Sample records for interface tracking development

  1. Railroad track inspection interface demonstration : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    This project developed a track data user interface utilizing the Google Glass optical display device. The interface allows the user : to recall data stored remotely and view the data on the Google Glass. The technical effort required developing a com...

  2. Teleoperation of Robonaut Using Finger Tracking

    NASA Technical Reports Server (NTRS)

    Champoux, Rachel G.; Luo, Victor

    2012-01-01

    With the advent of new finger tracking systems, the idea of a more expressive and intuitive user interface is being explored and implemented. One practical application for this new kind of interface is that of teleoperating a robot. For humanoid robots, a finger tracking interface is required due to the level of complexity in a human-like hand, where a joystick isn't accurate. Moreover, for some tasks, using one's own hands allows the user to communicate their intentions more effectively than other input. The purpose of this project was to develop a natural user interface for someone to teleoperate a robot that is elsewhere. Specifically, this was designed to control Robonaut on the international space station to do tasks too dangerous and/or too trivial for human astronauts. This interface was developed by integrating and modifying 3Gear's software, which includes a library of gestures and the ability to track hands. The end result is an interface in which the user can manipulate objects in real time in the user interface. then, the information is relayed to a simulator, the stand in for Robonaut, at a slight delay.

  3. An interface tracking model for droplet electrocoalescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Lindsay Crowl

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms betweenmore » approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.« less

  4. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  5. Automated Tracking of Cell Migration with Rapid Data Analysis.

    PubMed

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  7. SolTrack: an automatic video processing software for in situ interface tracking.

    PubMed

    Griesser, S; Pierer, R; Reid, M; Dippenaar, R

    2012-10-01

    High-Resolution in situ observation of solidification experiments has become a powerful technique to improve the fundamental understanding of solidification processes of metals and alloys. In the present study, high-temperature laser-scanning confocal microscopy (HTLSCM) was utilized to observe and capture in situ solidification and phase transformations of alloys for subsequent post processing and analysis. Until now, this analysis has been very time consuming as frame-by-frame manual evaluation of propagating interfaces was used to determine the interface velocities. SolTrack has been developed using the commercial software package MATLAB and is designed to automatically detect, locate and track propagating interfaces during solidification and phase transformations as well as to calculate interfacial velocities. Different solidification phenomena have been recorded to demonstrate a wider spectrum of applications of this software. A validation, through comparison with manual evaluation, is included where the accuracy is shown to be very high. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  8. A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.

    2007-03-01

    This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.

  9. A comparison study of visually stimulated brain-computer and eye-tracking interfaces

    NASA Astrophysics Data System (ADS)

    Suefusa, Kaori; Tanaka, Toshihisa

    2017-06-01

    Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.

  10. Improvement of design of a surgical interface using an eye tracking device

    PubMed Central

    2014-01-01

    Background Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Methods Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Results Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. Conclusions This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability. PMID:25080176

  11. Improvement of design of a surgical interface using an eye tracking device.

    PubMed

    Erol Barkana, Duygun; Açık, Alper; Duru, Dilek Goksel; Duru, Adil Deniz

    2014-05-07

    Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability.

  12. Color image processing and object tracking workstation

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  13. Collaborative biocuration--text-mining development task for document prioritization for curation.

    PubMed

    Wiegers, Thomas C; Davis, Allan Peter; Mattingly, Carolyn J

    2012-01-01

    The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems for the biological domain. The 'BioCreative Workshop 2012' subcommittee identified three areas, or tracks, that comprised independent, but complementary aspects of data curation in which they sought community input: literature triage (Track I); curation workflow (Track II) and text mining/natural language processing (NLP) systems (Track III). Track I participants were invited to develop tools or systems that would effectively triage and prioritize articles for curation and present results in a prototype web interface. Training and test datasets were derived from the Comparative Toxicogenomics Database (CTD; http://ctdbase.org) and consisted of manuscripts from which chemical-gene-disease data were manually curated. A total of seven groups participated in Track I. For the triage component, the effectiveness of participant systems was measured by aggregate gene, disease and chemical 'named-entity recognition' (NER) across articles; the effectiveness of 'information retrieval' (IR) was also measured based on 'mean average precision' (MAP). Top recall scores for gene, disease and chemical NER were 49, 65 and 82%, respectively; the top MAP score was 80%. Each participating group also developed a prototype web interface; these interfaces were evaluated based on functionality and ease-of-use by CTD's biocuration project manager. In this article, we present a detailed description of the challenge and a summary of the results.

  14. Design of efficient and simple interface testing equipment for opto-electric tracking system

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao

    2016-10-01

    Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.

  15. TrackMate: An open and extensible platform for single-particle tracking.

    PubMed

    Tinevez, Jean-Yves; Perry, Nick; Schindelin, Johannes; Hoopes, Genevieve M; Reynolds, Gregory D; Laplantine, Emmanuel; Bednarek, Sebastian Y; Shorte, Spencer L; Eliceiri, Kevin W

    2017-02-15

    We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. A locomotive-track coupled vertical dynamics model with gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-02-01

    A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.

  17. ESTL tracking and data relay satellite /TDRSS/ simulation system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.

    1980-01-01

    The Tracking Data Relay Satellite System (TDRSS) provides single access forward and return communication links with the Shuttle/Orbiter via S-band and Ku-band frequency bands. The ESTL (Electronic Systems Test Laboratory) at Lyndon B. Johnson Space Center (JSC) utilizes a TDRS satellite simulator and critical TDRS ground hardware for test operations. To accomplish Orbiter/TDRSS relay communications performance testing in the ESTL, a satellite simulator was developed which met the specification requirements of the TDRSS channels utilized by the Orbiter. Actual TDRSS ground hardware unique to the Orbiter communication interfaces was procured from individual vendors, integrated in the ESTL, and interfaced via a data bus for control and status monitoring. This paper discusses the satellite simulation hardware in terms of early development and subsequent modifications. The TDRS ground hardware configuration and the complex computer interface requirements are reviewed. Also, special test hardware such as a radio frequency interference test generator is discussed.

  18. A 3D front tracking method on a CPU/GPU system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Grove, John

    2011-01-21

    We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

  19. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  20. The effect of track load correlation on ground-borne vibration from railways

    NASA Astrophysics Data System (ADS)

    Ntotsios, Evangelos; Thompson, David; Hussein, Mohammed

    2017-08-01

    In predictions of ground-borne vibration from railways, it is generally assumed that the unevenness profile of the wheel and rail is fully correlated between the two rails and the two wheels of an axle. This leads to identical contact forces at the two rails and can allow further simplifications of the vehicle model, the track model and the track/ground interface conditions. In the present paper, the level of correlation of the track loading at the wheel/rail interface due to rail unevenness and its influence on predictions of ground vibration is investigated. The extent to which the unevenness of the two rails is correlated has been estimated from measurements of track geometry obtained with track recording vehicles for four different tracks. It was found that for wavelengths longer than about 3 m the unevenness of the two rails can be considered to be strongly correlated and in phase. To investigate the effect of this on ground vibration, an existing model expressed in the wavenumber-frequency domain is extended to include separate inputs on the two rails. The track is modelled as an infinite invariant linear structure resting on an elastic stratified half-space. This is excited by the gravitational loading of a passing train and the irregularity of the contact surfaces between the wheels and the rails. The railway model is developed in this work to be versatile so that it can account or discard the effect of load correlations on the two rails beside the effects of variation of the tractions across the width of the track-ground interface and the vehicle sprung mass, as well as the roll motion of the sleepers and the axle. A comparative analysis is carried out on the influence of these factors on the response predictions using numerical simulations. It is shown that, when determining the vibration in the free field, it is important to include in the model the traction variation across the track-ground interface and the non-symmetrical loading at the two rails that occurs for unevenness wavelengths shorter than about 3 m.

  1. Distributed user interfaces for clinical ubiquitous computing applications.

    PubMed

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  2. Electro-optic tracking R&D for defense surveillance

    NASA Astrophysics Data System (ADS)

    Sutherland, Stuart; Woodruff, Chris J.

    1995-09-01

    Two aspects of work on automatic target detection and tracking for electro-optic (EO) surveillance are described. Firstly, a detection and tracking algorithm test-bed developed by DSTO and running on a PC under Windows NT is being used to assess candidate algorithms for unresolved and minimally resolved target detection. The structure of this test-bed is described and examples are given of its user interfaces and outputs. Secondly, a development by Australian industry under a Defence-funded contract, of a reconfigurable generic track processor (GTP) is outlined. The GTP will include reconfigurable image processing stages and target tracking algorithms. It will be used to demonstrate to the Australian Defence Force automatic detection and tracking capabilities, and to serve as a hardware base for real time algorithm refinement.

  3. Local mesh adaptation technique for front tracking problems

    NASA Astrophysics Data System (ADS)

    Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.

    1998-09-01

    A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.

  4. Object-oriented model-driven control

    NASA Technical Reports Server (NTRS)

    Drysdale, A.; Mcroberts, M.; Sager, J.; Wheeler, R.

    1994-01-01

    A monitoring and control subsystem architecture has been developed that capitalizes on the use of modeldriven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbodioxide, and water. It estimates and tracks resorce-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents an approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.

  5. Performance, operational limits, of an Electronic Switching Spherical Array (ESSA) antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1979-01-01

    The development of a microprocessor controller which provides multimode operational capability for the Electronic Switching Spherical Array (ESSA) Antenna is described. The best set of operating conditions were determined and the performance of an ESSA antenna was demonstrated in the following modes: (1) omni; (2) acquisition/track; (3) directive; and (4) multibeam. The control algorithms, software flow diagrams, and electronic circuitry were developed. The microprocessor and control electronics were built and interfaced with the antenna to carry out performance testing. The acquisition/track mode for users in the Tracking and Data Relay Satellite System is emphasized.

  6. Recent Developments in OVERGRID, OVERFLOW-2 and Chimera Grid Tools Scripts

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    OVERGRID and OVERFLOW-2 feature easy to use multiple-body dynamics. The new features of OVERGRID include a preliminary chemistry interface, standard atmosphere and mass properties calculators, a simple unsteady solution viewer, and a debris tracking interface. Script library development in Chimera Grid Tools has applications in turbopump grid generation. This viewgraph presentation profiles multiple component dynamics, validation test cases for a sphere, cylinder, and oscillating airfoil, and debris analysis.

  7. Lighnting detection and tracking with consumer electronics

    NASA Astrophysics Data System (ADS)

    Kamau, Gilbert; van de Giesen, Nick

    2015-04-01

    Lightning data is not only important for environment and weather monitoring but also for safety purposes. The AS3935 Franklin Lightning Sensor (AMS, Unterpremstaetten, Austria) is a lightning sensor developed for inclusion in consumer electronics such as watches and mobile phones. The AS3935 is small (4mmx4mm) and relatively cost effective (Eu 5). The downside is that only rough distance estimates are provided, as average power is assumed for every lightning strike. To be able to track lightning, a network of devices that monitor and keep track of occurrences of lightning strikes was developed. A communication interface was established between the sensors, a data logging circuit and a microcontroller. The digital outputs of the lightning sensor and data from a GPS are processed by the microcontroller and logged onto an SD card. The interface program enables sampling parameters such as distance from the lightning strike, time of strike occurrence and geographical location of the device. For archiving and analysis purposes, the data can be transferred from the SD card to a PC and results displayed using a graphical user interface program. Data gathered shows that the device can track the frequency and movement of lightning strikes in an area. The device has many advantages as compared to other lightning sensor stations in terms of huge memory, lower power consumption, small size, greater portability and lower cost. The devices were used in a network around Nairobi, Kenya. Through multi-lateration, lightning strikes could be located with a RMSE of 2 km or better.

  8. Blasting, graphical interfaces and Unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, S.; Preece, D.S.

    1993-11-01

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less

  9. Blasting, graphical interfaces and Unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, S.; Preece, D.S.

    1994-12-31

    A discrete element computer program, DMC (Distinct Motion Code) was developed to simulate blast-induced rock motion. To simplify the complex task of entering material and explosive design parameters as well as bench configuration, a full-featured graphical interface has been developed. DMC is currently executed on both Sun SPARCstation 2 and Sun SPARCstation 10 platforms and routinely used to model bench and crater blasting problems. This paper will document the design and development of the full-featured interface to DMC. The development of the interface will be tracked through the various stages, highlighting the adjustments made to allow the necessary parameters tomore » be entered in terms and units that field blasters understand. The paper also discusses a novel way of entering non-integer numbers and the techniques necessary to display blasting parameters in an understandable visual manner. A video presentation will demonstrate the graphics interface and explains its use.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Chen, K.; Jusko, M.

    The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking andmore » item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system integration is technically feasible and reliable with the existing RFID and Qualcomm satellite equipment. In terms of web application, improvements in mapping, tracking, data presentation, and post-incident spatial query reporting were implemented in ARG-US, the application software that manages the dataflow among the RFID tags, readers, and servers. These features were tested in the MiniDemo and found to be satisfactory. The resulting web application is both informative and user-friendly. A joint developmental project is being planned between the PCP and the DOE TRANSCOM that uses the Qualcomm gear in vehicles for tracking and communication of radioactive material shipments across the country. Adding an RFID interface to TRANSCOM is a significant enhancement to the DOE infrastructure for tracking and monitoring shipments of radioactive materials.« less

  11. High-Order Discontinuous Galerkin Level Set Method for Interface Tracking and Re-Distancing on Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Greene, Patrick; Nourgaliev, Robert; Schofield, Sam

    2015-11-01

    A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.

  12. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  13. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  14. Micro-video display with ocular tracking and interactive voice control

    NASA Technical Reports Server (NTRS)

    Miller, James E.

    1993-01-01

    In certain space-restricted environments, many of the benefits resulting from computer technology have been foregone because of the size, weight, inconvenience, and lack of mobility associated with existing computer interface devices. Accordingly, an effort to develop a highly miniaturized and 'wearable' computer display and control interface device, referred to as the Sensory Integrated Data Interface (SIDI), is underway. The system incorporates a micro-video display that provides data display and ocular tracking on a lightweight headset. Software commands are implemented by conjunctive eye movement and voice commands of the operator. In this initial prototyping effort, various 'off-the-shelf' components have been integrated into a desktop computer and with a customized menu-tree software application to demonstrate feasibility and conceptual capabilities. When fully developed as a customized system, the interface device will allow mobile, 'hand-free' operation of portable computer equipment. It will thus allow integration of information technology applications into those restrictive environments, both military and industrial, that have not yet taken advantage of the computer revolution. This effort is Phase 1 of Small Business Innovative Research (SBIR) Topic number N90-331 sponsored by the Naval Undersea Warfare Center Division, Newport. The prime contractor is Foster-Miller, Inc. of Waltham, MA.

  15. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  16. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd

    2015-04-29

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured withmore » a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.« less

  17. Ocean Tracks: Investigating Marine Migrations in a Changing Ocean

    NASA Astrophysics Data System (ADS)

    Krumhansl, R.; Kochevar, R. E.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Louie, J.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.; Busey, A.

    2015-12-01

    The availability of scientific data sets online opens up exciting new opportunities to raise students' understanding of the worlds' oceans and the potential impacts of climate change. The Oceans of Data Institute at EDC; Stanford University; and the Scripps Institution of Oceanography have been collaborating, with the support of three National Science Foundation grants over the past 5 years, to bring marine science data sets into high school and undergraduate classrooms. These efforts have culminated in the development of a web-based student interface to data from the Tagging of Pacific Predators (TOPP) program, NOAA's Global Drifter Program, and NASA Earth-orbiting satellites through a student-friendly Web interface, customized data analysis tools, multimedia supports, and course modules. Ocean Tracks (http://oceantracks.org), which incorporates design principles based on a broad range of research findings in fields such as cognitive science, visual design, mathematics education and learning science, focuses on optimizing students' opportunities to focus their cognitive resources on viewing and comparing data to test hypotheses, while minimizing the time spent on downloading, filtering and creating displays. Ocean Tracks allows students to display the tracks of elephant seals, white sharks, Bluefin tuna, albatross, and drifting buoys along with sea surface temperature, chlorophyll-A, bathymetry, ocean currents, and human impacts overlays. A graphing tool allows students to dynamically display parameters associated with the track such as speed, deepest daily dive and track tortuosity (curviness). These interface features allow students to engage in investigations that mirror those currently being conducted by scientists to understand the broad-scale effects of changes in climate and other human activities on ocean ecosystems. In addition to supporting the teaching of the Ocean and Climate Literacy principles, high school curriculum modules facilitate the teaching of content, practices and cross-cutting concepts in the Framework for K-12 Science Education. Undergraduate modules currently under development support the teaching of content related to marine productivity, ocean circulation and upwelling, animal-environment interactions, ocean ecosystems, and human impacts.

  18. A computationally efficient software application for calculating vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; Hunt, H. E. M.

    2009-08-01

    The PiP model is a software application with a user-friendly interface for calculating vibration from underground railways. This paper reports about the software with a focus on its latest version and the plans for future developments. The software calculates the Power Spectral Density of vibration due to a moving train on floating-slab track with track irregularity described by typical values of spectra for tracks with good, average and bad conditions. The latest version accounts for a tunnel embedded in a half space by employing a toolbox developed at K.U. Leuven which calculates Green's functions for a multi-layered half-space.

  19. The use of ambient audio to increase safety and immersion in location-based games

    NASA Astrophysics Data System (ADS)

    Kurczak, John Jason

    The purpose of this thesis is to propose an alternative type of interface for mobile software being used while walking or running. Our work addresses the problem of visual user interfaces for mobile software be- ing potentially unsafe for pedestrians, and not being very immersive when used for location-based games. In addition, location-based games and applications can be dif- ficult to develop when directly interfacing with the sensors used to track the user's location. These problems need to be addressed because portable computing devices are be- coming a popular tool for navigation, playing games, and accessing the internet while walking. This poses a safety problem for mobile users, who may be paying too much attention to their device to notice and react to hazards in their environment. The difficulty of developing location-based games and other location-aware applications may significantly hinder the prevalence of applications that explore new interaction techniques for ubiquitous computing. We created the TREC toolkit to address the issues with tracking sensors while developing location-based games and applications. We have developed functional location-based applications with TREC to demonstrate the amount of work that can be saved by using this toolkit. In order to have a safer and more immersive alternative to visual interfaces, we have developed ambient audio interfaces for use with mobile applications. Ambient audio uses continuous streams of sound over headphones to present information to mobile users without distracting them from walking safely. In order to test the effectiveness of ambient audio, we ran a study to compare ambient audio with handheld visual interfaces in a location-based game. We compared players' ability to safely navigate the environment, their sense of immersion in the game, and their performance at the in-game tasks. We found that ambient audio was able to significantly increase players' safety and sense of immersion compared to a visual interface, while players performed signifi- cantly better at the game tasks when using the visual interface. This makes ambient audio a legitimate alternative to visual interfaces for mobile users when safety and immersion are a priority.

  20. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  1. Lamprey: tracking users on the World Wide Web.

    PubMed

    Felciano, R M; Altman, R B

    1996-01-01

    Tracking individual web sessions provides valuable information about user behavior. This information can be used for general purpose evaluation of web-based user interfaces to biomedical information systems. To this end, we have developed Lamprey, a tool for doing quantitative and qualitative analysis of Web-based user interfaces. Lamprey can be used from any conforming browser, and does not require modification of server or client software. By rerouting WWW navigation through a centralized filter, Lamprey collects the sequence and timing of hyperlinks used by individual users to move through the web. Instead of providing marginal statistics, it retains the full information required to recreate a user session. We have built Lamprey as a standard Common Gateway Interface (CGI) that works with all standard WWW browsers and servers. In this paper, we describe Lamprey and provide a short demonstration of this approach for evaluating web usage patterns.

  2. Development of a one-dimensional Position Sensitive Detector for tracking applications

    NASA Astrophysics Data System (ADS)

    Lydecker, Leigh Kent, IV

    Optical Position Sensitive Detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS processing, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. Because they are non-contact, they do not degrade over time from surface friction due to repetitive sliding motion associated with standard full contact sliding potentiometers. This results in long, reliable device lifetimes. In this work, an innovative PSD was developed to replace the linear hard contact potentiometer currently being used in a human-computer interface architecture. First, a basic lateral effect PSD was developed to provide real-time positioning of the mouthpiece used in the interface architecture which tracks along a single axis. During the course of this work, multiple device geometries were fabricated and analyzed resulting in a down selection of a final design. This final device design was then characterized in terms of resolution and responsivity and produced in larger quantities as initial prototypes for the test product integration. Finally, an electronic readout circuit was developed in order to interface the dual- line lateral effect PSD developed in this thesis with specifications required for product integration. To simplify position sensing, an innovative type of optical position sensor was developed using a linear photodiodes with back-to-back connections. This so- called Self-Balancing Position Sensitive Detector (SBPSD) requires significantly fewer processing steps than the basic lateral effect position sensitive detector discussed above and eliminates the need for external readout circuitry entirely. Prototype devices were fabricated in this work, and the performance characteristics of these devices were established paving the way for ultimate integration into the target product as well as additional applications.

  3. Investigating the Effects of Multimodal Feedback through Tracking State in Pen-Based Interfaces

    ERIC Educational Resources Information Center

    Sun, Minghui; Ren, Xiangshi

    2011-01-01

    A tracking state increases the bandwidth of pen-based interfaces. However, this state is difficult to detect with default visual feedback. This paper reports on two experiments that are designed to evaluate multimodal feedback for pointing tasks (both 1D and 2D) in tracking state. In 1D pointing experiments, results show that there is a…

  4. Design and development of data glove based on printed polymeric sensors and Zigbee networks for Human-Computer Interface.

    PubMed

    Tongrod, Nattapong; Lokavee, Shongpun; Watthanawisuth, Natthapol; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2013-03-01

    Current trends in Human-Computer Interface (HCI) have brought on a wave of new consumer devices that can track the motion of our hands. These devices have enabled more natural interfaces with computer applications. Data gloves are commonly used as input devices, equipped with sensors that detect the movements of hands and communication unit that interfaces those movements with a computer. Unfortunately, the high cost of sensor technology inevitably puts some burden to most general users. In this research, we have proposed a low-cost data glove concept based on printed polymeric sensor to make pressure and bending sensors fabricated by a consumer ink-jet printer. These sensors were realized using a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [PEDOT:PSS]) thin film printed on glossy photo paper. Performance of these sensors can be enhanced by addition of dimethyl sulfoxide (DMSO) into the aqueous dispersion of PEDOT:PSS. The concept of surface resistance was successfully adopted for the design and fabrication of sensors. To demonstrate the printed sensors, we constructed a data glove using such sensors and developed software for real time hand tracking. Wireless networks based on low-cost Zigbee technology were used to transfer data from the glove to a computer. To our knowledge, this is the first report on low cost data glove based on paper pressure sensors. This low cost implementation of both sensors and communication network as proposed in this paper should pave the way toward a widespread implementation of data glove for real-time hand tracking applications.

  5. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  6. Out-of-Equilibrium Dynamics of Colloidal Particles at Interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Anna

    It is widely assumed that when colloidal particles adsorb to a fluid-fluid interface, they reach equilibrium rapidly. Recently, however, Kaz et al. [Nature Materials, 11, 138-142 (2012)] found that a variety of functionalised latex microspheres breaching an aqueous phase-oil interface relax logarithmically with time toward equilibrium. The relaxation is so slow that the time projected for the particles to reach the equilibrium contact angle of 110° is months--far longer than typical experimental timescales. In this thesis, we seek to understand the out-of-equilibrium behaviour of particles near interfaces. Because contact line pinning is likely an extra source of dissipation at interfaces, we start with experiments to elucidate the origins of contact-line pinning and find that polymer hairs on aqueous dispersed polymer particles strongly pin the contact-line. For particles without polymer hairs, nanoscale surface roughness can also pin the contact-line, though with a lower energy. We then extend our digital holography capabilities to track non-spherical particles. We demonstrate that we can track the centre-of-mass of a colloidal spherocylinder to a precision of 35 nm in all three dimensions and its orientation to a precision of 1.5°. Furthermore, the measured translational and rotational diffusion coefficients for the spherocylinders agree with hydrodynamic predictions to within 0.3%. This new functionality enables us to track colloidal ellipsoids and spherocylinders as they breach interfaces. By comparing the adsorption trajectories of the non-spherical particles to what is predicted from energy minimisation, we learn that contact-line pinning affects not just the timescales of breaching, but also the pathway to equilibrium. In fact, a particle's path to equilibrium can have complications even before the particle breaches the interface. Some particles are attracted to the interface, but stay within a few nanometers without ever breaching. We refer to this binding-mode as 'non-capillary binding', and we investigate when this binding mode is present, what causes it, and how interparticle interactions depend on the binding mode. The last few chapters in this thesis are extensions of ideas developed in the first part. We track the run and tumble of E.coli to demonstrate the potential of digital holographic microscopy as an imaging tool for active particles. Taking all of the particle-interface literature into account, we also outline some simple design principles for making particle-stabilised Pickering emulsions.

  7. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.

    PubMed

    Kencana, Andy Prima; Heng, John

    2008-11-01

    This paper introduces a novel passive tongue control and tracking device. The device is intended to be used by the severely disabled or quadriplegic person. The main focus of this device when compared to the other existing tongue tracking devices is that the sensor employed is passive which means it requires no powered electrical sensor to be inserted into the user's mouth and hence no trailing wires. This haptic interface device employs the use of inductive sensors to track the position of the user's tongue. The device is able perform two main PC functions that of the keyboard and mouse function. The results show that this device allows the severely disabled person to have some control in his environment, such as to turn on and off or control daily electrical devices or appliances; or to be used as a viable PC Human Computer Interface (HCI) by tongue control. The operating principle and set-up of such a novel passive tongue HCI has been established with successful laboratory trials and experiments. Further clinical trials will be required to test out the device on disabled persons before it is ready for future commercial development.

  8. Switch Panel wear loading - a parametric study regarding governing train operational factors

    NASA Astrophysics Data System (ADS)

    Hiensch, E. J. M.; Burgelman, N.

    2017-09-01

    The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel-rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel-rail interface is heavily loaded.

  9. High Speed A/D DSP Interface for Carrier Doppler Tracking

    NASA Technical Reports Server (NTRS)

    Baggett, Timothy

    1998-01-01

    As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.

  10. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR.

    PubMed

    King, Andrew J; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device's accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use.

  11. Eye-tracking for clinical decision support: A method to capture automatically what physicians are viewing in the EMR

    PubMed Central

    King, Andrew J.; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F.

    2017-01-01

    Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device’s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use. PMID:28815151

  12. Comparison of electromyography and force as interfaces for prosthetic control.

    PubMed

    Corbett, Elaine A; Perreault, Eric J; Kuiken, Todd A

    2011-01-01

    The ease with which persons with upper-limb amputations can control their powered prostheses is largely determined by the efficacy of the user command interface. One needs to understand the abilities of the human operator regarding the different available options. Electromyography (EMG) is widely used to control powered upper-limb prostheses. It is an indirect estimator of muscle force and may be expected to limit the control capabilities of the prosthesis user. This study compared EMG control with force control, an interface that is used in everyday interactions with the environment. We used both methods to perform a position-tracking task. Direct-position control of the wrist provided an upper bound for human-operator capabilities. The results demonstrated that an EMG control interface is as effective as force control for the position-tracking task. We also examined the effects of gain and tracking frequency on EMG control to explore the limits of this control interface. We found that information transmission rates for myoelectric control were best at higher tracking frequencies than at the frequencies previously reported for position control. The results may be useful for the design of prostheses and prosthetic controllers.

  13. Risk Interfaces to Support Integrated Systems Analysis and Development

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria

    2016-01-01

    Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4

  14. Motion control of the rabbit ankle joint with a flat interface nerve electrode.

    PubMed

    Park, Hyun-Joo; Durand, Dominique M

    2015-12-01

    A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.

  15. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    PubMed Central

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-01

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901

  16. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    PubMed

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  17. Improved Discretization of Grounding Lines and Calving Fronts using an Embedded-Boundary Approach in BISICLES

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Cornford, S. L.; Schwartz, P.; Bhalla, A.; Johansen, H.; Ng, E.

    2017-12-01

    Correctly representing grounding line and calving-front dynamics is of fundamental importance in modeling marine ice sheets, since the configuration of these interfaces exerts a controlling influence on the dynamics of the ice sheet. Traditional ice sheet models have struggled to correctly represent these regions without very high spatial resolution. We have developed a front-tracking discretization for grounding lines and calving fronts based on the Chombo embedded-boundary cut-cell framework. This promises better representation of these interfaces vs. a traditional stair-step discretization on Cartesian meshes like those currently used in the block-structured AMR BISICLES code. The dynamic adaptivity of the BISICLES model complements the subgrid-scale discretizations of this scheme, producing a robust approach for tracking the evolution of these interfaces. Also, the fundamental discontinuous nature of flow across grounding lines is respected by mathematically treating it as a material phase change. We present examples of this approach to demonstrate its effectiveness.

  18. Numerical Simulation of Shock/Detonation-Deformable-Particle Interaction with Constrained Interface Reinitialization

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas; Balachandar, Sivaramakrishnan

    2015-06-01

    We will develop a computational model built upon our verified and validated in-house SDT code to provide improved description of the multiphase blast wave dynamics where solid particles are considered deformable and can even undergo phase transitions. Our SDT computational framework includes a reactive compressible flow solver with sophisticated material interface tracking capability and realistic equation of state (EOS) such as Mie-Gruneisen EOS for multiphase flow modeling. The behavior of diffuse interface models by Shukla et al. (2010) and Tiwari et al. (2013) at different shock impedance ratio will be first examined and characterized. The recent constrained interface reinitialization by Shukla (2014) will then be developed to examine if conservation property can be improved. This work was supported in part by the U.S. Department of Energy and by the Defense Threat Reduction Agency.

  19. Modeling of Rapid Solidification with Undercooling Effect During Droplet Flattening on a Substrate in Coating Formation

    NASA Astrophysics Data System (ADS)

    Shukla, Rajesh Kumar; Patel, Virendra; Kumar, Arvind

    2018-02-01

    The coating deposit on the substrate in thermal spray coating process develops by solidification of individual molten particle which impacts, flattens and solidifies on the surface of the substrate. Droplet flattening and solidification typically involves rapid cooling. In this paper, a model for non-equilibrium rapid solidification of a molten droplet spreading onto a substrate is presented. Transient flow during droplet impact and its subsequent spreading is considered using the volume of fluid surface tracking method which was fully coupled with the rapid solidification model. The rapid solidification model includes undercooling, nucleation, interface tracking, non-equilibrium solidification kinetics and combined heat transfer and fluid flow as required to treat a non-stagnant splat formed from droplet flattening. The model is validated with the literature results on stagnant splats. Subsequently, using the model the characteristics of the rapidly solidifying interface for non-stagnant splat, such as interface velocity and interface temperature, are described and the effect of undercooling and interfacial heat transfer coefficient are highlighted. In contrast to the stagnant splat, the non-stagnant splat considered in this study displays interesting features in the rapidly solidifying interface. These are attributed to droplet thinning and droplet recoiling that occur during the droplet spreading process.

  20. Better Living Through Metadata: Examining Archive Usage

    NASA Astrophysics Data System (ADS)

    Becker, G.; Winkelman, S.; Rots, A.

    2013-10-01

    The primary purpose of an observatory's archive is to provide access to the data through various interfaces. User interactions with the archive are recorded in server logs, which can be used to answer basic questions like: Who has downloaded dataset X? When did she do this? Which tools did she use? The answers to questions like these fill in patterns of data access (e.g., how many times dataset X has been downloaded in the past three years). Analysis of server logs provides metrics of archive usage and provides feedback on interface use which can be used to guide future interface development. The Chandra X-ray Observatory is fortunate in that a database to track data access and downloads has been continuously recording such transactions for years; however, it is overdue for an update. We will detail changes we hope to effect and the differences the changes may make to our usage metadata picture. We plan to gather more information about the geographic location of users without compromising privacy; create improved archive statistics; and track and assess the impact of web “crawlers” and other scripted access methods on the archive. With the improvements to our download tracking we hope to gain a better understanding of the dissemination of Chandra's data; how effectively it is being done; and perhaps discover ideas for new services.

  1. Data-Logger Interface And Test Controller

    NASA Technical Reports Server (NTRS)

    Burch, Donnie R.

    1995-01-01

    Data-logger interface and test controller developed to enable automation of tests in conjunction with data-acquisition functions performed by data loggers that have output-switching capabilities. Includes relay logic circuits that remain deenergized until out-of-tolerance condition on any data channel discovered. Designed to be connected to Fluke model 2286A (or equivalent) data-logger system, which features 3 control channels with 6 data inputs per channel. Includes elapsed-time counter that keeps track of power outages.

  2. START: a system for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like queries.

    PubMed

    Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y

    2017-09-22

    A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.

