro

    2011-01-01

    Implantable interfaces are essential components of vestibular neural prostheses. They interface the biological system with electrical stimulation that is used to restore transfer of vestibular information. Regarding the anatomical situation special 3D structures are required. In this paper, the design and the manufacturing process of a novel 3D hybrid microelectrode structure as interface to the human vestibular system are described. Photolithography techniques, assembling technology and rapid prototyping are used for manufacturing.

  8. Information visualization: Beyond traditional engineering

    NASA Technical Reports Server (NTRS)

    Thomas, James J.

    1995-01-01

    This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.

  9. Digital Systems Validation Handbook. Volume 2. Chapter 19. Pilot - Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    checklists, and other status messages. Voice interactive systems are defi-ed as "the interface between a cooperative human and a machine, which involv -he...Pilot-Vehicle Interface 19-85 5.6.1 Crew Interaction and the Cockpit 19-85 5.6.2 Crew Resource Management and Safety 19-87 5.6.3 Pilot and Crew Training...systems was a "stand-alone" component performing its intended function. Systems and their cockpit interfaces were added as technological advances were

  10. Videodisc-Computer Interfaces.

    ERIC Educational Resources Information Center

    Zollman, Dean

    1984-01-01

    Lists microcomputer-videodisc interfaces currently available from 26 sources, including home use systems connected through remote control jack and industrial/educational systems utilizing computer ports and new laser reflective and stylus technology. Information provided includes computer and videodisc type, language, authoring system, educational…

  11. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Baymore » Area can be broadened to other parts of the country.« less

  12. Remote surface inspection system. [of large space platforms

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Balaram, J.; Seraji, Homayoun; Kim, Won S.; Tso, Kam S.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  13. BALANCE: Towards a Usable Pervasive Wellness Application with Accurate Activity Inference

    PubMed Central

    Denning, Tamara; Andrew, Adrienne; Chaudhri, Rohit; Hartung, Carl; Lester, Jonathan; Borriello, Gaetano; Duncan, Glen

    2010-01-01

    Technology offers the potential to objectively monitor people’s eating and activity behaviors and encourage healthier lifestyles. BALANCE is a mobile phone-based system for long term wellness management. The BALANCE system automatically detects the user’s caloric expenditure via sensor data from a Mobile Sensing Platform unit worn on the hip. Users manually enter information on foods eaten via an interface on an N95 mobile phone. Initial validation experiments measuring oxygen consumption during treadmill walking and jogging show that the system’s estimate of caloric output is within 87% of the actual value. Future work will refine and continue to evaluate the system’s efficacy and develop more robust data input and activity inference methods. PMID:20445819

  14. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  15. Wireless communication links for brain-machine interface applications

    NASA Astrophysics Data System (ADS)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  16. Linear stability of an active fluid interface

    NASA Astrophysics Data System (ADS)

    Nagilla, Amarender; Prabhakar, Ranganathan; Jadhav, Sameer

    2018-02-01

    Motivated by studies suggesting that the patterns exhibited by the collectively expanding fronts of thin cells during the closing of a wound [S. Mark et al., "Physical model of the dynamic instability in an expanding cell culture," Biophys. J. 98(3), 361-370 (2010)] and the shapes of single cells crawling on surfaces [A. C. Callan-Jones et al., "Viscous-fingering-like instability of cell fragments," Phys. Rev. Lett. 100(25), 258106 (2008)] are due to fingering instabilities, we investigate the stability of actively driven interfaces under the Hele-Shaw confinement. An initially radial interface between a pair of viscous fluids is driven by active agents. Surface tension and bending rigidity resist the deformation of the interface. A point source at the origin and a distributed source are also included to model the effects of injection or suction and growth or depletion, respectively. Linear stability analysis reveals that for any given initial radius of the interface, there are two key dimensionless driving rates that determine interfacial stability. We discuss stability regimes in a state space of these parameters and their implications for biological systems. An interesting finding is that an actively mobile interface is susceptible to the fingering instability irrespective of viscosity contrast.

  17. The Evolution of Neuroprosthetic Interfaces

    PubMed Central

    Adewole, Dayo O.; Serruya, Mijail D.; Harris, James P.; Burrell, Justin C.; Petrov, Dmitriy; Chen, H. Isaac; Wolf, John A.; Cullen, D. Kacy

    2017-01-01

    The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research. Finally, we outline emerging research trends in an effort to explore the potential next generation of neuroprosthetic interfaces. PMID:27652455

  18. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  19. Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube

    DOE PAGES

    Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena

    2016-04-12

    We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF 6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shockedmore » interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.« less

  20. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  1. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  2. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  3. Joint Cockpit Office: history and role in defense-wide issues regarding avionics displays

    NASA Astrophysics Data System (ADS)

    O'Connor, John C.; Kraemer, William A.

    2000-08-01

    The charter of the Joint Cockpit Office (JCO) is to plan, coordinate and accelerate the transition of advanced development cockpit/crew station technologies critical to crew effectiveness in current and future air vehicles. The JCO helps assure a single, coordinated, and highly integrated cockpit/crew station Science and Technology (S&T) program within and between the Air Force, the Army, and the Navy. It serves as the primary interface and focal point for issues involving these technologies for organizations within and external to the Services. The Services are at the advent of fielding new technologies such as helmet-mounted displays as a primary flight reference. They will most certainly evaluate the use of windowless cockpits to counter the laser threat and allow for less constraining aerodynamic conditions in future vehicle design. The transition to multi-spectral displays in future military and commercial aircraft is imminent. The JCO is well positioned to assess and focus the research needed to safely exploit these new technologies and meet customer requirements. Presently, the JCO is undertaking three initiatives: creation of a joint-service, Cooperative Research and Development Agreement (CRDA) with Lockheed Martin to study the thresholds of virtual helmet-mounted display attributes and effects on pilot performance; management of the Spatial Disorientation Countermeasures program, and facilitation of the actions determined by the DoD Executive Agent for Flat Panel Displays.

  4. Spatial issues in user interface design from a graphic design perspective

    NASA Technical Reports Server (NTRS)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  5. Interfacing a quantum dot with a spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor

    2017-09-01

    Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.

  6. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  7. Digital Technology Education and Its Impact on Traditional Academic Roles and Practice

    ERIC Educational Resources Information Center

    Sappey, Jennifer; Relf, Stephen

    2010-01-01

    This paper explores the interface between digital technologies and the teaching labour process in Australian higher education. We develop an adaptation of the seminal Clark (1983, 1994, 2001) and Kozma (1991, 1994) debate about whether technology merely delivers educational content unchanged--technology as the "delivery truck"--or…

  8. Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tarnawska, L.; Dabrowski, J.; Grzela, T.; Lehmann, M.; Niermann, T.; Paszkiewicz, R.; Storck, P.; Schroeder, T.

    2013-06-01

    The final film quality of GaN on foreign substrates is known to crucially depend on the initial GaN interface and nucleation characteristics. To shed light on these characteristics of recently pioneered virtual, hexagonal GaN(0001) substrates on Si(111) via step graded Sc2O3(111)/Y2O3(111) buffers, a complex GaN(0001)/Sc2O3(111) interface structure model and the initial nucleation scenario is derived from a combined experimental (reflection high energy electron diffraction and X-ray photoelectron spectroscopy) and theoretical ab initio study. It is shown that the GaN/Sc2O3 interface chemistry is determined by a N-Ga-O-Sc atomic arrangement leading to N-polar GaN films. However, the atomic GaN(0001)/Sc2O3(111) interface configuration is complex and local perturbations might be at the origin of Ga-polar inversion domains in the mainly N-polar GaN films. The initial growth of GaN on Sc2O3 is characterized by an ultrathin N-Ga-O-Sc wetting layer which carries tensile strain and relaxes with increasing thickness. Further GaN deposition results in the formation of 3D islands which fully relax before island coalescence occurs. The implications of the GaN/Sc2O3 interface configuration, the 3D nucleation growth mode, and the coalescence process of misaligned islands are discussed with respect to the defect characteristics (inversion domains, cubic inclusions, threading dislocations) of the final GaN layer.

  9. Poly(vinyl alcohol) stabilization of acrylic emulsion polymers using the miniemulsion approach

    NASA Astrophysics Data System (ADS)

    Kim, Noma

    Miniemulsion approach was employed to obtain stable acrylic latexes of n-butyl acrylate and methyl methacrylate (50/50 wt%) stabilized with poly(vinyl alcohol) (PVA) and to enhance the grafting reaction between PVA and acrylic monomers at the water/droplet interface. The stability of miniemulsions were studied in terms of the type and concentration of' the stabilizer, and the PVA partitioning were determined as a function of the PVA concentration. Using the comparison of PVA partitioning at droplet surface and grafted PVA as a function of concentration, it was suggested that the water/monomer interface is the main grafting site in the miniemulsion polymerization. Seeded emulsion and miniemulsion copolymerizations initiated with water-soluble (hydrogen peroxide, HPO), partially water-soluble (t-butyl peroxide, TBHP), and oil-soluble (t-butyl peroxyoctoate, TBPO) initiators were carried out to further investigate the oil/water interface as the grafting site for PVA. The interaction between the capillary wall in the CHDF (capillary hydrodynamic fractionation) chromatographic particle sizer and the water-soluble polymers adsorbed on the particle surface was studied using different types of water-soluble polymers and eluants. Different grafting architectures depending on the initiation site were suggested based on the CHDF results. The amounts of grafted PVA produced in miniemulsion polymers initiated with TBHP and TBPO were substantially less than those in the corresponding seeded emulsion polymerizations. The effect on the internal viscosity at the interface was proposed to explain the difference in grafting in terms of polymerization methods. Aqueous phase and interface grafting were studied using the measurement of the degree of hydrolysis (DH) of the serum PVA and adsorbed PVA after miniemulsion polymerizations. Based on the results, it was found that aqueous phase and interface grafting occurred in the HPO system; however, interface grafting dominated the TBHP system. Colloidal instability in conventional emulsion polymerizations was investigated and compared with the corresponding miniemulsion polymerization. It was found that the grafted PVA in conventional emulsion polymerizations was more hydrophobic presumably due to a greater amount of grafted chains than that in similar miniemulsion polymerizations and this could be correlated with the colloidal instability during conventional emulsion polymerizations.