  3. A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model development and application

    USGS Publications Warehouse

    Essaid, Hedeff I.

    1990-01-01

    A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.

  4. Tracking and data systems support for the Helios project. Volume 1: Project development through end of mission, phase 2

    NASA Technical Reports Server (NTRS)

    Goodwin, P. S.; Traxler, M. R.; Meeks, W. G.; Flanagan, F. M.

    1976-01-01

    The overall evolution of the Helios Project is summarized from its conception through to the completion of the Helios-1 mission phase 2. Beginning with the project objectives and concluding with the Helios-1 spacecraft entering its first superior conjunction (end of mission phase 2), descriptions of the project, the mission and its phases, international management and interfaces, and Deep Space Network-spacecraft engineering development in telemetry, tracking, and command systems to ensure compatibility between the U.S. Deep Space Network and the German-built spacecraft are included.

  5. Hacker tracking Security system for HMI

    NASA Astrophysics Data System (ADS)

    Chauhan, Rajeev Kumar

    2011-12-01

    Conventional Supervisory control and data Acquisition (SCADA) systems use PC, notebook, thin client, and PDA as a Client. Nowadays the Process Industries are following multi shift system that's why multi- client of different category have to work at a single human Machine Interface (HMI). They may hack the HMI Display and change setting of the other client. This paper introduces a Hacker tracking security (HTS) System for HMI. This is developed by using the conventional and Biometric authentication. HTS system is developed by using Numeric passwords, Smart card, biometric, blood flow and Finger temperature. This work is also able to identify the hackers.

  6. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  7. Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation

    NASA Technical Reports Server (NTRS)

    Coffey, Connor

    2015-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).

  8. An open source framework for tracking and state estimation ('Stone Soup')

    NASA Astrophysics Data System (ADS)

    Thomas, Paul A.; Barr, Jordi; Balaji, Bhashyam; White, Kruger

    2017-05-01

    The ability to detect and unambiguously follow all moving entities in a state-space is important in multiple domains both in defence (e.g. air surveillance, maritime situational awareness, ground moving target indication) and the civil sphere (e.g. astronomy, biology, epidemiology, dispersion modelling). However, tracking and state estimation researchers and practitioners have difficulties recreating state-of-the-art algorithms in order to benchmark their own work. Furthermore, system developers need to assess which algorithms meet operational requirements objectively and exhaustively rather than intuitively or driven by personal favourites. We have therefore commenced the development of a collaborative initiative to create an open source framework for production, demonstration and evaluation of Tracking and State Estimation algorithms. The initiative will develop a (MIT-licensed) software platform for researchers and practitioners to test, verify and benchmark a variety of multi-sensor and multi-object state estimation algorithms. The initiative is supported by four defence laboratories, who will contribute to the development effort for the framework. The tracking and state estimation community will derive significant benefits from this work, including: access to repositories of verified and validated tracking and state estimation algorithms, a framework for the evaluation of multiple algorithms, standardisation of interfaces and access to challenging data sets. Keywords: Tracking,

  9. Ocean Tracks: College Edition - Promoting Data Literacy in Science Education at the Undergraduate Level

    NASA Astrophysics Data System (ADS)

    Kochevar, R. E.; Krumhansl, R.; Louie, J.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.

    2015-12-01

    Ocean Tracks is a Web-based interactive learning experience which allows users to explore the migrations of marine apex predators, and the way their behaviors relate to the physical and chemical environment surrounding them. Ocean Tracks provides access to data from the Tagging of Pelagic Predators (TOPP) program, NOAA's Global Drifter Program, and Earth-orbiting satellites via the Ocean Tracks interactive map interface; customized data analysis tools; multimedia supports; along with laboratory modules customized for undergraduate student use. It is part of a broader portfolio of projects comprising the Oceans of Data Institute, dedicated to transforming education to prepare citizens for a data-intensive world. Although originally developed for use in high school science classrooms, the Ocean Tracks interface and associated curriculum has generated interest among instructors at the undergraduate level, who wanted to engage their students in hands-on work with real scientific datasets. In 2014, EDC and the Scripps Institution of Oceanography received funding from NSF's IUSE program for Ocean Tracks: College Edition, to investigate how a learning model that includes a data interface, set of analysis tools, and curricula can be used to motivate students to learn and do science with real data; bringing opportunities to engage broad student populations, including both in-classroom and remote, on-line participants, in scientific practice. Phase 1, completed in the summer of 2015, was a needs assessment, consisting of a survey and interviews with students in oceanography classes at the Scripps Institution of Oceanography and Palomar Community College; a document review of course syllabi and primary textbooks used in current college marine science courses across the country; and interviews and a national survey of marine science faculty. We will present the results of this work, and will discuss new curriculum materials that are being classroom tested in the fall of 2015.

  10. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  11. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  12. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  13. CD-ROM Based Multimedia Homework Solutions and Self Test Generator.

    ERIC Educational Resources Information Center

    Rhodes, Jeffrey M.; Bell, Christopher C.

    1998-01-01

    Discusses a prototype multimedia application that was designed to help college students solve problems and generate practice tests for an economics textbook. Highlights include step-by-step problem solving; a friendly interface; student tracking; inexpensive development costs; examples of screen displays; and generating random, scored tests on…

  14. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  15. A development of intelligent entertainment robot for home life

    NASA Astrophysics Data System (ADS)

    Kim, Cheoltaek; Lee, Ju-Jang

    2005-12-01

    The purpose of this paper was to present the study and design idea for entertainment robot with educational purpose (IRFEE). The robot has been designed for home life considering dependability and interaction. The developed robot has three objectives - 1. Develop autonomous robot, 2. Design robot considering mobility and robustness, 3. Develop robot interface and software considering entertainment and education functionalities. The autonomous navigation was implemented by active vision based SLAM and modified EPF algorithm. The two differential wheels, the pan-tilt were designed mobility and robustness and the exterior was designed considering esthetic element and minimizing interference. The speech and tracking algorithm provided the good interface with human. The image transfer and Internet site connection is needed for service of remote connection and educational purpose.

  16. Space-time interface-tracking with topology change (ST-TC)

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Buscher, Austin; Asada, Shohei

    2014-10-01

    To address the computational challenges associated with contact between moving interfaces, such as those in cardiovascular fluid-structure interaction (FSI), parachute FSI, and flapping-wing aerodynamics, we introduce a space-time (ST) interface-tracking method that can deal with topology change (TC). In cardiovascular FSI, our primary target is heart valves. The method is a new version of the deforming-spatial-domain/stabilized space-time (DSD/SST) method, and we call it ST-TC. It includes a master-slave system that maintains the connectivity of the "parent" mesh when there is contact between the moving interfaces. It is an efficient, practical alternative to using unstructured ST meshes, but without giving up on the accurate representation of the interface or consistent representation of the interface motion. We explain the method with conceptual examples and present 2D test computations with models representative of the classes of problems we are targeting.

  17. Assessment & Commitment Tracking System (ACTS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Robert A.; Childs, Teresa A.; Miller, Michael A.

    2004-12-20

    The ACTS computer code provides a centralized tool for planning and scheduling assessments, tracking and managing actions associated with assessments or that result from an event or condition, and "mining" data for reporting and analyzing information for improving performance. The ACTS application is designed to work with the MS SQL database management system. All database interfaces are written in SQL. The following software is used to develop and support the ACTS application: Cold Fusion HTML JavaScript Quest TOAD Microsoft Visual Source Safe (VSS) HTML Mailer for sending email Microsoft SQL Microsoft Internet Information Server

  18. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been licensed and certified for use in a commercial image guidance system. Conclusions: It is feasible to encapsulate image manipulation and surgical guidance tasks in individual, reusable software modules. These modules allow for faster development of new applications. The strict application of object oriented software design methods allows individual components of such a system to make the transition from the research environment to a commercial one.

  19. Understanding of and applications for robot vision guidance at KSC

    NASA Technical Reports Server (NTRS)

    Shawaga, Lawrence M.

    1988-01-01

    The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.

  20. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  1. Auto-steering apparatus and method

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.

    2007-03-13

    A vehicular guidance method involves providing a user interface using which data can be input to establish a contour for a vehicle to follow, the user interface further configured to receive information from a differential global positioning system (DGPS), determining cross track and offset data using information received from the DGPS, generating control values, using at least vehicular kinematics, the cross track, and the offset data, and providing an output to control steering of the vehicle, using the control values, in a direction to follow the established contour while attempting to minimize the cross track and the offset data.

  2. 14 CFR 1215.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM.... The Tracking and Data Relay Satellite System including Tracking and Data Relay Satellites (TDRS), the... user ground system/TDRSS interface. (c) Bit stream. The digital electronic signals acquired by TDRSS...

  3. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false User command and tracking data. 1215.106 Section 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... User command and tracking data. (a) User command data shall enter TDRSS via the NISN interface at WSC...

  4. Discriminating between intentional and unintentional gaze fixation using multimodal-based fuzzy logic algorithm for gaze tracking system with NIR camera sensor

    NASA Astrophysics Data System (ADS)

    Naqvi, Rizwan Ali; Park, Kang Ryoung

    2016-06-01

    Gaze tracking systems are widely used in human-computer interfaces, interfaces for the disabled, game interfaces, and for controlling home appliances. Most studies on gaze detection have focused on enhancing its accuracy, whereas few have considered the discrimination of intentional gaze fixation (looking at a target to activate or select it) from unintentional fixation while using gaze detection systems. Previous research methods based on the use of a keyboard or mouse button, eye blinking, and the dwell time of gaze position have various limitations. Therefore, we propose a method for discriminating between intentional and unintentional gaze fixation using a multimodal fuzzy logic algorithm applied to a gaze tracking system with a near-infrared camera sensor. Experimental results show that the proposed method outperforms the conventional method for determining gaze fixation.

  5. The Virtual Tablet: Virtual Reality as a Control System

    NASA Technical Reports Server (NTRS)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of hardware, write software to incorporate each piece of position or orientation data into a coherent description of the object's location in space, place the virtual analogue accordingly, and project the control interface onto it, resulting in a functioning object which has both a physical and a virtual presence. Additionally, the virtual environment was enhanced with two live video feeds from cameras mounted on the robotic device being used as an example target of the virtual interface. The working VT allows users to naturally interact with a control interface with little to no training and without the issues found in previous efforts.

  6. SU-F-T-518: Development and Characterization of a Gated Treatment System Implemented with An In-House Optical Tracking System and the Elekta Response Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraclough, B; Park, J; Li, F

    2016-06-15

    Purpose: To report the development and characterization of the first in-house gating system implemented with an optical tracking system (OTS) and the Elekta Response™ interface. Methods: The Response™ connects a patient tracking system with a linac, enabling the tracking system to control radiation delivery. The developed system uses an in-house OTS to monitor patient breathing. The OTS consists of two infrared-based cameras, tracking markers affixed on patient. It achieves gated or breath-held (BH) treatment by calling beam ON/OFF functions in the Response™ dynamic-link library (DLL). A 4D motion phantom was used to evaluate its dosimetric and time delay characteristics. Twomore » FF- and two FFF-IMRT beams were delivered in non-gated, BH and gated mode. The sinusoidal gating signal had a 6 sec period and 15 mm amplitude. The duty cycle included 10%, 20%, 30% and 50%. The BH signal was adapted from the sinusoidal wave by inserting 15 sec BHs. Each delivery was measured with a 2D diode array (MapCHECK™) and compared with the non-gated delivery using gamma analysis (3%). The beam ON/OFF time was captured using the service graphing utility of the linac. Results: The gated treatments were successfully delivered except the 10% duty cycle. The BH delivery had perfect agreement (100%) with non-gated delivery; the agreement of gated delivery decreased from 99% to 88% as duty cycle reduced from 50% to 20%. The beam on/off delay was on average 0.25/0.06 sec. The delivery time for the 50%, 30% and 20% duty cycle increased by 29%, 71% and 139%, respectively. No dosimetric or time delay difference was noticed between FF- and FFF-IMRT beams. Conclusion: The in-house gating system was successfully developed with dosimetric and time delay characteristics in line with published results for commercial systems. It will be an important platform for further research and clinical development of gated treatment.« less

  7. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  8. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  9. The Design and Evaluation of a Large-Scale Real-Walking Locomotion Interface

    PubMed Central

    Peck, Tabitha C.; Fuchs, Henry; Whitton, Mary C.

    2014-01-01

    Redirected Free Exploration with Distractors (RFED) is a large-scale real-walking locomotion interface developed to enable people to walk freely in virtual environments that are larger than the tracked space in their facility. This paper describes the RFED system in detail and reports on a user study that evaluated RFED by comparing it to walking-in-place and joystick interfaces. The RFED system is composed of two major components, redirection and distractors. This paper discusses design challenges, implementation details, and lessons learned during the development of two working RFED systems. The evaluation study examined the effect of the locomotion interface on users’ cognitive performance on navigation and wayfinding measures. The results suggest that participants using RFED were significantly better at navigating and wayfinding through virtual mazes than participants using walking-in-place and joystick interfaces. Participants traveled shorter distances, made fewer wrong turns, pointed to hidden targets more accurately and more quickly, and were able to place and label targets on maps more accurately, and more accurately estimate the virtual environment size. PMID:22184262

  10. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  11. Description and Analysis of Military Planning Systems

    DTIC Science & Technology

    2005-07-01

    layer placed on top of SIPE-2 so as to keep track of the temporal constraints within a plan. The added module is Tachyon , a general-purpose...constraint-based subsystem developed by GE’s R&D Centre to provide temporal reasoning. The interface to Tachyon is a 34 DRDC Valcartier TR 2004-320

  12. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  13. Facility Composer (Trademark) and PACES (Trademark) Integration: Development of an XML Interface Based on Industry Foundation Classes

    DTIC Science & Technology

    2007-11-01

    Engineer- ing Research Laboratory is currently developing a set of facility ‘architec- tural’ programming tools , called Facility ComposerTM (FC). FC...requirements in the early phases of project development. As the facility program, crite- ria, and requirements are chosen, these tools populate the IFC...developing a set of facility “ar- chitectural” programming tools , called Facility Composer (FC), to support the capture and tracking of facility criteria

  14. 14 CFR § 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false User command and tracking data. § 1215.106 Section § 1215.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... User command and tracking data. (a) User command data shall enter TDRSS via the NISN interface at WSC...

  15. Partial camera automation in an unmanned air vehicle.

    PubMed

    Korteling, J E; van der Borg, W

    1997-03-01

    The present study focused on an intelligent, semiautonomous, interface for a camera operator of a simulated unmanned air vehicle (UAV). This interface used system "knowledge" concerning UAV motion in order to assist a camera operator in tracking an object moving through the landscape below. The semiautomated system compensated for the translations of the UAV relative to the earth. This compensation was accompanied by the appropriate joystick movements ensuring tactile (haptic) feedback of these system interventions. The operator had to superimpose self-initiated joystick manipulations over these system-initiated joystick motions in order to track the motion of a target (a driving truck) relative to the terrain. Tracking data showed that subjects performed substantially better with the active system. Apparently, the subjects had no difficulty in maintaining control, i.e., "following" the active stick while superimposing self-initiated control movements over the system-interventions. Furthermore, tracking performance with an active interface was clearly superior relative to the passive system. The magnitude of this effect was equal to the effect of update-frequency (2-5 Hz) of the monitor image. The benefits of update frequency enhancement and semiautomated tracking were the greatest under difficult steering conditions. Mental workload scores indicated that, for the difficult tracking-dynamics condition, both semiautomation and update frequency increase resulted in less experienced mental effort. For the easier dynamics this effect was only seen for update frequency.

  16. Laboratory Animal Management Assistant (LAMA): a LIMS for active research colonies.

    PubMed

    Milisavljevic, Marko; Hearty, Taryn; Wong, Tony Y T; Portales-Casamar, Elodie; Simpson, Elizabeth M; Wasserman, Wyeth W

    2010-06-01

    Laboratory Animal Management Assistant (LAMA) is an internet-based system for tracking large laboratory mouse colonies. It has a user-friendly interface with powerful search capabilities that ease day-to-day tasks such as tracking breeding cages and weaning litters. LAMA was originally developed to manage hundreds of new mouse strains generated by a large functional genomics program, the Pleiades Promoter Project ( http://www.pleiades.org ). The software system has proven to be highly flexible, suitable for diverse management approaches to mouse colonies. It allows custom tagging and grouping of animals, simplifying project-specific handling and access to data. Finally, LAMA was developed in close collaboration with mouse technicians to ease the transition from paper- or Excel-based management systems to computerized tracking, allowing data export in a popular spreadsheet format and automatic printing of cage cards. LAMA is an open-access software tool, freely available to the research community at http://launchpad.net/mousedb .

  17. Developing a smartphone interface for the Florida Environmental Public Health Tracking Web portal.

    PubMed

    Jordan, Melissa; DuClos, Chris; Folsom, John; Thomas, Rebecca

    2015-01-01

    As smartphone and tablet devices continue to proliferate, it is becoming increasingly important to tailor information delivery to the mobile device. The Florida Environmental Public Health Tracking Program recognized that the mobile device user needs Web content formatted to smaller screen sizes, simplified data displays, and reduced textual information. The Florida Environmental Public Health Tracking Program developed a smartphone-friendly version of the state Web portal for easier access by mobile device users. The resulting smartphone-friendly portal combines calculated data measures such as inpatient hospitalizations and emergency department visits and presents them grouped by county, along with temporal trend graphs. An abbreviated version of the public health messaging provided on the traditional Web portal is also provided, along with social media connections. As a result of these efforts, the percentage of Web site visitors using an iPhone tripled in just 1 year.

  18. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  19. Space Shuttle program communication and tracking systems interface analysis

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Holmes, J. K.; Huth, G. K.; Iwasaki, R. S.; Nilsen, P. W.; Polydoros, A.; Sampaio, D. R.; Udalov, S.

    1984-01-01

    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis.

  20. An open-source framework for testing tracking devices using Lego Mindstorms

    NASA Astrophysics Data System (ADS)

    Jomier, Julien; Ibanez, Luis; Enquobahrie, Andinet; Pace, Danielle; Cleary, Kevin

    2009-02-01

    In this paper, we present an open-source framework for testing tracking devices in surgical navigation applications. At the core of image-guided intervention systems is the tracking interface that handles communication with the tracking device and gathers tracking information. Given that the correctness of tracking information is critical for protecting patient safety and for ensuring the successful execution of an intervention, the tracking software component needs to be thoroughly tested on a regular basis. Furthermore, with widespread use of extreme programming methodology that emphasizes continuous and incremental testing of application components, testing design becomes critical. While it is easy to automate most of the testing process, it is often more difficult to test components that require manual intervention such as tracking device. Our framework consists of a robotic arm built from a set of Lego Mindstorms and an open-source toolkit written in C++ to control the robot movements and assess the accuracy of the tracking devices. The application program interface (API) is cross-platform and runs on Windows, Linux and MacOS. We applied this framework for the continuous testing of the Image-Guided Surgery Toolkit (IGSTK), an open-source toolkit for image-guided surgery and shown that regression testing on tracking devices can be performed at low cost and improve significantly the quality of the software.

  1. Irradiation control parameters for computer-assisted laser photocoagulation of the retina

    NASA Astrophysics Data System (ADS)

    Naess, Espen; Molvik, Torstein; Barrett, Steven F.; Wright, Cameron H. G.; de Graaf, Peter W.

    2001-06-01

    A system for robotically assisted retinal surgery has been developed to rapidly and safely place lesions on the retina for photocoagulation therapy. This system provides real- time, motion stabilized lesion placement for typical irradiation times of 100 ms. The system consists of three main subsystems: a global, digital-based tracking subsystem; a fast, local analog tracking subsystem; and a confocal reflectance subsystem to control lesion parameters dynamically. We have reported on these subsystems in previous SPIE presentations. This paper concentrates on the development of the second hybrid system prototype. Considerable progress has been made toward reducing the footprint of the optical system, simplifying the user interface, fully characterizing the analog tracking system and using measurable lesion reflectance growth parameters to develop a noninvasive method to infer lesion depth. This method will allow dynamic control of laser dosimetry to provide similar lesions across the non-uniform retinal surface. These system improvements and progress toward a clinically significant system are covered in detail within this paper.

  2. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru

    PubMed Central

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-01

    Background New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. Methods We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Results Forty-three participants enrolled in the course – 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1–5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Conclusion Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success. PMID:18194533

  3. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    PubMed

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  4. Interface of the general fitting tool GENFIT2 in PandaRoot

    NASA Astrophysics Data System (ADS)

    Prencipe, Elisabetta; Spataro, Stefano; Stockmanns, Tobias; PANDA Collaboration

    2017-10-01

    \\bar{{{P}}}ANDA is a planned experiment at FAIR (Darmstadt) with a cooled antiproton beam in a range [1.5; 15] GeV/c, allowing a wide physics program in nuclear and particle physics. It is the only experiment worldwide, which combines a solenoid field (B=2T) and a dipole field (B=2Tm) in a spectrometer with a fixed target topology, in that energy regime. The tracking system of \\bar{{{P}}}ANDA involves the presence of a high performance silicon vertex detector, a GEM detector, a straw-tubes central tracker, a forward tracking system, and a luminosity monitor. The offline tracking algorithm is developed within the PandaRoot framework, which is a part of the FairRoot project. The tool here presented is based on algorithms containing the Kalman Filter equations and a deterministic annealing filter. This general fitting tool (GENFIT2) offers to users also a Runge-Kutta track representation, and interfaces with Millepede II (useful for alignment) and RAVE (vertex finder). It is independent on the detector geometry and the magnetic field map, and written in C++ object-oriented modular code. Several fitting algorithms are available with GENFIT2, with user-adjustable parameters; therefore the tool is of friendly usage. A check on the fit convergence is done by GENFIT2 as well. The Kalman-Filter-based algorithms have a wide range of applications; among those in particle physics they can perform extrapolations of track parameters and covariance matrices. The adoptions of the PandaRoot framework to connect to Genfit2 are described, and the impact of GENFIT2 on the physics simulations of \\bar{{{P}}}ANDA are shown: significant improvement is reported for those channels where a good low momentum tracking is required (pT < 400 MeV/c).

  5. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  6. Study of a Tracking and Data Acquisition System (TDAS) in the 1990's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in concept definition studies, operational assessments, and technology demonstrations for the Tracking and Data Acquisition System (TDAS) is reported. The proposed TDAS will be the follow-on to the Tracking and Data Relay Satellite System and will function as a key element of the NASA End-to-End Data System, providing the tracking and data acquisition interface between user accessible data ports on Earth and the user's spaceborne equipment. Technical activities of the "spacecraft data system architecture' task and the "communication mission model' task are emphasized. The objective of the first task is to provide technology forecasts for sensor data handling, navigation and communication systems, and estimate corresponding costs. The second task is concerned with developing a parametric description of the required communication channels. Other tasks with significant activity include the "frequency plan and radio interference model' and the "Viterbi decoder/simulator study'.

  7. Analyzing Ocean Tracks: A model for student engagement in authentic scientific practices using data

    NASA Astrophysics Data System (ADS)

    Krumhansl, K.; Krumhansl, R.; Brown, C.; DeLisi, J.; Kochevar, R.; Sickler, J.; Busey, A.; Mueller-Northcott, J.; Block, B.

    2013-12-01

    The collection of large quantities of scientific data has not only transformed science, but holds the potential to transform teaching and learning by engaging students in authentic scientific work. Furthermore, it has become imperative in a data-rich world that students gain competency in working with and interpreting data. The Next Generation Science Standards reflect both the opportunity and need for greater integration of data in science education, and emphasize that both scientific knowledge and practice are essential elements of science learning. The process of enabling access by novice learners to data collected and used by experts poses significant challenges, however, recent research has demonstrated that barriers to student learning with data can be overcome by the careful design of data access and analysis tools that are specifically tailored to students. A group of educators at Education Development Center, Inc. (EDC) and scientists at Stanford University's Hopkins Marine Station are collaborating to develop and test a model for student engagement with scientific data using a web-based platform. This model, called Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, provides students with the ability to plot and analyze tracks of migrating marine animals collected through the Tagging of Pacific Predators program. The interface and associated curriculum support students in identifying relationships between animal behavior and physical oceanographic variables (e.g. SST, chlorophyll, currents), making linkages between the living world and climate. Students are also supported in investigating possible sources of human impact to important biodiversity hotspots in the Pacific Ocean. The first round of classroom testing revealed that students were able to easily access and display data on the interface, and collect measurements from the animal tracks and oceanographic data layers. They were able to link multiple types of data to draw powerful inferences about how marine animal behavior is influenced by the ocean environment, and propose strategies to protect marine animals in the context of a changing ocean. Classroom testing also revealed the importance of providing students with real-world context to their learning, and the opportunity to directly compare their scientific investigations of data with those of scientists in the field. Our results also identified that student engagement was enhanced when they developed a direct personal connection to their scientific investigations by linking human activities to changes occurring in the natural world, and visualizing these changes using authentic data. This presentation will review the design elements of the Ocean Tracks interface and associated curriculum, our successes and challenges in supporting students in data based learning, and discuss specific linkages to the NGSS.

  8. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  9. Estimating Deterioration in the Concrete Tie-Ballast Interface Based on Vertical Tie Deflection Profile: A Numerical Study

    DOT National Transportation Integrated Search

    2016-04-12

    In ballasted concrete tie track, the tie-ballast interface can : deteriorate resulting in concrete tie bottom abrasion, ballast : pulverization and/or voids in tie-ballast interfaces. Tie-ballast : voids toward tie ends can lead to unfavorable center...

  10. Designing and Developing Web-Based Administrative Tools for Program Management

    NASA Technical Reports Server (NTRS)

    Gutensohn, Michael

    2017-01-01

    The task assigned for this internship was to develop a new tool for tracking projects, their subsystems, the leads, backups, and other employees assigned to them, as well as all the relevant information related to the employee (WBS (time charge) codes, time distribution, certifications, and assignments). Currently, this data is tracked manually using a number of different spreadsheets and other tools simultaneously by a number of different people; some of these documents are then merged into one large document. This often leads to inconsistencies and loss in data due to human error. By simplifying the process of tracking this data and aggregating it into a single tool, it is possible to significantly decrease the potential for human error and time spent collecting and checking this information. II. Objective The main objective of this internship is to develop a web-based tool using Ruby on Rails to serve as a method of easily tracking projects, subsystems, and points of contact, along with employees, their assignments, time distribution, certifications, and contact information. Additionally, this tool must be capable of generating a number of different reports based on the data collected. It was important that this tool deliver all of this information using a readable and intuitive interface.

  11. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  12. Nanoscale deformation measurements for reliability assessment of material interfaces

    NASA Astrophysics Data System (ADS)

    Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2006-03-01

    With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.

  13. Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking.

    PubMed

    Maimon-Dror, Roni O; Fernandez-Quesada, Jorge; Zito, Giuseppe A; Konnaris, Charalambos; Dziemian, Sabine; Faisal, A Aldo

    2017-07-01

    Eye-movements are the only directly observable behavioural signals that are highly correlated with actions at the task level, and proactive of body movements and thus reflect action intentions. Moreover, eye movements are preserved in many movement disorders leading to paralysis (or amputees) from stroke, spinal cord injury, Parkinson's disease, multiple sclerosis, and muscular dystrophy among others. Despite this benefit, eye tracking is not widely used as control interface for robotic interfaces in movement impaired patients due to poor human-robot interfaces. We demonstrate here how combining 3D gaze tracking using our GT3D binocular eye tracker with custom designed 3D head tracking system and calibration method enables continuous 3D end-point control of a robotic arm support system. The users can move their own hand to any location of the workspace by simple looking at the target and winking once. This purely eye tracking based system enables the end-user to retain free head movement and yet achieves high spatial end point accuracy in the order of 6 cm RMSE error in each dimension and standard deviation of 4 cm. 3D calibration is achieved by moving the robot along a 3 dimensional space filling Peano curve while the user is tracking it with their eyes. This results in a fully automated calibration procedure that yields several thousand calibration points versus standard approaches using a dozen points, resulting in beyond state-of-the-art 3D accuracy and precision.

  14. A Prototype Visualization of Real-time River Drainage Network Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.

  15. A Web-based Data Intensive Visualization of Real-time River Drainage Network Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.

  16. Applications of airborne ultrasound in human-computer interaction.

    PubMed

    Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre

    2014-09-01

    Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.

  17. Overview of the interactive task in BioCreative V

    PubMed Central

    Wang, Qinghua; S. Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I.; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K.; Jensen, Lars J.; Jimenez, Silvia; Jue, Toni R.; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M.; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D.; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J. F.; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H.; Hirschman, Lynette; Arighi, Cecilia N.

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested. Database URL: http://www.biocreative.org PMID:27589961

  18. Overview of the interactive task in BioCreative V

    DOE PAGES

    Wang, Qinghua; Abdul, Shabbir S.; Almeida, Lara; ...

    2016-09-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a formatmore » similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. Here, the partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.« less

  19. VEVI: A Virtual Reality Tool For Robotic Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik

    1994-01-01

    The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.

  20. PIVOT: platform for interactive analysis and visualization of transcriptomics data.

    PubMed

    Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong

    2018-01-05

    Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.

  1. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  2. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  3. 14 CFR 1215.106 - User command and tracking data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User command and tracking data. 1215.106... User command and tracking data. (a) User command data may enter the TDRSS via the NASCOM interface at one of three locations: (1) For Shuttle payloads which utilize the Shuttle commanding system, command...

  4. Development of a liver respiratory motion simulator to investigate magnetic tracking for abdominal interventions

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Banovac, Filip; Levy, Elliot; Tanaka, Daigo

    2002-05-01

    We have designed and constructed a liver respiratory motion simulator as a first step in demonstrating the feasibility of using a new magnetic tracking system to follow the movement of internal organs. The simulator consists of a dummy torso, a synthetic liver, a linear motion platform, a graphical user interface for image overlay, and a magnetic tracking system along with magnetically tracked instruments. While optical tracking systems are commonly used in commercial image-guided surgery systems for the brain and spine, they are limited to procedures in which a line of sight can be maintained between the tracking system and the instruments which are being tracked. Magnetic tracking systems have been proposed for image-guided surgery applications, but most currently available magnetically tracked sensors are too small to be embedded in the body. The magnetic tracking system employed here, the AURORA from Northern Digital, can use sensors as small as 0.9 mm in diameter by 8 mm in length. This makes it possible to embed these sensors in catheters and thin needles. The catheters can then be wedged in a vein in an internal organ of interest so that tracking the position of the catheter gives a good estimate of the position of the internal organ. Alternatively, a needle with an embedded sensor could be placed near the area of interest.

  5. New generation of 3D desktop computer interfaces

    NASA Astrophysics Data System (ADS)

    Skerjanc, Robert; Pastoor, Siegmund

    1997-05-01

    Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).

  6. A mobile user-interface for elderly care from the perspective of relatives.

    PubMed

    Warpenius, Erika; Alasaarela, Esko; Sorvoja, Hannu; Kinnunen, Matti

    2015-03-01

    As the number of elderly people rises, relatives' care-taking responsibilities increase accordingly. This creates a need for developing new systems that enable relatives to keep track of aged family members. To develop new mobile services for elderly healthcare we tried to identify the most wanted features of a mobile user-interface from the perspective of relatives. Feature mapping was based on two online surveys: one administered to the relatives (N = 32) and nurses (N = 3) of senior citizens and the other to nursing students (N = 18). Results of the surveys, confirmed by face-to-face interviews of the relatives (N = 8), indicated that the most valued features of the mobile user-interface are Accident Reporting (e.g. falling), Alarms (e.g. fire-alarm), Doctor Visits and evaluation of the General Condition of the Senior. The averaged importance ratings of these features were 9.2, 9.0, 8.6 and 8.5, respectively (on a scale from 0 to 10). Other important considerations for the user-interface development are aspiration to simplicity and ease-of-use. We recommend that the results are taken into account, when designing and implementing mobile services for elderly healthcare.

  7. User`s and reference guide to the INEL RML/analytical radiochemistry sample tracking database version 1.00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Femec, D.A.

    This report discusses the sample tracking database in use at the Idaho National Engineering Laboratory (INEL) by the Radiation Measurements Laboratory (RML) and Analytical Radiochemistry. The database was designed in-house to meet the specific needs of the RML and Analytical Radiochemistry. The report consists of two parts, a user`s guide and a reference guide. The user`s guide presents some of the fundamentals needed by anyone who will be using the database via its user interface. The reference guide describes the design of both the database and the user interface. Briefly mentioned in the reference guide are the code-generating tools, CREATE-SCHEMAmore » and BUILD-SCREEN, written to automatically generate code for the database and its user interface. The appendices contain the input files used by the these tools to create code for the sample tracking database. The output files generated by these tools are also included in the appendices.« less

  8. The Investigation of Ghost Fluid Method for Simulating the Compressible Two-Medium Flow

    NASA Astrophysics Data System (ADS)

    Lu, Hai Tian; Zhao, Ning; Wang, Donghong

    2016-06-01

    In this paper, we investigate the conservation error of the two-dimensional compressible two-medium flow simulated by the front tracking method. As the improved versions of the original ghost fluid method, the modified ghost fluid method and the real ghost fluid method are selected to define the interface boundary conditions, respectively, to show different effects on the conservation error. A Riemann problem is constructed along the normal direction of the interface in the front tracking method, with the goal of obtaining an efficient procedure to track the explicit sharp interface precisely. The corresponding Riemann solutions are also used directly in these improved ghost fluid methods. Extensive numerical examples including the sod tube and the shock-bubble interaction are tested to calculate the conservation error. It is found that these two ghost fluid methods have distinctive performances for different initial conditions of the flow field, and the related conclusions are made to suggest the best choice for the combination.

  9. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    PubMed

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  10. A biplanar X-ray approach for studying the 3D dynamics of human track formation.

    PubMed

    Hatala, Kevin G; Perry, David A; Gatesy, Stephen M

    2018-05-09

    Recent discoveries have made hominin tracks an increasingly prevalent component of the human fossil record, and these data have the capacity to inform long-standing debates regarding the biomechanics of hominin locomotion. However, there is currently no consensus on how to decipher biomechanical variables from hominin tracks. These debates can be linked to our generally limited understanding of the complex interactions between anatomy, motion, and substrate that give rise to track morphology. These interactions are difficult to study because direct visualization of the track formation process is impeded by foot and substrate opacity. To address these obstacles, we developed biplanar X-ray and computer animation methods, derived from X-ray Reconstruction of Moving Morphology (XROMM), to analyze the 3D dynamics of three human subjects' feet as they walked across four substrates (three deformable muds and rigid composite panel). By imaging and reconstructing 3D positions of external markers, we quantified the 3D dynamics at the foot-substrate interface. Foot shape, specifically heel and medial longitudinal arch deformation, was significantly affected by substrate rigidity. In deformable muds, we found that depths measured across tracks did not directly reflect the motions of the corresponding regions of the foot, and that track outlines were not perfectly representative of foot size. These results highlight the complex, dynamic nature of track formation, and the experimental methods presented here offer a promising avenue for developing and refining methods for accurately inferring foot anatomy and gait biomechanics from fossil hominin tracks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. GPS Metric Tracking Unit

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  12. Interface and protocol development for STS read-out ASIC in the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Zabolotny, Wojciech; Szczygiel, Robert

    2014-11-01

    This paper presents a proposal of a protocol for communication between the read-out integrated circuit for the STS (Silicon Tracking System) and the Data Processing Board (DPB) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The application background, objectives and proposed solution is presented.

  13. DSN Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Baldwin, John

    2007-01-01

    TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.

  14. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues.

    PubMed

    Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane

    2015-08-01

    The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.

  15. A landmark recognition and tracking experiment for flight on the Shuttle/Advanced Technology Laboratory (ATL)

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1975-01-01

    The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.

  16. CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high-speed visual object recognition and tracking.

    PubMed

    Serrano-Gotarredona, Rafael; Oster, Matthias; Lichtsteiner, Patrick; Linares-Barranco, Alejandro; Paz-Vicente, Rafael; Gomez-Rodriguez, Francisco; Camunas-Mesa, Luis; Berner, Raphael; Rivas-Perez, Manuel; Delbruck, Tobi; Liu, Shih-Chii; Douglas, Rodney; Hafliger, Philipp; Jimenez-Moreno, Gabriel; Civit Ballcels, Anton; Serrano-Gotarredona, Teresa; Acosta-Jimenez, Antonio J; Linares-Barranco, Bernabé

    2009-09-01

    This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.

  17. Ultrasound Flow Mapping for the Investigation of Crystal Growth.

    PubMed

    Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen

    2017-04-01

    A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.

  18. Microsoft Kinect Sensor Evaluation

    NASA Technical Reports Server (NTRS)

    Billie, Glennoah

    2011-01-01

    My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.

  19. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    NASA Technical Reports Server (NTRS)

    Baker, Gregory; Siegel, Michael; Tanveer, Saleh

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.

  20. Recent Developments in the Code RITRACKS (Relativistic Ion Tracks)

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Blattnig, Steve R.

    2018-01-01

    The code RITRACKS (Relativistic Ion Tracks) was developed to simulate detailed stochastic radiation track structures of ions of different types and energies. Many new capabilities were added to the code during the recent years. Several options were added to specify the times at which the tracks appear in the irradiated volume, allowing the simulation of dose-rate effects. The code has been used to simulate energy deposition in several targets: spherical, ellipsoidal and cylindrical. More recently, density changes as well as a spherical shell were implemented for spherical targets, in order to simulate energy deposition in walled tissue equivalent proportional counters. RITRACKS is used as a part of the new program BDSTracks (Biological Damage by Stochastic Tracks) to simulate several types of chromosome aberrations in various irradiation conditions. The simulation of damage to various DNA structures (linear and chromatin fiber) by direct and indirect effects has been improved and is ongoing. Many improvements were also made to the graphic user interface (GUI), including the addition of several labels allowing changes of units. A new GUI has been added to display the electron ejection vectors. The parallel calculation capabilities, notably the pre- and post-simulation processing on Windows and Linux machines have been reviewed to make them more portable between different systems. The calculation part is currently maintained in an Atlassian Stash® repository for code tracking and possibly future collaboration.

  1. Power Conditioning for High-Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  2. Power Conditioning for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  3. Performance evaluation and specification of trackless tack : [project summary].

    DOT National Transportation Integrated Search

    2016-09-01

    Researchers compared two tracking resistance tests for tack: a track-free time test and a modified dynamic shear rheometer (DSR) tackiness test. : Researchers compared four bond strength tests: interface shear, pull-off, torque, and Arcan. Then, usin...

  4. Beyond qualitative and subjective techniques to assess usability of banking interfaces for senior citizens.

    PubMed

    Laparra-Hernández, José; Medina, Enric; Sancho, María; Soriano, Carolina; Durá, Juanvi; Barberà-Guillem, Ricard; Poveda-Puente, Rakel

    2015-01-01

    Senior citizens can benefit from banking services but the lack of usability hampers this possibility. New approaches based on physiological response, eye tracking and user movement analysis can provide more information during interface interaction. This research shows the differences depending on user knowledge and use of technology, gender and type of interface.

  5. A multimodal dataset for authoring and editing multimedia content: The MAMEM project.

    PubMed

    Nikolopoulos, Spiros; Petrantonakis, Panagiotis C; Georgiadis, Kostas; Kalaganis, Fotis; Liaros, Georgios; Lazarou, Ioulietta; Adam, Katerina; Papazoglou-Chalikias, Anastasios; Chatzilari, Elisavet; Oikonomou, Vangelis P; Kumar, Chandan; Menges, Raphael; Staab, Steffen; Müller, Daniel; Sengupta, Korok; Bostantjopoulou, Sevasti; Katsarou, Zoe; Zeilig, Gabi; Plotnik, Meir; Gotlieb, Amihai; Kizoni, Racheli; Fountoukidou, Sofia; Ham, Jaap; Athanasiou, Dimitrios; Mariakaki, Agnes; Comanducci, Dario; Sabatini, Edoardo; Nistico, Walter; Plank, Markus; Kompatsiaris, Ioannis

    2017-12-01

    We present a dataset that combines multimodal biosignals and eye tracking information gathered under a human-computer interaction framework. The dataset was developed in the vein of the MAMEM project that aims to endow people with motor disabilities with the ability to edit and author multimedia content through mental commands and gaze activity. The dataset includes EEG, eye-tracking, and physiological (GSR and Heart rate) signals collected from 34 individuals (18 able-bodied and 16 motor-impaired). Data were collected during the interaction with specifically designed interface for web browsing and multimedia content manipulation and during imaginary movement tasks. The presented dataset will contribute towards the development and evaluation of modern human-computer interaction systems that would foster the integration of people with severe motor impairments back into society.

  6. TDRSS operations control analysis study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of an operational Tracking and Data Relay Satellite System (TDRSS) and the remaining ground stations for the STDN (GSTDN) was investigated. The operational aspects of TDRSS concepts, GSTDN as a 14-site network, and GSTDN as a 7 site-network were compared and operations control concepts for the configurations developed. Man/machine interface, scheduling system, and hardware/software tradeoff analyses were among the factors considered in the analysis.

  7. Mousetrap: An integrated, open-source mouse-tracking package.

    PubMed

    Kieslich, Pascal J; Henninger, Felix

    2017-10-01

    Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .

  8. Webcam mouse using face and eye tracking in various illumination environments.

    PubMed

    Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng

    2005-01-01

    Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.

  9. Quantifying medical student clinical experiences via an ICD Code Logging App.

    PubMed

    Rawlins, Fred; Sumpter, Cameron; Sutphin, Dean; Garner, Harold R

    2018-03-01

    The logging of ICD Diagnostic, Procedure and Drug codes is one means of tracking the experience of medical students' clinical rotations. The goal is to create a web-based computer and mobile application to track the progress of trainees, monitor the effectiveness of their training locations and be a means of sampling public health status. We have developed a web-based app in which medical trainees make entries via a simple and quick interface optimized for both mobile devices and personal computers. For each patient interaction, users enter ICD diagnostic, procedure, and drug codes via a hierarchical or search entry interface, as well as patient demographics (age range and gender, but no personal identifiers), and free-text notes. Users and administrators can review and edit input via a series of output interfaces. The user interface and back-end database are provided via dual redundant failover Linux servers. Students master the interface in ten minutes, and thereafter complete entries in less than one minute. Five hundred-forty 3rd year VCOM students each averaged 100 entries in the first four week clinical rotation. Data accumulated in various Appalachian clinics and Central American medical mission trips has demonstrated the public health surveillance utility of the application. PC and mobile apps can be used to collect medical trainee experience in real time or near real-time, quickly, and efficiently. This system has collected 75,596 entries to date, less than 2% of trainees have needed assistance to become proficient, and medical school administrators are using the various summaries to evaluate students and compare different rotation sites. Copyright © 2017. Published by Elsevier B.V.

  10. Sensor control of robot arc welding

    NASA Technical Reports Server (NTRS)

    Sias, F. R., Jr.

    1985-01-01

    A basic problem in the application of robots for welding which is how to guide a torch along a weld seam using sensory information was studied. Improvement of the quality and consistency of certain Gas Tungsten Arc welds on the Space Shuttle Main Engine (SSME) that are too complex geometrically for conventional automation and therefore are done by hand was examined. The particular problems associated with space shuttle main egnine (SSME) manufacturing and weld-seam tracking with an emphasis on computer vision methods were analyzed. Special interface software for the MINC computr are developed which will allow it to be used both as a test system to check out the robot interface software and later as a development tool for further investigation of sensory systems to be incorporated in welding procedures.

  11. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  12. Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Richard A.; Radford, David C.

    2013-12-30

    Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less

  13. Vertical-Control Subsystem for Automatic Coal Mining

    NASA Technical Reports Server (NTRS)

    Griffiths, W. R.; Smirlock, M.; Aplin, J.; Fish, R. B.; Fish, D.

    1984-01-01

    Guidance and control system automatically positions cutting drums of double-ended longwall shearer so they follow coal seam. System determines location of upper interface between coal and shale and continuously adjusts cutting-drum positions, upward or downward, to track undulating interface. Objective to keep cutting edges as close as practicable to interface and thus extract as much coal as possible from seam.

  14. TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, M; Kamerling, C; Menten, M

    2016-06-15

    Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphedmore » initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non-deliverable re-optimized tracking scenario is expected to help quantify plan robustness for more challenging patients with anatomy deformations. We acknowledge support of the MLC tracking research from Elekta AB. MFF is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less

  15. Haptic interfaces: Hardware, software and human performance

    NASA Technical Reports Server (NTRS)

    Srinivasan, Mandayam A.

    1995-01-01

    Virtual environments are computer-generated synthetic environments with which a human user can interact to perform a wide variety of perceptual and motor tasks. At present, most of the virtual environment systems engage only the visual and auditory senses, and not the haptic sensorimotor system that conveys the sense of touch and feel of objects in the environment. Computer keyboards, mice, and trackballs constitute relatively simple haptic interfaces. Gloves and exoskeletons that track hand postures have more interaction capabilities and are available in the market. Although desktop and wearable force-reflecting devices have been built and implemented in research laboratories, the current capabilities of such devices are quite limited. To realize the full promise of virtual environments and teleoperation of remote systems, further developments of haptic interfaces are critical. In this paper, the status and research needs in human haptics, technology development and interactions between the two are described. In particular, the excellent performance characteristics of Phantom, a haptic interface recently developed at MIT, are highlighted. Realistic sensations of single point of contact interactions with objects of variable geometry (e.g., smooth, textured, polyhedral) and material properties (e.g., friction, impedance) in the context of a variety of tasks (e.g., needle biopsy, switch panels) achieved through this device are described and the associated issues in haptic rendering are discussed.

  16. Autonomous & Adaptive Oceanographic Feature Tracking on Board Autonomous Underwater Vehicles

    DTIC Science & Technology

    2015-02-01

    44 3.6 Tracking the Marine ermocline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.1 ermocline Definition ...intelligent autonomy algorithms to adapt the vehicle’s motion to changes in the environment, effectively seeking out and tracking an oceanographic...interface, H is the mean water depth, and f is the Coriolis parameter (twice the earth’s angular velocity about its vertical axis) [38]. at is, the

  17. Novel graphical environment for virtual and real-world operations of tracked mobile manipulators

    NASA Astrophysics Data System (ADS)

    Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.

    1993-08-01

    A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.

  18. Designing Tracking Software for Image-Guided Surgery Applications: IGSTK Experience

    PubMed Central

    Enquobahrie, Andinet; Gobbi, David; Turek, Matt; Cheng, Patrick; Yaniv, Ziv; Lindseth, Frank; Cleary, Kevin

    2009-01-01

    Objective Many image-guided surgery applications require tracking devices as part of their core functionality. The Image-Guided Surgery Toolkit (IGSTK) was designed and developed to interface tracking devices with software applications incorporating medical images. Methods IGSTK was designed as an open source C++ library that provides the basic components needed for fast prototyping and development of image-guided surgery applications. This library follows a component-based architecture with several components designed for specific sets of image-guided surgery functions. At the core of the toolkit is the tracker component that handles communication between a control computer and navigation device to gather pose measurements of surgical instruments present in the surgical scene. The representations of the tracked instruments are superimposed on anatomical images to provide visual feedback to the clinician during surgical procedures. Results The initial version of the IGSTK toolkit has been released in the public domain and several trackers are supported. The toolkit and related information are available at www.igstk.org. Conclusion With the increased popularity of minimally invasive procedures in health care, several tracking devices have been developed for medical applications. Designing and implementing high-quality and safe software to handle these different types of trackers in a common framework is a challenging task. It requires establishing key software design principles that emphasize abstraction, extensibility, reusability, fault-tolerance, and portability. IGSTK is an open source library that satisfies these needs for the image-guided surgery community. PMID:20037671

  19. Random Walk Particle Tracking For Multiphase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  20. The MeSH translation maintenance system: structure, interface design, and implementation.

    PubMed

    Nelson, Stuart J; Schopen, Michael; Savage, Allan G; Schulman, Jacque-Lynne; Arluk, Natalie

    2004-01-01

    The National Library of Medicine (NLM) produces annual editions of the Medical Subject Headings (MeSH). Translations of MeSH are often done to make the vocabulary useful for non-English users. However, MeSH translators have encountered difficulties with entry vocabulary as they maintain and update their translation. Tracking MeSH changes and updating their translations in a reasonable time frame is cumbersome. NLM has developed and implemented a concept-centered vocabulary maintenance system for MeSH. This system has been extended to create an interlingual database of translations, the MeSH Translation Maintenance System (MTMS). This database allows continual updating of the translations, as well as facilitating tracking of the changes within MeSH from one year to another. The MTMS interface uses a Web-based design with multiple colors and fonts to indicate concepts needing translation or review. Concepts for which there is no exact English equivalent can be added. The system software encourages compliance with the Unicode standard in order to ensure that character sets with native alphabets and full orthography are used consistently.

  1. NORTICA—a new code for cyclotron analysis

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Johnson, D.; Marti, F.

    2001-12-01

    The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.

  2. Using the level set method in slab detachment modeling

    NASA Astrophysics Data System (ADS)

    Hillebrand, B.; Geenen, T.; Spakman, W.; van den Berg, A. P.

    2012-04-01

    Slab detachment plays an important role in the dynamics of several regions in the world such as the Mediterranean-Carpathian region and the Anatolia-Aegean Region. It is therefore important to gain better insights in the various aspects of this process by further modeling of this phenomenon. In this study we model slab detachment using a visco-plastic composite rheology consisting of diffusion, dislocation and Peierls creep. In order to gain more control over this visco-plastic composite rheology, as well as some deterministic advantages, the models presented in this study make use of the level set method (Osher and Sethian J. Comp. Phys., 1988). The level set method is a computational method to track interfaces. It works by creating a signed distance function which is zero at the interface of interest which is then advected by the flow field. This does not only allow one to track the interface but also to determine on which side of the interface a certain point is located since the level set function is determined in the entire domain and not just on the interface. The level set method is used in a wide variety of scientific fields including geophysics. In this study we use the level set method to keep track of the interface between the slab and the mantle. This allows us to determine more precisely the moment and depth of slab detachment. It also allows us to clearly distinguish the mantle from the slab and have therefore more control over their different rheologies. We focus on the role of Peierls creep in the slab detachment process and on the use of the level set method in modeling this process.

  3. The Schisto Track: A System for Gathering and Monitoring Epidemiological Surveys by Connecting Geographical Information Systems in Real Time

    PubMed Central

    2014-01-01

    Background Using the Android platform as a notification instrument for diseases and disorders forms a new alternative for computerization of epidemiological studies. Objective The objective of our study was to construct a tool for gathering epidemiological data on schistosomiasis using the Android platform. Methods The developed application (app), named the Schisto Track, is a tool for data capture and analysis that was designed to meet the needs of a traditional epidemiological survey. An initial version of the app was finished and tested in both real situations and simulations for epidemiological surveys. Results The app proved to be a tool capable of automation of activities, with data organization and standardization, easy data recovery (to enable interfacing with other systems), and totally modular architecture. Conclusions The proposed Schisto Track is in line with worldwide trends toward use of smartphones with the Android platform for modeling epidemiological scenarios. PMID:25099881

  4. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance.

    PubMed

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A

    2011-01-01

    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  5. Approach and Evaluation of a Mobile Video-Based and Location-Based Augmented Reality Platform for Information Brokerage

    NASA Astrophysics Data System (ADS)

    Dastageeri, H.; Storz, M.; Koukofikis, A.; Knauth, S.; Coors, V.

    2016-09-01

    Providing mobile location-based information for pedestrians faces many challenges. On one hand the accuracy of localisation indoors and outdoors is restricted due to technical limitations of GPS and Beacons. Then again only a small display is available to display information as well as to develop a user interface. Plus, the software solution has to consider the hardware characteristics of mobile devices during the implementation process for aiming a performance with minimum latency. This paper describes our approach by including a combination of image tracking and GPS or Beacons to ensure orientation and precision of localisation. To communicate the information on Points of Interest (POIs), we decided to choose Augmented Reality (AR). For this concept of operations, we used besides the display also the acceleration and positions sensors as a user interface. This paper especially goes into detail on the optimization of the image tracking algorithms, the development of the video-based AR player for the Android platform and the evaluation of videos as an AR element in consideration of providing a good user experience. For setting up content for the POIs or even generate a tour we used and extended the Open Geospatial Consortium (OGC) standard Augmented Reality Markup Language (ARML).

  6. Transbronchial needle aspiration with a new electromagnetically-tracked TBNA needle

    NASA Astrophysics Data System (ADS)

    Choi, Jae; Popa, Teo; Gruionu, Lucian

    2009-02-01

    Transbronchial needle aspiration (TBNA) is a common method used to collect tissue for diagnosis of different chest diseases and for staging lung cancer, but the procedure has technical limitations. These limitations are mostly related to the difficulty of accurately placing the biopsy needles into the target mass. Currently, pulmonologists plan TBNA by examining a number of Computed Tomography (CT) scan slices before the operation. Then, they manipulate the bronchoscope down the respiratory track and blindly direct the biopsy. Thus, the biopsy success rate is low. The diagnostic yield of TBNA is approximately 70 percent. To enhance the accuracy of TBNA, we developed a TBNA needle with a tip position that can be electromagnetically tracked. The needle was used to estimate the bronchoscope's tip position and enable the creation of corresponding virtual bronchoscopic images from a preoperative CT scan. The TBNA needle was made with a flexible catheter embedding Wang Transbronchial Histology Needle and a sensor tracked by electromagnetic field generator. We used Aurora system for electromagnetic tracking. We also constructed an image-guided research prototype system incorporating the needle and providing a user-friendly interface to assist the pulmonologist in targeting lesions. To test the feasibility of the accuracy of the newly developed electromagnetically-tracked needle, a phantom study was conducted in the interventional suite at Georgetown University Hospital. Five TBNA simulations with a custom-made phantom with a bronchial tree were performed. The experimental results show that our device has potential to enhance the accuracy of TBNA.

  7. Kinect-based posture tracking for correcting positions during exercise.

    PubMed

    Guerrero, Cesar; Uribe-Quevedo, Alvaro

    2013-01-01

    The Kinect sensor has opened the path for developing numerous applications in several different areas. Medical and health applications are benefiting from the Kinect as it allows non-invasive body motion capture that can be used in motor rehabilitation and phobia treatment. A major advantage of the Kinect is that allows developing solutions that can be used at home or even the office thus, expanding the user freedom for interacting with complementary solutions to its physical activities without requiring any traveling. This paper present a Kinect-based posture tracking software for assisting the user in successfully match postures required in some exercises for strengthen body muscles. Unlike several video games available, this tool offers a user interface for customizing posture parameters, so it can be enhanced by healthcare professionals or by their guidance through the user.

  8. Microscale Electrode Implantation during Nerve Repair: Effects on Nerve Morphology, Electromyography, and Recovery of Muscle Contractile Function

    PubMed Central

    Urbanchek, Melanie G; Wei, Benjamin; Egeland, Brent M; Abidian, Mohammad R; Kipke, Daryl R; Cederna, Paul S

    2011-01-01

    Background Our goal is to develop a peripheral nerve electrode with long-term stability and fidelity for use in nerve-machine interfaces. Microelectromechanical systems (MEMS) use silicon probes that contain multi-channel actuators, sensors, and electronics. We tested the null hypothesis that implantation of MEMS probes do not have a detrimental effect on peripheral nerve function or regeneration. Methods A rat hindlimb, peroneal nerve model was utilized in all experimental groups: a) intact nerve (Control, n= 10); b) nerve division and repair (Repair, n= 9); and c) Nerve division, insertion of MEMS probe, and repair (Repair + Probe, n=9). Nerve morphology, nerve to muscle compound action potential (CMAP) studies, walking tracks, and extensor digitorum longus (EDL) muscle function tests were evaluated following an 80 day recovery. Results Repair and Repair + Probe showed no differences in axon count, axon size, percent non-neural area, CMAP amplitude, latency, muscle mass, muscle force, or walking track scores. Though there was some local fibrosis around each MEMS probe, this did not lead to measurable detrimental effects in any anatomic or functional outcome measurements. Conclusions The lack of a significant difference between Repair and Repair + Probe groups in histology, CMAP, walking tracks, and muscle force suggests that MEMS electrodes are compatible with regenerating axons and show promise for establishing chemical and electrical interfaces with peripheral nerves. PMID:21921739

  9. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-09-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less

  10. Where does fitness fit in theories of perception?

    PubMed

    Anderson, Barton L

    2015-12-01

    Interface theory asserts that neither our perceptual experience of the world nor the scientific constructs used to describe the world are veridical. The primary argument used to uphold this claim is that (1) evolution is driven by a process of natural selection that favors fitness over veridicality, and (2) payoffs do not vary monotonically with truth. I argue that both the arguments used to bolster this claim and the conclusions derived from it are flawed. Interface theory assumes that perception evolved to directly track fitness but fails to consider the role of adaptation on ontogenetic time scales. I argue that the ubiquity of nonmonotonic payoff functions requires that (1) perception tracks "truth" for species that adapt on ontogenetic time scales and (2) that perception should be distinct from utility. These conditions are required to pursue an adaptive strategy to mitigate homeostatic imbalances. I also discuss issues with the interface metaphor, the particular formulation of veridicality that is considered, and the relationship of interface theory to the history of ideas on these topics.

  11. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics.

    PubMed

    LaPrè, A K; Price, M A; Wedge, R D; Umberger, B R; Sup, Frank C

    2018-04-01

    Musculoskeletal modeling and marker-based motion capture techniques are commonly used to quantify the motions of body segments, and the forces acting on them during human gait. However, when these techniques are applied to analyze the gait of people with lower limb loss, the clinically relevant interaction between the residual limb and prosthesis socket is typically overlooked. It is known that there is considerable motion and loading at the residuum-socket interface, yet traditional gait analysis techniques do not account for these factors due to the inability to place tracking markers on the residual limb inside of the socket. In the present work, we used a global optimization technique and anatomical constraints to estimate the motion and loading at the residuum-socket interface as part of standard gait analysis procedures. We systematically evaluated a range of parameters related to the residuum-socket interface, such as the number of degrees of freedom, and determined the configuration that yields the best compromise between faithfully tracking experimental marker positions while yielding anatomically realistic residuum-socket kinematics and loads that agree with data from the literature. Application of the present model to gait analysis for people with lower limb loss will deepen our understanding of the biomechanics of walking with a prosthesis, which should facilitate the development of enhanced rehabilitation protocols and improved assistive devices. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Reducing Missed Laboratory Results: Defining Temporal Responsibility, Generating User Interfaces for Test Process Tracking, and Retrospective Analyses to Identify Problems

    PubMed Central

    Tarkan, Sureyya; Plaisant, Catherine; Shneiderman, Ben; Hettinger, A. Zachary

    2011-01-01

    Researchers have conducted numerous case studies reporting the details on how laboratory test results of patients were missed by the ordering medical providers. Given the importance of timely test results in an outpatient setting, there is limited discussion of electronic versions of test result management tools to help clinicians and medical staff with this complex process. This paper presents three ideas to reduce missed results with a system that facilitates tracking laboratory tests from order to completion as well as during follow-up: (1) define a workflow management model that clarifies responsible agents and associated time frame, (2) generate a user interface for tracking that could eventually be integrated into current electronic health record (EHR) systems, (3) help identify common problems in past orders through retrospective analyses. PMID:22195201

  13. Implementing Electronic Data Interchange to Provide In-Transit Visibility

    DTIC Science & Technology

    2000-06-01

    As a source system for GTN, DTTS-E will interface with GTN to provide satellite-tracking data from the QualComm Regional Dispatch/Monitor Station...DTTS-E data (subject to data quality constraints and the extent of the QualComm Satellite Tracking application) provides the location of organic...vehicle assets equipped with the European QualComm Satellite Tracking transponders. GATES = Global Air Transportation Execution System (AMC) A

  14. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.

    2010-10-01

    The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.

  15. Overview of the interactive task in BioCreative V.

    PubMed

    Wang, Qinghua; S Abdul, Shabbir; Almeida, Lara; Ananiadou, Sophia; Balderas-Martínez, Yalbi I; Batista-Navarro, Riza; Campos, David; Chilton, Lucy; Chou, Hui-Jou; Contreras, Gabriela; Cooper, Laurel; Dai, Hong-Jie; Ferrell, Barbra; Fluck, Juliane; Gama-Castro, Socorro; George, Nancy; Gkoutos, Georgios; Irin, Afroza K; Jensen, Lars J; Jimenez, Silvia; Jue, Toni R; Keseler, Ingrid; Madan, Sumit; Matos, Sérgio; McQuilton, Peter; Milacic, Marija; Mort, Matthew; Natarajan, Jeyakumar; Pafilis, Evangelos; Pereira, Emiliano; Rao, Shruti; Rinaldi, Fabio; Rothfels, Karen; Salgado, David; Silva, Raquel M; Singh, Onkar; Stefancsik, Raymund; Su, Chu-Hsien; Subramani, Suresh; Tadepally, Hamsa D; Tsaprouni, Loukia; Vasilevsky, Nicole; Wang, Xiaodong; Chatr-Aryamontri, Andrew; Laulederkind, Stanley J F; Matis-Mitchell, Sherri; McEntyre, Johanna; Orchard, Sandra; Pundir, Sangya; Rodriguez-Esteban, Raul; Van Auken, Kimberly; Lu, Zhiyong; Schaeffer, Mary; Wu, Cathy H; Hirschman, Lynette; Arighi, Cecilia N

    2016-01-01

    Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  16. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    PubMed

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-05

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. © 2014 Wiley Periodicals, Inc.

  17. A Python-based interface to examine motions in time series of solar images

    NASA Astrophysics Data System (ADS)

    Campos-Rozo, J. I.; Vargas Domínguez, S.

    2017-10-01

    Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.

  18. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    PubMed

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.

  19. Promoting autonomy in a smart home environment with a smarter interface.

    PubMed

    Brennan, C P; McCullagh, P J; Galway, L; Lightbody, G

    2015-01-01

    In the not too distant future, the median population age will tend towards 65; an age at which the need for dependency increases. Most older people want to remain autonomous and self-sufficient for as long as possible. As environments become smarter home automation solutions can be provided to support this aspiration. The technology discussed within this paper focuses on providing a home automation system that can be controlled by most users regardless of mobility restrictions, and hence it may be applicable to older people. It comprises a hybrid Brain-Computer Interface, home automation user interface and actuators. In the first instance, our system is controlled with conventional computer input, which is then replaced with eye tracking and finally a BCI and eye tracking collaboration. The systems have been assessed in terms of information throughput; benefits and limitations are evaluated.

  20. Motion tracking to enable pre-surgical margin mapping in basal cell carcinoma using optical imaging modalities: initial feasibility study using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duffy, M.; Richardson, T. J.; Craythorne, E.; Mallipeddi, R.; Coleman, A. J.

    2014-02-01

    A system has been developed to assess the feasibility of using motion tracking to enable pre-surgical margin mapping of basal cell carcinoma (BCC) in the clinic using optical coherence tomography (OCT). This system consists of a commercial OCT imaging system (the VivoSight 1500, MDL Ltd., Orpington, UK), which has been adapted to incorporate a webcam and a single-sensor electromagnetic positional tracking module (the Flock of Birds, Ascension Technology Corp, Vermont, USA). A supporting software interface has also been developed which allows positional data to be captured and projected onto a 2D dermoscopic image in real-time. Initial results using a stationary test phantom are encouraging, with maximum errors in the projected map in the order of 1-2mm. Initial clinical results were poor due to motion artefact, despite attempts to stabilise the patient. However, the authors present several suggested modifications that are expected to reduce the effects of motion artefact and improve the overall accuracy and clinical usability of the system.

  1. Improved charge injection device and a focal plane interface electronics board for stellar tracking

    NASA Technical Reports Server (NTRS)

    Michon, G. J.; Burke, H. K.

    1984-01-01

    An improved Charge Injection Device (CID) stellar tracking sensor and an operating sensor in a control/readout electronics board were developed. The sensor consists of a shift register scanned, 256x256 CID array organized for readout of 4x4 subarrays. The 4x4 subarrays can be positioned anywhere within the 256x256 array with a 2 pixel resolution. This allows continuous tracking of a number of stars simultaneously since nine pixels (3x3) centered on any star can always be read out. Organization and operation of this sensor and the improvements in design and semiconductor processing are described. A hermetic package incorporating an internal thermoelectric cooler assembled using low temperature solders was developed. The electronics board, which contains the sensor drivers, amplifiers, sample hold circuits, multiplexer, analog to digital converter, and the sensor temperature control circuits, is also described. Packaged sensors were evaluated for readout efficiency, spectral quantum efficiency, temporal noise, fixed pattern noise, and dark current. Eight sensors along with two tracker electronics boards were completed, evaluated, and delivered.

  2. Stability control for high speed tracked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  3. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  4. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutheil, Yann

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS ismore » critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS.« less

  5. Goal Tracking in a Natural Language Interface: Towards Achieving Adjustable Autonomy

    DTIC Science & Technology

    1999-01-01

    communication , we believe that human/machine interfaces that share some of the characteristics of human- human communication can be friendlier and easier...natural means of communicating with a mobile robot. Although we are not claiming that communication with robotic agents must be patterned after human

  6. Covariance and Uncertainty Realism in Space Surveillance and Tracking

    DTIC Science & Technology

    2016-06-27

    control infrastructure , there are also further complications in the implementation of centralized scheduling of some of the SSN sensors due to their...this data however. 5.8.3 Long-Term Long-term developments of JSpOC processing, net-centric interfaces and sensor backends will provide the...with particle filters for mobile sensor network control. In Proceedings of the 45th IEEE Conference on Decision and Control, pages 1019–1024, December

  7. Study of the long-time dynamics of a viscous vortex sheet with a fully adaptive nonstiff method

    NASA Astrophysics Data System (ADS)

    Ceniceros, Hector D.; Roma, Alexandre M.