  10. Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation

    DOE PAGES

    Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; ...

    2013-03-16

    A vertical shock tube is used to perform experiments on the Richtmyer–Meshkov instability with a three-dimensional random initial perturbation. A membraneless flat interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the shock tube driven section. An air/SF6 gas combination is used and a Mach number M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations on the interface are created by vertically oscillating the gas column within the shock tube to produce Faraday waves on the interface resulting in amore » short wavelength, three-dimensional perturbation. Planar Mie scattering is used to visualize the flow in which light from a laser sheet is scattered by smoke seeded in the air, and image sequences are captured using three high-speed video cameras. Measurements of the integral penetration depth prior to reshock show two growth behaviors, both having power law growth with growth exponents in the range found in previous experiments and simulations. Following reshock, all experiments showvery consistent linear growth with a growth rate in good agreement with those found in previous studies.« less

  11. Recrystallization characteristics and interfacial oxides on the compression bonding interface

    NASA Astrophysics Data System (ADS)

    Xie, Bijun; Sun, Mingyue; Xu, Bin; Li, Dianzhong

    2018-05-01

    Up to now, the mechanism of interface bonding is still not fully understood. This work presents interfacial characteristics of 316LN stainless steel bonding joint after cold compression bonding with subsequent annealing. EBSD analysis shows that fine recrystallization grains preferentially appear near the bonding interface and grow towards both sides of the interface. Transmission electron microscopy reveals that initial cold compression bonding disintegrates the native oxide scales and brings pristine metal from both sides of the interface come into intimate contact, while the broken oxide particles are remained at the original interface. The results indicate that partial bonding can be achieved by cold compression bonding with post-annealing treatment and recrystallization firstly occurs along the bonding interface. However, the interfacial oxides impede the recrystallization grains step over the interface and hinder the complete healing of the bonding interface.

  12. Implementing Ethernet Services on the Payload Executive Processor (PEP)

    NASA Technical Reports Server (NTRS)

    Pruett, David; Guyette, Greg

    2016-01-01

    The Ethernet interface is more common and easier interface to implement for payload developers already familiar with Ethernet protocol in their labs. The Ethernet interface allows for a more distributed payload architecture. Connections can be placed in locations not serviced by the PEP 1553 bus. The Ethernet interface provides a new access port into the PEP so as to use the already existing services. Initial capability will include a subset of services with a plan to expand services later.

  13. A parallel coordinates style interface for exploratory volume visualization.

    PubMed

    Tory, Melanie; Potts, Simeon; Möller, Torsten

    2005-01-01

    We present a user interface, based on parallel coordinates, that facilitates exploration of volume data. By explicitly representing the visualization parameter space, the interface provides an overview of rendering options and enables users to easily explore different parameters. Rendered images are stored in an integrated history bar that facilitates backtracking to previous visualization options. Initial usability testing showed clear agreement between users and experts of various backgrounds (usability, graphic design, volume visualization, and medical physics) that the proposed user interface is a valuable data exploration tool.

  14. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Halavanau, A.

    This paper discusses the implementation of a python- based high-level interface to the Fermilab acnet control system. The interface has been successfully employed during the commissioning of the Fermilab Accelerator Science & Technology (FAST) facility. Specifically, we present examples of applications at FAST which include the interfacing of the elegant program to assist lattice matching, an automated emittance measurement via the quadrupole-scan method and tranverse transport matrix measurement of a superconducting RF cavity.

  16. ISS Interface Mechanisms and their Heritage

    NASA Technical Reports Server (NTRS)

    Cook, John G.; Aksamentov, Valery; Hoffman, Thomas; Bruner, Wes

    2011-01-01

    The International Space Station, by nurturing technological development of a variety of pressurized and unpressurized interface mechanisms fosters "competition at the technology level". Such redundancy and diversity allows for the development and testing of mechanisms that might be used for future exploration efforts. The International Space Station, as a test-bed for exploration, has 4 types of pressurized interfaces between elements and 6 unpressurized attachment mechanisms. Lessons learned from the design, test and operations of these mechanisms will help inform the design for a new international standard pressurized docking mechanism for the NASA Docking System. This paper will examine the attachment mechanisms on the ISS and their attributes. It will also look ahead at the new NASA docking system and trace its lineage to heritage mechanisms.

  17. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kaber, David B.

    2006-01-01

    This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.

  18. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  19. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  20. CERESVis: A QC Tool for CERES that Leverages Browser Technology for Data Validation

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Heckert, E.; Chen, Y.; Doelling, D.

    2015-12-01

    In this poster, we are going to present three user interfaces that CERES team uses to validate pixel-level data. Besides our home grown tools, we will aslo present the browser technology that we use to provide interactive interfaces, such as jquery, HighCharts and Google Earth. We pass data to the users' browsers and use the browsers to do some simple computations. The three user interfaces are: Thumbnails -- it displays hundrends images to allow users to browse 24-hour data files in few seconds. Multiple-synchronized cursors -- it allows users to compare multiple images side by side. Bounding Boxes and Histograms -- it allows users to draw multiple bounding boxes on an image and the browser computes/display the histograms.

  1. The NASA Scientific and Technical Information (STI) Program's Implementation of Open Archives Initiation (OAI) for Data Interoperability and Data Exchange

    NASA Technical Reports Server (NTRS)

    Rocker, JoAnne; Roncaglia, George J.; Heimerl, Lynn N.; Nelson, Michael L.

    2002-01-01

    Interoperability and data-exchange are critical for the survival of government information management programs. E-government initiatives are transforming the way the government interacts with the public. More information is to be made available through web-enabled technologies. Programs such as the NASA's Scientific and Technical Information (STI) Program Office are tasked to find more effective ways to disseminate information to the public. The NASA STI Program is an agency-wide program charged with gathering, organizing, storing, and disseminating NASA-produced information for research and public use. The program is investigating the use of a new protocol called the Open Archives Initiative (OAI) as a means to improve data interoperability and data collection. OAI promotes the use of the OAI harvesting protocol as a simple way for data sharing among repositories. In two separate initiatives, the STI Program is implementing OAI In collaboration with the Air Force, Department of Energy, and Old Dominion University, the NASA STI Program has funded research on implementing the OAI to exchange data between the three organizations. The second initiative is the deployment of OAI for the NASA technical report server (TRS) environment. The NASA TRS environment is comprised of distributed technical report servers with a centralized search interface. This paper focuses on the implementation of OAI to promote interoperability among diverse data repositories.

  2. The Future Training Room.

    ERIC Educational Resources Information Center

    Barbian, Jeff

    2001-01-01

    Looks at some of the electronic learning technology that has already been developed and will become common for training, including robots, lucid dreaming, tele-immersion, human interface technology, among others. (JOW)

  3. Multi-modal virtual environment research at Armstrong Laboratory

    NASA Technical Reports Server (NTRS)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  4. Effects of initial condition spectral content on shock-driven turbulent mixing.

    PubMed

    Nelson, Nicholas J; Grinstein, Fernando F

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  5. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    DOE PAGES

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band ofmore » high density gas (SF 6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF 6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF 6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.« less

  6. User Interface Technology for Formal Specification Development

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  7. Virtual microscopy and digital pathology in training and education.

    PubMed

    Hamilton, Peter W; Wang, Yinhai; McCullough, Stephen J

    2012-04-01

    Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human-computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eye-tracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered. © 2012 The Authors APMIS © 2012 APMIS.

  8. Grid Application Meta-Repository System: Repository Interconnectivity and Cross-domain Application Usage in Distributed Computing Environments

    NASA Astrophysics Data System (ADS)

    Tudose, Alexandru; Terstyansky, Gabor; Kacsuk, Peter; Winter, Stephen

    Grid Application Repositories vary greatly in terms of access interface, security system, implementation technology, communication protocols and repository model. This diversity has become a significant limitation in terms of interoperability and inter-repository access. This paper presents the Grid Application Meta-Repository System (GAMRS) as a solution that offers better options for the management of Grid applications. GAMRS proposes a generic repository architecture, which allows any Grid Application Repository (GAR) to be connected to the system independent of their underlying technology. It also presents applications in a uniform manner and makes applications from all connected repositories visible to web search engines, OGSI/WSRF Grid Services and other OAI (Open Archive Initiative)-compliant repositories. GAMRS can also function as a repository in its own right and can store applications under a new repository model. With the help of this model, applications can be presented as embedded in virtual machines (VM) and therefore they can be run in their native environments and can easily be deployed on virtualized infrastructures allowing interoperability with new generation technologies such as cloud computing, application-on-demand, automatic service/application deployments and automatic VM generation.