    2004-12-01

    A numerical investigation of the long-time dynamics of two immiscible two-dimensional fluids shearing past one another is presented. The fluids are incompressible and the interface between the bulk phases is subjected to surface tension. The simple case of density and viscosity matched fluids is considered. The two-dimensional Navier-Stokes equations are solved numerically with a fully adaptive nonstiff strategy based on the immersed boundary method. Dynamically adaptive mesh refinements are used to cover at all times the separately tracked fluid interface at the finest grid level. In addition, by combining adaptive front tracking, in the form of continuous interface marker equidistribution, with a predictor-corrector discretization an efficient method is introduced to successfully treat the well-known numerical difficulties associated with surface tension. The resulting numerical method can be used to compute stably and with high resolution the flow for wide-ranging Weber numbers but this study focuses on the computationally challenging cases for which elongated fingering and interface roll-up are observed. To assess the importance of the viscous and vortical effects in the interfacial dynamics the full viscous flow simulations are compared with inviscid counterparts computed with a state-of-the-art boundary integral method. In the examined cases of roll-up, it is found that in contrast to the inviscid flow in which the interface undergoes a topological reconfiguration, the viscous interface remarkably escapes self-intersection and rich long-time dynamics due to separation, transport, and diffusion of vorticity is observed. An even more striking motion occurs at an intermediate Weber number for which elongated interpenetrating fingers of fluid develop. In this case, it is found that the Kelvin-Helmholtz instability weakens due to shedding of vorticity and unlike the inviscid counterpart in which there is indefinite finger growth the viscous interface is pulled back by surface tension. As the interface recedes, thin necks connecting pockets of fluid with the rest of the fingers form. Narrow jets are observed at the necking regions but the vorticity there ultimately appears to be insufficient to drain all the fluid and cause reconnection. However, at another point, two disparate portions of the interface come in close proximity as the interface continues to contract. Large curvature points and an intense concentration of vorticity are observed in this region and then the motion is abruptly terminated by the collapse of the interface.

  8. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  9. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.

    PubMed

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.

  10. An Interface Tracking Algorithm for the Porous Medium Equation.

    DTIC Science & Technology

    1983-03-01

    equation (1.11). N [v n n 2(2) = n . AV k + wk---IY" 2] +l~ x A t K Ax E E 2+ VeTA i;- 2k1 n- o (nr+l) <k-<.(n+l) N [Av] [ n+l <Ax Z m(v ) I~+lIAxAt...RD-R127 685 AN INTERFACE TRACKING ALGORITHM FOR THE POROUS MEDIUM / EQURTION(U) WISCONSIN UNIV-MRDISON MATHEMATICS RESEARCH CENTER E DIBENEDETTO ET...RL. MAR 83 NRC-TSR-249 UNCLASSIFIED DAG29-88-C-8041 F/G 12/1i N E -EEonshhhhI EhhhMhhhhhhhhE mhhhhhhhhhhhhE mhhhhhhhhhhhhI IMhhhhhhhMhhhE

  11. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    PubMed

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  12. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2009-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  13. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2010-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  14. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    PubMed

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  15. Science in 60 – Tabletop Fire Prediction

    ScienceCinema

    Cary, Lyle

    2018-01-16

    At the Interagency Fire Center at Los Alamos National Laboratory, experts rely on the state-of-the-art Simtable to help them predict the unpredictable. With algorithms that include camera-based object-tracking and projection developed by the Laboratory, the emergency operations team can simulate a wildland fire spreading across any terrain. The table system, developed and marketed by Simtable, a Santa Fe, N.M., company, takes into account weather, vegetation and fuel conditions. The project also received funding from the LANS Venture Acceleration Fund to improve the user interface.

  16. Science in 60 – Tabletop Fire Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Lyle

    At the Interagency Fire Center at Los Alamos National Laboratory, experts rely on the state-of-the-art Simtable to help them predict the unpredictable. With algorithms that include camera-based object-tracking and projection developed by the Laboratory, the emergency operations team can simulate a wildland fire spreading across any terrain. The table system, developed and marketed by Simtable, a Santa Fe, N.M., company, takes into account weather, vegetation and fuel conditions. The project also received funding from the LANS Venture Acceleration Fund to improve the user interface.

  17. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Chen, CL

    2011-11-07

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm -10mm. With 1 wt.% KCl and 1 wt.% Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26 degrees andmore » 26 degrees that can deflect and steer beam within the incidence angle of 0 degrees-15 degrees. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660578]« less

  18. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao; Chen, Chung-Lung

    2011-11-01

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm × 10mm. With 1 wt. % KCl and 1 wt. % Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26° and 26° that can deflect and steer beam within the incidence angle of 0°-15°. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell.

  19. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of bedform development and response to time-varying flows. Education and supporting documentation for iRIC, including detailed tutorials, are available at www.i-ric.org. The iRIC model codes, interface, and all supporting documentation are in the public domain.

  20. Modelling wildland fire propagation by tracking random fronts

    NASA Astrophysics Data System (ADS)

    Pagnini, G.; Mentrelli, A.

    2013-11-01

    Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.

  1. Bacteria interface interactions in Ecology-on-a-Chip by holographic microscopy and interferometry

    NASA Astrophysics Data System (ADS)

    Sheng, Jian; White, Andrew; Jalali, Maryam

    2017-11-01

    To improve our remediation of oil spills into marine system, one must understand the fate of oil under complex physical, chemical and biological environments. It is found that various processes such as wind, wave, turbulence and currents break oil into suspensions of droplets, in which states consumption by microbial further degrade the oil. Our prior studies show that marine bacteria do not adopt biofilm life style at oil-water interface in comparison to those near a solid substrate. On the contrary, Extracellular Polymer Substance of oily microbial aggregates is easily formed around an oil droplet. This highlights complexities of cell oil interactions at a liquid-liquid interface. To investigate these mechanisms at oil water interface quantitative, we have developed a micro-bioassay consisting of continuous microfluidics with a substrate printed with oil droplet array, namely Ecology-on-a-Chip, and an integrated digital holographic microscopy (DHM) and interferometer (DHI). The oil-water interface can be maintained over days (>10 days), suitable for conducting long-term observations. 3D movements of bacteria are tracked by DHM, while the interface morphology are measured by DHI at 10nm. The system is applied to Pseudomonas sp. (PS62) near crude-water interface and Escherichia coli (AW405) at hexadecane-water interface subject to low surface tension. The 3D motility, attachment, detachment and dispersion of cells as well as motility induced interface change are discussed. Funded by Gulf of Mexico Research Initiative (GoMRI).

  2. The deep space network. [tracking and communication support for space probes

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization of the deep space network are summarized. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. Interface support for the Mariner Venus Mercury 1973 flight and Pioneer 10 and 11 missions is included.

  3. Workshop on the interface between radiation chemistry and radiation physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10/sup -16/ to 10/sup -12/ second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted. (DLC)

  4. Optimizations and Applications in Head-Mounted Video-Based Eye Tracking

    ERIC Educational Resources Information Center

    Li, Feng

    2011-01-01

    Video-based eye tracking techniques have become increasingly attractive in many research fields, such as visual perception and human-computer interface design. The technique primarily relies on the positional difference between the center of the eye's pupil and the first-surface reflection at the cornea, the corneal reflection (CR). This…

  5. S-band range tracker and Surveillance Lab interface

    NASA Astrophysics Data System (ADS)

    Bush, B. D.

    1983-09-01

    This report documents the design, construction, test and laboratory integration of the range tracker and associated subsystems for the RADC/OC Surveillance Laboratory's S-Band tracking radar. This development was accomplished over the period from December 1981 to November 1983 and was designed, constructed and tested entirely in-house. This report contains information on the use of the range tracker, its interfaces to other laboratory equipment, the philosophy behind its design, the detailed design of the hardware (including schematics, timing and cabling diagrams), the detailed software design (including flowcharts), and the mathematical description of its algorithms. The range tracker will be used in conjunction with other equipment in the OC Surveillance Lab in the taking and recording of radar data during flight tests.

  6. Video game interfaces for interactive lower and upper member therapy.

    PubMed

    Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron; Alves, Silas

    2013-01-01

    With recent advances in electronics and mechanics, a new trend in interaction is taking place changing how we interact with our environment, daily tasks and other people. Even though sensor based technologies and tracking systems have been around for several years, recently they have become affordable and used in several areas such as physical and mental rehabilitation, educational applications, physical exercises, and natural interactions, among others. This work presents the integration of two mainstream videogame interfaces as tools for developing an interactive lower and upper member therapy tool. The goal is to study the potential of these devices as complementing didactic elements for improving and following user performance during a series of exercises with virtual and real devices.

  7. FIRE: an open-software suite for real-time 2D/3D image registration for image guided radiotherapy research

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Gendrin, C.; Spoerk, J.; Steiner, E.; Underwood, T.; Kuenzler, T.; Georg, D.; Birkfellner, W.

    2016-03-01

    Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.

  8. Curvature computation in volume-of-fluid method based on point-cloud sampling

    NASA Astrophysics Data System (ADS)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  9. Interfacing with USSTRATCOM and UTTR during Stardust Earth Return

    NASA Technical Reports Server (NTRS)

    Jefferson, David C.; Baird, Darren T.; Cangahuala, Laureano A.; Lewis, George D.

    2006-01-01

    The Stardust Sample Return Capsule separated from the main spacecraft four hours prior to atmospheric entry. Between this time and the time at which the SRC touched down at the Utah Test and Training Range, two organizations external to JPL were involved in tracking the Sample Return Capsule. Orbit determination for the Stardust spacecraft during deep space cruise, the encounters of asteroid Annefrank and comet Wild 2, and the final approach to Earth used X-band radio metric Doppler and range data obtained through the Deep Space Network. The SRC lacked the electronics needed for coherently transponded radio metric tracking, so the DSN was not able to track the SRC after it separated from the main spacecraft. Although the expected delivery accuracy at atmospheric entry was well within the capability needed to target the SRC to the desired ground location, it was still desirable to obtain direct knowledge of the SRC trajectory in case of anomalies. For this reason U.S. Strategic Command was engaged to track the SRC between separation and atmospheric entry. Once the SRC entered the atmosphere, ground sensors at UTTR were tasked to acquire the descending SRC and maintain track during the descent in order to determine the landing location, to which the ground recovery team was then directed. This paper discusses organizational interfaces, data products, and delivery schedules, and the actual tracking operations are described.

  10. Software development kit for a compact cryo-refrigerator

    NASA Astrophysics Data System (ADS)

    Gardiner, J.; Hamilton, J.; Lawton, J.; Knight, K.; Wilson, A.; Spagna, S.

    2017-12-01

    This paper introduces a Software Development Kit (SDK) that enables the creation of custom software applications that automate the control of a cryo-refrigerator (Quantum Design model GA-1) in third party instruments. A remote interface allows real time tracking and logging of critical system diagnostics such as pressures, temperatures, valve states and run modes. The helium compressor scroll capsule speed and Gifford-McMahon (G-M) cold head speed can be manually adjusted over a serial communication line via a CAN interface. This configuration optimizes cooling power, while reducing wear on moving components thus extending service life. Additionally, a proportional speed control mode allows for automated throttling of speeds based on temperature or pressure feedback from a 3rd party device. Warm up and cool down modes allow 1st and 2nd stage temperatures to be adjusted without the use of external heaters.

  11. Interface of Augmented Reality Game Using Face Tracking and Its Application to Advertising

    NASA Astrophysics Data System (ADS)

    Lee, Young Jae; Lee, Yong Jae

    This paper proposes the face interface method which can be used in recognizing gamer's movements in the real world for application in the cyber space so that we could make three-dimensional space recognition motion-based game. The proposed algorithm is the new face recognition technology which incorporates the strengths of two existing algorithms, CBCH and CAMSHIFT and its validity has been proved through a series of experiments. Moreover, for the purpose of the interdisciplinary studies, concepts of advertising have been introduced into the three-dimensional motion-based game to look into the possible new beneficiary models for the game industry. This kind of attempt may be significant in that it tried to see if the advertising brand when placed in the game could play the role of the game item or quest. The proposed method can provide the basic references for developing motion-based game development.

  12. Gradient-augmented hybrid interface capturing method for incompressible two-phase flow

    NASA Astrophysics Data System (ADS)

    Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu

    2016-06-01

    Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).

  13. Design of an efficient framework for fast prototyping of customized human-computer interfaces and virtual environments for rehabilitation.

    PubMed

    Avola, Danilo; Spezialetti, Matteo; Placidi, Giuseppe

    2013-06-01

    Rehabilitation is often required after stroke, surgery, or degenerative diseases. It has to be specific for each patient and can be easily calibrated if assisted by human-computer interfaces and virtual reality. Recognition and tracking of different human body landmarks represent the basic features for the design of the next generation of human-computer interfaces. The most advanced systems for capturing human gestures are focused on vision-based techniques which, on the one hand, may require compromises from real-time and spatial precision and, on the other hand, ensure natural interaction experience. The integration of vision-based interfaces with thematic virtual environments encourages the development of novel applications and services regarding rehabilitation activities. The algorithmic processes involved during gesture recognition activity, as well as the characteristics of the virtual environments, can be developed with different levels of accuracy. This paper describes the architectural aspects of a framework supporting real-time vision-based gesture recognition and virtual environments for fast prototyping of customized exercises for rehabilitation purposes. The goal is to provide the therapist with a tool for fast implementation and modification of specific rehabilitation exercises for specific patients, during functional recovery. Pilot examples of designed applications and preliminary system evaluation are reported and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. New tracking implementation in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Bryant, Scott H.

    2001-01-01

    As part of the Network Simplification Project, the tracking system of the Deep Space Network is being upgraded. This upgrade replaces the discrete logic sequential ranging system with a system that is based on commercial Digital Signal Processor boards. The new implementation allows both sequential and pseudo-noise types of ranging. The other major change is a modernization of the data formatting. Previously, there were several types of interfaces, delivering both intermediate data and processed data (called 'observables'). All of these interfaces were bit-packed blocks, which do not allow for easy expansion, and many of these interfaces required knowledge of the specific hardware implementations. The new interface supports four classes of data: raw (direct from the measuring equipment), derived (the observable data), interferometric (multiple antenna measurements), and filtered (data whose values depend on multiple measurements). All of the measurements are reported at the sky frequency or phase level, so that no knowledge of the actual hardware is required. The data is formatted into Standard Formatted Data Units, as defined by the Consultative Committee for Space Data Systems, so that expansion and cross-center usage is greatly enhanced.

  15. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.

    PubMed

    Zu, Y Q; He, S

    2013-04-01

    A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.

  16. Cellular Spacing Selection During the Directional Solidification of Binary Alloys. A Numerical Approach

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, S.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The evolution of cellular solid/liquid interfaces from an initially unstable planar front was studied by means of a two-dimensional computer simulation. The developed numerical model makes use of an interface tracking procedure and has the capability to describe the dynamics of the interface morphology based on local changes of the thermodynamic conditions. The fundamental physics of this formulation was validated against experimental microgravity results and the predictions of the analytical linear stability theory. The performed simulations revealed that in certain conditions, based on a competitive growth mechanism, an interface could become unstable to random perturbations of infinitesimal amplitude even at wavelengths smaller than the neutral wavelength, lambda(sub c), predicted by the linear stability theory. Furthermore, two main stages of spacing selection have been identified. In the first stage, at low perturbations amplitude, the selection mechanism is driven by the maximum growth rate of instabilities while in the second stage the selection is influenced by nonlinear phenomena caused by the interactions between the neighboring cells. Comparison of these predictions with other existing theories of pattern formation and experimental results will be discussed.

  17. Designing and maintaining an effective chargemaster.

    PubMed

    Abbey, D C

    2001-03-01

    The chargemaster is the central repository of charges and associated coding information used to develop claims. But this simple description belies the chargemaster's true complexity. The chargemaster's role in the coding process differs from department to department, and not all codes provided on a claim form are necessarily included in the chargemaster, as codes for complex services may need to be developed and reviewed by coding staff. In addition, with the rise of managed care, the chargemaster increasingly is being used to track utilization of supplies and services. To ensure that the chargemaster performs all of its functions effectively, hospitals should appoint a chargemaster coordinator, supported by a chargemaster review team, to oversee the design and maintenance of the chargemaster. Important design issues that should be considered include the principle of "form follows function," static versus dynamic coding, how modifiers should be treated, how charges should be developed, how to incorporate physician fee schedules into the chargemaster, the interface between the chargemaster and cost reports, and how to include statistical information for tracking utilization.

  18. Nonlinear Dynamic of Curved Railway Tracks in Three-Dimensional Space

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ngamkhanong, C.; Kaewunruen, S.

    2017-12-01

    On curved tracks, high-pitch noise pollution can often be a considerable concern of rail asset owners, commuters, and people living or working along the rail corridor. Inevitably, wheel/rail interface can cause a traveling source of sound and vibration, which spread over a long distance of rail network. The sound and vibration can be in various forms and spectra. The undesirable sound and vibration on curves is often called ‘noise,’ includes flanging and squealing noises. This paper focuses on the squeal noise phenomena on curved tracks located in urban environments. It highlights the effect of curve radii on lateral track dynamics. It is important to note that rail freight curve noises, especially for curve squeals, can be observed almost everywhere and every type of track structures. The most pressing noise appears at sharper curved tracks where excessive lateral wheel/rail dynamics resonate with falling friction states, generating a tonal noise problem, so-call ‘squeal’. Many researchers have carried out measurements and simulations to understand the actual root causes of the squeal noise. Most researchers believe that wheel resonance over falling friction is the main cause, whilst a few others think that dynamic mode coupling of wheel and rail may also cause the squeal. Therefore, this paper is devoted to systems thinking the approach and dynamic assessment in resolving railway curve noise problems. The simulations of railway tracks with different curve radii will be carried out to develop state-of-the-art understanding into lateral track dynamics, including rail dynamics, cant dynamics, gauge dynamics and overall track responses.

  19. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  20. BeefTracker: Spatial Tracking and Geodatabase for Beef Herd Sustainability and Lifecycle Analysis

    NASA Astrophysics Data System (ADS)

    Oltjen, J. W.; Stackhouse, J.; Forero, L.; Stackhouse-Lawson, K.

    2015-12-01

    We have developed a web-based mapping platform named "BeefTracker" to provide beef cattle ranchers a tool to determine how cattle production fits within sustainable ecosystems and to provide regional data to update beef sustainability lifecycle analysis. After initial identification and mapping of pastures, herd data (class and number of animals) are input on a mobile device in the field with a graphical pasture interface, stored in the cloud, and linked via the web to a personal computer for inventory tracking and analysis. Pasture use calculated on an animal basis provides quantifiable data regarding carrying capacity and subsequent beef production to provide more accurate data inputs for beef sustainability lifecycle analysis. After initial testing by university range scientists and ranchers we have enhanced the BeefTracker application to work when cell service is unavailable and to improve automation for increased ease of use. Thus far experiences with BeefTracker have been largely positive, due to livestock producers' perception of the need for this type of software application and its intuitive interface. We are now in the process of education to increase its use throughout the U.S.

  1. Investigation of New Subsystem Concepts to Improve the Operational and Hydrodynamic Capabilities of Advanced Amphibian Vehicles

    DTIC Science & Technology

    1980-06-01

    Appendix C), only the following three offered even a slight hope that they might be useful to amphibian developments: the Amphibious Air Track, page A...be associated with future amphibians. Within the past year, the University of Michigan College of Engineering has established the Office for the...Land Interface: Claude A. Blackmon, Beryle G. Stinson Jack K. Stoll AD 881 357 Engineering Design Handbook; Wheeled Amphbians: No author listed AD

  2. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  3. On the role of heat and mass transfer into laser processability during selective laser melting AlSi12 alloy based on a randomly packed powder-bed

    NASA Astrophysics Data System (ADS)

    Wang, Lianfeng; Yan, Biao; Guo, Lijie; Gu, Dongdong

    2018-04-01

    A newly transient mesoscopic model with a randomly packed powder-bed has been proposed to investigate the heat and mass transfer and laser process quality between neighboring tracks during selective laser melting (SLM) AlSi12 alloy by finite volume method (FVM), considering the solid/liquid phase transition, variable temperature-dependent properties and interfacial force. The results apparently revealed that both the operating temperature and resultant cooling rate were obviously elevated by increasing the laser power. Accordingly, the resultant viscosity of liquid significantly reduced under a large laser power and was characterized with a large velocity, which was prone to result in a more intensive convection within pool. In this case, the sufficient heat and mass transfer occurred at the interface between the previously fabricated tracks and currently building track, revealing a strongly sufficient spreading between the neighboring tracks and a resultant high-quality surface without obvious porosity. By contrast, the surface quality of SLM-processed components with a relatively low laser power notably weakened due to the limited and insufficient heat and mass transfer at the interface of neighboring tracks. Furthermore, the experimental surface morphologies of the top surface were correspondingly acquired and were in full accordance to the calculated results via simulation.

  4. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.

    PubMed

    Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan

    2013-01-01

    The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.

  5. Multi-modal cockpit interface for improved airport surface operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)

    2010-01-01

    A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.

  6. High density tape/head interface study

    NASA Technical Reports Server (NTRS)

    Csengery, L. C.

    1983-01-01

    The high energy (H sub c approximately or = to 650 oersteds) tapes and high track density (84 tracks per inch) heads investigated had, as its goal, the definition of optimum combinations of head and tape, including the control required of their interfacial dynamics that would enable the manufacture of high rate (150 Mbps) digital tape recorders for unattended space flight.

  7. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    PubMed

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  8. Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning.

    PubMed

    Guo, Huijuan; Jia, Xueting; Liu, Lue; Cao, Xia; Wang, Ning; Wang, Zhong Lin

    2018-04-24

    Recent development of interactive motion-tracking and positioning technologies is attracting increasing interests in many areas, such as wearable electronics, intelligent electronics, and the internet of things. For example, the so-called somatosensory technology can afford users strong empathy of immersion and realism due to their consistent interaction with the game. Here, we report a noncontact self-powered positioning and motion-tracking system based on a freestanding triboelectric nanogenerator (TENG). The TENG was fabricated by a nanoengineered surface in the contact-separation mode with the use of a free moving human body (hands or feet) as the trigger. The poly(tetrafluoroethylene) (PTFE) arrays based interactive interface can give an output of 222 V from casual human motions. Different from previous works, this device also responses to a small action at certain heights of 0.01-0.11 m from the device with a sensitivity of about 315 V·m -1 , so that the mechanical sensing is possible. Such a distinctive noncontact sensing feature promotes a wide range of potential applications in smart interaction systems.

  9. Radiation-Hard Breadboard Star Tracker. Attachment 1.

    DTIC Science & Technology

    1985-09-01

    fdL RETURN DONE !! * . *• , . -+., -• -: . . E+ . . .. j , ’ - - V.r.*r - , It - ’Cjf0 Q -****r.. ... " * *. " . -. tu ’ * Checkadapt 3- 2"Jj...TRACK POSITION, it will use the 3 70! CURRENT STAR #, X POSITION, Y POSITION for 5180 ! information sent to the tracker interface. 7_390 5t0 0 Track _it...CRITERIA which is currently defines as the number of times 57 20 ! the tracker will try and track the star before it is dropped, 5730 it will also

  10. Broad-Bandwidth Chiral Sum Frequency Generation Spectroscopy for Probing the Kinetics of Proteins at Interfaces

    PubMed Central

    2016-01-01

    The kinetics of proteins at interfaces plays an important role in biological functions and inspires solutions to fundamental problems in biomedical sciences and engineering. Nonetheless, due to the lack of surface-specific and structural-sensitive biophysical techniques, it still remains challenging to probe protein kinetics in situ and in real time without the use of spectroscopic labels at interfaces. Broad-bandwidth chiral sum frequency generation (SFG) spectroscopy has been recently developed for protein kinetic studies at interfaces by tracking the chiral vibrational signals of proteins. In this article, we review our recent progress in kinetic studies of proteins at interfaces using broad-bandwidth chiral SFG spectroscopy. We illustrate the use of chiral SFG signals of protein side chains in the C–H stretch region to monitor self-assembly processes of proteins at interfaces. We also present the use of chiral SFG signals from the protein backbone in the N–H stretch region to probe the real-time kinetics of proton exchange between protein and water at interfaces. In addition, we demonstrate the applications of spectral features of chiral SFG that are typical of protein secondary structures in both the amide I and the N–H stretch regions for monitoring the kinetics of aggregation of amyloid proteins at membrane surfaces. These studies exhibit the power of broad-bandwidth chiral SFG to study protein kinetics at interfaces and the promise of this technique in research areas of surface science to address fundamental problems in biomedical and material sciences. PMID:26196215

  11. A low-cost test-bed for real-time landmark tracking

    NASA Astrophysics Data System (ADS)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  12. Modelling, validation and analysis of a three-dimensional railway vehicle-track system model with linear and nonlinear track properties in the presence of wheel flats

    NASA Astrophysics Data System (ADS)

    Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.

    2013-11-01

    This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.

  13. Development of a Virtual Reality Simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) Cholecystectomy Procedure.

    PubMed

    Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu

    2014-01-01

    The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.

  14. FAST TRACK COMMUNICATION Spectral signatures of the surface reconstructions of Au(110)/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.

    2010-10-01

    It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).

  15. KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery

    NASA Astrophysics Data System (ADS)

    Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan

    2013-05-01

    KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.

  16. Lesion registration for longitudinal disease tracking in an imaging informatics-based multiple sclerosis eFolder

    NASA Astrophysics Data System (ADS)

    Ma, Kevin; Liu, Joseph; Zhang, Xuejun; Lerner, Alex; Shiroishi, Mark; Amezcua, Lilyana; Liu, Brent

    2016-03-01

    We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results stored in DICOM-SR format. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system needs to quantify lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. In order to perform lesion registration, we have developed a brain warping and normalizing methodology using Statistical Parametric Mapping (SPM) MATLAB toolkit for brain MRI. Patients' brain MR images are processed via SPM's normalization processes, and the brain images are analyzed and warped according to the tissue probability map. Lesion identification and contouring are completed by neuroradiologists, and lesion volume quantification is completed by the eFolder's CAD program. Lesion comparison results in longitudinal studies show key growth and active regions. The results display successful lesion registration and tracking over a longitudinal study. Lesion change results are graphically represented in the web-based user interface, and users are able to correlate patient progress and changes in the MRI images. The completed lesion and disease tracking tool would enable the eFolder to provide complete patient profiles, improve the efficiency of patient care, and perform comprehensive data analysis through an integrated imaging informatics system.

  17. A data and information system for processing, archival, and distribution of data for global change research

    NASA Technical Reports Server (NTRS)

    Graves, Sara J.

    1994-01-01

    Work on this project was focused on information management techniques for Marshall Space Flight Center's EOSDIS Version 0 Distributed Active Archive Center (DAAC). The centerpiece of this effort has been participation in EOSDIS catalog interoperability research, the result of which is a distributed Information Management System (IMS) allowing the user to query the inventories of all the DAAC's from a single user interface. UAH has provided the MSFC DAAC database server for the distributed IMS, and has contributed to definition and development of the browse image display capabilities in the system's user interface. Another important area of research has been in generating value-based metadata through data mining. In addition, information management applications for local inventory and archive management, and for tracking data orders were provided.

  18. Automatic Optical Crack Tracking for Double Cantilever Beam Specimens

    DTIC Science & Technology

    2015-01-01

    Developments Corp., Brookeville, OH, USA) are stacked in a [90/0]8 layup sequence. An Ethylene tetrafluoroethylene ( ETFE ) film (25μm thick) is placed...DCB samples are cut using a diamond-blade wet saw from the 4-mm-thick panel to approximately 25 mm wide and 150 mm long (60 mm ETFE , 90 mm neat...to the interior ETFE film termination interface is approximately 47 mm. Crosshead speed is (+) 5 mm/min during loading and (−) 25 mm/min for

  19. Enhancing DSN Operations Efficiency with the Discrepancy Reporting Management System (DRMS)

    NASA Technical Reports Server (NTRS)

    Chatillon, Mark; Lin, James; Cooper, Tonja M.

    2003-01-01

    The DRMS is the Discrepancy Reporting Management System used by the Deep Space Network (DSN). It uses a web interface and is a management tool designed to track and manage: data outage incidents during spacecraft tracks against equipment and software known as DRs (discrepancy Reports), to record "out of pass" incident logs against equipment and software in a Station Log, to record instances where equipment has be restarted or reset as Reset records, and to electronically record equipment readiness status across the DSN. Tracking and managing these items increases DSN operational efficiency by providing: the ability to establish the operational history of equipment items, data on the quality of service provided to the DSN customers, the ability to measure service performance, early insight into processes, procedures and interfaces that may need updating or changing, and the capability to trace a data outage to a software or hardware change. The items listed above help the DSN to focus resources on areas of most need.

  20. An automated dose tracking system for adaptive radiation therapy.

    PubMed

    Liu, Chang; Kim, Jinkoo; Kumarasiri, Akila; Mayyas, Essa; Brown, Stephen L; Wen, Ning; Siddiqui, Farzan; Chetty, Indrin J

    2018-02-01

    The implementation of adaptive radiation therapy (ART) into routine clinical practice is technically challenging and requires significant resources to perform and validate each process step. The objective of this report is to identify the key components of ART, to illustrate how a specific automated procedure improves efficiency, and to facilitate the routine clinical application of ART. Data was used from patient images, exported from a clinical database and converted to an intermediate format for point-wise dose tracking and accumulation. The process was automated using in-house developed software containing three modularized components: an ART engine, user interactive tools, and integration tools. The ART engine conducts computing tasks using the following modules: data importing, image pre-processing, dose mapping, dose accumulation, and reporting. In addition, custom graphical user interfaces (GUIs) were developed to allow user interaction with select processes such as deformable image registration (DIR). A commercial scripting application programming interface was used to incorporate automated dose calculation for application in routine treatment planning. Each module was considered an independent program, written in C++or C#, running in a distributed Windows environment, scheduled and monitored by integration tools. The automated tracking system was retrospectively evaluated for 20 patients with prostate cancer and 96 patients with head and neck cancer, under institutional review board (IRB) approval. In addition, the system was evaluated prospectively using 4 patients with head and neck cancer. Altogether 780 prostate dose fractions and 2586 head and neck cancer dose fractions went processed, including DIR and dose mapping. On average, daily cumulative dose was computed in 3 h and the manual work was limited to 13 min per case with approximately 10% of cases requiring an additional 10 min for image registration refinement. An efficient and convenient dose tracking system for ART in the clinical setting is presented. The software and automated processes were rigorously evaluated and validated using patient image datasets. Automation of the various procedures has improved efficiency significantly, allowing for the routine clinical application of ART for improving radiation therapy effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Method for Recognizing State of Finger Flexure and Extension

    NASA Astrophysics Data System (ADS)

    Terado, Toshihiko; Fujiwara, Osamu

    In our country, the handicapped and the elderly people in bed increase rapidly. In the bedridden person’s daily life, there may be limitations in the physical movement and the means of mutual communication. For the support of their comfortable daily lives, therefore, the development of human interface equipment becomes an important task. The equipment of this kind is being already developed by means of laser beam, eye-tracking, breathing motion and myo-electric signals, while the attachment and handling are normally not so easy. In this study, paying attention to finger motion, we have developed human interface equipment easily attached to the body, which enables one to measure the finger flexure and extension for mutual communication. The state of finger flexure and extension is identified by a threshold level analysis from the 3D-locus data for the finger movement, which can be measured through the infrared rays from the LED markers attached to a glove with the previously developed prototype system. We then have confirmed from an experiment that nearly 100% recognition for the finger movement can be achieved.

  2. A novel asynchronous access method with binary interfaces

    PubMed Central

    2008-01-01

    Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches). Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation. PMID:18959797

  3. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  4. Tracking ion irradiation effects using buried interface devices

    NASA Astrophysics Data System (ADS)

    Cutshall, D. B.; Kulkarni, D. D.; Miller, A. J.; Harriss, J. E.; Harrell, W. R.; Sosolik, C. E.