  9. Patterning of a-C DLC films: exploration of an aqueous electro-oxidative mechanism

    NASA Astrophysics Data System (ADS)

    Mühl, Thomas; Myhra, Sverre

    2007-06-01

    Conducting ion-beam assisted CVD deposited a-C type DLC films can be patterned electro-oxidatively by masked and maskless probe-induced STM-based lithography. The former constitutes a parallel rapid processing technology, with the tip acting as a distant stationary electrode. The latter is a higher spatial resolution serial technology, with the tip defining a travelling local electro-chemical cell. The mechanism is based on electro-oxidative conversion of solid carbon to gaseous CO or CO2 in the presence of an aqueous phase, either as a bulk fluid or as a thin adsorbed film. The process is constrained kinetically in the early stages by limitations on charge transport through the surface barrier at the fluid-to-solid interface and subsequently by the availability of oxidants and by their transport to reactive sites. The as-received surface is terminated by chemisorbed oxygen, leading to the formation of an insulating surface barrier. The threshold potential for initiation of conversion depends on the width of the barrier. The results may have implications for new technologies exploiting the properties of carbon-based materials, but may also add to the present understanding of the electrochemistry of carbon solids.

  10. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  11. Interface Supports Multiple Broadcast Transceivers for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2011-01-01

    A wireless avionics interface provides a mechanism for managing multiple broadcast transceivers. This interface isolates the control logic required to support multiple transceivers so that the flight application does not have to manage wireless transceivers. All of the logic to select transceivers, detect transmitter and receiver faults, and take autonomous recovery action is contained in the interface, which is not restricted to using wireless transceivers. Wired, wireless, and mixed transceiver technologies are supported. This design s use of broadcast data technology provides inherent cross strapping of data links. This greatly simplifies the design of redundant flight subsystems. The interface fully exploits the broadcast data link to determine the health of other transceivers used to detect and isolate faults for fault recovery. The interface uses simplified control logic, which can be implemented as an intellectual-property (IP) core in a field-programmable gate array (FPGA). The interface arbitrates the reception of inbound data traffic appearing on multiple receivers. It arbitrates the transmission of outbound traffic. This system also monitors broadcast data traffic to determine the health of transmitters in the network, and then uses this health information to make autonomous decisions for routing traffic through transceivers. Multiple selection strategies are supported, like having an active transceiver with the secondary transceiver powered off except to send periodic health status reports. Transceivers can operate in round-robin for load-sharing and graceful degradation.

  12. Space power thermal management materials and fabrication technologies for commerical use

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Anderson, William G.; Horner-Richardson, Kevin; Hartenstine, John R.; Keller, Robert F.; Beals, James T.

    1995-01-01

    This paper describes three materials technologies, developed for space nuclear power thermal management, with exciting and varied applications in other fields. Six dual-use applications are presented. The three basic technologies are described: (1) Refractory-metal/ceramic layered composites can be made into thin, rigid, vacuum tight shells. These shells can be tailored for excellent impact resistance and/or excellent corrision/erosion properties. Dual use applications range from micrometeroid shield radiators for spacecraft to erosion resistant waste-stream heat recovery for corrosive exhaust. (2.) Porous metal technology was initially developed to produce wicks for liquid metal heat pipes. This technology is being developed in several new directions. Porous metal heat exchangers feature extraordinarily high specific surface ratios and have absorbed heat fluxes in excess of 100 MW/m2. Porous metal structures are highly compliant, so the technology has been expanded to produce a compliant interface for the attachment of materials with widely different coefficients of thermal expansion such as low expansion carbon-carbon to high expansion metals. (3.) The paper also describes a process, developed for space nuclear power (thermionics), which achieves 100% dense tungsten by plasma spraying. This could have major application in the reprocessing of spent nuclear fuel or other pyrochemical processes, where it would replace gun-drilled tungsten-molybdenum tubes with pure tungsten tubes of smaller diameter, longer, and thiner walled. The process could produce pure tungsten components in complex shapes for arcjet thrusters and other electric propulsion devices.

  13. Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J; Menapace, J A; Schaffers, K I

    Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below themore » initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold.« less

  14. Comparing video and avatar technology for a health education application for deaf people.

    PubMed

    Chiriac, Ionuţ Adrian; Stoicu-Tivadar, Lăcrămioara; Podoleanu, Elena

    2015-01-01

    The article describes the steps and results of a parallel research investigating e-health systems design and implementation for deaf people both in avatar and video technology. The application translates medical knowledge and concepts in deaf sign language for impaired users through an avatar. Two types of avatar technologies are taken into consideration: Video Avatar with recorded humans interface and Animated Avatar with animated figure interface. The comparative study investigates the data collection, design, implementation and the impact study. The comparative analysis of video and animated technology for data collection shows that the video format editing requires fewer skills and results are obtained easier, quicker and less expensive. The video technology supports an easier to design and implement architecture. The impact study for 2 deaf students communities is under development and for the time being the video avatar is better perceived.

  15. The UMLS Knowledge Source Server: an experience in Web 2.0 technologies.

    PubMed

    Thorn, Karen E; Bangalore, Anantha K; Browne, Allen C

    2007-10-11

    The UMLS Knowledge Source Server (UMLSKS), developed at the National Library of Medicine (NLM), makes the knowledge sources of the Unified Medical Language System (UMLS) available to the research community over the Internet. In 2003, the UMLSKS was redesigned utilizing state-of-the-art technologies available at that time. That design offered a significant improvement over the prior version but presented a set of technology-dependent issues that limited its functionality and usability. Four areas of desired improvement were identified: software interfaces, web interface content, system maintenance/deployment, and user authentication. By employing next generation web technologies, newer authentication paradigms and further refinements in modular design methods, these areas could be addressed and corrected to meet the ever increasing needs of UMLSKS developers. In this paper we detail the issues present with the existing system and describe the new system's design using new technologies considered entrants in the Web 2.0 development era.

  16. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  17. Lightweight concrete modification factor for shear friction.

    DOT National Transportation Integrated Search

    2013-10-01

    This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...

  18. Legacy2Drupal - Conversion of an existing oceanographic relational database to a semantically enabled Drupal content management system

    NASA Astrophysics Data System (ADS)

    Maffei, A. R.; Chandler, C. L.; Work, T.; Allen, J.; Groman, R. C.; Fox, P. A.

    2009-12-01

    Content Management Systems (CMSs) provide powerful features that can be of use to oceanographic (and other geo-science) data managers. However, in many instances, geo-science data management offices have previously designed customized schemas for their metadata. The WHOI Ocean Informatics initiative and the NSF funded Biological Chemical and Biological Data Management Office (BCO-DMO) have jointly sponsored a project to port an existing, relational database containing oceanographic metadata, along with an existing interface coded in Cold Fusion middleware, to a Drupal6 Content Management System. The goal was to translate all the existing database tables, input forms, website reports, and other features present in the existing system to employ Drupal CMS features. The replacement features include Drupal content types, CCK node-reference fields, themes, RDB, SPARQL, workflow, and a number of other supporting modules. Strategic use of some Drupal6 CMS features enables three separate but complementary interfaces that provide access to oceanographic research metadata via the MySQL database: 1) a Drupal6-powered front-end; 2) a standard SQL port (used to provide a Mapserver interface to the metadata and data; and 3) a SPARQL port (feeding a new faceted search capability being developed). Future plans include the creation of science ontologies, by scientist/technologist teams, that will drive semantically-enabled faceted search capabilities planned for the site. Incorporation of semantic technologies included in the future Drupal 7 core release is also anticipated. Using a public domain CMS as opposed to proprietary middleware, and taking advantage of the many features of Drupal 6 that are designed to support semantically-enabled interfaces will help prepare the BCO-DMO database for interoperability with other ecosystem databases.

  19. In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint

    NASA Astrophysics Data System (ADS)

    Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu

    2018-03-01

    Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.

  20. User interface support

    NASA Technical Reports Server (NTRS)

    Lewis, Clayton; Wilde, Nick

    1989-01-01

    Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.

  1. Assessment of brain-machine interfaces from the perspective of people with paralysis.

    PubMed

    Blabe, Christine H; Gilja, Vikash; Chestek, Cindy A; Shenoy, Krishna V; Anderson, Kim D; Henderson, Jaimie M

    2015-08-01

    One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as 'likely' to be adopted as their wired equivalents. Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of external devices such as communication interfaces.

  2. An Object-Oriented View of Backend Databases in a Mobile Environment for Navy and Marine Corps Applications

    DTIC Science & Technology

    2006-09-01

    Each of these layers will be described in more detail to include relevant technologies ( Java , PDA, Hibernate , and PostgreSQL) used to implement...Logic Layer -Object-Relational Mapper ( Hibernate ) Data 35 capable in order to interface with Java applications. Based on meeting the selection...further discussed. Query List Application Logic Layer HibernateApache - Java Servlet - Hibernate Interface -OR Mapper -RDBMS Interface

  3. Building the Joint Battlespace Infosphere. Volume 2: Interactive Information Technologies

    DTIC Science & Technology

    1999-12-17

    G. A . Vouros, “ A Knowledge- Based Methodology for Supporting Multilingual and User -Tailored Interfaces ,” Interacting With Computers, Vol. 9 (1998), p...project is to develop a two-handed user interface to the stereoscopic field analyzer, an interactive 3-D scientific visualization system. The...62 See http://www.hitl.washington.edu/research/vrd/. 63 R. Baumann and R. Clavel, “Haptic Interface for Virtual Reality Based

  4. ρ-VOF: An interface sharpening method for gas-liquid flow simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Liu, Gang; Jiang, Xiong; Mou, Bin

    2018-05-01

    The study on simulation of compressible gas-liquid flow remains open. Popular methods are either confined to incompressible flow regime, or inevitably induce smear of the free interface. A new finite volume method for compressible two-phase flow simulation is contributed for this subject. First, the “heterogeneous equilibrium” assumption is introduced to the control volume, by hiring free interface reconstruction technology, the distribution of each component in the control volume is achieved. Next, AUSM+-up (advection upstream splitting method) scheme is employed to calculate the convective fluxes and pressure fluxes, with the contact discontinuity characteristic considered, followed by the update of the whole flow field. The new method features on density-based pattern and interface reconstruction technology from VOF (volume of fluid), thus we name it “ρ-VOF method”. Inherited from AUSM families and VOF, ρ-VOF behaves as an all-speed method, capable of simulating shock in gas-liquid flow, and preserving the sharpness of the free interface. Gas-liquid shock tube is simulated to evaluate the method, from which good agreement is obtained between the predicted results and those of the cited literature, meanwhile, sharper free interface is identified. Finally, the capability and validity of ρ-VOF method can be concluded in compressible gas-liquid flow simulation.