    2018-05-01

    We discuss how a buried interface device, specifically a metal-oxide-semiconductor (MOS) capacitor, can be utilized to track effects of ion irradiation on insulators. We show that the exposure of oxides within unfinished capacitor devices to ions can lead to significant changes in the capacitance of the finished devices. For multicharged ions, these capacitive effects can be traced to defect production within the oxide and ultimately point to a role for charge-dependent energy loss. In particular, we attribute the stretchout of the capacitance-voltage curves of MOS devices that include an irradiated oxide to the ion irradiation. The stretchout shows a power law dependence on the multicharged ion charge state (Q) that is similar to that observed for multicharged ion energy loss in other systems.

  5. Nested Dissection Interface Reconstruction in Pececillo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jibben, Zechariah Joel

    A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further re- search in numerical contact angle estimates.

  6. Evaluation of Interfacial Forces and Bubble-Induced Turbulence Using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Feng, Jinyong

    High fidelity prediction of multiphase flows is important in a wide range of engineering applications. While some multiphase flow scenarios can be successfully modeled, many questions remain unanswered regarding the interaction between the bubbles and the turbulence, and present significant challenges in the development of closure laws for the multiphase computational fluid dynamics (M-CFD) models. To address these challenges, we propose to evaluate the interfacial forces and bubble-induced turbulence in both laminar and turbulent flow field with direct numerical simulation (DNS) approach. Advanced finite-element based flow solver (PHASTA) with level-set interface tracking method is utilized for these studies. The proportional-integral-derivative (PID) controller is adopted to ensure the statistically steady state bubble position and perform the detailed study of the turbulent field around the bubble. Selected numerical capabilities and post-processing codes are developed to achieve the research goals. The interface tracking approach is verified and validated by comparing the interfacial forces with the experiment-based data and correlations. The sign change of transverse lift force is observed as the bubble becomes more deformable. A new correlation is proposed to predict the behavior of the drag coefficient over the wide range of conditions. The wall effect on the interfacial forces are also investigated. In homogeneous turbulent flow, the effect of bubble deformability, turbulent intensity and relative velocity on the bubble-induced turbulence are analyzed. The presented method and novel results will complement the experimental database, provide insight to the bubbleinduced turbulence mechanism and help the development of M-CFD closure models.

  7. SSC Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim

    2011-01-01

    A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.

  8. Tracking BO6 Coupling in Perovskite Superlattices to Engineer Magnetic Interface Behavior

    NASA Astrophysics Data System (ADS)

    Borisevich, Albina; He, Qian; Ghosh, Saurabh; Moon, Eun Ju; May, Steve; Lupini, Andrew; Pantelides, Sokrates

    In the past several years, control of BO6 octahedral coupling at ABO3 perovskite interfaces has emerged as a new tool for engineering of interface properties due to its strong coupling to polar and magnetic properties. High resolution data on tilt transitions at interfaces is instrumental for evaluating the validity of existing theoretical models and developing predictive theories. Recently, we have developed a unique method to investigate BO6 rotation patterns in complex oxides with unit cell resolution. Our method involves column shape analysis in ABF-STEM images of the perovskite heterointerfaces taken in specific orientations. This method will allow us to determine local symmetry between adjacent unit cells, revealing the BO6 coupling behavior at heterointerfaces in 3D. This technique was used to characterize structure and predict properties via a combined STEM and DFT study of magnetic superlattice of La(Ca)MnO3/La(Sr)MnO3 with different periodicities, which exhibit a range of electromagnetic coupling behaviors. We will also discuss the prospects for tilted structure determination using electron ptychography. The correlations among the BO6 rotation, domain size, superlattice periodicity and the electromagnetic coupling will be discussed in detail. Research supported by the MSED of the U.S.DOE, and through a user project at ORNL's CNMS, sponsored by the SUFD of the U.S. DOE.

  9. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  10. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E.; Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N.; Stevens, James R [Arlington, VA

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  11. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.

    PubMed

    Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio

    2015-01-01

    Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features that are not granted using track recording on files or spreadsheets. adLIMS aims to combine sample tracking and data reporting features with higher accessibility and usability of GUIs, thus allowing time to be saved on doing repetitive laboratory tasks, and reducing errors with respect to manual data collection methods. Moreover, adLIMS implements automated data entry, exploiting sample data multiplexing and parallel/transactional processing. adLIMS is natively extensible to cope with laboratory automation through platform-dependent API interfaces, and could be extended to genomic facilities due to the ERP functionalities.

  12. Marshall Space Flight Center Telescience Resource Kit

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.

  13. Eye-movements and Voice as Interface Modalities to Computer Systems

    NASA Astrophysics Data System (ADS)

    Farid, Mohsen M.; Murtagh, Fionn D.

    2003-03-01

    We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.

  14. Developing Web-based Tools for Collaborative Science and Public Outreach

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Pizarro, O.; Williams, S. B.

    2016-02-01

    With the advances in high bandwidth communications and the proliferation of social media tools, education & outreach activities have become commonplace on ocean-bound research cruises. In parallel, advances in underwater robotics & other data collecting platforms, have made it possible to collect copious amounts of oceanographic data. This data then typically undergoes laborious, manual processing to transform it into quantitative information, which normally occurs post cruise resulting in significant lags between collecting data and using it for scientific discovery. This presentation discusses how appropriately designed software systems, can be used to fulfill multiple objectives and attempt to leverage public engagement in order to compliment science goals. We will present two software platforms: the first is a web browser based tool that was developed for real-time tracking of multiple underwater robots and ships. It was designed to allow anyone on board to view or control it on any device with a web browser. It opens up the possibility of remote teleoperation & engagement and was easily adapted to enable live streaming over the internet for public outreach. While the tracking system provided context and engaged people in real-time, it also directed interested participants to Squidle, another online system. Developed for scientists, Squidle supports data management, exploration & analysis and enables direct access to survey data reducing the lag in data processing. It provides a user-friendly streamlined interface that integrates advanced data management & online annotation tools. This system was adapted to provide a simplified user interface, tutorial instructions and a gamified ranking system to encourage "citizen science" participation. These examples show that through a flexible design approach, it is possible to leverage the development effort of creating science tools to facilitate outreach goals, opening up the possibility for acquiring large volumes of crowd-sourced data without compromising science objectives.

  15. Harnessing user generated multimedia content in the creation of collaborative classification structures and retrieval learning games

    NASA Astrophysics Data System (ADS)

    Borchert, Otto Jerome

    This paper describes a software tool to assist groups of people in the classification and identification of real world objects called the Classification, Identification, and Retrieval-based Collaborative Learning Environment (CIRCLE). A thorough literature review identified current pedagogical theories that were synthesized into a series of five tasks: gathering, elaboration, classification, identification, and reinforcement through game play. This approach is detailed as part of an included peer reviewed paper. Motivation is increased through the use of formative and summative gamification; getting points completing important portions of the tasks and playing retrieval learning based games, respectively, which is also included as a peer-reviewed conference proceedings paper. Collaboration is integrated into the experience through specific tasks and communication mediums. Implementation focused on a REST-based client-server architecture. The client is a series of web-based interfaces to complete each of the tasks, support formal classroom interaction through faculty accounts and student tracking, and a module for peers to help each other. The server, developed using an in-house JavaMOO platform, stores relevant project data and serves data through a series of messages implemented as a JavaScript Object Notation Application Programming Interface (JSON API). Through a series of two beta tests and two experiments, it was discovered the second, elaboration, task requires considerable support. While students were able to properly suggest experiments and make observations, the subtask involving cleaning the data for use in CIRCLE required extra support. When supplied with more structured data, students were enthusiastic about the classification and identification tasks, showing marked improvement in usability scores and in open ended survey responses. CIRCLE tracks a variety of educationally relevant variables, facilitating support for instructors and researchers. Future work will revolve around material development, software refinement, and theory building. Curricula, lesson plans, instructional materials need to be created to seamlessly integrate CIRCLE in a variety of courses. Further refinement of the software will focus on improving the elaboration interface and developing further game templates to add to the motivation and retrieval learning aspects of the software. Data gathered from CIRCLE experiments can be used to develop and strengthen theories on teaching and learning.

  16. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  17. Adaptation of a software development methodology to the implementation of a large-scale data acquisition and control system. [for Deep Space Network

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Westmoreland, P. T.

    1983-01-01

    A progress report is presented on a program to upgrade the existing NASA Deep Space Network in terms of a redesigned computer-controlled data acquisition system for channelling tracking, telemetry, and command data between a California-based control center and three signal processing centers in Australia, California, and Spain. The methodology for the improvements is oriented towards single subsystem development with consideration for a multi-system and multi-subsystem network of operational software. Details of the existing hardware configurations and data transmission links are provided. The program methodology includes data flow design, interface design and coordination, incremental capability availability, increased inter-subsystem developmental synthesis and testing, system and network level synthesis and testing, and system verification and validation. The software has been implemented thus far to a 65 percent completion level, and the methodology being used to effect the changes, which will permit enhanced tracking and communication with spacecraft, has been concluded to feature effective techniques.

  18. The Software Correlator of the Chinese VLBI Network

    NASA Technical Reports Server (NTRS)

    Zheng, Weimin; Quan, Ying; Shu, Fengchun; Chen, Zhong; Chen, Shanshan; Wang, Weihua; Wang, Guangli

    2010-01-01

    The software correlator of the Chinese VLBI Network (CVN) has played an irreplaceable role in the CVN routine data processing, e.g., in the Chinese lunar exploration project. This correlator will be upgraded to process geodetic and astronomical observation data. In the future, with several new stations joining the network, CVN will carry out crustal movement observations, quick UT1 measurements, astrophysical observations, and deep space exploration activities. For the geodetic or astronomical observations, we need a wide-band 10-station correlator. For spacecraft tracking, a realtime and highly reliable correlator is essential. To meet the scientific and navigation requirements of CVN, two parallel software correlators in the multiprocessor environments are under development. A high speed, 10-station prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm on a computer cluster platform is being developed. Another real-time software correlator for spacecraft tracking adopts the thread-parallel technology, and it runs on the SMP (Symmetric Multiple Processor) servers. Both correlators have the characteristic of flexible structure and scalability.

  19. Mechanical Serial-Sectioning Data Assistant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulter, Gregory A.; Madison, Jonathan D.

    Mechanical Serial-Sectioning Data Assistant (MECH-SSDA) is a real-time data analytics software with graphical user-interface that; 1) tracks and visualizes material removal rates for mechanical serial-sectioning experiments using at least two height measurement methods; 2) tracks process time for specific segments of the serial-sectioning experiment; and 3) alerts the user to anomalies in expected removal rate, process time or unanticipated operational pauses

  20. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  1. Enhanced networks operations using the X Window System

    NASA Technical Reports Server (NTRS)

    Linares, Irving

    1993-01-01

    We propose an X Window Graphical User Interface (GUI) which is tailored to the operations of NASA GSFC's Network Control Center (NCC), the NASA Ground Terminal (NGT), the White Sands Ground Terminal (WSGT), and the Second Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (STGT). The proposed GUI can also be easily extended to other Ground Network (GN) Tracking Stations due to its standardized nature.

  2. Intravital third harmonic generation microscopy of collective melanoma cell invasion

    PubMed Central

    Weigelin, Bettina; Bakker, Gert-Jan; Friedl, Peter

    2012-01-01

    Cancer cell invasion is an adaptive process based on cell-intrinsic properties to migrate individually or collectively, and their adaptation to encountered tissue structure acting as barrier or providing guidance. Whereas molecular and physical mechanisms of cancer invasion are well-studied in 3D in vitro models, their topographic relevance, classification and validation toward interstitial tissue organization in vivo remain incomplete. Using combined intravital third and second harmonic generation (THG, SHG), and three-channel fluorescence microscopy in live tumors, we here map B16F10 melanoma invasion into the dermis with up to 600 µm penetration depth and reconstruct both invasion mode and tissue tracks to establish invasion routes and outcome. B16F10 cells preferentially develop adaptive invasion patterns along preformed tracks of complex, multi-interface topography, combining single-cell and collective migration modes, without immediate anatomic tissue remodeling or destruction. The data suggest that the dimensionality (1D, 2D, 3D) of tissue interfaces determines the microanatomy exploited by invading tumor cells, emphasizing non-destructive migration along microchannels coupled to contact guidance as key invasion mechanisms. THG imaging further detected the presence and interstitial dynamics of tumor-associated microparticles with submicron resolution, revealing tumor-imposed conditioning of the microenvironment. These topographic findings establish combined THG, SHG and fluorescence microscopy in intravital tumor biology and provide a template for rational in vitro model development and context-dependent molecular classification of invasion modes and routes. PMID:29607252

  3. Gaze-contingent displays: a review.

    PubMed

    Duchowski, Andrew T; Cournia, Nathan; Murphy, Hunter

    2004-12-01

    Gaze-contingent displays (GCDs) attempt to balance the amount of information displayed against the visual information processing capacity of the observer through real-time eye movement sensing. Based on the assumed knowledge of the instantaneous location of the observer's focus of attention, GCD content can be "tuned" through several display processing means. Screen-based displays alter pixel level information generally matching the resolvability of the human retina in an effort to maximize bandwidth. Model-based displays alter geometric-level primitives along similar goals. Attentive user interfaces (AUIs) manage object- level entities (e.g., windows, applications) depending on the assumed attentive state of the observer. Such real-time display manipulation is generally achieved through non-contact, unobtrusive tracking of the observer's eye movements. This paper briefly reviews past and present display techniques as well as emerging graphics and eye tracking technology for GCD development.

  4. A digital video tracking system

    NASA Astrophysics Data System (ADS)

    Giles, M. K.

    1980-01-01

    The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.

  5. A post-processing system for automated rectification and registration of spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Kwok, Ronald; Pang, Shirley S.

    1987-01-01

    An automated post-processing system has been developed that interfaces with the raw image output of the operational digital SAR correlator. This system is designed for optimal efficiency by using advanced signal processing hardware and an algorithm that requires no operator interaction, such as the determination of ground control points. The standard output is a geocoded image product (i.e. resampled to a specified map projection). The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending passes over the same target area. The output products have absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 per cent relative to local variations from the assumed geoid.

  6. Processing tracking in jMRUI software for magnetic resonance spectra quantitation reproducibility assurance.

    PubMed

    Jabłoński, Michał; Starčuková, Jana; Starčuk, Zenon

    2017-01-23

    Proton magnetic resonance spectroscopy is a non-invasive measurement technique which provides information about concentrations of up to 20 metabolites participating in intracellular biochemical processes. In order to obtain any metabolic information from measured spectra a processing should be done in specialized software, like jMRUI. The processing is interactive and complex and often requires many trials before obtaining a correct result. This paper proposes a jMRUI enhancement for efficient and unambiguous history tracking and file identification. A database storing all processing steps, parameters and files used in processing was developed for jMRUI. The solution was developed in Java, authors used a SQL database for robust storage of parameters and SHA-256 hash code for unambiguous file identification. The developed system was integrated directly in jMRUI and it will be publically available. A graphical user interface was implemented in order to make the user experience more comfortable. The database operation is invisible from the point of view of the common user, all tracking operations are performed in the background. The implemented jMRUI database is a tool that can significantly help the user to track the processing history performed on data in jMRUI. The created tool is oriented to be user-friendly, robust and easy to use. The database GUI allows the user to browse the whole processing history of a selected file and learn e.g. what processing lead to the results, where the original data are stored, to obtain the list of all processing actions performed on spectra.

  7. SiteDB: Marshalling people and resources available to CMS

    NASA Astrophysics Data System (ADS)

    Metson, S.; Bonacorsi, D.; Dias Ferreira, M.; Egeland, R.

    2010-04-01

    In a collaboration the size of CMS (approx. 3000 users, and almost 100 computing centres of varying size) communication and accurate information about the sites it has access to is vital in co-ordinating the multitude of computing tasks required for smooth running. SiteDB is a tool developed by CMS to track sites available to the collaboration, the allocation to CMS of resources available at those sites and the associations between CMS members and the sites (as either a manager/operator of the site or a member of a group associated to the site). It is used to track the roles a person has for an associated site or group. SiteDB eases the coordination load for the operations teams by providing a consistent interface to manage communication with the people working at a site, by identifying who is responsible for a given task or service at a site and by offering a uniform interface to information on CMS contacts and sites. SiteDB provides api's and reports for other CMS tools to use to access the information it contains, for instance enabling CRAB to use "user friendly" names when black/white listing CE's, providing role based authentication and authorisation for other web based services and populating various troubleshooting squads in external ticketing systems in use daily by CMS Computing operations.

  8. A data acquisition and storage system for the ion auxiliary propulsion system cyclic thruster test

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1989-01-01

    A nine-track tape drive interfaced to a standard personal computer was used to transport data from a remote test site to the NASA Lewis mainframe computer for analysis. The Cyclic Ground Test of the Ion Auxiliary Propulsion System (IAPS), which successfully achieved its goal of 2557 cycles and 7057 hr of thrusting beam on time generated several megabytes of test data over many months of continuous testing. A flight-like controller and power supply were used to control the thruster and acquire data. Thruster data was converted to RS232 format and transmitted to a personal computer, which stored the raw digital data on the nine-track tape. The tape format was such that with minor modifications, mainframe flight data analysis software could be used to analyze the Cyclic Ground Test data. The personal computer also converted the digital data to engineering units and displayed real time thruster parameters. Hardcopy data was printed at a rate dependent on thruster operating conditions. The tape drive provided a convenient means to transport the data to the mainframe for analysis, and avoided a development effort for new data analysis software for the Cyclic test. This paper describes the data system, interfacing and software requirements.

  9. Natural user interface as a supplement of the holographic Raman tweezers

    NASA Astrophysics Data System (ADS)

    Tomori, Zoltan; Kanka, Jan; Kesa, Peter; Jakl, Petr; Sery, Mojmir; Bernatova, Silvie; Antalik, Marian; Zemánek, Pavel

    2014-09-01

    Holographic Raman tweezers (HRT) manipulates with microobjects by controlling the positions of multiple optical traps via the mouse or joystick. Several attempts have appeared recently to exploit touch tablets, 2D cameras or Kinect game console instead. We proposed a multimodal "Natural User Interface" (NUI) approach integrating hands tracking, gestures recognition, eye tracking and speech recognition. For this purpose we exploited "Leap Motion" and "MyGaze" low-cost sensors and a simple speech recognition program "Tazti". We developed own NUI software which processes signals from the sensors and sends the control commands to HRT which subsequently controls the positions of trapping beams, micropositioning stage and the acquisition system of Raman spectra. System allows various modes of operation proper for specific tasks. Virtual tools (called "pin" and "tweezers") serving for the manipulation with particles are displayed on the transparent "overlay" window above the live camera image. Eye tracker identifies the position of the observed particle and uses it for the autofocus. Laser trap manipulation navigated by the dominant hand can be combined with the gestures recognition of the secondary hand. Speech commands recognition is useful if both hands are busy. Proposed methods make manual control of HRT more efficient and they are also a good platform for its future semi-automated and fully automated work.

  10. Evaluation of longitudinal tracking and data mining for an imaging informatics-based multiple sclerosis e-folder (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Kevin C.; Forsyth, Sydney; Amezcua, Lilyana; Liu, Brent J.

    2017-03-01

    We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results to allow patient tracking. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system quantifies lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. We aim to evaluate the two most important features of the system, data mining and longitudinal lesion tracking, to demonstrate the MS eFolder's capability in improving clinical workflow efficiency and outcome analysis for research. In order to evaluate data mining capabilities, we have collected radiological and neurological data from 72 patients, 36 Caucasian and 36 Hispanic matched by gender, disease duration, and age. Data analysis on those patients based on ethnicity is performed, and analysis results are displayed by the system's web-based user interface. The data mining module is able to successfully separate Hispanic and Caucasian patients and compare their disease profiles. For longitudinal lesion tracking, we have collected 4 longitudinal cases and simulated different lesion growths over the next year. As a result, the eFolder is able to detect changes in lesion volume and identifying lesions with the most changes. Data mining and lesion tracking evaluation results show high potential of eFolder's usefulness in patientcare and informatics research for multiple sclerosis.

  11. Influence of uneven rail irregularities on the dynamic response of the railway track using a three-dimensional model of the vehicle-track system

    NASA Astrophysics Data System (ADS)

    Naeimi, Meysam; Zakeri, Jabbar Ali; Esmaeili, Morteza; Shadfar, Morad

    2015-01-01

    A mathematical model of the vehicle-track interaction is developed to investigate the coupled behaviour of vehicle-track system, in the presence of uneven irregularities at left/right rails. The railway vehicle is simplified as a 3D multi-rigid-body model, and the track is treated as the two parallel beams on a layered discrete support system. Besides the car-body, the bogies and the wheel sets, the sleepers are assumed to have roll degree of freedom, in order to simulate the in-plane rotation of the components. The wheel-rail interface is treated using a nonlinear Hertzian contact model, coupling the mathematical equations of the vehicle-track systems. The dynamic interaction of the entire system is numerically studied in time domain, employing Newmark's integration method. The track irregularity spectra of both the left/right rails are taken into account, as the inputs of dynamic excitations. The dynamic responses of the track system induced by such irregularities are obtained, particularly in terms of the vertical (bounce) and roll displacements. The numerical model of the present research is validated using several benchmark models reported in the literature, for both the smooth and unsmooth track conditions. Four sample profiles of the measured rail irregularities are considered as the case studies of excitation sources, examining their influences on the dynamic behaviour of the coupled system. The results of numerical simulations demonstrate that the motion of track system is significantly influenced by the presence of uneven irregularities in left/right rails. Dynamic response of the sleepers in the roll direction becomes more sensitive to the rail irregularities, as the unevenness severity of the parallel profiles (quantitative difference between left and right rail spectra) is increased. The severe geometric deformation of the track in the bounce-pitch-roll directions is mainly related to such profile unevenness (cross-level) in left/right rails.

  12. Large scale track analysis for wide area motion imagery surveillance

    NASA Astrophysics Data System (ADS)

    van Leeuwen, C. J.; van Huis, J. R.; Baan, J.

    2016-10-01

    Wide Area Motion Imagery (WAMI) enables image based surveillance of areas that can cover multiple square kilometers. Interpreting and analyzing information from such sources, becomes increasingly time consuming as more data is added from newly developed methods for information extraction. Captured from a moving Unmanned Aerial Vehicle (UAV), the high-resolution images allow detection and tracking of moving vehicles, but this is a highly challenging task. By using a chain of computer vision detectors and machine learning techniques, we are capable of producing high quality track information of more than 40 thousand vehicles per five minutes. When faced with such a vast number of vehicular tracks, it is useful for analysts to be able to quickly query information based on region of interest, color, maneuvers or other high-level types of information, to gain insight and find relevant activities in the flood of information. In this paper we propose a set of tools, combined in a graphical user interface, which allows data analysts to survey vehicles in a large observed area. In order to retrieve (parts of) images from the high-resolution data, we developed a multi-scale tile-based video file format that allows to quickly obtain only a part, or a sub-sampling of the original high resolution image. By storing tiles of a still image according to a predefined order, we can quickly retrieve a particular region of the image at any relevant scale, by skipping to the correct frames and reconstructing the image. Location based queries allow a user to select tracks around a particular region of interest such as landmark, building or street. By using an integrated search engine, users can quickly select tracks that are in the vicinity of locations of interest. Another time-reducing method when searching for a particular vehicle, is to filter on color or color intensity. Automatic maneuver detection adds information to the tracks that can be used to find vehicles based on their behavior.

  13. GUI to Facilitate Research on Biological Damage from Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Frances A.; Ponomarev, Artem Lvovich

    2010-01-01

    A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.

  14. Live Virtual Constructive (LVC): Interface Control Document (ICD) for the LVC Gateway. [Flight Test 3

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    2015-01-01

    This Interface Control Document (ICD) documents and tracks the necessary information required for the Live Virtual and Constructive (LVC) systems components as well as protocols for communicating with them in order to achieve all research objectives captured by the experiment requirements. The purpose of this ICD is to clearly communicate all inputs and outputs from the subsystem components.

  15. StimTrack: An open-source software for manual transcranial magnetic stimulation coil positioning.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; van de Ruit, Mark; Biguzzi, Stefano; Colombo, Vera; Monticone, Marco; Ferriero, Giorgio; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Grey, Michael J

    2018-01-01

    During Transcranial Magnetic Stimulation (TMS) experiments researchers often use a neuronavigation system to precisely and accurately maintain coil position and orientation. This study aimed to develop and validate an open-source software for TMS coil navigation. StimTrack uses an optical tracker and an intuitive user interface to facilitate the maintenance of position and orientation of any type of coil within and between sessions. Additionally, online access to navigation data is provided, hereby adding e.g. the ability to start or stop the magnetic stimulator depending on the distance to target or the variation of the orientation angles. StimTrack allows repeatable repositioning of the coil within 0.7mm for translation and <1° for rotation. Stimulus-response (SR) curves obtained from 19 healthy volunteers were used to demonstrate that StimTrack can be effectively used in a typical experiment. An excellent intra and inter-session reliability (ICC >0.9) was obtained on all parameters computed on SR curves acquired using StimTrack. StimTrack showed a target accuracy similar to that of a commercial neuronavigation system (BrainSight, Rogue Research Inc.). Indeed, small differences both in position (∼0.2mm) and orientation (<1°) were found between the systems. These differences are negligible given the human error involved in landmarks registration. StimTrack, available as supplementary material, is found to be a good alternative for commercial neuronavigation systems facilitating assessment changes in corticospinal excitability using TMS. StimTrack allows researchers to tailor its functionality to their specific needs, providing added value that benefits experimental procedures and improves data quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Linear Quadratic Gaussian Controller Design Using a Graphical User Interface: Application to the Beam-Waveguide Antennas

    NASA Astrophysics Data System (ADS)

    Maneri, E.; Gawronski, W.

    1999-10-01

    The linear quadratic Gaussian (LQG) design algorithms described in [2] and [5] have been used in the controller design of JPL's beam-waveguide [5] and 70-m [6] antennas. This algorithm significantly improves tracking precision in a windy environment. This article describes the graphical user interface (GUI) software for the design LQG controllers. It consists of two parts: the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display.

  17. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  18. Optimal Power Flow Pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less

  19. Experimental Characterization of the Jet Wiping Process

    NASA Astrophysics Data System (ADS)

    Mendez, Miguel Alfonso; Enache, Adriana; Gosset, Anne; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental characterization of the jet wiping process, used in continuous coating applications to control the thickness of a liquid coat using an impinging gas jet. Time Resolved Particle Image Velocimetry (TR-PIV) is used to characterize the impinging gas flow, while an automatic interface detection algorithm is developed to track the liquid interface at the impact. The study of the flow interaction is combined with time resolved 3D thickness measurements of the liquid film remaining after the wiping, via Time Resolved Light Absorption (TR-LAbs). The simultaneous frequency analysis of liquid and gas flows allows to correlate their respective instability, provide an experimental data set for the validation of numerical studies and allows for formulating a working hypothesis on the origin of the coat non-uniformity encountered in many jet wiping processes.

  20. Locomotive track detection for underground

    NASA Astrophysics Data System (ADS)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing

    2017-08-01

    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  1. Robotics virtual rail system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  2. Modelling wildland fire propagation by tracking random fronts

    NASA Astrophysics Data System (ADS)

    Pagnini, G.; Mentrelli, A.

    2014-08-01

    Wildland fire propagation is studied in the literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternatives to each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay, and it is not zero in an infinite domain, while the level-set method, which is a front tracking technique, generates a sharp function that is not zero inside a compact domain. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random nature and they are extremely important in wildland fire propagation. Consequently, the fire front gets a random character, too; hence, a tracking method for random fronts is needed. In particular, the level-set contour is randomised here according to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterising role that is typical of the level-set approach. The resulting model emerges to be suitable for simulating effects due to turbulent convection, such as fire flank and backing fire, the faster fire spread being because of the actions by hot-air pre-heating and by ember landing, and also due to the fire overcoming a fire-break zone, which is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation, a correction follows for the formula of the rate of spread which is due to the mean jump length of firebrands in the downwind direction for the leeward sector of the fireline contour. The presented study constitutes a proof of concept, and it needs to be subjected to a future validation.

  3. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow

    NASA Astrophysics Data System (ADS)

    Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Friction reduction in microchannel flows can help alleviate the inherently taxing pumping power requirements associated with the dimensions involved. One possible way of achieving friction reduction is through the introduction of surface microtexturing that can lead to a superhydrophobic Cassie-Baxter state. The Cassie-Baxter state is characterized by the presence of air pockets within the surface microtexturing believed to act as an effective "shear free" (or at least shear reduced) layer, decreasing the overall friction characteristics of the surface. Most work in this area has concentrated on optimizing the surface microtexturing geometry to maximize the friction reduction effects and overall stability of the Cassie-Baxter state. However, less attention has been paid to the effects of partially wetted conditions induced by pressure and the correlation between the liquid-gas interface location within the surface microtexturing and the microchannel flow characteristics. This is mainly attributed to the difficulty in tracking the interface shape and location within the microtexturing in the typical top-down view arrangements used in most studies. In this paper, a rectangular microchannel with regular microtexturing on the sidewalls is used to visualize and track the location of the air-water interface within the roughness elements. While visually tracking the wetting conditions in the microtextures, pressure drops versus flow rates for each microchannel are measured and analyzed in terms of the non-dimensional friction coefficient. The frictional behavior of the Poiseuille flow suggests that (1) the air-water interface more closely resembles a no-slip boundary rather than a shear-free one, (2) the friction is rather insensitive to the degree of microtexturing wetting, and (3) the fully wetted (Wenzel state) microtexturing provides lower friction than the non-wetted one (Cassie state), in corroboration with observations (1) and (2).

  4. Performance interface document for users of Tracking and Data Relay Satellite System (TDRSS) electromechanically steered antenna systems (EMSAS)

    NASA Technical Reports Server (NTRS)

    Hockensmith, R.; Devine, E.; Digiacomo, M.; Hager, F.; Moss, R.

    1983-01-01

    Satellites that use the NASA Tracking and Data Relay Satellite System (TDRSS) require antennas that are crucial for performing and achieving reliable TDRSS link performance at the desired data rate. Technical guidelines are presented to assist the prospective TDRSS medium-and high-data rate user in selecting and procuring a viable, steerable high-gain antenna system. Topics addressed include the antenna gain/transmitter power/data rate relationship; Earth power flux-density limitations; electromechanical requirements dictated by the small beam widths, desired angular coverage, and minimal torque disturbance to the spacecraft; weight and moment considerations; mechanical, electrical and thermal interfaces; design lifetime failure modes; and handling and storage. Proven designs are cited and space-qualified assemblies and components are identified.

  5. STAR: an integrated solution to management and visualization of sequencing data.

    PubMed

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei

    2013-12-15

    Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.

  6. Tracking and data relay satellite system: NASA's new spacecraft data acquisition system

    NASA Astrophysics Data System (ADS)

    Schneider, W. C.; Garman, A. A.

    The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.

  7. Numerical modeling of materials processes with fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yanke, Jeffrey Michael

    A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a preliminary study was conducted to investigate the effects of substrate surface defects and droplet impact angle on the propensity to form columnar porosity.

  8. Simple, Inexpensive Attainment and Measurement of Very High Cooling and Warming Rates✰

    PubMed Central

    Kleinhans, F.W.; Seki, Shinsuke; Mazur, Peter

    2010-01-01

    We have developed a simple, inexpensive system (< $300 US) for measuring cooling and warming rates of small (~ 0.1 μl) aqueous samples at rates as high as 105 °C/min. The measurement system itself, can track rates approaching one million °C/min. For temperature sensing, a Type T thermocouple with 50 μm wire was used. The thermocouple output voltage was read with an inexpensive USB based digital oscilloscope interfaced to a laptop computer, and the raw data were processed with MS Excel. PMID:20599881

  9. Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments

    NASA Astrophysics Data System (ADS)

    Reuderink, Boris; Nijholt, Anton; Poel, Mannes

    We present the design and development of Affective Pacman, a game that induces frustration to study the effect of user state changes on the EEG signal. Affective Pacman is designed to induce frustration for short periods, and allows the synchronous recording of a wide range of sensors, such as physiological sensors and EEG in addition to the game state. A self-assessment is integrated in the game to track changes in user state. Preliminary results indicate a significant effect of the frustration induction on the EEG.

  10. Ubiquitous Wireless Smart Sensing and Control

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  11. Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  12. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  13. The VA Computerized Patient Record — A First Look

    PubMed Central

    Anderson, Curtis L.; Meldrum, Kevin C.

    1994-01-01

    In support of its in-house DHCP Physician Order Entry/Results Reporting application, the VA is developing the first edition of a Computerized Patient Record. The system will feature a physician-oriented interface with real time, expert system-based order checking, a controlled vocabulary, a longitudinal repository of patient data, HL7 messaging support, a clinical reminder and warning system, and full integration with existing VA applications including lab, pharmacy, A/D/T, radiology, dietetics, surgery, vitals, allergy tracking, discharge summary, problem list, progress notes, consults, and online physician order entry. PMID:7949886

  14. Front tracking based modeling of the solid grain growth on the adaptive control volume grid

    NASA Astrophysics Data System (ADS)

    Seredyński, Mirosław; Łapka, Piotr

    2017-07-01

    The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.