  5. Modular Software Interfaces for Revolutionary Flexibility in Space Operations

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Braham, Stephen; Pollack, Jay

    2005-01-01

    To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.

  6. Test and Analysis Correlation for a Y-Joint Specimen for a Composite Cryotank

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Sleight, David W.; Grenoble, Ray

    2015-01-01

    The Composite Cryotank Technology Demonstration (CCTD) project under NASA's Game Changing Development Program (GCDP) developed space technologies using advanced composite materials. Under CCTD, NASA funded the Boeing Company to design and test a number of element-level joint specimens as a precursor to a 2.4-m diameter composite cryotank. Preliminary analyses indicated that the y-joint in the cryotank had low margins of safety; hence the y-joint was considered to be a critical design region. The y-joint design includes a softening strip wedge to reduce localized shear stresses at the skirt/dome interface. In this paper, NASA-developed analytical models will be correlated with the experimental results of a series of positive-peel y-joint specimens from Boeing tests. Initial analytical models over-predicted the experimental strain gage readings in the far-field region by approximately 10%. The over-prediction was attributed to uncertainty in the elastic properties of the laminate and a mismatch between the thermal expansion of the strain gages and the laminate. The elastic properties of the analytical model were adjusted to account for the strain gage differences. The experimental strain gages also indicated a large non-linear effect in the softening strip region that was not predicted by the analytical model. This non-linear effect was attributed to delamination initiating in the softening strip region at below 20% of the failure load for the specimen. Because the specimen was contained in a thermally insulated box during cryogenic testing to failure, delamination initiation and progression was not visualized during the test. Several possible failure initiation locations were investigated, and a most likely failure scenario was determined that correlated well with the experimental data. The most likely failure scenario corresponded to damage initiating in the softening strip and delamination extending to the grips at final failure.

  7. Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

    PubMed

    Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert

    2017-11-29

    Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

  8. Advanced Microscopic Integrated Thermocouple Arrays

    NASA Technical Reports Server (NTRS)

    Pettigrew, Penny J.

    1999-01-01

    The purpose of this research is to develop and refine a technique for making microscopic thermocouple arrays for use in measuring the temperature gradient across a solid-liquid interface during the solidification process. Current thermocouple technology does not allow for real-time measurements across the interface due to the prohibitive size of available thermocouples. Microscopic thermocouple arrays will offer a much greater accuracy and resolution of temperature measurements across the solid-liquid interface which will lead to a better characterization of the solidification process and interface reaction which affect the properties of the resulting material.

  9. Data Access System for Hydrology

    NASA Astrophysics Data System (ADS)

    Whitenack, T.; Zaslavsky, I.; Valentine, D.; Djokic, D.

    2007-12-01

    As part of the CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Science, Inc., Hydrologic Information System), the CUAHSI HIS team has developed Data Access System for Hydrology or DASH. DASH is based on commercial off the shelf technology, which has been developed in conjunction with a commercial partner, ESRI. DASH is a web-based user interface, developed in ASP.NET developed using ESRI ArcGIS Server 9.2 that represents a mapping, querying and data retrieval interface over observation and GIS databases, and web services. This is the front end application for the CUAHSI Hydrologic Information System Server. The HIS Server is a software stack that organizes observation databases, geographic data layers, data importing and management tools, and online user interfaces such as the DASH application, into a flexible multi- tier application for serving both national-level and locally-maintained observation data. The user interface of the DASH web application allows online users to query observation networks by location and attributes, selecting stations in a user-specified area where a particular variable was measured during a given time interval. Once one or more stations and variables are selected, the user can retrieve and download the observation data for further off-line analysis. The DASH application is highly configurable. The mapping interface can be configured to display map services from multiple sources in multiple formats, including ArcGIS Server, ArcIMS, and WMS. The observation network data is configured in an XML file where you specify the network's web service location and its corresponding map layer. Upon initial deployment, two national level observation networks (USGS NWIS daily values and USGS NWIS Instantaneous values) are already pre-configured. There is also an optional login page which can be used to restrict access as well as providing a alternative to immediate downloads. For large request, users would be notified via email with a link to their data when it is ready.

  10. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    NASA Astrophysics Data System (ADS)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  11. Python as a federation tool for GENESIS 3.0.

    PubMed

    Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.

  12. Python as a Federation Tool for GENESIS 3.0

    PubMed Central

    Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101

  13. Bringing Control System User Interfaces to the Web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xihui; Kasemir, Kay

    With the evolution of web based technologies, especially HTML5 [1], it becomes possible to create web-based control system user interfaces (UI) that are cross-browser and cross-device compatible. This article describes two technologies that facilitate this goal. The first one is the WebOPI [2], which can seamlessly display CSS BOY [3] Operator Interfaces (OPI) in web browsers without modification to the original OPI file. The WebOPI leverages the powerful graphical editing capabilities of BOY and provides the convenience of re-using existing OPI files. On the other hand, it uses generic JavaScript and a generic communication mechanism between the web browser andmore » web server. It is not optimized for a control system, which results in unnecessary network traffic and resource usage. Our second technology is the WebSocket-based Process Data Access (WebPDA) [4]. It is a protocol that provides efficient control system data communication using WebSocket [5], so that users can create web-based control system UIs using standard web page technologies such as HTML, CSS and JavaScript. WebPDA is control system independent, potentially supporting any type of control system.« less

  14. Safety risks associated with the lack of integration and interfacing of hospital health information technologies: a qualitative study of hospital electronic prescribing systems in England.

    PubMed

    Cresswell, Kathrin M; Mozaffar, Hajar; Lee, Lisa; Williams, Robin; Sheikh, Aziz

    2017-07-01

    Substantial sums of money are being invested worldwide in health information technology. Realising benefits and mitigating safety risks is however highly dependent on effective integration of information within systems and/or interfacing to allow information exchange across systems. As part of an English programme of research, we explored the social and technical challenges relating to integration and interfacing experienced by early adopter hospitals of standalone and hospital-wide multimodular integrated electronic prescribing (ePrescribing) systems. We collected longitudinal qualitative data from six hospitals, which we conceptualised as case studies. We conducted 173 interviews with users, implementers and software suppliers (at up to three different times), 24 observations of system use and strategic meetings, 17 documents relating to implementation plans, and 2 whole-day expert round-table discussions. Data were thematically analysed initially within and then across cases, drawing on perspectives surrounding information infrastructures. We observed that integration and interfacing problems obstructed effective information transfer in both standalone and multimodular systems, resulting in threats to patient safety emerging from the lack of availability of timely information and duplicate data entry. Interfacing problems were immediately evident in some standalone systems where users had to cope with multiple log-ins, and this did not attenuate over time. Multimodular systems appeared at first sight to obviate such problems. However, with these systems, there was a perceived lack of data coherence across modules resulting in challenges in presenting a comprehensive overview of the patient record, this possibly resulting from the piecemeal implementation of modules with different functionalities. Although it was possible to access data from some primary care systems, we found poor two-way transfer of data between hospitals and primary care necessitating workarounds, which in turn led to the opportunity for new errors associated with duplicate and manual information transfer. Extending ePrescribing to include modules with other clinically important information needed to support care was still an aspiration in most sites, although some advanced multimodular systems had begun implementing this functionality. Multimodular systems were, however, seen as being difficult to interface with external systems. The decision to pursue a strategy of purchasing standalone systems and then interfacing these, or one of buying hospital-wide multimodular systems, is a pivotal one for hospitals in realising the vision of achieving a fully integrated digital record, and this should be predicated on a clear appreciation of the relative trade-offs between these choices. While multimodular systems offered somewhat better usability, standalone systems provided greater flexibility and opportunity for innovation, particularly in relation to interoperability with external systems and in relation to customisability to the needs of different user groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent in situ studies on model electrochemical components as well as operando studies performed by our groups at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to illustrate that AP-XPS is both a chemically and an electrically specific tool since photoelectrons carry information on both the local chemistry and electrical potentials. The applications of AP-XPS to oxygen electrocatalysis shown in this Account span well-defined studies of (1) the oxide/oxygen gas interface, (2) the oxide/water vapor interface, and (3) operando measurements of half and full electrochemical cells. Using specially designed model devices, we can expose and isolate the electrode or interface of interest to the incident X-ray beam and AP-XPS analyzer to relate the electrical potentials to the composition/chemical state of the key components and interfaces. We conclude with an outlook on new developments of AP-XPS end stations, which may provide significant improvement in the observation of dynamics over a wide range of time scales, higher spatial resolution, and improved characterization of boundary or interface layers (solid/solid and liquid/solid).

  16. Process for Selecting System Level Assessments for Human System Technologies

    NASA Technical Reports Server (NTRS)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  17. New generation emerging technologies for neurorehabilitation and motor assistance.

    PubMed

    Frisoli, Antonio; Solazzi, Massimiliano; Loconsole, Claudio; Barsotti, Michele

    2016-12-01

    This paper illustrates the application of emerging technologies and human-machine interfaces to the neurorehabilitation and motor assistance fields. The contribution focuses on wearable technologies and in particular on robotic exoskeleton as tools for increasing freedom to move and performing Activities of Daily Living (ADLs). This would result in a deep improvement in quality of life, also in terms of improved function of internal organs and general health status. Furthermore, the integration of these robotic systems with advanced bio-signal driven human-machine interface can increase the degree of participation of patient in robotic training allowing to recognize user's intention and assisting the patient in rehabilitation tasks, thus representing a fundamental aspect to elicit motor learning.

  18. Developments in brain-machine interfaces from the perspective of robotics.

    PubMed

    Kim, Hyun K; Park, Shinsuk; Srinivasan, Mandayam A

    2009-04-01

    Many patients suffer from the loss of motor skills, resulting from traumatic brain and spinal cord injuries, stroke, and many other disabling conditions. Thanks to technological advances in measuring and decoding the electrical activity of cortical neurons, brain-machine interfaces (BMI) have become a promising technology that can aid paralyzed individuals. In recent studies on BMI, robotic manipulators have demonstrated their potential as neuroprostheses. Restoring motor skills through robot manipulators controlled by brain signals may improve the quality of life of people with disability. This article reviews current robotic technologies that are relevant to BMI and suggests strategies that could improve the effectiveness of a brain-operated neuroprosthesis through robotics.

  19. Technology and Changing Lifestyles. Teacher's Guide. Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.

    "Technology and Changing Lifestyles" is one of the "Preparing for Tomorrow's World" (PTW) program modules. PTW is an interdisciplinary, future-oriented program incorporating information from the sciences and social sciences and addressing societal concerns which interface science/technology/society. The program promotes…

  20. Contingent Learning for Creative Music Technologists

    ERIC Educational Resources Information Center

    King, Andrew

    2009-01-01

    This article will review educational literature relevant to the design and implementation of a learning technology interface (LTI) into an undergraduate music technology curriculum. It also explores through empirical enquiry some of the advantages and disadvantages of using learning technology. This case study adopted a social-constructivist…

  1. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  2. User acquaintance with mobile interfaces.

    PubMed

    Ehrler, Frederic; Walesa, Magali; Sarrey, Evelyne; Wipfli, Rolf; Lovis, Christian

    2013-01-01

    Handheld technology finds slowly its place in the healthcare world. Some clinicians already use intensively dedicated mobile applications to consult clinical references. However, handheld technology hasn't still broadly embraced to the core of the healthcare business, the hospitals. The weak penetration of handheld technology in the hospitals can be partly explained by the caution of stakeholders that must be convinced about the efficiency of these tools before going forward. In a domain where temporal constraints are increasingly strong, caregivers cannot loose time on playing with gadgets. All users are not comfortable with tactile manipulations and the lack of dedicated peripheral complicates entering data for novices. Stakeholders must be convinced that caregivers will be able to master handheld devices. In this paper, we make the assumption that the proper design of an interface may influence users' performances to record information. We are also interested to find out whether users increase their efficiency when using handheld tools repeatedly. To answer these questions, we have set up a field study to compare users' performances on three different user interfaces while recording vital signs. Some user interfaces were familiar to users, and others were totally innovative. Results showed that users' familiarity with smartphone influences their performances and that users improve their performances by repeating a task.

  3. Creating widely accessible spatial interfaces: mobile VR for managing persistent pain.

    PubMed

    Schroeder, David; Korsakov, Fedor; Jolton, Joseph; Keefe, Francis J; Haley, Alex; Keefe, Daniel F

    2013-01-01

    Using widely accessible VR technologies, researchers have implemented a series of multimodal spatial interfaces and virtual environments. The results demonstrate the degree to which we can now use low-cost (for example, mobile-phone based) VR environments to create rich virtual experiences involving motion sensing, physiological inputs, stereoscopic imagery, sound, and haptic feedback. Adapting spatial interfaces to these new platforms can open up exciting application areas for VR. In this case, the application area was in-home VR therapy for patients suffering from persistent pain (for example, arthritis and cancer pain). For such therapy to be successful, a rich spatial interface and rich visual aesthetic are particularly important. So, an interdisciplinary team with expertise in technology, design, meditation, and the psychology of pain collaborated to iteratively develop and evaluate several prototype systems. The video at http://youtu.be/mMPE7itReds demonstrates how the sine wave fitting responds to walking motions, for a walking-in-place application.

  4. CALIBRATION, OPTIMIZATION, AND SENSITIVITY AND UNCERTAINTY ALGORITHMS APPLICATION PROGRAMMING INTERFACE (COSU-API)

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...

  5. Web based tools for data manipulation, visualisation and validation with interactive georeferenced graphs

    NASA Astrophysics Data System (ADS)

    Ivankovic, D.; Dadic, V.

    2009-04-01

    Some of oceanographic parameters have to be manually inserted into database; some (for example data from CTD probe) are inserted from various files. All this parameters requires visualization, validation and manipulation from research vessel or scientific institution, and also public presentation. For these purposes is developed web based system, containing dynamic sql procedures and java applets. Technology background is Oracle 10g relational database, and Oracle application server. Web interfaces are developed using PL/SQL stored database procedures (mod PL/SQL). Additional parts for data visualization include use of Java applets and JavaScript. Mapping tool is Google maps API (javascript) and as alternative java applet. Graph is realized as dynamically generated web page containing java applet. Mapping tool and graph are georeferenced. That means that click on some part of graph, automatically initiate zoom or marker onto location where parameter was measured. This feature is very useful for data validation. Code for data manipulation and visualization are partially realized with dynamic SQL and that allow as to separate data definition and code for data manipulation. Adding new parameter in system requires only data definition and description without programming interface for this kind of data.

  6. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  7. Nanometric Surface Oscillation Spectroscopy of Water-Poor Microemulsions.

    PubMed

    Corti, Mario; Raudino, Antonio; Cantù, Laura; Theisen, Johannes; Pleines, Maximilian; Zemb, Thomas N

    2018-06-18

    Selectively exchanging metal complexes between emulsified water-poor microemulsions and concentrated solutions of mixed electrolytes is the core technology for strategic metal recycling. Nanostructuration triggered by solutes present in the organic phase is understood, but little is known about fluctuations of the microemulsion-water interface. We use here a modified version of an opto-electric device initially designed for air bubbles, in order to evidence resonant electrically induced surface waves of an oily droplet suspended in an aqueous phase. Resonant waves of nanometer amplitude of a millimeter-sized microemulsion droplet containing a common ion-specific extractant diluted by dodecane and suspended in a solution of rare earth nitrate are evidenced for the first time with low excitation fields (5 V/cm). From variation of the surface wave spectrum with rare earth concentration, we evidence up-take of rare-earth ions at the interface and at higher concentration the formation of a thin "crust" of liquid crystal forming at unusually low concentration, indicative of a surface induced phase transition. The effect of the liquid crystal structure on the resonance spectrum is backed up by a model, which is used to estimate crust thickness.

  8. Portable Virtual Training Units

    NASA Technical Reports Server (NTRS)

    Malone, Reagan; Johnston, Alan

    2015-01-01

    The Mission Operations Lab initiated a project to design, develop, deliver, test, and validate a unique training system for astronaut and ground support personnel. In an effort to keep training costs low, virtual training units (VTUs) have been designed based on images of actual hardware and manipulated by a touch screen style interface for ground support personnel training. This project helped modernized the training system and materials by integrating them with mobile devices for training when operators or crew are unavailable to physically train in the facility. This project also tested the concept of a handheld remote device to control integrated trainers using International Space Station (ISS) training simulators as a platform. The portable VTU can interface with the full-sized VTU, allowing a trainer co-located with a trainee to remotely manipulate a VTU and evaluate a trainee's response. This project helped determine if it is useful, cost effective, and beneficial for the instructor to have a portable handheld device to control the behavior of the models during training. This project has advanced NASA Marshall Space Flight Center's (MSFC's) VTU capabilities with modern and relevant technology to support space flight training needs of today and tomorrow.

  9. Virtual reality applied to teletesting

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  10. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    NASA Astrophysics Data System (ADS)

    Eric, Becker; Guochao, Gu; Laurent, Langlois; Raphaël, Pesci; Régis, Bigot

    2011-01-01

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  11. The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)

    2001-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.

  12. Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike

    2006-01-01

    NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level systems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.

  13. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level svstems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, - evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.

  14. Rapid Prototyping of Hydrologic Model Interfaces with IPython

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.

    2014-12-01

    A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near-shore environments as well as levee analysis. We discuss our design decisions and methodology for developing customized interfaces, strategies for delivery of the interfaces to users in various computing environments, as well as implications for the design/implementation of simulation models.

  15. Lattice Boltzmann study of slip flow over structured surface with transverse slots

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Kai; Wang, Lei; Hou, Guoxiang; Leng, Wenjun

    2018-04-01

    Slip flow over structured superhydrophobic surface with transverse slots is investigated by the lattice Boltzmann method. The Shan-Chen multiphase model is employed to simulate the flow over gas bubbles in the slots. The Carnahan-Starling equation of state is applied to obtain large density ratio. The interface thickness of the multiphase model is discussed. We find that the Cahn number Cn should be smaller than 0.02 when the temperature T = 0.5T c to restrict the influence of interface thickness on slip length. Influences of slot fraction on slip length is then studied, and the result is compared with single LB simulation of which the interface is treated as free-slip boundary. The slip length obtained by the multiphase model is a little smaller. After that, the shape of the liquid-gas interface is considered, and simulations with different initial protrusion angles and capillary numbers are performed. Effective slip length as a function of initial protrusion angle is obtained. The result is in qualitative agreement with a previous study and main features are reproduced. Furthermore, the influence of Capillary number Ca is studied. Larger Ca causes larger interface deformation and smaller slip length. But when the interface is concaving into the slot, this influence is less obvious.