  15. NucliTrack: an integrated nuclei tracking application.

    PubMed

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  16. Update on slip and wear in multi-layer azimuth track systems

    NASA Astrophysics Data System (ADS)

    Juneja, Gunjeet; Kan, Frank W.; Antebi, Joseph

    2006-06-01

    Many antennas, such as the 100-m Green Bank Telescope, use a wheel-on-track systems in which the track segments consist of wear plates mounted on base plates. The wear plates are typically 2 to 3 inches thick and are case hardened or through hardened. The base plates are usually 3 to 4 times thicker than the wear plates and are not hardened. The wear plates are typically connected to the base plates using bolts. The base plates are supported on grout and anchored to the underlying concrete foundation. For some antennas, slip has been observed between the wear plate and base plate, and between the base plate and the grout, with the migration in the wheel rolling direction. In addition, there has been wear at the wear plate/base plate interface. This paper is an update on the evaluation of GBT track retrofit. The paper describes the use of three-dimensional non-linear finite element analyses to understand and evaluate the behavior of (1) the existing GBT wheel-on-track system with mitered joints, and (2) the various proposed modifications. The modifications include welding of the base plate joints, staggering of the wear plate joints from the base plate joints, changing thickness of the wear plate, and increasing bolt diameter and length. Parameters included in the evaluation were contact pressure, relative slip, wear at the wear plate/base plate interface, and bolt shears and moments.

  17. Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Amber; Harsch, Tim; Pitt, Julie

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    Topics addressed include: tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for existing projects; network upgrade and sustaining; mission interface and support; and Ka-band capabilities.

  19. Novel Image Processing Interface to Relate DSB Spatial Distribution from Immunofluorescence Foci Experiments to the State-of-the-Art Models of DNA Breakage

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.

    2004-01-01

    A recently developed software (NASARadiationTrackImage) allows a quick and automatic segmentation of foci that indicate spatial localization of specific proteins that are visualized by immunofluorescence. Of interest are the spatial and temporal distribution of foci such as gammaH2AX, a signal of the phosphorylation of a variant of the histone H2A that has been shown to correspond to DSBs, or proteins involved in DSB processing, such as ATM, Rad51, and p53, following exposures of human cells to high charge and energy (HZE) ion irradiation. Experimental data are recorded as sets of two-dimensional images in color with cells and foci of gammaH2AX, ATM, Rad51 or others shown. Different cells, levels of radiation and timing after radiation were recorded. The software allows us to calculate the number of foci per cell, overall intensity of light in foci and their spatial organization. A simple statistical model allows for testing of foci overlap (eclipse). A more complex statistical model previously known as DNAbreak simulates track structure and random chromosome geometry. It has one adjustable parameter corresponding to an average intensity of DSB creation in cubic micrometers of DNA volume per particle track or unit dose. Its limitation is the low-resolution limit both in physical space and DSB's along DNA. It works adequately on the scale of a cell and provides further insights on how the geometry of tracks and DNA affects genomic damage of the cell and subsequent repair. Future developments of the model for the description of the time evolution of DNA damage response proteins, and more robust track structure models will be discussed.

  20. Evaluation of the Tobii EyeX Eye tracking controller and Matlab toolkit for research.

    PubMed

    Gibaldi, Agostino; Vanegas, Mauricio; Bex, Peter J; Maiello, Guido

    2017-06-01

    The Tobii Eyex Controller is a new low-cost binocular eye tracker marketed for integration in gaming and consumer applications. The manufacturers claim that the system was conceived for natural eye gaze interaction, does not require continuous recalibration, and allows moderate head movements. The Controller is provided with a SDK to foster the development of new eye tracking applications. We review the characteristics of the device for its possible use in scientific research. We develop and evaluate an open source Matlab Toolkit that can be employed to interface with the EyeX device for gaze recording in behavioral experiments. The Toolkit provides calibration procedures tailored to both binocular and monocular experiments, as well as procedures to evaluate other eye tracking devices. The observed performance of the EyeX (i.e. accuracy < 0.6°, precision < 0.25°, latency < 50 ms and sampling frequency ≈55 Hz), is sufficient for some classes of research application. The device can be successfully employed to measure fixation parameters, saccadic, smooth pursuit and vergence eye movements. However, the relatively low sampling rate and moderate precision limit the suitability of the EyeX for monitoring micro-saccadic eye movements or for real-time gaze-contingent stimulus control. For these applications, research grade, high-cost eye tracking technology may still be necessary. Therefore, despite its limitations with respect to high-end devices, the EyeX has the potential to further the dissemination of eye tracking technology to a broad audience, and could be a valuable asset in consumer and gaming applications as well as a subset of basic and clinical research settings.

  1. Frictional interactions in forming processes: New studies with transparent sapphire strip-drawing dies

    NASA Astrophysics Data System (ADS)

    Rao, R. S.; Lu, C. Y.; Wright, P. K.; Devenpeck, M. L.; Richmond, O.; Appleby, E. J.

    1982-05-01

    This research is concerned with the frictional interactions at the toolwork interfaces in the machining and strip-drawing processes. A novel feature is that transparent sapphire (single crystal Al2O3) is being used as the tool and die material. This allows the tribological features of the interface to be directly observed and recorded on movie-film. These qualitative studies provide information on the role of lubricants. In addition, techniques are being developed to quantify the velocity gradient along the interface. For example, in the drawing work it has been found that tracer markings (e.g. dye-spots), applied to the undrawn strip, remain intact during drawing and can be tracked along the sapphire/strip interface. Such data will be used as input to a finite-element, elasto-plastic-workhardening model of the deformation process. The latter can compute strip deformation characteristics, drawing forces and local coefficients of friction at the interface. Introductory results will be presented in this paper, obtained from drawing tin-plated mild steel with sapphire and cemented carbide dies. Drawing loads and die-separating forces will be presented and movie-films of the action of tracer markings at the interface shown. In order to demonstrate how this data can be used in an analysis of a large strain deformation process with friction, initial results from running the FIPDEF elasto-plastic code will be discussed. From a commercial viewpoint research on strip-drawing is of special interest to the can-making industry. From a physical viewpoint stripdrawing is of particular interest because it is a symmetrical, plane strain deformation and, in comparison with other metal processing operations, it is more readily modeled. However, until now the elasto-plastic codes that have been developed to predictively model drawing have had limitations: the most notable being that of quantifying the friction conditions at the die-work interface. Hence the specification of the latter is the ultimate goal of this research program.

  2. Experiments in cooperative manipulation: A system perspective

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1989-01-01

    In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force.

  3. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface

    PubMed Central

    Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele

    2017-01-01

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source. PMID:28961198

  4. Detection of Nuclear Sources by UAV Teleoperation Using a Visuo-Haptic Augmented Reality Interface.

    PubMed

    Aleotti, Jacopo; Micconi, Giorgio; Caselli, Stefano; Benassi, Giacomo; Zambelli, Nicola; Bettelli, Manuele; Zappettini, Andrea

    2017-09-29

    A visuo-haptic augmented reality (VHAR) interface is presented enabling an operator to teleoperate an unmanned aerial vehicle (UAV) equipped with a custom CdZnTe-based spectroscopic gamma-ray detector in outdoor environments. The task is to localize nuclear radiation sources, whose location is unknown to the user, without the close exposure of the operator. The developed detector also enables identification of the localized nuclear sources. The aim of the VHAR interface is to increase the situation awareness of the operator. The user teleoperates the UAV using a 3DOF haptic device that provides an attractive force feedback around the location of the most intense detected radiation source. Moreover, a fixed camera on the ground observes the environment where the UAV is flying. A 3D augmented reality scene is displayed on a computer screen accessible to the operator. Multiple types of graphical overlays are shown, including sensor data acquired by the nuclear radiation detector, a virtual cursor that tracks the UAV and geographical information, such as buildings. Experiments performed in a real environment are reported using an intense nuclear source.

  5. Combined virtual and real robotic test-bed for single operator control of multiple robots

    NASA Astrophysics Data System (ADS)

    Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash

    2010-04-01

    Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.

    The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noisemore » charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.« less

  7. MASCAL: RFID Tracking of Patients, Staff and Equipment to Enhance Hospital Response to Mass Casualty Events

    PubMed Central

    Fry, Emory A.; Lenert, Leslie A.

    2005-01-01

    Most medical facilities practice managing the large numbers of seriously injured patients expected during catastrophic events. As the demands on the healthcare team increase, however, the challenges faced by managers escalate, workflow bottlenecks develop and system capacity decreases. This paper describes MASCAL, an integrated software–hardware system designed to enhance management of resources at a hospital during a mass casualty situation. MASCAL uses active 802.11b asset tags to track patients, equipment and staff during the response to a disaster. The system integrates tag position information with data from personnel databases, medical information systems, registration applications and the US Navy’s TACMEDCS triage application in a custom visual disaster management environment. MASCAL includes interfaces for a hospital command center, local area managers (emergency room, operating suites, radiology, etc.) and registration personnel. MASCAL is an operational system undergoing functional evaluation at the Naval Medical Center, San Diego, CA. PMID:16779042

  8. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    NASA Astrophysics Data System (ADS)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  9. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track

    PubMed Central

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users—learning BEL, working with a completely new interface, and performing complex curation—a score so close to the overall SUS average highlights the usability of BELIEF. Database URL: BELIEF is available at http://www.scaiview.com/belief/ PMID:27694210

  10. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track.

    PubMed

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users-learning BEL, working with a completely new interface, and performing complex curation-a score so close to the overall SUS average highlights the usability of BELIEF.Database URL: BELIEF is available at http://www.scaiview.com/belief/. © The Author(s) 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Marky: a tool supporting annotation consistency in multi-user and iterative document annotation projects.

    PubMed

    Pérez-Pérez, Martín; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Lourenço, Anália

    2015-02-01

    Document annotation is a key task in the development of Text Mining methods and applications. High quality annotated corpora are invaluable, but their preparation requires a considerable amount of resources and time. Although the existing annotation tools offer good user interaction interfaces to domain experts, project management and quality control abilities are still limited. Therefore, the current work introduces Marky, a new Web-based document annotation tool equipped to manage multi-user and iterative projects, and to evaluate annotation quality throughout the project life cycle. At the core, Marky is a Web application based on the open source CakePHP framework. User interface relies on HTML5 and CSS3 technologies. Rangy library assists in browser-independent implementation of common DOM range and selection tasks, and Ajax and JQuery technologies are used to enhance user-system interaction. Marky grants solid management of inter- and intra-annotator work. Most notably, its annotation tracking system supports systematic and on-demand agreement analysis and annotation amendment. Each annotator may work over documents as usual, but all the annotations made are saved by the tracking system and may be further compared. So, the project administrator is able to evaluate annotation consistency among annotators and across rounds of annotation, while annotators are able to reject or amend subsets of annotations made in previous rounds. As a side effect, the tracking system minimises resource and time consumption. Marky is a novel environment for managing multi-user and iterative document annotation projects. Compared to other tools, Marky offers a similar visually intuitive annotation experience while providing unique means to minimise annotation effort and enforce annotation quality, and therefore corpus consistency. Marky is freely available for non-commercial use at http://sing.ei.uvigo.es/marky. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  13. Evaluation of FNS control systems: software development and sensor characterization.

    PubMed

    Riess, J; Abbas, J J

    1997-01-01

    Functional Neuromuscular Stimulation (FNS) systems activate paralyzed limbs by electrically stimulating motor neurons. These systems have been used to restore functions such as standing and stepping in people with thoracic level spinal cord injury. Research in our laboratory is directed at the design and evaluation of the control algorithms for generating posture and movement. This paper describes software developed for implementing FNS control systems and the characterization of a sensor system used to implement and evaluate controllers in the laboratory. In order to assess FNS control algorithms, we have developed a versatile software package using Lab VIEW (National Instruments, Corp). This package provides the ability to interface with sensor systems via serial port or A/D board, implement data processing and real-time control algorithms, and interface with neuromuscular stimulation devices. In our laboratory, we use the Flock of Birds (Ascension Technology Corp.) motion tracking sensor system to monitor limb segment position and orientation (6 degrees of freedom). Errors in the sensor system have been characterized and nonlinear polynomial models have been developed to account for these errors. With this compensation, the error in the distance measurement is reduced by 90 % so that the maximum error is less than 1 cm.

  14. Development And Evaluation Of Stable Isotope And Fluorescent Labeling And Detection Methodologies For Tracking Injected Bacteria During In Situ Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark E. Fuller; Tullis C. Onstott

    2003-12-17

    This report summarizes the results of a research project conducted to develop new methods to label bacterial cells so that they could be tracked and enumerated as they move in the subsurface after they are introduced into the groundwater (i.e., during bioaugmentation). Labeling methods based on stable isotopes of carbon (13C) and vital fluorescent stains were developed. Both approaches proved successful with regards to the ability to effectively label bacterial cells. Several methods for enumeration of fluorescently-labeled cells were developed and validated, including near-real time microplate spectrofluorometry that could be performed in the field. However, the development of a novelmore » enumeration method for the 13C-enriched cells, chemical reaction interface/mass spectrometry (CRIMS), was not successful due to difficulties with the proposed instrumentation. Both labeling methodologies were successfully evaluated and validated during laboratory- and field-scale bacterial transport experiments. The methods developed during this research should be useful for future bacterial transport work as well as other microbial ecology research in a variety of environments. A full bibliography of research articles and meeting presentations related to this project is included (including web links to abstracts and full text reprints).« less

  15. visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data.

    PubMed

    Scales, Matthew; Jäger, Roland; Migliorini, Gabriele; Houlston, Richard S; Henrion, Marc Y R

    2014-01-01

    We present VISual Plotting Interface for Genetics (visPIG; http://vispig.icr.ac.uk), a web application to produce multi-track, multi-scale, multi-region plots of genetic data. visPIG has been designed to allow users not well versed with mathematical software packages and/or programming languages such as R, Matlab®, Python, etc., to integrate data from multiple sources for interpretation and to easily create publication-ready figures. While web tools such as the UCSC Genome Browser or the WashU Epigenome Browser allow custom data uploads, such tools are primarily designed for data exploration. This is also true for the desktop-run Integrative Genomics Viewer (IGV). Other locally run data visualisation software such as Circos require significant computer skills of the user. The visPIG web application is a menu-based interface that allows users to upload custom data tracks and set track-specific parameters. Figures can be downloaded as PDF or PNG files. For sensitive data, the underlying R code can also be downloaded and run locally. visPIG is multi-track: it can display many different data types (e.g association, functional annotation, intensity, interaction, heat map data,…). It also allows annotation of genes and other custom features in the plotted region(s). Data tracks can be plotted individually or on a single figure. visPIG is multi-region: it supports plotting multiple regions, be they kilo- or megabases apart or even on different chromosomes. Finally, visPIG is multi-scale: a sub-region of particular interest can be 'zoomed' in. We describe the various features of visPIG and illustrate its utility with examples. visPIG is freely available through http://vispig.icr.ac.uk under a GNU General Public License (GPLv3).

  16. Patient portals and health apps: Pitfalls, promises, and what one might learn from the other.

    PubMed

    Baldwin, Jessica L; Singh, Hardeep; Sittig, Dean F; Giardina, Traber Davis

    2017-09-01

    Widespread use of health information technology (IT) could potentially increase patients' access to their health information and facilitate future goals of advancing patient-centered care. Despite having increased access to their health data, patients do not always understand this information or its implications, and digital health data can be difficult to navigate when displayed in a small-format, complex interface. In this paper, we discuss two forms of patient-facing health IT tools-patient portals and applications (apps)-and highlight how, despite several limitations of each, combining high-yield features of mobile health (mHealth) apps with portals could increase patient engagement and self-management and be more effective than either of them alone. Patient portal adoption is variable, and due to design and interface limitations and health literacy issues, many people find the portal difficult to use. Conversely, apps have experienced rapid adoption and traditionally have more consumer-friendly features with easy log-in access, real-time tracking, and simplified data display. These features make the applications more intuitive and easy-to-use than patient portals. While apps have their own limitations and might serve different purposes, patient portals could adopt some high-yield features and functions of apps that lead to engagement success with patients. We thus suggest that to improve user experience with future portals, developers could look towards mHealth apps in design, function, and user interface. Adding new features to portals may improve their use and empower patients to track their overall health and disease states. Nevertheless, both these health IT tools should be subjected to rigorous evaluation to ensure they meet their potential in improving patient outcomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Novel laser communications transceiver with internal gimbal-less pointing and tracking

    NASA Astrophysics Data System (ADS)

    Chalfant, Charles H., III; Orlando, Fred J., Jr.; Gregory, Jeff T.; Sulham, Clifford; O'Neal, Chad B.; Taylor, Geoffrey W.; Craig, Douglas M.; Foshee, James J.; Lovett, J. Timothy

    2002-12-01

    This paper describes a novel laser communications transceiver for use in multi-platform satellite networks or clusters that provides internal pointing and tracking technique allowing static mounting of the transceiver subsystems and minimal use of mechanical stabilization techniques. This eliminates the need for the large, power hungry, mechanical gimbals that are required for laser cross-link pointing, acquisition and tracking. The miniature transceiver is designed for pointing accuracies required for satellite cross-link distances of between 500 meters to 5000 meters. Specifically, the designs are targeting Air Force Research Lab's TechSat21 Program, although alternative transceiver configurations can provide for much greater link distances and other satellite systems. The receiver and transmitter are connected via fiber optic cabling from a separate electronics subsystem containing the optoelectronics PCBs, thereby eliminating active optoelectronic elements from the transceiver's mechanical housing. The internal acquisition and tracking capability is provided by an advanced micro-electro-mechanical system (MEMS) and an optical design that provides a specific field-of-view based on the satellite cluster's interface specifications. The acquisition & tracking control electronics will utilize conventional closed loop tracking techniques. The link optical power budget and optoelectronics designs allow use of transmitter sources with output powers of near 100 mW. The transceiver will provide data rates of up to 2.5 Gbps and operate at either 1310 nm or 1550 nm. In addition to space-based satellite to satellite cross-links, we are planning to develop a broad range of applications including air to air communications between highly mobile airborne platforms and terrestrial fixed point to point communications.

  18. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering.

    PubMed

    He, Zhen; Jiang, Hui-Jun; Wu, Long-Long; Liu, Jian-Wei; Wang, Geng; Wang, Xiao; Wang, Jin-Long; Hou, Zhong-Huai; Chen, Gang; Yu, Shu-Hong

    2018-07-02

    Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An automatic eye detection and tracking technique for stereo video sequences

    NASA Astrophysics Data System (ADS)

    Paduru, Anirudh; Charalampidis, Dimitrios; Fouts, Brandon; Jovanovich, Kim

    2009-05-01

    Human-computer interfacing (HCI) describes a system or process with which two information processors, namely a human and a computer, attempt to exchange information. Computer-to-human (CtH) information transfer has been relatively effective through visual displays and sound devices. On the other hand, the human-tocomputer (HtC) interfacing avenue has yet to reach its full potential. For instance, the most common HtC communication means are the keyboard and mouse, which are already becoming a bottleneck in the effective transfer of information. The solution to the problem is the development of algorithms that allow the computer to understand human intentions based on their facial expressions, head motion patterns, and speech. In this work, we are investigating the feasibility of a stereo system to effectively determine the head position, including the head rotation angles, based on the detection of eye pupils.

  20. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  1. Design requirements for ubiquitous computing environments for healthcare professionals.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2004-01-01

    Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.

  2. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.

    PubMed

    Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina

    2018-06-22

    Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.

  3. BFPTool: a software tool for analysis of Biomembrane Force Probe experiments.

    PubMed

    Šmít, Daniel; Fouquet, Coralie; Doulazmi, Mohamed; Pincet, Frédéric; Trembleau, Alain; Zapotocky, Martin

    2017-01-01

    The Biomembrane Force Probe is an approachable experimental technique commonly used for single-molecule force spectroscopy and experiments on biological interfaces. The technique operates in the range of forces from 0.1 pN to 1000 pN. Experiments are typically repeated many times, conditions are often not optimal, the captured video can be unstable and lose focus; this makes efficient analysis challenging, while out-of-the-box non-proprietary solutions are not freely available. This dedicated tool was developed to integrate and simplify the image processing and analysis of videomicroscopy recordings from BFP experiments. A novel processing feature, allowing the tracking of the pipette, was incorporated to address a limitation of preceding methods. Emphasis was placed on versatility and comprehensible user interface implemented in a graphical form. An integrated analytical tool was implemented to provide a faster, simpler and more convenient way to process and analyse BFP experiments.

  4. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.

  5. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q.

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments relies upon the global momentum conservation of the fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. Numerical examples illustrate the method's application to predicting bulk fluid motion including lateral propellant slosh in low-g conditions.

  6. NucliTrack: an integrated nuclei tracking application

    PubMed Central

    Cooper, Sam; Barr, Alexis R.; Glen, Robert; Bakal, Chris

    2017-01-01

    Abstract Summary Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack’s interactive, graphical interface makes it significantly more user friendly. Availability and implementation NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. Contact sam@socooper.com Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637183

  7. Onboard System Evaluation of Rotors Vibration, Engines (OBSERVE) monitoring System

    DTIC Science & Technology

    1992-07-01

    consists of a Data Acquisiiton Unit (DAU), Control and Display Unit ( CADU ), Universal Tracking Devices (UTD), Remote Cockpit Display (RCD) and a PC...and Display Unit ( CADU ) - The CADU provides data storage and a graphical user interface neccesary to display both the measured data and diagnostic...information. The CADU has an interface to a Credit Card Memory (CCM) which operates similar to a disk drive, allowing the storage of data and programs. The

  8. Gloved Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  9. The development of an imaging informatics-based multi-institutional platform to support sports performance and injury prevention in track and field

    NASA Astrophysics Data System (ADS)

    Liu, Joseph; Wang, Ximing; Verma, Sneha; McNitt-Gray, Jill; Liu, Brent

    2018-03-01

    The main goal of sports science and performance enhancement is to collect video and image data, process them, and quantify the results, giving insight to help athletes improve technique. For long jump in track and field, the processed output of video with force vector overlays and force calculations allow coaches to view specific stages of the hop, step, and jump, and identify how each stage can be improved to increase jump distance. Outputs also provide insight into how athletes can better maneuver to prevent injury. Currently, each data collection site collects and stores data with their own methods. There is no standard for data collection, formats, or storage. Video files and quantified results are stored in different formats, structures, and locations such as Dropbox and hard drives. Using imaging informatics-based principles we can develop a platform for multiple institutions that promotes the standardization of sports performance data. In addition, the system will provide user authentication and privacy as in clinical trials, with specific user access rights. Long jump data collected from different field sites will be standardized into specified formats before database storage. Quantified results from image-processing algorithms are stored similar to CAD algorithm results. The system will streamline the current sports performance data workflow and provide a user interface for athletes and coaches to view results of individual collections and also longitudinally across different collections. This streamlined platform and interface is a tool for coaches and athletes to easily access and review data to improve sports performance and prevent injury.

  10. Unraveling bacterial networks and their antimicrobial susceptibility on silicon microarchitectures using intrinsic phase-shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Leonard, Heidi; Holtzman, Liran; Haimov, Yuri; Weizman, Daniel; Kashi, Yechezkel; Nativ, Ofer; Halachmi, Sarel; Segal, Ester

    2018-02-01

    We have developed a rapid phenotypic antimicrobial susceptibility testing (AST) in which photonic 2D silicon microarrays are employed as both the optical transducer element and as a preferable solid-liquid interface for bacterial colonization. We harness the intrinsic ability of the micro-architectures to relay optical phase-shift reflectometric interference spectroscopic measurements (termed PRISM) and incorporate it into a platform for culture-free, label-free tracking of bacterial accumulation, proliferation, and death. This assay employs microfluidic channels interfaced with PRISM chips and is carried out in a two-stage process, namely bacteria seeding and antibiotic incubation. Bacteria proliferation within the microtopologies results in an increase in refractive index of the medium, yielding an increase in optical path difference, while cell death or bacteriostatic activity results in decreasing or unchanged values. The optical responses of bacteria to various concentrations of relevant antibiotics have been tracked in real time, allowing for accurate determination of the minimum inhibitory concentration (MIC) values within 2-3 hours. We further extended this work to analyze antibiotic susceptibilities of clinical isolates and direct urine samples derived from patients at neighboring hospitals in newly designed, disposable microfluidic devices. This has opened the door to the observation of unique bacterial behaviors, as we can evaluate bacterial adhesion, growth, and antibiotic resistance on different microarchitectures, different surface chemistries, and even different strains. Motility, charge, and biofilm abilities have been explored for their effect of bacterial adhesion to the microstructures as we further develop our method of rapid, label-free AST for full clinical application.

  11. Eye-gaze determination of user intent at the computer interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, J.H.; Schryver, J.C.

    1993-12-31

    Determination of user intent at the computer interface through eye-gaze monitoring can significantly aid applications for the disabled, as well as telerobotics and process control interfaces. Whereas current eye-gaze control applications are limited to object selection and x/y gazepoint tracking, a methodology was developed here to discriminate a more abstract interface operation: zooming-in or out. This methodology first collects samples of eve-gaze location looking at controlled stimuli, at 30 Hz, just prior to a user`s decision to zoom. The sample is broken into data frames, or temporal snapshots. Within a data frame, all spatial samples are connected into a minimummore » spanning tree, then clustered, according to user defined parameters. Each cluster is mapped to one in the prior data frame, and statistics are computed from each cluster. These characteristics include cluster size, position, and pupil size. A multiple discriminant analysis uses these statistics both within and between data frames to formulate optimal rules for assigning the observations into zooming, zoom-out, or no zoom conditions. The statistical procedure effectively generates heuristics for future assignments, based upon these variables. Future work will enhance the accuracy and precision of the modeling technique, and will empirically test users in controlled experiments.« less

  12. Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants

    NASA Astrophysics Data System (ADS)

    Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.

    Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.

  13. Atomization simulations using an Eulerian-VOF-Lagrangian method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Chen, C. P.

    1994-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservations are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present innovative approach by simulating benchmark problems including the coaxial jet atomization.

  14. ESTRACK Support for CCSDS Space Communication Cross Support Service Management

    NASA Astrophysics Data System (ADS)

    Dreihahn, H.; Unal, M.; Hoffmann, A.

    2011-08-01

    The CCSDS Recommended Standard for Space Communication Cross Support Service Management (SCCS SM) published as Blue Book in August 2009 is intended to provide standardised interfaces to negotiate, schedule, and manage the support of space missions by ground station network operators. ESA as a member of CCSDS has actively supported the development of the SCCS SM standard and is obviously interested in adopting it. Support of SCCS SM conforming interfaces and procedures includes:• Provision of SCCS SM conforming interfaces to non ESA missions;• Use of SCCS SM interfaces provided by other ground station operators to manage cross support of ESA missions;• In longer terms potentially use of SCCS SM interfaces and procedures also internally for support of ESA missions by ESTRACK.In the recent years ESOC has automated management and scheduling of ESA Tracking Network (ESTRACK) services by the specification, development, and deployment of the ESTRACK Management System (EMS), more specifically its planning and scheduling components ESTRACK Planning System and ESTRACK Scheduling System. While full support of the SCCS SM standard will involve also other elements of the ground segment operated by ESOC such as the Flight Dynamic System, EMS is at the core of service management and it is therefore appropriate to initially focus on the question to what extent EMS can support SCCS SM. This paper presents results of the initial analysis phase. After briefly presenting the SCCS SM standard and the relevant components of the ESTRACK management system, we will discuss the initial deployment options, open issues and a tentative roadmap for the way to proceed. Obviously the adoption of a cross support standard requires and discussion and coordination of the involved parties and agencies, especially in the light of the fact that the SCCS SM standard has many optional parts.

  15. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  16. Femur-mounted navigation system for the arthroscopic treatment of femoroacetabular impingement

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Hwang, D. S.; Yoon, Y. S.

    2013-07-01

    Femoroacetabular impingement stems from an abnormal shape of the acetabulum and proximal femur. It is treated by resection of damaged soft tissue and by the shaping of bone to resemble normal features. The arthroscopic treatment of femoroacetabular impingement has many advantages, including minimal incisions, rapid recovery, and less pain. However, in some cases, revision is needed owing to the insufficient resection of damaged bone from a misreading of the surgical site. The limited view of arthroscopy is the major reason for the complications. In this research, a navigation method for the arthroscopic treatment of femoroacetabular impingement is developed. The proposed navigation system consists of femur attachable measurement device and user interface. The bone mounted measurement devices measure points on head-neck junction for registration and position of surgical instrument. User interface shows the three-dimensional model of patient's femur and surgical instrument position that is tracked by measurement device. Surgeon can know the three-dimensional anatomical structure of hip joint and surgical instrument position on surgical site using navigation system. Surface registration was used to obtain relation between patient's coordinate at the surgical site and coordinate of three-dimensional model of femur. In this research, we evaluated the proposed navigation system using plastic model bone. It is expected that the surgical tool tracking position accuracy will be less than 1 mm.

  17. Demonstration of a Semi-Autonomous Hybrid Brain-Machine Interface using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic

    PubMed Central

    McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S.; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S.; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.

    2014-01-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914

  18. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    PubMed

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  19. Nutrient Tracking Tool - A user-friendly tool for evaluating the water and air quality and quantity as affected by various agricultural management practices

    NASA Astrophysics Data System (ADS)

    Saleh, A.; Niraula, R.; Gallego, O.; Osei, E.; Kannan, N.

    2017-12-01

    The Nutrient Tracking Tool (NTT) is a user-friendly web-based computer program that estimate nutrient (nitrogen and phosphorus) and sediment losses from fields managed under a variety of cropping patterns and management practices. The NTT includes a user-friendly web-based interface and is linked to the Agricultural Policy Environmental eXtender (APEX) model. It also accesses USDA-NRCS's Web Soil Survey to obtain field, weather, and soil information. NTT provides producers, government officials, and other users with a fast and efficient method of estimating the nutrient, sediment, and atmosphoric gases (N2o, Co2, and NH4) losses, and crop production under different conservation practices regims at the farm-level. The information obtained from NTT can help producers to determine the most cost-effective conservation practice(s) to reduce the nutrient and sediment losses while optimizing the crop production. Also, the recent version of NTT (NTTg3) has been developed for those coutries without access to national databasis, such as soils and wether. The NTTg3 also has been designed as easy to use APEX interface. NTT is currently being evaluated for trading and other programs at Cheaseapea Bay regions and numerous states in US. During this presentation the new capabilities of NTTg3 will be described and demonstrated.

  20. Shuttle communication and tracking systems signal design and interface compatibility analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Various options for the Dedicated Payload Communication Link (DPCL) were evaluated. Specific subjects addressed include: payload to DPCL power transfer in the proximity of the payload, DPCL antenna pointing considerations, and DPCL transceiver implementations which can be mounted on the deployed antenna boom. Additional analysis of the Space Telescope performance was conducted. The feasibility of using the Global Positioning System (GPS) for attitude determination and control for large spacecraft was examined. The objective of the Shuttle Orbiter Radar Test and Evaluation (SORTE) program was to quantify the Ku-band radar tracking accuracy using White Sands Missile Range (WSMR) radar and optical tracking equipment, with helicopter and balloon targets.

  1. A preliminary experiment definition for video landmark acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.

    1976-01-01

    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.

  2. Electromigration Related Effects At Metal-Metal Interfaces: Application To Railguns

    DTIC Science & Technology

    2007-03-01

    found at the armature-rail contact due to local melting, to determine the kinetics of liquid flow Ga under electric current conditions. For this, a...model system comprising a bead of Ga on a Cu thin film track was devised in order to enable liquefaction and current induced movement of Ga to occur...along the Cu track. Upon application of current, Ga underwent liquefaction due to Joule heating and once liquid, it rapidly migrated along the Cu

  3. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  4. Design, fabrication, test and delivery of a K-band antenna breadboard model

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a research effort to develop a Ku-Band single channel monopulse antenna with significant improvements in efficiency and bandwidth are reported. A single aperture, multimode horn, utilized in a near field Cassegrainian configuration, was the technique selected for achieving the desired efficiency and bandwidth performance. In order to provide wide polarization flexibility, a wire grid, space filter polarizer was developed. A solid state switching network with appropriate driving electronics provides the receive channel sum and difference signal interface with an existing Apollo type tracking electronics subsystem. A full scale breadboard model of the antenna was fabricated and tested. Performance of the model was well within the requirements and goals of the contract.