  16. A design for a ground-based data management system

    NASA Technical Reports Server (NTRS)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  17. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records

    PubMed Central

    Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B

    2016-01-01

    Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829

  18. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1994-01-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  19. Potential benefits and hazards of increased reliance on cockpit automation

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1990-01-01

    A review is presented of the introduction of advanced technology into the modern aircraft cockpit, bringing a new era of cockpit automation, and the opportunity for safe, fuel-efficient, computer-directed flight. It is shown that this advanced technology has also brought a number of problems, not due to equipment failure, but due to problems at the human-automation interface. Consideration is given to the interface, the ATC system, and to company, regulatory, and economic environments, as well as to how they contribute to these new problems.

  20. Applying Unmanned Ground Vehicle Technologies To Unmanned Surface Vehicles

    DTIC Science & Technology

    2005-01-01

    PCI or ISA bus interface • 7 UARTs • 3 USB ports • CAN bus • I2C Bus • 1 RS232 Serial Port • Two 12-bit D-A output • Two 8-bit D-A...two of the seven UARTs and the CAN bus interface. It is also used to preprocess some sensor data before sending it to the FPGA. The daughterboard...modification of the Kalman Filter and PID parameters for use in a marine environment. 2.2.1 Architecture The Small Robot Technology ( SMART ) software

  1. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Steinetz, Bruce M.

    1994-07-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  2. ROADNET: A Real-time Data Aware System for Earth, Oceanographic, and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Hansen, T.; Lindquist, K.; Ludascher, B.; Orcutt, J.; Rajasekar, A.

    2003-12-01

    The Real-time Observatories, Application, and Data management Network (ROADNet) Program aims to develop an integrated, seamless, and transparent environmental information network that will deliver geophysical, oceanographic, hydrological, ecological, and physical data to a variety of users in real-time. ROADNet is a multidisciplinary, multinational partnership of researchers, policymakers, natural resource managers, educators, and students who aim to use the data to advance our understanding and management of coastal, ocean, riparian, and terrestrial Earth systems in Southern California, Mexico, and well off shore. To date, project activity and funding have focused on the design and deployment of network linkages and on the exploratory development of the real-time data management system. We are currently adapting powerful "Data Grid" technologies to the unique challenges associated with the management and manipulation of real-time data. Current "Grid" projects deal with static data files, and significant technical innovation is required to address fundamental problems of real-time data processing, integration, and distribution. The technologies developed through this research will create a system that dynamically adapt downstream processing, cataloging, and data access interfaces when sensors are added or removed from the system; provide for real-time processing and monitoring of data streams--detecting events, and triggering computations, sensor and logger modifications, and other actions; integrate heterogeneous data from multiple (signal) domains; and provide for large-scale archival and querying of "consolidated" data. The software tools which must be developed do not exist, although limited prototype systems are available. This research has implications for the success of large-scale NSF initiatives in the Earth sciences (EarthScope), ocean sciences (OOI- Ocean Observatories Initiative), biological sciences (NEON - National Ecological Observatory Network) and civil engineering (NEES - Network for Earthquake Engineering Simulation). Each of these large scale initiatives aims to collect real-time data from thousands of sensors, and each will require new technologies to process, manage, and communicate real-time multidisciplinary environmental data on regional, national, and global scales.

  3. Demonstration of a Spoken Dialogue Interface for Planning Activities of a Semi-autonomous Robot

    NASA Technical Reports Server (NTRS)

    Dowding, John; Frank, Jeremy; Hockey, Beth Ann; Jonsson, Ari; Aist, Gregory

    2002-01-01

    Planning and scheduling in the face of uncertainty and change pushes the capabilities of both planning and dialogue technologies by requiring complex negotiation to arrive at a workable plan. Planning for use of semi-autonomous robots involves negotiation among multiple participants with competing scientific and engineering goals to co-construct a complex plan. In NASA applications this plan construction is done under severe time pressure so having a dialogue interface to the plan construction tools can aid rapid completion of the process. But, this will put significant demands on spoken dialogue technology, particularly in the areas of dialogue management and generation. The dialogue interface will need to be able to handle the complex dialogue strategies that occur in negotiation dialogues, including hypotheticals and revisions, and the generation component will require an ability to summarize complex plans. This demonstration will describe a work in progress towards building a spoken dialogue interface to the EUROPA planner for the purposes of planning and scheduling the activities of a semi-autonomous robot. A prototype interface has been built for planning the schedule of the Personal Satellite Assistant (PSA), a mobile robot designed for micro-gravity environments that is intended for use on the Space Shuttle and International Space Station. The spoken dialogue interface gives the user the capability to ask for a description of the plan, ask specific questions about the plan, and update or modify the plan. We anticipate that a spoken dialogue interface to the planner will provide a natural augmentation or alternative to the visualization interface, in situations in which the user needs very targeted information about the plan, in situations where natural language can express complex ideas more concisely than GUI actions, or in situations in which a graphical user interface is not appropriate.

  4. Definition of problems of persons in sheltered care environments

    NASA Technical Reports Server (NTRS)

    Fetzner, W. N.

    1979-01-01

    Innovations in health care using aerospace technologies are described. Voice synthesizer and voice recognition technologies were used in developing voice controlled wheel chairs and optacons. Telephone interface modules are also described.

  5. 47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technologies, such as instant messaging and email) the distribution of Common Alert Protocol (CAP)-formatted... Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies...

  6. 47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technologies, such as instant messaging and email) the distribution of Common Alert Protocol (CAP)-formatted... Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies...

  7. 47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technologies, such as instant messaging and email) the distribution of Common Alert Protocol (CAP)-formatted... Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies...

  8. OTM Machine Acceptance: In the Arab Culture

    NASA Astrophysics Data System (ADS)

    Rashed, Abdullah; Santos, Henrique

    Basically, neglecting the human factor is one of the main reasons for system failures or for technology rejection, even when important technologies are considered. Biometrics mostly have the characteristics needed for effortless acceptance, such as easiness and usefulness, that are essential pillars of acceptance models such as TAM (technology acceptance model). However, it should be investigated. Many studies have been carried out to research the issues of technology acceptance in different cultures, especially the western culture. Arabic culture lacks these types of studies with few publications in this field. This paper introduces a new biometric interface for ATM machines. This interface depends on a promising biometrics which is odour. To discover the acceptance of this biometrics, we distributed a questionnaire via a web site and called for participation in the Arab Area and found that most respondents would accept to use odour.

  9. What's the Matter with "Technology-Enhanced Learning"?

    ERIC Educational Resources Information Center

    Bayne, Sian

    2015-01-01

    In recent years, "technology-enhanced learning", or "TEL", has become a widely accepted term in the UK and Europe for describing the interface between digital technology and higher education teaching, to a large extent taking the place of other recently popular terminologies such as "e-learning", "learning…

  10. 77 FR 8217 - Evaluating the Usability of Electronic Health Record (EHR) Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... interface design guidelines for EHRs. Manufacturers interested in participating in this research will be... the usability of health information technology (HIT) systems. NIST research is designed to: (1... develop performance-oriented user interface design guidelines for EHRs, and a framework for assessing the...

  11. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  12. Amphiphilic polypeptides as a bifunctional template in the mineralization of calcium carbonate at the air/water interface.

    PubMed

    Cao, Heng; Lin, Guoqiang; Yao, Jinrong; Shao, Zhengzhong

    2013-05-01

    A well-defined amphiphilic polypeptide, poly(glutamic acid)22 -block-poly(alanine)8 (PGlu22 -b-PAla8 ), which plays the roles of both soluble (functional) additive and insoluble (structural) matrix, is employed to mediate the mineralization of CaCO3 at the air/water interface. X-ray diffraction (XRD) and Raman spectroscopy, for example, show that the polymorph of CaCO3 particles obtained is calcite. The observations from SEM and TEM suggest that PGlu22 -b-PAla8 initiates the amorphous precursor phase and heterogeneous nucleation of CaCO3 at the air/water interface, while temporarily stabilizes the gelatinous precursors as a process-directing agent; nevertheless, the initial concentration of Ca(2+) controls the procedure of crystallization and the final morphology of CaCO3 particles. Such "bifunctional" amphiphilic-polypeptide-regulated mineralization at the air/water interface may be applied to the synthesis of many kinds of symmetrical inorganic/organic hybrids. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-01-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…

  14. Distributed observing facility for remote access to multiple telescopes

    NASA Astrophysics Data System (ADS)

    Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio

    2000-06-01

    The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.

  15. Flight dynamics software in a distributed network environment

    NASA Technical Reports Server (NTRS)

    Jeletic, J.; Weidow, D.; Boland, D.

    1995-01-01

    As with all NASA facilities, the announcement of reduced budgets, reduced staffing, and the desire to implement smaller/quicker/cheaper missions has required the Agency's organizations to become more efficient in what they do. To accomplish these objectives, the FDD has initiated the development of the Flight Dynamics Distributed System (FDDS). The underlying philosophy of FDDS is to build an integrated system that breaks down the traditional barriers of attitude, mission planning, and navigation support software to provide a uniform approach to flight dynamics applications. Through the application of open systems concepts and state-of-the-art technologies, including object-oriented specification concepts, object-oriented software, and common user interface, communications, data management, and executive services, the FDD will reengineer most of its six million lines of code.

  16. Fractal growth of platinum electrodeposits revealed by in situ electron microscopy.

    PubMed

    Wang, Lifen; Wen, Jianguo; Sheng, Huaping; Miller, Dean J

    2016-10-06

    Fractals are commonly observed in nature and elucidating the mechanisms of fractal-related growth is a compelling issue for both fundamental science and technology. Here we report an in situ electron microscopy study of dynamic fractal growth of platinum during electrodeposition in a miniaturized electrochemical cell at varying growth conditions. Highly dendritic growth - either dense branching or ramified islands - are formed at the solid-electrolyte interface. We show how the diffusion length of ions in the electrolyte influences morphology selection and how instability induced by initial surface roughness, combined with local enhancement of electric field, gives rise to non-uniform branched deposition as a result of nucleation/growth at preferred locations. Comparing the growth behavior under these different conditions provides new insight into the fundamental mechanisms of platinum nucleation.

  17. Automated subsystems control development. [for life support systems of space station

    NASA Technical Reports Server (NTRS)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  18. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  19. Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures

    PubMed Central

    Nichols, John; Gao, Xiang; Lee, Shinbuhm; Meyer, Tricia L.; Freeland, John W.; Lauter, Valeria; Yi, Di; Liu, Jian; Haskel, Daniel; Petrie, Jonathan R.; Guo, Er-Jia; Herklotz, Andreas; Lee, Dongkyu; Ward, Thomas Z.; Eres, Gyula; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-01-01

    Strong Coulomb repulsion and spin–orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials. PMID:27596572

  20. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  1. Technology Benefit Estimator (T/BEST): User's Manual

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib

    1994-01-01

    The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost, manufacturing cost, development cost, risk, and development time. Currently, T/BEST operates on stand-alone or networked workstations, and uses a UNIX shell or script to control the operation of interfaced FORTRAN based analyses. T/BEST's interface structure works equally well with non-FORTRAN or mixed software analysis. This interface structure is designed to maintain the integrity of the expert's analyses by interfacing with expert's existing input and output files. Parameter input and output data (e.g., number of blades, hub diameters, etc.) are passed via T/BEST's neutral file, while copious data (e.g., finite element models, profiles, etc.) are passed via file pointers that point to the expert's analyses output files. In order to make the communications between the T/BEST's neutral file and attached analyses codes simple, only two software commands, PUT and GET, are required. This simplicity permits easy access to all input and output variables contained within the neutral file. Both public domain and proprietary analyses codes may be attached with a minimal amount of effort, while maintaining full data and analysis integrity, and security. T/BESt's sotware framework, status, beginner-to-expert operation, interface architecture, analysis module addition, and key analysis modules are discussed. Representative examples of T/BEST benefit analyses are shown.

  2. Technology Benefit Estimator (T/BEST): User's manual

    NASA Astrophysics Data System (ADS)

    Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib

    1994-12-01

    The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost, manufacturing cost, development cost, risk, and development time. Currently, T/BEST operates on stand-alone or networked workstations, and uses a UNIX shell or script to control the operation of interfaced FORTRAN based analyses. T/BEST's interface structure works equally well with non-FORTRAN or mixed software analysis. This interface structure is designed to maintain the integrity of the expert's analyses by interfacing with expert's existing input and output files. Parameter input and output data (e.g., number of blades, hub diameters, etc.) are passed via T/BEST's neutral file, while copious data (e.g., finite element models, profiles, etc.) are passed via file pointers that point to the expert's analyses output files. In order to make the communications between the T/BEST's neutral file and attached analyses codes simple, only two software commands, PUT and GET, are required. This simplicity permits easy access to all input and output variables contained within the neutral file. Both public domain and proprietary analyses codes may be attached with a minimal amount of effort, while maintaining full data and analysis integrity, and security.

  3. Alssat Development Status and Its Applications in Trade Studies

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y. (Jannivine); Brown, Cheryl B.; Jeng, Frank F.; Lin, Chin H.; Ewert, Michael K.

    2004-01-01

    The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS based on suggested default values or user inputs for different combinations of the ALS regenerative system technologies (Ref. 1, 2). This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. Since ALSSAT's latest publication in ICES 2001 (Ref. 1) describing the development of ALSSAT with its Air Revitalization Subsystem (ARS), Water Management Subsystem (WMS), and Biomass Subsystem (Biomass) mass balance sheets, ALSSAT has been expanded to include mass balance and sizing models for the remaining three ALS subsystems, namely, the Solid Waste Management Subsystem (SWMS), the Food Management Subsystem (FMS), and the Thermal Control Subsystem (TCS). The external interfaces, including the Extravehicular Activities (EVA) and Human Accommodations (HA), were implemented into ALSSAT in 2002. The overall mass balance sheet, which integrates the six ALS subsystems and the external interfaces applicable to the ECLSS, was also developed. In 2003, ALSSAT was upgraded to include the consideration of redundancy and contingency options in the ECLSS, as well as more ALS regenerative technology selections. ALSSAT has been used for the Metric Calculation for FY02 and FY03 (Ref. 3). Several trade studies were conducted in 2003. The analytical results will be presented in this paper.

  4. Radionuclide Imaging Technologies for Biological Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Calvin R.; Reid, Chantal D.; Weisenberger, Andrew G.

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., themore » root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO 2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber is dedicated to radioisotope labeling measurements. All measurements for this project were carried out in that specially equipped chamber. The radioisotopes used in this project were produced in the tandem accelerator laboratory operated by the Triangle Universities Nuclear Laboratory (TUNL). The target room where the isotopes are produced is located about 100 m from the Phytotron facility. The radioactive substances produced in the tandem laboratory are transported to the Phytotron through underground conduits that run between the two buildings.« less

  5. Deformation of a free interface pierced by a tilted cylinder

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.

    2012-07-01

    We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.

  6. Readings in technology assessment. [in relation to social impact and the law

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which reflect research in the following areas: development of the concept of technology assessment; institutionalization of technology assessment; the interface between law and technology assessment; and assessment case studies. Case studies include hazards of the medical use of X-rays, environmental noise effects in transportation planning, genetic technology, impact of underground coal mining, and aircraft/airport noise abatement.

  7. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a proteinmore » drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.« less

  8. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  9. Time's arrow: A numerical experiment

    NASA Astrophysics Data System (ADS)

    Fowles, G. Richard

    1994-04-01

    The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.

  10. Reconstruction of the Interface of Oxidatively Functionalized Polyethylene (PE-CO2H) and Derivatives on Heating. Revision.

    DTIC Science & Technology

    1987-03-01

    contact angle with water frin the initial va: e 蕫b to the final value ’:,)3@, follows KinetiCs tnat suggest trit -no polar functional groups lisappear...PE-CO 2H in contact with liquiJs such as water and perfluorodecalin suggest that reconstruction is driven initially by ;iinimization of the...distance from the polymer- water interface can exchange ions with bulk water . Thermally reconstructed PE-CO2H is thus a new type of thin-film ion

  11. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

    PubMed

    Leung, Kevin; Budzien, Joanne L

    2010-07-07

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  12. Dynamic Evaluation of the Multimedia Interface in Computer Supported Learning

    ERIC Educational Resources Information Center

    Zaidel, Mark

    2007-01-01

    As information technology applications become widespread in education, new innovations in computer systems and communication technologies stimulate changes in students' visual preferences. In a university environment each new cohort of students is more comfortable in the digital world, expecting that new technology will enhance teaching and…

  13. The Technology Review 10: Emerging Technologies that Will Change the World.

    ERIC Educational Resources Information Center

    Technology Review, 2001

    2001-01-01

    Identifies 10 emerging areas of technology that will soon have a profound impact on the economy and on how people live and work: brain-machine interfaces; flexible transistors; data mining; digital rights management; biometrics; natural language processing; microphotonics; untangling code; robot design; and microfluidics. In each area, one…

  14. Music, Technology, and an Evolving Curriculum.

    ERIC Educational Resources Information Center

    Moore, Brian

    1992-01-01

    Mechanical examples of musical technology, like the Steinway piano, are well known and accepted. Use of computers and electronic technology is the next logical step in developing art of music. MIDI (Musical Instrument Digital Interface) is explained, along with digital devices (such as synthesizers, sequencers, music notation software, multimedia,…

  15. Use of Computer Speech Technologies To Enhance Learning.

    ERIC Educational Resources Information Center

    Ferrell, Joe

    1999-01-01

    Discusses the design of an innovative learning system that uses new technologies for the man-machine interface, incorporating a combination of Automatic Speech Recognition (ASR) and Text To Speech (TTS) synthesis. Highlights include using speech technologies to mimic the attributes of the ideal tutor and design features. (AEF)

  16. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01

    Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.

  17. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  18. User Interfaces for Patient-Centered Communication of Health Status and Care Progress

    ERIC Educational Resources Information Center

    Wilcox-Patterson, Lauren

    2013-01-01

    The recent trend toward patients participating in their own healthcare has opened up numerous opportunities for computing research. This dissertation focuses on how technology can foster this participation, through user interfaces to effectively communicate personal health status and care progress to hospital patients. I first characterize the…

  19. A Model for Integrating Technology and Learning in Public Health Education

    ERIC Educational Resources Information Center

    Bardzell, Shaowen; Bardzell, Jeffrey; So, Hyo-Jeong; Lee, Junghun

    2004-01-01

    As computer interfaces emerge as an instructional medium, instructors transitioning from the classroom continue to bear the burden of designing effective instruction. The medium of the computer interface, and the kinds of learning and interactive possibilities it affords, presumably changes the delivery of learner-centered instruction.…

  20. Protease biosensors based on peptide-nanocellulose conjugates: from molecular design to dressing interface

    USDA-ARS?s Scientific Manuscript database

    The development of point of care diagnostic protease sensors applied to wound healing has received increased interest for chronic wound treatment and as an interface with chronic wound dressings. Biosensor technology has grown exponentially in recent years. Here we focus on nanocelluosic biosensor t...