  5. Modifications and integration of the electronic tracking board in a pediatric emergency department.

    PubMed

    Dexheimer, Judith W; Kennebeck, Stephanie

    2013-07-01

    Electronic health records (EHRs) are used for data storage; provider, laboratory, and patient communication; clinical decision support; procedure and medication orders; and decision support alerts. Clinical decision support is part of any EHR and is designed to help providers make better decisions. The emergency department (ED) poses a unique environment to the use of EHRs and clinical decision support. Used effectively, computerized tracking boards can help improve flow, communication, and the dissemination of pertinent visit information between providers and other departments in a busy ED. We discuss the unique modifications and decisions made in the implementation of an EHR and computerized tracking board in a pediatric ED. We discuss the changing views based on provider roles, customization to the user interface including the layout and colors, decision support, tracking board best practices collected from other institutions and colleagues, and a case study of using reminders on the electronic tracking board to drive pain reassessments.

  6. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  7. A Study on the Deriving Requirements of ARGO Operation System

    NASA Astrophysics Data System (ADS)

    Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk

    2009-12-01

    Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.

  8. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  9. The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes

    PubMed Central

    Ramot, Daniel; Johnson, Brandon E.; Berry, Tommie L.; Carnell, Lucinda; Goodman, Miriam B.

    2008-01-01

    Background Caenorhabditis elegans locomotion is a simple behavior that has been widely used to dissect genetic components of behavior, synaptic transmission, and muscle function. Many of the paradigms that have been created to study C. elegans locomotion rely on qualitative experimenter observation. Here we report the implementation of an automated tracking system developed to quantify the locomotion of multiple individual worms in parallel. Methodology/Principal Findings Our tracking system generates a consistent measurement of locomotion that allows direct comparison of results across experiments and experimenters and provides a standard method to share data between laboratories. The tracker utilizes a video camera attached to a zoom lens and a software package implemented in MATLAB®. We demonstrate several proof-of-principle applications for the tracker including measuring speed in the absence and presence of food and in the presence of serotonin. We further use the tracker to automatically quantify the time course of paralysis of worms exposed to aldicarb and levamisole and show that tracker performance compares favorably to data generated using a hand-scored metric. Conclusions/Signficance Although this is not the first automated tracking system developed to measure C. elegans locomotion, our tracking software package is freely available and provides a simple interface that includes tools for rapid data collection and analysis. By contrast with other tools, it is not dependent on a specific set of hardware. We propose that the tracker may be used for a broad range of additional worm locomotion applications including genetic and chemical screening. PMID:18493300

  10. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

    NASA Astrophysics Data System (ADS)

    Borquist, Eric

    Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.

  11. Problem formulation, metrics, open government, and on-line collaboration

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schofield, K.; Young, S.; Shaw, D.

    2010-12-01

    Problem formulation leading to effective environmental management, including synthesis and application of science by government agencies, may benefit from collaborative on-line environments. This is illustrated by two interconnected projects: 1) literature-based evidence tools that support causal assessment and problem formulation, and 2) development of output, outcome, and sustainability metrics for tracking environmental conditions. Specifically, peer-production mechanisms allow for global contribution to science-based causal evidence databases, and subsequent crowd-sourced development of causal networks supported by that evidence. In turn, science-based causal networks may inform problem formulation and selection of metrics or indicators to track environmental condition (or problem status). Selecting and developing metrics in a collaborative on-line environment may improve stakeholder buy-in, the explicit relevance of metrics to planning, and the ability to approach problem apportionment or accountability, and to define success or sustainability. Challenges include contribution governance, data-sharing incentives, linking on-line interfaces to data service providers, and the intersection of environmental science and social science. Degree of framework access and confidentiality may vary by group and/or individual, but may ultimately be geared at demonstrating connections between science and decision making and supporting a culture of open government, by fostering transparency, public engagement, and collaboration.

  12. Nested Dissection Interface Reconstruction in Pececillo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jibben, Zechariah Joel; Carlson, Neil N.; Francois, Marianne M.

    A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo, a mini-app for Truchas, which is the ASC code for casting and additive manufacturing. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further research in contact angle estimates and surface tension calculations.

  13. Kaizen newspaper

    NASA Technical Reports Server (NTRS)

    Shearer, Scott C. (Inventor); Proferes, John Nicholas (Inventor); Baker, Sr., Mitchell D. (Inventor); Reilly, Kenneth B. (Inventor); Tiwari, Vijai K. (Inventor)

    2013-01-01

    Systems, computer program products, and methods are disclosed for tracking an improvement event. An embodiment includes an event interface configured to receive a plurality of entries related to each of a plurality of improvement events. The plurality of entries includes a project identifier for the improvement event, a creation date, an objective, an action related to reaching the objective, and a first deadline related to the improvement event. A database interface is configured to store the plurality of entries in an event database.

  14. A comparative study of interface reconstruction methods for multi-material ALE simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharik, Milan; Garimalla, Rao; Schofield, Samuel

    2009-01-01

    In this paper we compare the performance of different methods for reconstructing interfaces in multi-material compressible flow simulations. The methods compared are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF method based on power diagram partitioning of cells and the Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides the most accurate tracking of interfaces, followed by the VOF method with the right material ordering. The material-order-independent VOF method performs some-what worse than the above two while the solutions with VOF using the wrong material order are considerably worse.

  15. Military Interoperable Digital Hospital Testbed (MIDHT) Phase III

    DTIC Science & Technology

    2014-10-01

    silently changed, it is common knowledge  that some  Java  Development  Kit (JDK) implementations create slightly differently  formatted PEM and  DER...tracking software  JKS  Java  KeyStore  LDAP  Lightweight Directory Access Protocol  MHS  Military Health System  MIMC  Conemaugh Miners Medical... MySQL ~ Conemaugh Health System ’-J Common Access Layer (CAL) Interface I I t J J AIIScripts I I McKe-n J Sunque.st Horizon EHR Lab Patient

  16. Sliding temperatures of ice skates

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.; Najarian, L.; Smith, H. B.

    1997-06-01

    The two theories developed to explain the low friction of ice, pressure melting and frictional heating, require opposite temperature shifts at the ice-skate interface. The arguments against pressure melting are strong, but only theoretical. A set of direct temperature measurements shows that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. Like snow skis, ice skates are warmed by sliding and then cool when the sliding stops. The temperature increases with speed and with thermal insulation. The sliding leaves a warm track on the ice surface behind the skate and the skate sprays warm ejecta.

  17. Tracking and data relay satellite fault isolation and correction using PACES: Power and attitude control expert system

    NASA Technical Reports Server (NTRS)

    Erikson, Carol-Lee; Hooker, Peggy

    1989-01-01

    The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.

  18. Infrared Imagery of Shuttle (IRIS). Task 1

    NASA Technical Reports Server (NTRS)

    Chocol, C. J.

    1977-01-01

    Assessment of available IR sensor technology showed that the four aerothermodynamic conditions of interest during the entry trajectory of space shuttle can be accommodated by an aircraft flying parallel to the orbiter reentry ground track. Thermal information from the sides of the vehicle can be obtained with degraded performance (temperatures below 800 K) by flying the C-141 aircraft on the opposite side of the shuttle ground track and in the direction opposite that which is optimum for lower surface viewing. An acquisition system using a 6.25-cm aperture telescope and a single indium antimonide detector were designed to meet the acquisition requirements and interface with the 91.5-cm telescope with minimum modification. An image plane system using 600 indium antimonide detectors in two arrays which requires no modification to the existing telescope was also designed. Currently available components were used in a data handling system with interfaces with the experimentors station and the HP2100 computer.

  19. A neural-based remote eye gaze tracker under natural head motion.

    PubMed

    Torricelli, Diego; Conforto, Silvia; Schmid, Maurizio; D'Alessio, Tommaso

    2008-10-01

    A novel approach to view-based eye gaze tracking for human computer interface (HCI) is presented. The proposed method combines different techniques to address the problems of head motion, illumination and usability in the framework of low cost applications. Feature detection and tracking algorithms have been designed to obtain an automatic setup and strengthen the robustness to light conditions. An extensive analysis of neural solutions has been performed to deal with the non-linearity associated with gaze mapping under free-head conditions. No specific hardware, such as infrared illumination or high-resolution cameras, is needed, rather a simple commercial webcam working in visible light spectrum suffices. The system is able to classify the gaze direction of the user over a 15-zone graphical interface, with a success rate of 95% and a global accuracy of around 2 degrees , comparable with the vast majority of existing remote gaze trackers.

  20. Numerical simulation of phase transition problems with explicit interface tracking

    DOE PAGES

    Hu, Yijing; Shi, Qiangqiang; de Almeida, Valmor F.; ...

    2015-12-19

    Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface by the front tracking method. The most pressing issue is the accounting of topological changes suffered by the interfacemore » between phases wherein break up and/or merge takes place. The underlying physics of topological changes require the incorporation of space-time subscales not at reach at the moment. Therefore we use heuristic geometrical arguments to reconnect phases in space. This heuristic approach provides new insight in various applications and it is extensible to include subscale physics and chemistry in the future. We demonstrate the method on applications such as simulating freezing, melting, dissolution, and precipitation. The later examples also include the coupling of the phase transition solution with the Navier-Stokes equations for the effect of flow convection.« less

  1. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  2. Crystal Identification in Dual-Layer-Offset DOI-PET Detectors Using Stratified Peak Tracking Based on SVD and Mean-Shift Algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Dai, Tiantian; Ma, Tianyu; Liu, Yaqiang; Gu, Yu

    2016-10-01

    An Anger-logic based pixelated PET detector block requires a crystal position map (CPM) to assign the position of each detected event to a most probable crystal index. Accurate assignments are crucial to PET imaging performance. In this paper, we present a novel automatic approach to generate the CPMs for dual-layer offset (DLO) PET detectors using a stratified peak tracking method. In which, the top and bottom layers are distinguished by their intensity difference and the peaks of the top and bottom layers are tracked based on a singular value decomposition (SVD) and mean-shift algorithm in succession. The CPM is created by classifying each pixel to its nearest peak and assigning the pixel with the crystal index of that peak. A Matlab-based graphical user interface program was developed including the automatic algorithm and a manual interaction procedure. The algorithm was tested for three DLO PET detector blocks. Results show that the proposed method exhibits good performance as well as robustness for all the three blocks. Compared to the existing methods, our approach can directly distinguish the layer and crystal indices using the information of intensity and offset grid pattern.

  3. NCBI Epigenomics: what's new for 2013.

    PubMed

    Fingerman, Ian M; Zhang, Xuan; Ratzat, Walter; Husain, Nora; Cohen, Robert F; Schuler, Gregory D

    2013-01-01

    The Epigenomics resource at the National Center for Biotechnology Information (NCBI) has been created to serve as a comprehensive public repository for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). We have constructed this resource by selecting the subset of epigenetics-specific data from the Gene Expression Omnibus (GEO) database and then subjecting them to further review and annotation. Associated data tracks can be viewed using popular genome browsers or downloaded for local analysis. We have performed extensive user testing throughout the development of this resource, and new features and improvements are continuously being implemented based on the results. We have made substantial usability improvements to user interfaces, enhanced functionality, made identification of data tracks of interest easier and created new tools for preliminary data analyses. Additionally, we have made efforts to enhance the integration between the Epigenomics resource and other NCBI databases, including the Gene database and PubMed. Data holdings have also increased dramatically since the initial publication describing the NCBI Epigenomics resource and currently consist of >3700 viewable and downloadable data tracks from 955 biological sources encompassing five well-studied species. This updated manuscript highlights these changes and improvements.

  4. NCBI Epigenomics: What’s new for 2013

    PubMed Central

    Fingerman, Ian M.; Zhang, Xuan; Ratzat, Walter; Husain, Nora; Cohen, Robert F.; Schuler, Gregory D.

    2013-01-01

    The Epigenomics resource at the National Center for Biotechnology Information (NCBI) has been created to serve as a comprehensive public repository for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). We have constructed this resource by selecting the subset of epigenetics-specific data from the Gene Expression Omnibus (GEO) database and then subjecting them to further review and annotation. Associated data tracks can be viewed using popular genome browsers or downloaded for local analysis. We have performed extensive user testing throughout the development of this resource, and new features and improvements are continuously being implemented based on the results. We have made substantial usability improvements to user interfaces, enhanced functionality, made identification of data tracks of interest easier and created new tools for preliminary data analyses. Additionally, we have made efforts to enhance the integration between the Epigenomics resource and other NCBI databases, including the Gene database and PubMed. Data holdings have also increased dramatically since the initial publication describing the NCBI Epigenomics resource and currently consist of >3700 viewable and downloadable data tracks from 955 biological sources encompassing five well-studied species. This updated manuscript highlights these changes and improvements. PMID:23193265

  5. Eye-tracking of visual attention in web-based assessment using the Force Concept Inventory

    NASA Astrophysics Data System (ADS)

    Han, Jing; Chen, Li; Fu, Zhao; Fritchman, Joseph; Bao, Lei

    2017-07-01

    This study used eye-tracking technology to investigate students’ visual attention while taking the Force Concept Inventory (FCI) in a web-based interface. Eighty nine university students were randomly selected into a pre-test group and a post-test group. Students took the 30-question FCI on a computer equipped with an eye-tracker. There were seven weeks of instruction between the pre- and post-test data collection. Students’ performance on the FCI improved significantly from pre-test to post-test. Meanwhile, the eye-tracking results reveal that the time students spent on taking the FCI test was not affected by student performance and did not change from pre-test to post-test. Analysis of students’ attention to answer choices shows that on the pre-test students primarily focused on the naïve choices and ignored the expert choices. On the post-test, although students had shifted their primary attention to the expert choices, they still kept a high level of attention to the naïve choices, indicating significant conceptual mixing and competition during problem solving. Outcomes of this study provide new insights on students’ conceptual development in learning physics.

  6. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  7. Real-time skeleton tracking for embedded systems

    NASA Astrophysics Data System (ADS)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  8. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.

  9. A unified approach for composite cost reporting and prediction in the ACT program

    NASA Technical Reports Server (NTRS)

    Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid

    1991-01-01

    The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.

  10. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and validation activities. The DMS includes general system functions, including task lists, electronic signature, non-conformance reports and message systems, that cut vertically across the remaining subsystems. Oracle's security features were utilized to ensure that only authorized users were allowed to log in, and to restrict access to system functionality according to user role.« less

  11. Instability Mechanisms of Thermally-Driven Interfacial Flows in Liquid-Encapsulated Crystal Growth

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, Ali

    1997-01-01

    During the past year, a great deal of effort was focused on the enhancement and refinement of the computational tools developed as part of our previous NASA grant. In particular, the interface mollification algorithm developed earlier was extended to incorporate the effects of surface-rheological properties in order to allow the study of thermocapillary flows in the presence of surface contamination. These tools will be used in the computational component of the proposed research in the remaining years of this grant. A detailed description of the progress made in this area is provided elsewhere. Briefly, the method developed allows for the convection and diffusion of bulk-insoluble surfactants on a moving and deforming interface. The novelty of the method is its grid independence: there is no need for front tracking, surface reconstruction, body-fitted grid generation, or metric evaluations; these are all very expensive computational tasks in three dimensions. For small local radii of curvature there is a need for local grid adaption so that the smearing thickness remains a small fraction of the radius of curvature. A special Neumann boundary condition was devised and applied so that the calculated surfactant concentration has no variations normal to the interface, and it is hence truly a surface-defined quantity. The discretized governing equations are solved subsequently using a time-split integration scheme which updates the concentration and the shape successively. Results demonstrate excellent agreement between the computed and exact solutions.

  12. Design and development of an ethnically-diverse imaging informatics-based eFolder system for multiple sclerosis patients.

    PubMed

    Ma, Kevin C; Fernandez, James R; Amezcua, Lilyana; Lerner, Alex; Shiroishi, Mark S; Liu, Brent J

    2015-12-01

    MRI has been used to identify multiple sclerosis (MS) lesions in brain and spinal cord visually. Integrating patient information into an electronic patient record system has become key for modern patient care in medicine in recent years. Clinically, it is also necessary to track patients' progress in longitudinal studies, in order to provide comprehensive understanding of disease progression and response to treatment. As the amount of required data increases, there exists a need for an efficient systematic solution to store and analyze MS patient data, disease profiles, and disease tracking for both clinical and research purposes. An imaging informatics based system, called MS eFolder, has been developed as an integrated patient record system for data storage and analysis of MS patients. The eFolder system, with a DICOM-based database, includes a module for lesion contouring by radiologists, a MS lesion quantification tool to quantify MS lesion volume in 3D, brain parenchyma fraction analysis, and provide quantitative analysis and tracking of volume changes in longitudinal studies. Patient data, including MR images, have been collected retrospectively at University of Southern California Medical Center (USC) and Los Angeles County Hospital (LAC). The MS eFolder utilizes web-based components, such as browser-based graphical user interface (GUI) and web-based database. The eFolder database stores patient clinical data (demographics, MS disease history, family history, etc.), MR imaging-related data found in DICOM headers, and lesion quantification results. Lesion quantification results are derived from radiologists' contours on brain MRI studies and quantified into 3-dimensional volumes and locations. Quantified results of white matter lesions are integrated into a structured report based on DICOM-SR protocol and templates. The user interface displays patient clinical information, original MR images, and viewing structured reports of quantified results. The GUI also includes a data mining tool to handle unique search queries for MS. System workflow and dataflow steps has been designed based on the IHE post-processing workflow profile, including workflow process tracking, MS lesion contouring and quantification of MR images at a post-processing workstation, and storage of quantitative results as DICOM-SR in DICOM-based storage system. The web-based GUI is designed to display zero-footprint DICOM web-accessible data objects (WADO) and the SR objects. The MS eFolder system has been designed and developed as an integrated data storage and mining solution in both clinical and research environments, while providing unique features, such as quantitative lesion analysis and disease tracking over a longitudinal study. A comprehensive image and clinical data integrated database provided by MS eFolder provides a platform for treatment assessment, outcomes analysis and decision-support. The proposed system serves as a platform for future quantitative analysis derived automatically from CAD algorithms that can also be integrated within the system for individual disease tracking and future MS-related research. Ultimately the eFolder provides a decision-support infrastructure that can eventually be used as add-on value to the overall electronic medical record. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Design and development of an ethnically-diverse imaging informatics-based eFolder system for multiple sclerosis patients

    PubMed Central

    Ma, Kevin C.; Fernandez, James R.; Amezcua, Lilyana; Lerner, Alex; Shiroishi, Mark S.; Liu, Brent J.

    2016-01-01

    Purpose MRI has been used to identify multiple sclerosis (MS) lesions in brain and spinal cord visually. Integrating patient information into an electronic patient record system has become key for modern patient care in medicine in recent years. Clinically, it is also necessary to track patients' progress in longitudinal studies, in order to provide comprehensive understanding of disease progression and response to treatment. As the amount of required data increases, there exists a need for an efficient systematic solution to store and analyze MS patient data, disease profiles, and disease tracking for both clinical and research purposes. Method An imaging informatics based system, called MS eFolder, has been developed as an integrated patient record system for data storage and analysis of MS patients. The eFolder system, with a DICOM-based database, includes a module for lesion contouring by radiologists, a MS lesion quantification tool to quantify MS lesion volume in 3D, brain parenchyma fraction analysis, and provide quantitative analysis and tracking of volume changes in longitudinal studies. Patient data, including MR images, have been collected retrospectively at University of Southern California Medical Center (USC) and Los Angeles County Hospital (LAC). The MS eFolder utilizes web-based components, such as browser-based graphical user interface (GUI) and web-based database. The eFolder database stores patient clinical data (demographics, MS disease history, family history, etc.), MR imaging-related data found in DICOM headers, and lesion quantification results. Lesion quantification results are derived from radiologists' contours on brain MRI studies and quantified into 3-dimensional volumes and locations. Quantified results of white matter lesions are integrated into a structured report based on DICOM-SR protocol and templates. The user interface displays patient clinical information, original MR images, and viewing structured reports of quantified results. The GUI also includes a data mining tool to handle unique search queries for MS. System workflow and dataflow steps has been designed based on the IHE post-processing workflow profile, including workflow process tracking, MS lesion contouring and quantification of MR images at a post-processing workstation, and storage of quantitative results as DICOM-SR in DICOM-based storage system. The web-based GUI is designed to display zero-footprint DICOM web-accessible data objects (WADO) and the SR objects. Summary The MS eFolder system has been designed and developed as an integrated data storage and mining solution in both clinical and research environments, while providing unique features, such as quantitative lesion analysis and disease tracking over a longitudinal study. A comprehensive image and clinical data integrated database provided by MS eFolder provides a platform for treatment assessment, outcomes analysis and decision-support. The proposed system serves as a platform for future quantitative analysis derived automatically from CAD algorithms that can also be integrated within the system for individual disease tracking and future MS-related research. Ultimately the eFolder provides a decision-support infrastructure that can eventually be used as add-on value to the overall electronic medical record. PMID:26564667

  14. Simulation of the «COSMONAUT-ROBOT» System Interaction on the Lunar Surface Based on Methods of Machine Vision and Computer Graphics

    NASA Astrophysics Data System (ADS)

    Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.

    2017-05-01

    Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.

  15. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    NASA Astrophysics Data System (ADS)

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.

    2016-10-01

    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  16. Revised Extended Grid Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, Roger L.

    The Revised Eolus Grid Library (REGL) is a mesh-tracking library that was developed for use with the MCNP6TM computer code so that (radiation) particles can track on an unstructured mesh. The unstructured mesh is a finite element representation of any geometric solid model created with a state-of-the-art CAE/CAD tool. The mesh-tracking library is written using modern Fortran and programming standards; the library is Fortran 2003 compliant. The library was created with a defined application programmer interface (API) so that it could easily integrate with other particle tracking/transport codes. The library does not handle parallel processing via the message passing interfacemore » (mpi), but has been used successfully where the host code handles the mpi calls. The library is thread-safe and supports the OpenMP paradigm. As a library, all features are available through the API and overall a tight coupling between it and the host code is required. Features of the library are summarized with the following list: Can accommodate first and second order 4, 5, and 6-sided polyhedra; any combination of element types may appear in a single geometry model; parts may not contain tetrahedra mixed with other element types; pentahedra and hexahedra can be together in the same part; robust handling of overlaps and gaps; tracks element-to-element to produce path length results at the element level; finds element numbers for a given mesh location; finds intersection points on element faces for the particle tracks; produce a data file for post processing results analysis; reads Abaqus .inp input (ASCII) files to obtain information for the global mesh-model; supports parallel input processing via mpi; and support parallel particle transport by both mpi and OpenMP.« less

  17. Study on the Pulsed Flashover Characteristics of Solid-Solid Interface in Electrical Devices Poured by Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong

    2014-09-01

    In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.

  18. Multiple Target Tracking in a Wide-Field-of-View Camera System

    DTIC Science & Technology

    1990-01-01

    assembly is mounted on a Contraves alt-azi axis table with a pointing accuracy of < 2 Urad. * Work performed under the auspices of the U.S. Department of... Contraves SUN 3 CCD DR11W VME EITHERNET SUN 3 !3T 3 RS170 Video 1 Video ^mglifier^ I WWV Clock VCR Datacube u Monitor Monitor UL...displaying processed images with overlay from the Datacube. We control the Contraves table using a GPIB interface on the SUN. GPIB also interfaces a

  19. Translational viscous drags of an ellipsoid straddling an interface between two fluids.

    PubMed

    Boniello, Giuseppe; Stocco, Antonio; Gross, Michel; In, Martin; Blanc, Christophe; Nobili, Maurizio

    2016-07-01

    We study the dynamics of individual polystyrene ellipsoids of different aspect ratios trapped at the air-water interface. Using particle tracking and in situ vertical scanning interferometry techniques we are able to measure translational drags and the protrusion in air of the ellipsoids. We report that translational drags on the ellipsoid are unexpectedly enhanced: despite the fact that a noticeable part of the ellipsoid is in air, drags are found larger than the bulk one in water.

  20. Orbiter global positioning system design and Ku-band problem investigations, exhibit B, revision 1

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1983-01-01

    The hardware, software, and interface between them was investigated for a low dynamics, nonhostile environment, low cost GPS receiver (GPS Z set). The set is basically a three dimensional geodetic and way point navigator with GPS time, ground speed, and ground track as possible outputs in addition to the usual GPS receiver set outputs. Each functional module comprising the GPS set is described, enumerating its functional inputs and outputs, leading to the interface between hardware and software of the set.

  1. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces

    PubMed Central

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain–computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles. PMID:28644398

  2. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.

    PubMed

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-06-23

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain-computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles.

  3. Immunization registries in the EMR Era

    PubMed Central

    Stevens, Lindsay A.; Palma, Jonathan P.; Pandher, Kiran K.; Longhurst, Christopher A.

    2013-01-01

    Background: The CDC established a national objective to create population-based tracking of immunizations through regional and statewide registries nearly 2 decades ago, and these registries have increased coverage rates and reduced duplicate immunizations. With increased adoption of commercial electronic medical records (EMR), some institutions have used unidirectional links to send immunization data to designated registries. However, access to these registries within a vendor EMR has not been previously reported. Purpose: To develop a visually integrated interface between an EMR and a statewide immunization registry at a previously non-reporting hospital, and to assess subsequent changes in provider use and satisfaction. Methods: A group of healthcare providers were surveyed before and after implementation of the new interface. The surveys addressed access of the California Immunization Registry (CAIR), and satisfaction with the availability of immunization information. Information Technology (IT) teams developed a “smart-link” within the electronic patient chart that provides a single-click interface for visual integration of data within the CAIR database. Results: Use of the tool has increased in the months since its initiation, and over 20,000 new immunizations have been exported successfully to CAIR since the hospital began sharing data with the registry. Survey data suggest that providers find this tool improves workflow and overall satisfaction with availability of immunization data. (p=0.009). Conclusions: Visual integration of external registries into a vendor EMR system is feasible and improves provider satisfaction and registry reporting. PMID:23923096

  4. Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces

    PubMed Central

    Andreani, Jessica; Faure, Guilhem; Guerois, Raphaël

    2012-01-01

    Evolutionary pressures act on protein complex interfaces so that they preserve their complementarity. Nonetheless, the elementary interactions which compose the interface are highly versatile throughout evolution. Understanding and characterizing interface plasticity across evolution is a fundamental issue which could provide new insights into protein-protein interaction prediction. Using a database of 1,024 couples of close and remote heteromeric structural interologs, we studied protein-protein interactions from a structural and evolutionary point of view. We systematically and quantitatively analyzed the conservation of different types of interface contacts. Our study highlights astonishing plasticity regarding polar contacts at complex interfaces. It also reveals that up to a quarter of the residues switch out of the interface when comparing two homologous complexes. Despite such versatility, we identify two important interface descriptors which correlate with an increased conservation in the evolution of interfaces: apolar patches and contacts surrounding anchor residues. These observations hold true even when restricting the dataset to transiently formed complexes. We show that a combination of six features related either to sequence or to geometric properties of interfaces can be used to rank positions likely to share similar contacts between two interologs. Altogether, our analysis provides important tracks for extracting meaningful information from multiple sequence alignments of conserved binding partners and for discriminating near-native interfaces using evolutionary information. PMID:22952442

  5. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    PubMed Central

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape. PMID:24113680

  6. Force sensitive handles and capacitive touch sensor for driving a flexible haptic-based immersive system.

    PubMed

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-10-09

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  7. Slump Flows inside Pipes: Numerical Results and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.

    2008-07-01

    In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.

  8. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  9. Oil spill model coupled to an ultra-high-resolution circulation model: implementation for the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K.

    2003-04-01

    An ultra-high-resolution version of DieCAST was adjusted for the Adriatic Sea and coupled with an oil spill model. Hydrodynamic module was developed on base of th low dissipative, four-order-accuracy version DieCAST with the resolution of ~2km. The oil spill model was developed on base of particle tracking technique The effect of evaporation is modeled with an original method developed on the base of the pseudo-component approach. A special dialog interface of this hybrid system allowing direct coupling to meteorlogical data collection systems or/and meteorological models. Experiments with hypothetic oil spill are analyzed for the Northern Adriatic Sea. Results (animations) of mesoscale circulation and oil slick modeling are presented at wabsite http://thayer.dartmouth.edu/~cushman/adriatic/movies/

  10. DSN Scheduling Engine

    NASA Technical Reports Server (NTRS)

    Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline

    2008-01-01

    The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.

  11. U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly

    2008-04-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) is a centralized collection of sensor data of various modalities that are co-located and co-registered. The signatures include ground and air vehicles, personnel, mortar, artillery, small arms gunfire from potential sniper weapons, explosives, and many other high value targets. This data is made available to Department of Defense (DoD) and DoD contractors, Intel agencies, other government agencies (OGA), and academia for use in developing target detection, tracking, and classification algorithms and systems to protect our Soldiers. A platform independent Web interface disseminates the signatures to researchers and engineers within the scientific community. Hierarchical Data Format 5 (HDF5) signature models provide an excellent solution for the sharing of complex multimodal signature data for algorithmic development and database requirements. Many open source tools for viewing and plotting HDF5 signatures are available over the Web. Seamless integration of HDF5 signatures is possible in both proprietary computational environments, such as MATLAB, and Free and Open Source Software (FOSS) computational environments, such as Octave and Python, for performing signal processing, analysis, and algorithm development. Future developments include extending the Web interface into a portal system for accessing ARL algorithms and signatures, High Performance Computing (HPC) resources, and integrating existing database and signature architectures into sensor networking environments.

  12. SU-F-T-41: 3D MTP-TRUS for Prostate Implant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, P

    Purpose: Prostate brachytherapy is an effective treatment for early prostate cancer. The current prostate implant is limited to using 2D transrectal ultrassound (TRUS) or machenical motor driven 2D array either in the end or on the side. Real-time 3D images can improve the accuracy of the guidance of prostate implant. The concept of our system is to allow realtime full visualization of the entire prostate with the multiple transverse scan. Methods: The prototype of 3D Multiple-Transverse-Plane Transrectal Ultrasound probe (MTP-TRUS) has been designed by us and manufactured by Blatek inc. It has 7 convex linear arrays and each array hasmore » 96 elements. It is connected to cQuest Fire bird research system (Cephasonics inc.) which is a flexible and configurable ultrasound-development platform. The size of cQuest Firebird system is compact and supports the real-time wireless image transferring. A relay based mux board is designed for the cQuest Firebird system to be able to connect 672 elements. Results: The center frequency of probe is 6MHz±10%. The diameter of probe is 3cm and the length is 20cm. The element pitch is 0.205 mm. Array focus is 30mm and spacing 1.6cm. The beam data for each array was measured and met our expectation. The interface board of MTP-TURS is made and able to connect to cQuest Firebird system. The image display interface is still under the development. Our real-time needle tracking algorithm will be implemented too. Conclusion: Our MTP-TRUS system for prostate implant will be able to acquire real-time 3D images of prostate and do the real-time needle segmentation and tracking. The system is compact and have wireless function.« less

  13. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  14. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less

  15. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  16. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such as the vehicle track, science markers, and locations of video snapshots. The actual vehicle was driven either from within the virtual environment or through a telepresence interface. All vehicle functions could be controlled remotely over the satellite link.

  17. Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology.

    PubMed

    Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S

    2014-12-02

    Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Radio tuning effects on visual and driving performance measures : simulator and test track studies.

    DOT National Transportation Integrated Search

    2013-05-01

    Existing driver distraction guidelines for visual-manual device interface operation specify traditional : manual radio tuning as a reference task. This project evaluated the radio tuning reference task through two activities. : The first activity con...

  19. IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    NASA Astrophysics Data System (ADS)

    Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.

    2013-12-01

    Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities using ground based observations. The developed IMPACT framework is an open research framework enabling the exchange and testing of a variety of atmospheric density models, orbital propagators, drag coefficient models, ground based observations, etc. and study their effect on conjunctions and uncertainty predictions. The framework is based on a modern service-oriented architecture controlled by a web interface and providing 3D visualizations. The goal of this project is to revolutionize the ability to monitor and track space objects during highly disturbed space weather conditions, provide suitable forecasts for satellite drag conditions and conjunction analysis, and enable the exchange of models, codes, and data in an open research environment. We will present capabilities and results of the IMPACT framework including a demo of the control interface and visualizations.

  20. A digital repository with an extensible data model for biobanking and genomic analysis management.

    PubMed

    Izzo, Massimiliano; Mortola, Francesco; Arnulfo, Gabriele; Fato, Marco M; Varesio, Luigi

    2014-01-01

    Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid.

  1. A digital repository with an extensible data model for biobanking and genomic analysis management

    PubMed Central

    2014-01-01

    Motivation Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. Results We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Conclusions Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid. PMID:25077808

  2. Determination of burning area and port volume in complex burning regions of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Kingsbury, J. A.