  1. Library Databases as Unexamined Classroom Technologies

    ERIC Educational Resources Information Center

    Faix, Allison

    2014-01-01

    In their 1994 article, "The Politics of the Interface: Power and its Exercise in Electronic Contact Zones," compositionists Cynthia Selfe and Richard Selfe give examples of how certain features of word processing software and other programs used in writing classrooms (including their icons, clip art, interfaces, and file structures) can…

  2. New Approaches to Technology in HE Management

    ERIC Educational Resources Information Center

    Cobb, Chris

    2012-01-01

    Most UK universities can trace their current management information systems back to significant investments made in the 1990s, largely fuelled by concerns about the millenium bug and a change from character interfaces to graphical user interfaces following the introduction of the personal computer. It was during this period that institutions also…

  3. Interfering and Resolving: How Tabletop Interaction Facilitates Co-Construction of Argumentative Knowledge

    ERIC Educational Resources Information Center

    Falcao, Taciana Pontual; Price, Sara

    2011-01-01

    Tangible technologies and shared interfaces create new paradigms for mediating collaboration through dynamic, synchronous environments, where action is as important as speech for participating and contributing to the activity. However, interaction with shared interfaces has been shown to be inherently susceptible to peer interference, potentially…

  4. Computer Instrumentation and the New Tools of Science.

    ERIC Educational Resources Information Center

    Snyder, H. David

    1990-01-01

    The impact and uses of new technologies in science teaching are discussed. Included are computers, software, sensors, integrated circuits, computer signal access, and computer interfaces. Uses and advantages of these new technologies are suggested. (CW)

  5. Early stages of plasma induced nitridation of Si (111) surface and study of interfacial band alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in

    2016-02-07

    We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less

  6. The stability of the contact interface of cylindrical and spherical shock tubes

    NASA Astrophysics Data System (ADS)

    Crittenden, Paul E.; Balachandar, S.

    2018-06-01

    The stability of the contact interface for radial shock tubes is investigated as a model for explosive dispersal. The advection upstream splitting method with velocity and pressure diffusion (AUSM+-up) is used to solve for the radial base flow. To investigate the stability of the resulting contact interface, perturbed governing equations are derived assuming harmonic modes in the transverse directions. The perturbed harmonic flow is solved by assuming an initial disturbance and using a perturbed version of AUSM+-up derived in this paper. The intensity of the perturbation near the contact interface is computed and compared to theoretical results obtained by others. Despite the simplifying assumptions of the theoretical analysis, very good agreement is observed. Not only can the magnitude of the instability be predicted during the initial expansion, but also remarkably the agreement between the numerical and theoretical results can be maintained through the collision between the secondary shock and the contact interface. Since the theoretical results only depend upon the time evolution of the base flow, the stability of various modes could be quickly investigated without explicitly solving a system of partial differential equations for the perturbed flow.

  7. Human machine interface display design document.

    DOT National Transportation Integrated Search

    2008-01-01

    The purpose of this document is to describe the design for the human machine interface : (HMI) display for the Next Generation 9-1-1 (NG9-1-1) System (or system of systems) : based on the initial Tier 1 requirements identified for the NG9-1-1 S...

  8. [Evaluation of digital educational student-technology interaction in neonatal nursing].

    PubMed

    Castro, Fernanda Salim Ferreira de; Dias, Danielle Monteiro Vilela; Higarashi, Ieda Harumi; Scochi, Carmen Gracinda Silvan; Fonseca, Luciana Mara Monti

    2015-02-01

    To assess the digital educational technology interface Caring for the sensory environment in the neonatal unit: noise, lighting and handling based on ergonomic criteria. Descriptive study, in which we used the guidelines and ergonomic criteria established by ISO 9241-11 and an online Likert scale instrument to identify problems and interface qualities. The instrument was built based on Ergolist, which follows the criteria of ISO 9141-11. There were 58 undergraduate study participants from the School of Nursing of Ribeirao Preto, University of Sao Paulo, who attended the classes about neonatal nursing content. All items were positively evaluated by more than 70% of the sample. Educational technology is appropriate according to the ergonomic criteria and can be made available for teaching nursing students.

  9. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

    NASA Astrophysics Data System (ADS)

    Borquist, Eric

    Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.

  10. Easy access to geophysical data sets at the IRIS Data Management Center

    NASA Astrophysics Data System (ADS)

    Trabant, C.; Ahern, T.; Suleiman, Y.; Karstens, R.; Weertman, B.

    2012-04-01

    At the IRIS Data Management Center (DMC) we primarily manage seismological data but also have other geophysical data sets for related fields including atmospheric pressure and gravity measurements and higher level data products derived from raw data. With a few exceptions all data managed by the IRIS DMC are openly available and we serve an international research audience. These data are available via a number of different mechanisms from batch requests submitted through email, web interfaces, near real time streams and more recently web services. Our initial suite of web services offer access to almost all of the raw data and associated metadata managed at the DMC. In addition, we offer services that apply processing to the data before it is sent to the user. Web service technologies are ubiquitous with support available in nearly every programming language and operating system. By their nature web services are programmatic interfaces, but by choosing a simple subset of web service methods we make our data available to a very broad user base. These interfaces will be usable by professional developers as well as non-programmers. Whenever possible we chose open and recognized standards. The data returned to the user is in a variety of formats depending on type, including FDSN SEED, QuakeML, StationXML, ASCII, PNG images and in some cases where no appropriate standard could be found a customized XML format. To promote easy access to seismological data for all researchers we are coordinating with international partners to define web service interfaces standards. Additionally we are working with key partners in Europe to complete the initial implementation of these services. Once a standard has been adopted and implemented at multiple data centers researchers will be able to use the same request tools to access data across multiple data centers. The web services that apply on-demand processing to requested data include the capability to apply instrument corrections and format translations which ultimately allows more researchers to use the data without knowledge of specific data and metadata formats. In addition to serving as a new platform on top of which research scientists will build advanced processing tools we anticipate that they will result in more data being accessible by more users.

  11. Probing low noise at the MOS interface with a spin-orbit qubit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jock, Ryan Michael; Jacobson, Noah Tobias; Harvey-Collard, Patrick

    The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce amore » spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems« less

  12. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA.

  13. Data storage technology: Hardware and software, Appendix B

    NASA Technical Reports Server (NTRS)

    Sable, J. D.

    1972-01-01

    This project involves the development of more economical ways of integrating and interfacing new storage devices and data processing programs into a computer system. It involves developing interface standards and a software/hardware architecture which will make it possible to develop machine independent devices and programs. These will interface with the machine dependent operating systems of particular computers. The development project will not be to develop the software which would ordinarily be the responsibility of the manufacturer to supply, but to develop the standards with which that software is expected to confirm in providing an interface with the user or storage system.

  14. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  15. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, Andrew P.; Sparn, Bethany F.; Jin, Xin

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set ofmore » leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.« less

  16. Migration of the ATLAS Metadata Interface (AMI) to Web 2.0 and cloud

    NASA Astrophysics Data System (ADS)

    Odier, J.; Albrand, S.; Fulachier, J.; Lambert, F.

    2015-12-01

    The ATLAS Metadata Interface (AMI), a mature application of more than 10 years of existence, is currently under adaptation to some recently available technologies. The web interfaces, which previously manipulated XML documents using XSL transformations, are being migrated to Asynchronous JavaScript (AJAX). Web development is considerably simplified by the introduction of a framework based on JQuery and Twitter Bootstrap. Finally, the AMI services are being migrated to an OpenStack cloud infrastructure.

  17. Interface design principles for high-performance organic semiconductor devices

    DOE PAGES

    Nie, Wanyi; Gupta, Gautam; Crone, Brian K.; ...

    2015-03-23

    Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which greatly limits the power conversion efficiency. W. Nie, A. Mohite, and co-workers demonstrate a simple strategy of suppressing the recombination rate by inserting a spacer layer at the donor-acceptor interface, resulting in a dramatic increase in power conversion efficiency.

  18. HoloHands: games console interface for controlling holographic optical manipulation

    NASA Astrophysics Data System (ADS)

    McDonald, C.; McPherson, M.; McDougall, C.; McGloin, D.

    2012-10-01

    The increased application of holographic optical manipulation techniques within the life sciences has sparked the development of accessible interfaces for control of holographic optical tweezers. Of particular interest are those that employ familiar, commercially available technologies. Here we present the use of a low cost games console interface, the Microsoft Kinect for the control of holographic optical tweezers and a study into the effect of using such a system upon the quality of trap generated.

  19. Geostatistical applications in ground-water modeling in south-central Kansas

    USGS Publications Warehouse

    Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.

    1999-01-01

    This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.

  20. Generic worklist handler for workflow-enabled products

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim; Meetz, Kirsten; Wendler, Thomas

    1999-07-01

    Workflow management (WfM) is an emerging field of medical information technology. It appears as a promising key technology to model, optimize and automate processes, for the sake of improved efficiency, reduced costs and improved patient care. The Application of WfM concepts requires the standardization of architectures and interfaces. A component of central interest proposed in this report is a generic work list handler: A standardized interface between a workflow enactment service and application system. Application systems with embedded work list handlers will be called 'Workflow Enabled Application Systems'. In this paper we discus functional requirements of work list handlers, as well as their integration into workflow architectures and interfaces. To lay the foundation for this specification, basic workflow terminology, the fundamentals of workflow management and - later in the paper - the available standards as defined by the Workflow Management Coalition are briefly reviewed.

Top