    1977-01-01

    An analysis of the geometry of the burning in both star-cylindrical port interface regions and regions of partially inhibited slots is presented. Some characteristics parameters are defined and illustrated. Methods are proposed for calculating burning areas which functionally depend only on the total distance burned. According to this method, several points are defined where abrupt changes in geometry occur, and these are tracked throughout the burn. Equations are developed for computing port perimeter and port area at pre-established longitudinal positions. Some common formulas and some newly developed formulas are then used to compute burning surface area and port volume. Some specific results are presented for the solid rocket motor committed to the space shuttle project.

  3. Version 1.00 programmer`s tools used in constructing the INEL RML/analytical radiochemistry sample tracking database and its user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Femec, D.A.

    This report describes two code-generating tools used to speed design and implementation of relational databases and user interfaces: CREATE-SCHEMA and BUILD-SCREEN. CREATE-SCHEMA produces the SQL commands that actually create and define the database. BUILD-SCREEN takes templates for data entry screens and generates the screen management system routine calls to display the desired screen. Both tools also generate the related FORTRAN declaration statements and precompiled SQL calls. Included with this report is the source code for a number of FORTRAN routines and functions used by the user interface. This code is broadly applicable to a number of different databases.

  4. Tactile Data Entry System

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    2015-01-01

    The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.

  5. A Graphical User Interface for Software-assisted Tracking of Protein Concentration in Dynamic Cellular Protrusions.

    PubMed

    Saha, Tanumoy; Rathmann, Isabel; Galic, Milos

    2017-07-11

    Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.

  6. Tenure Eligible/Tenure Track Investigator | Center for Cancer Research

    Cancer.gov

    The HIV and AIDS Malignancy Branch (HAMB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), is a national leader in research in the cancers associated with HIV/AIDS, in the development of therapies for HIV infection, and in oncogenic viruses.  We are seeking a tenure-eligible or tenure-track investigator in the field of HIV–related malignancies or viral oncogenesis.  It is anticipated that the investigator will establish an independent translational research program targeted to the study of the treatment, pathogenesis, and/or prevention of viral-induced or other HIV-associated tumors. The program can be primarily clinical, laboratory-based, or a combination of the two, and can also include animal model studies.  There is the potential to interface with a strong existing clinical research program. Potential areas of focus may include, but are not limited to, therapies for HIV malignancies, including novel immunologic approaches; viral oncogenesis; pathogenesis of HIV-associated malignancies; and virus host interactions, including immunologic interactions. 

  7. Integration of communications and tracking data processing simulation for space station

    NASA Technical Reports Server (NTRS)

    Lacovara, Robert C.

    1987-01-01

    A simplified model of the communications network for the Communications and Tracking Data Processing System (CTDP) was developed. It was simulated by use of programs running on several on-site computers. These programs communicate with one another by means of both local area networks and direct serial connections. The domain of the model and its simulation is from Orbital Replaceable Unit (ORU) interface to Data Management Systems (DMS). The simulation was designed to allow status queries from remote entities across the DMS networks to be propagated through the model to several simulated ORU's. The ORU response is then propagated back to the remote entity which originated the request. Response times at the various levels were investigated in a multi-tasking, multi-user operating system environment. Results indicate that the effective bandwidth of the system may be too low to support expected data volume requirements under conventional operating systems. Instead, some form of embedded process control program may be required on the node computers.

  8. Control of a powered prosthetic device via a pinch gesture interface

    NASA Astrophysics Data System (ADS)

    Yetkin, Oguz; Wallace, Kristi; Sanford, Joseph D.; Popa, Dan O.

    2015-06-01

    A novel system is presented to control a powered prosthetic device using a gesture tracking system worn on a user's sound hand in order to detect different grasp patterns. Experiments are presented with two different gesture tracking systems: one comprised of Conductive Thimbles worn on each finger (Conductive Thimble system), and another comprised of a glove which leaves the fingers free (Conductive Glove system). Timing tests were performed on the selection and execution of two grasp patterns using the Conductive Thimble system and the iPhone app provided by the manufacturer. A modified Box and Blocks test was performed using Conductive Glove system and the iPhone app provided by Touch Bionics. The best prosthetic device performance is reported with the developed Conductive Glove system in this test. Results show that these low encumbrance gesture-based wearable systems for selecting grasp patterns may provide a viable alternative to EMG and other prosthetic control modalities, especially for new prosthetic users who are not trained in using EMG signals.

  9. The data operation centre tool. Architecture and population strategies

    NASA Astrophysics Data System (ADS)

    Dal Pra, Stefano; Crescente, Alberto

    2012-12-01

    Keeping track of the layout of the informatic resources in a big datacenter is a complex task. DOCET is a database-based webtool designed and implemented at INFN. It aims at providing a uniform interface to manage and retrieve needed information about one or more datacenter, such as available hardware, software and their status. Having a suitable application is however useless until most of the information about the centre are not inserted in the DOCET'S database. Manually inserting all the information from scratch is an unfeasible task. After describing DOCET'S high level architecture, its main features and current development track, we present and discuss the work done to populate the DOCET database for the INFN-T1 site by retrieving information from a heterogenous variety of authoritative sources, such as DNS, DHCP, Quattor host profiles, etc. We then describe the work being done to integrate DOCET with some common management operation, such as adding a newly installed host to DHCP and DNS, or creating a suitable Quattor profile template for it.

  10. Improvements to Level Set, Immersed Boundary methods for Interface Tracking

    NASA Astrophysics Data System (ADS)

    Vogl, Chris; Leveque, Randy

    2014-11-01

    It is not uncommon to find oneself solving a moving boundary problem under flow in the context of some application. Of particular interest is when the moving boundary exerts a curvature-dependent force on the liquid. Such a force arises when observing a boundary that is resistant to bending or has surface tension. Numerically speaking, stable numerical computation of the curvature can be difficult as it is often described in terms of high-order derivatives of either marker particle positions or of a level set function. To address this issue, the level set method is modified to track not only the position of the boundary, but the curvature as well. The definition of the signed-distance function that is used to modify the level set method is also used to develop an interpolation-free, closest-point method. These improvements are used to simulate a bending-resistant, inextensible boundary under shear flow to highlight area and volume conservation, as well as stable curvature calculation. Funded by a NSF MSPRF grant.

  11. Numerical study of wind over breaking waves and generation of spume droplets

    NASA Astrophysics Data System (ADS)

    Yang, Zixuan; Tang, Shuai; Dong, Yu-Hong; Shen, Lian

    2017-11-01

    We present direct numerical simulation (DNS) results on wind over breaking waves. The air and water are simulated as a coherent system. The air-water interface is captured using a coupled level-set and volume-of-fluid method. The initial condition for the simulation is fully-developed wind turbulence over strongly-forced steep waves. Because wave breaking is an unsteady process, we use ensemble averaging of a large number of runs to obtain turbulence statistics. The generation and transport of spume droplets during wave breaking is also simulated. The trajectories of sea spray droplets are tracked using a Lagrangian particle tracking method. The generation of droplets is captured using a kinematic criterion based on the relative velocity of fluid particles of water with respect to the wave phase speed. From the simulation, we observe that the wave plunging generates a large vortex in air, which makes an important contribution to the suspension of sea spray droplets.

  12. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Mark A.; Pfeiffer, Janet R.; Wilson, Bridget S.

    2009-10-01

    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effortmore » to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.« less

  13. On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface.

    PubMed

    Lopes, Daniel Simões; Parreira, Pedro Duarte de Figueiredo; Paulo, Soraia Figueiredo; Nunes, Vitor; Rego, Paulo Amaral; Neves, Manuel Cassiano; Rodrigues, Pedro Silva; Jorge, Joaquim Armando

    2017-08-01

    Analyzing medical volume datasets requires interactive visualization so that users can extract anatomo-physiological information in real-time. Conventional volume rendering systems rely on 2D input devices, such as mice and keyboards, which are known to hamper 3D analysis as users often struggle to obtain the desired orientation that is only achieved after several attempts. In this paper, we address which 3D analysis tools are better performed with 3D hand cursors operating on a touchless interface comparatively to a 2D input devices running on a conventional WIMP interface. The main goals of this paper are to explore the capabilities of (simple) hand gestures to facilitate sterile manipulation of 3D medical data on a touchless interface, without resorting on wearables, and to evaluate the surgical feasibility of the proposed interface next to senior surgeons (N=5) and interns (N=2). To this end, we developed a touchless interface controlled via hand gestures and body postures to rapidly rotate and position medical volume images in three-dimensions, where each hand acts as an interactive 3D cursor. User studies were conducted with laypeople, while informal evaluation sessions were carried with senior surgeons, radiologists and professional biomedical engineers. Results demonstrate its usability as the proposed touchless interface improves spatial awareness and a more fluent interaction with the 3D volume than with traditional 2D input devices, as it requires lesser number of attempts to achieve the desired orientation by avoiding the composition of several cumulative rotations, which is typically necessary in WIMP interfaces. However, tasks requiring precision such as clipping plane visualization and tagging are best performed with mouse-based systems due to noise, incorrect gestures detection and problems in skeleton tracking that need to be addressed before tests in real medical environments might be performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. SacLab: A toolbox for saccade analysis to increase usability of eye tracking systems in clinical ophthalmology practice.

    PubMed

    Cercenelli, Laura; Tiberi, Guido; Corazza, Ivan; Giannaccare, Giuseppe; Fresina, Michela; Marcelli, Emanuela

    2017-01-01

    Many open source software packages have been recently developed to expand the usability of eye tracking systems to study oculomotor behavior, but none of these is specifically designed to encompass all the main functions required for creating eye tracking tests and for providing the automatic analysis of saccadic eye movements. The aim of this study is to introduce SacLab, an intuitive, freely-available MATLAB toolbox based on Graphical User Interfaces (GUIs) that we have developed to increase the usability of the ViewPoint EyeTracker (Arrington Research, Scottsdale, AZ, USA) in clinical ophthalmology practice. SacLab consists of four processing modules that enable the user to easily create visual stimuli tests (Test Designer), record saccadic eye movements (Data Recorder), analyze the recorded data to automatically extract saccadic parameters of clinical interest (Data Analyzer) and provide an aggregate analysis from multiple eye movements recordings (Saccade Analyzer), without requiring any programming effort by the user. A demo application of SacLab to carry out eye tracking tests for the analysis of horizontal saccades was reported. We tested the usability of SacLab toolbox with three ophthalmologists who had no programming experience; the ophthalmologists were briefly trained in the use of SacLab GUIs and were asked to perform the demo application. The toolbox gained an enthusiastic feedback from all the clinicians in terms of intuitiveness, ease of use and flexibility. Test creation and data processing were accomplished in 52±21s and 46±19s, respectively, using the SacLab GUIs. SacLab may represent a useful tool to ease the application of the ViewPoint EyeTracker system in clinical routine in ophthalmology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electronic Medical Business Operations System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, D. T.; Metcalf, J. R.; North, M. P.

    Electronic Management of medical records has taken a back seat both in private industry and in the government. Record volumes continue to rise every day and management of these paper records is inefficient and very expensive. In 2005, the White House announced support for the development of electronic medical records across the federal government. In 2006, the DOE issued 10 CFR 851 requiring all medical records be electronically available by 2015. The Y-12 National Security Complex is currently investing funds to develop a comprehensive EMR to incorporate the requirements of an occupational health facility which are common across the Nuclearmore » Weapons Complex (NWC). Scheduling, workflow, and data capture from medical surveillance, certification, and qualification examinations are core pieces of the system. The Electronic Medical Business Operations System (EMBOS) will provide a comprehensive health tool solution to 10 CFR 851 for Y-12 and can be leveraged to the Nuclear Weapon Complex (NWC); all site in the NWC must meet the requirements of 10 CFR 851 which states that all medical records must be electronically available by 2015. There is also potential to leverage EMBOS to the private4 sector. EMBOS is being developed and deployed in phases. When fully deployed the EMBOS will be a state-of-the-art web-enabled integrated electronic solution providing a complete electronic medical record (EMR). EMBOS has been deployed and provides a dynamic electronic medical history and surveillance program (e.g., Asbestos, Hearing Conservation, and Respirator Wearer) questionnaire. Table 1 below lists EMBOS capabilities and data to be tracked. Data to be tracked: Patient Demographics – Current/Historical; Physical Examination Data; Employee Medical Health History; Medical Surveillance Programs; Patient and Provider Schedules; Medical Qualification/Certifications; Laboratory Data; Standardized Abnormal Lab Notifications; Prescription Medication Tracking and Dispensing; Allergies; Non-Occupational Illness and Injury Visits; Occupational Recommendations/Restrictions; Diagnosis/Vital Signs/Blood Pressures; Immunizations; Return to Work Visits Capabilities: Targeted Health Assessments; Patient Input Capabilities for Questionnaires; Medical Health History; Surveillance Programs; Human Reliability Program; Scheduling; Automated Patient Check-in/Check-out; Provider & Patient Workflow; Laboratory Interface & Device Integration; Human Reliability Program Processing; Interoperability with SAP, IH, IS, RADCON; Coding: ICED-9/10; Desktop Integration; Interface/Storage of Digital X-Rays (PACS)« less

  16. Automated tilt series alignment and tomographic reconstruction in IMOD.

    PubMed

    Mastronarde, David N; Held, Susannah R

    2017-02-01

    Automated tomographic reconstruction is now possible in the IMOD software package, including the merging of tomograms taken around two orthogonal axes. Several developments enable the production of high-quality tomograms. When using fiducial markers for alignment, the markers to be tracked through the series are chosen automatically; if there is an excess of markers available, a well-distributed subset is selected that is most likely to track well. Marker positions are refined by applying an edge-enhancing Sobel filter, which results in a 20% improvement in alignment error for plastic-embedded samples and 10% for frozen-hydrated samples. Robust fitting, in which outlying points are given less or no weight in computing the fitting error, is used to obtain an alignment solution, so that aberrant points from the automated tracking can have little effect on the alignment. When merging two dual-axis tomograms, the alignment between them is refined from correlations between local patches; a measure of structure was developed so that patches with insufficient structure to give accurate correlations can now be excluded automatically. We have also developed a script for running all steps in the reconstruction process with a flexible mechanism for setting parameters, and we have added a user interface for batch processing of tilt series to the Etomo program in IMOD. Batch processing is fully compatible with interactive processing and can increase efficiency even when the automation is not fully successful, because users can focus their effort on the steps that require manual intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is muchmore » higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.« less

  18. Insecurity on the Net.

    ERIC Educational Resources Information Center

    Brandt, D. Scott

    1998-01-01

    Examines Internet security risks and how users can protect themselves. Discusses inadvertent bugs in software; programming problems with Common Gateway Interface (CGI); viruses; tracking of Web users; and preventing access to selected Web pages and filtering software. A glossary of Internet security-related terms is included. (AEF)

  19. Intelligent Help in the LOCATE Workspace Layout Tool

    DTIC Science & Technology

    1999-06-01

    LOCATE’s basic design and analysis features; • commercialising the application; • expanding the groundwork for tracking actions and goals at the interface...Muraida, D.J. (Eds.) (1993). Automating instructional design: Concepts and issues. Englewood Cliffs, N.J.: Educational Technology Publications

  20. Waste Information Management System v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustamante, David G.; Schade, A. Carl

    WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.

  1. Eulerian and Lagrangian Plasma Jet Modeling for the Plasma Liner Experiment

    NASA Astrophysics Data System (ADS)

    Hatcher, Richard; Cassibry, Jason; Stanic, Milos; Loverich, John; Hakim, Ammar

    2011-10-01

    The Plasma Liner Experiment (PLX) aims to demonstrate the feasibility of using spherically-convergent plasma jets to from an imploding plasma liner. Our group has modified two hydrodynamic simulation codes to include radiative loss, tabular equations of state (EOS), and thermal transport. Nautilus, created by TechX Corporation, is a finite-difference Eulerian code which solves the MHD equations formulated as systems of hyperbolic conservation laws. The other is SPHC, a smoothed particle hydrodynamics code produced by Stellingwerf Consulting. Use of the Lagrangian fluid particle approach of SPH is motivated by the ability to accurately track jet interfaces, the plasma vacuum boundary, and mixing of various layers, but Eulerian codes have been in development for much longer and have better shock capturing. We validate these codes against experimental measurements of jet propagation, expansion, and merging of two jets. Precursor jets are observed to form at the jet interface. Conditions that govern evolution of two and more merging jets are explored.

  2. Building bridges from process R&D: from a customer-supplier relationship to full partnership.

    PubMed

    Federsel

    2000-08-01

    A new and forward-looking way of running process R&D is introduced that integrates this core business in an efficient manner into the network of activities in different disciplines, which constitute the arena for the development of pharmaceutical products. The interfaces with surrounding areas are discussed in addition to the novel organizational principles implemented in process R&D and the workflow emanating from this. Furthermore, the Tollgate model used to keep track of the progress in a project and the pre-study concept are presented in detail. Finally, the main differences between operating modes in the past and in the future are highlighted.

  3. Electronics design of the airborne stabilized platform attitude acquisition module

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni

    2014-02-01

    We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.

  4. Research on Three-phase Four-wire Inverter

    NASA Astrophysics Data System (ADS)

    Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.

    2017-05-01

    The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.

  5. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Zhao, Xiaoliang; Qian, Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-03-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained.

  6. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  7. Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.

    PubMed

    Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L

    2007-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners.

  8. Probing the liquid crystal alignment interface and switching dynamics in a slab waveguide architecture

    NASA Astrophysics Data System (ADS)

    Gotjen, Henry G.; Kolacz, Jakub; Myers, Jason D.; Frantz, Jesse A.; Bekele, Robel Y.; Naciri, Jawad; Spillmann, Christopher M.

    2018-02-01

    A non-mechanical refractive laser beam steering device has been developed to provide continuous, two-dimensional steering of infrared beams. The technology implements a dielectric slab waveguide architecture with a liquid crystal (LC) cladding. With voltage control, the birefringence of the LC can be leveraged to tune the effective index of the waveguide under an electrode. With a clever prism electrode design a beam coupled into the waveguide can be deflected continuously in two dimensions as it is coupled out into free space. The optical interaction with LC in this beamsteerer is unique from typical LC applications: only the thin layer of LC (100s of nm) near the alignment interface interacts with the beam's evanescent field. Whereas most LC interactions take place over short path lengths (microns) in the bulk of the material, here we can interrogate the behavior of LC near the alignment interface over long path lengths (centimeters). In this work the beamsteerer is leveraged as a tool to study the behavior of LC near the alignment layer in contrast to the bulk material. We find that scattering is substantially decreased near the alignment interface due to the influence of the surface anchoring energy to suppress thermal fluctuations. By tracking the position of the deflected beam with a high speed camera, we measure response times of the LC near the interface in off-to-on switching ( ms) and on-to-off switching ( 100ms). Combined, this work will provide a path for improved alignment techniques, greater optical throughput, and faster response times in this unique approach to non-mechanical beamsteering.

  9. Motor control and learning with lower-limb myoelectric control in amputees.

    PubMed

    Alcaide-Aguirre, Ramses E; Morgenroth, David C; Ferris, Daniel P

    2013-01-01

    Advances in robotic technology have recently enabled the development of powered lower-limb prosthetic limbs. A major hurdle in developing commercially successful powered prostheses is the control interface. Myoelectric signals are one way for prosthetic users to provide feedforward volitional control of prosthesis mechanics. The goal of this study was to assess motor learning in people with lower-limb amputation using proportional myoelectric control from residual-limb muscles. We examined individuals with transtibial amputation and nondisabled controls performing tracking tasks of a virtual object. We assessed how quickly the individuals with amputation improved their performance and whether years since amputation correlated with performance. At the beginning of training, subjects with amputation performed much worse than control subjects. By the end of a short training period, tracking error did not significantly differ between subjects with amputation and nondisabled subjects. Initial but not final performance correlated significantly with time since amputation. This study demonstrates that although subjects with amputation may initially have poor volitional control of their residual lower-limb muscles, training can substantially improve their volitional control. These findings are encouraging for the future use of proportional myoelectric control of powered lower-limb prostheses.

  10. A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate pieces of this system progress, they will be combined and generalized to form a sort of social network for nationally consistent hydrologic modeling.

  11. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  12. The myokinetic control interface: tracking implanted magnets as a means for prosthetic control.

    PubMed

    Tarantino, S; Clemente, F; Barone, D; Controzzi, M; Cipriani, C

    2017-12-07

    Upper limb amputation deprives individuals of their innate ability to manipulate objects. Such disability can be restored with a robotic prosthesis linked to the brain by a human-machine interface (HMI) capable of decoding voluntary intentions, and sending motor commands to the prosthesis. Clinical or research HMIs rely on the interpretation of electrophysiological signals recorded from the muscles. However, the quest for an HMI that allows for arbitrary and physiologically appropriate control of dexterous prostheses, is far from being completed. Here we propose a new HMI that aims to track the muscles contractions with implanted permanent magnets, by means of magnetic field sensors. We called this a myokinetic control interface. We present the concept, the features and a demonstration of a prototype which exploits six 3-axis sensors to localize four magnets implanted in a forearm mockup, for the control of a dexterous hand prosthesis. The system proved highly linear (R 2  = 0.99) and precise (1% repeatability), yet exhibiting short computation delay (45 ms) and limited cross talk errors (10% the mean stroke of the magnets). Our results open up promising possibilities for amputees, demonstrating the viability of the myokinetic approach in implementing direct and simultaneous control over multiple digits of an artificial hand.

  13. NEDE: an open-source scripting suite for developing experiments in 3D virtual environments.

    PubMed

    Jangraw, David C; Johri, Ansh; Gribetz, Meron; Sajda, Paul

    2014-09-30

    As neuroscientists endeavor to understand the brain's response to ecologically valid scenarios, many are leaving behind hyper-controlled paradigms in favor of more realistic ones. This movement has made the use of 3D rendering software an increasingly compelling option. However, mastering such software and scripting rigorous experiments requires a daunting amount of time and effort. To reduce these startup costs and make virtual environment studies more accessible to researchers, we demonstrate a naturalistic experimental design environment (NEDE) that allows experimenters to present realistic virtual stimuli while still providing tight control over the subject's experience. NEDE is a suite of open-source scripts built on the widely used Unity3D game development software, giving experimenters access to powerful rendering tools while interfacing with eye tracking and EEG, randomizing stimuli, and providing custom task prompts. Researchers using NEDE can present a dynamic 3D virtual environment in which randomized stimulus objects can be placed, allowing subjects to explore in search of these objects. NEDE interfaces with a research-grade eye tracker in real-time to maintain precise timing records and sync with EEG or other recording modalities. Python offers an alternative for experienced programmers who feel comfortable mastering and integrating the various toolboxes available. NEDE combines many of these capabilities with an easy-to-use interface and, through Unity's extensive user base, a much more substantial body of assets and tutorials. Our flexible, open-source experimental design system lowers the barrier to entry for neuroscientists interested in developing experiments in realistic virtual environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2001-01-01

    An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.

  15. Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies.

    PubMed

    Kulshreshth, Arun; Pfeil, Kevin; LaViola, Joseph J

    2017-01-01

    Three-dimensional (3D) spatial user interface technologies have the potential to make games more immersive and engaging and thus provide a better user experience. Although technologies such as stereoscopic 3D display, head tracking, and gesture-based control are available for games, it is still unclear how their use affects gameplay and if there are any user performance benefits. The authors have conducted several experiments on these technologies in game environments to understand how they affect gameplay and how we can use them to optimize the gameplay experience.

  16. Interfaces for Advanced Computing.

    ERIC Educational Resources Information Center

    Foley, James D.

    1987-01-01

    Discusses the coming generation of supercomputers that will have the power to make elaborate "artificial realities" that facilitate user-computer communication. Illustrates these technological advancements with examples of the use of head-mounted monitors which are connected to position and orientation sensors, and gloves that track finger and…

  17. Emulsion droplet interactions: a front-tracking treatment

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Juric, Damir; Chergui, Jalel; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Emulsion coalescence influences a multitude of industrial applications including solvent extraction, oil recovery and the manufacture of fast-moving consumer goods. Droplet interaction models are vital for the design and scale-up of processing systems, however predictive modelling at the droplet-scale remains a research challenge. This study simulates industrially relevant moderate-inertia collisions for which a high degree of droplet deformation occurs. A hybrid front-tracking/level-set approach is used to automatically account for interface merging without the need for `bookkeeping' of interface connectivity. The model is implemented in Code BLUE using a parallel multi-grid solver, allowing both film and droplet-scale dynamics to be resolved efficiently. Droplet interaction simulations are validated using experimental sequences from the literature in the presence and absence of background turbulence. The framework is readily extensible for modelling the influence of surfactants and non-Newtonian fluids on droplet interaction processes. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.

  18. Software for Analyzing Sequences of Flow-Related Images

    NASA Technical Reports Server (NTRS)

    Klimek, Robert; Wright, Ted

    2004-01-01

    Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.

  19. Design and Calibration of a New 6 DOF Haptic Device

    PubMed Central

    Qin, Huanhuan; Song, Aiguo; Liu, Yuqing; Jiang, Guohua; Zhou, Bohe

    2015-01-01

    For many applications such as tele-operational robots and interactions with virtual environments, it is better to have performance with force feedback than without. Haptic devices are force reflecting interfaces. They can also track human hand positions simultaneously. A new 6 DOF (degree-of-freedom) haptic device was designed and calibrated in this study. It mainly contains a double parallel linkage, a rhombus linkage, a rotating mechanical structure and a grasping interface. Benefited from the unique design, it is a hybrid structure device with a large workspace and high output capability. Therefore, it is capable of multi-finger interactions. Moreover, with an adjustable base, operators can change different postures without interrupting haptic tasks. To investigate the performance regarding position tracking accuracy and static output forces, we conducted experiments on a three-dimensional electric sliding platform and a digital force gauge, respectively. Displacement errors and force errors are calculated and analyzed. To identify the capability and potential of the device, four application examples were programmed. PMID:26690449

  20. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    NASA Astrophysics Data System (ADS)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified (if necessary) by teachers everywhere. The PRISM project has added a search engine for polar related tracks, and has developed numerous new tracks on robotics, polar exploration, and climate change under the guidance of a K-12 teacher advisory group. The PRISM project is also developing and hosting several other web-based lesson design tools and resources for K-12 educators and students on the PRISM project web page (http://www.ku-prism.org). These tools and resources include: i) "Polar Scientists and Explorers, Past and Present" covering the travels and/or unknown fate of polar explorers and scientists; ii) "Polar News" providing links to current news articles related to polar regions; iii) "Letter of Global Concern", which is a tool to help students draft a letter to a politician, government official, or business leader; iv) "Graphic Sleuth", which is an online utility that allows teachers to make lessons for student use; v) "Bears on Ice" for students in grades K - 6 that can follow the adventures of two stuffed bears that travel with scientists into polar regions; and vi) "K-12 Polar Resources," which provides teachers with images, information, TrackStar lessons, and a search engine designed to identify polar related lessons. In our presentation, we will describe and show examples of these tools and resources, and provide an assessment of their popularity with teachers nationwide.

  1. MapApp: A Java(TM) Applet for Accessing Geographic Databases

    NASA Astrophysics Data System (ADS)

    Haxby, W.; Carbotte, S.; Ryan, W. B.; OHara, S.

    2001-12-01

    MapApp (http://coast.ldeo.columbia.edu/help/MapApp.html) is a prototype Java(TM) applet that is intended to give easy and versatile access to geographic data sets through a web browser. It was developed initially to interface with the RIDGE Multibeam Synthesis. Subsequently, interfaces with other geophysical databases were added. At present, multibeam bathymetry grids, underway geophysics along ship tracks, and the LDEO Borehole Research Group's ODP well logging database are accessible through MapApp. We plan to add an interface with the Ridge Petrology Database in the near future. The central component of MapApp is a world physiographic map. Users may navigate around the map (zoom/pan) without waiting for HTTP requests to a remote server to be processed. A focus request loads image tiles from the server to compose a new map at the current viewing resolution. Areas in which multibeam grids are available may be focused to a pixel resolution of about 200 m. These areas may be identified by toggling a mask. Databases may be accessed through menus, and selected data objects may be loaded into MapApp by selecting items from tables. Once loaded, a bathymetry grid may be contoured or used to create bathymetric profiles; ship tracks and ODP sites may be overlain on the map and their geophysical data plotted in X-Y graphs. The advantage of applets over traditional web pages is that they permit dynamic interaction with data sets, while limiting time consuming interaction with a remote server. Users may customize the graphics display by modifying the scale, or the symbol or line characteristics of rendered data, contour interval, etc. The ease with which users can select areas, view the physiography of areas, and preview data sets and evaluate them for quality and applicability, makes MapApp a valuable tool for education and research.

  2. MaROS Strategic Relay Planning and Coordination Interfaces

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.

  3. A review of existing and potential computer user interfaces for modern radiology.

    PubMed

    Iannessi, Antoine; Marcy, Pierre-Yves; Clatz, Olivier; Bertrand, Anne-Sophie; Sugimoto, Maki

    2018-05-16

    The digitalization of modern imaging has led radiologists to become very familiar with computers and their user interfaces (UI). New options for display and command offer expanded possibilities, but the mouse and keyboard remain the most commonly utilized, for usability reasons. In this work, we review and discuss different UI and their possible application in radiology. We consider two-dimensional and three-dimensional imaging displays in the context of interventional radiology, and discuss interest in touchscreens, kinetic sensors, eye detection, and augmented or virtual reality. We show that UI design specifically for radiologists is key for future use and adoption of such new interfaces. Next-generation UI must fulfil professional needs, while considering contextual constraints. • The mouse and keyboard remain the most utilized user interfaces for radiologists. • Touchscreen, holographic, kinetic sensors and eye tracking offer new possibilities for interaction. • 3D and 2D imaging require specific user interfaces. • Holographic display and augmented reality provide a third dimension to volume imaging. • Good usability is essential for adoption of new user interfaces by radiologists.

  4. Development of a Multi-Behavioral mHealth App for Women Smokers.

    PubMed

    Armin, Julie; Johnson, Thienne; Hingle, Melanie; Giacobbi, Peter; Gordon, Judith S

    2017-02-01

    This article describes the development of the See Me Smoke-Free™ (SMSF) mobile health application, which uses guided imagery to support women in smoking cessation, eating a healthy diet, and increasing physical activity. Focus group discussions, with member checks, were conducted to refine the intervention content and app user interface. Data related to the context of app deployment were collected via user testing sessions and internal quality control testing, which identified and addressed functionality issues, content problems, and bugs. Interactive app features include playback of guided imagery audio files, notification pop-ups, award-sharing on social media, a tracking calendar, content resources, and direct call to the local tobacco quitline. Focus groups helped design the user interface and identified several themes for incorporation into app content, including positivity, the rewards of smoking cessation, and the integrated benefits of maintaining a healthy lifestyle. User testing improved app functionality and usability on many Android phone models. Changes to the app content and function were made iteratively by the development team as a result of focus group and user testing. Despite extensive internal and user testing, unanticipated data collection and reporting issues emerged during deployment due not only to the variety of Android software and hardware but also to individual phone settings and use.

  5. VERDEX: A virtual environment demonstrator for remote driving applications

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.

  6. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  7. The use of a tactile interface to convey position and motion perceptions

    NASA Technical Reports Server (NTRS)

    Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    1994-01-01

    Under normal terrestrial conditions, perception of position and motion is determined by central nervous system integration of concordant and redundant information from multiple sensory channels (somatosensory, vestibular, visual), which collectively yield vertical perceptions. In the acceleration environment experienced by the pilots, the somatosensory and vestibular sensors frequently present false information concerning the direction of gravity. When presented with conflicting sensory information, it is normal for pilots to experience episodes of disorientation. We have developed a tactile interface that obtains vertical roll and pitch information from a gyro-stabilized attitude indicator and maps this information in a one-to-one correspondence onto the torso of the body using a matrix of vibrotactors. This enables the pilot to continuously maintain an awareness of aircraft attitude without reference to visual cues, utilizing a sensory channel that normally operates at the subconscious level. Although initially developed to improve pilot spatial awareness, this device has obvious applications to 1) simulation and training, 2) nonvisual tracking of targets, which can reduce the need for pilots to make head movements in the high-G environment of aerial combat, and 3) orientation in environments with minimal somatosensory cues (e.g., underwater) or gravitational cues (e.g., space).

  8. Space Station Human Factors: Designing a Human-Robot Interface

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  9. Final Report: MaRSPlus Sensor System Electrical Cable Management and Distributed Motor Control Computer Interface

    NASA Technical Reports Server (NTRS)

    Reil, Robin

    2011-01-01

    The success of JPL's Next Generation Imaging Spectrometer (NGIS) in Earth remote sensing has inspired a follow-on instrument project, the MaRSPlus Sensor System (MSS). One of JPL's responsibilities in the MSS project involves updating the documentation from the previous JPL airborne imagers to provide all the information necessary for an outside customer to operate the instrument independently. As part of this documentation update, I created detailed electrical cabling diagrams to provide JPL technicians with clear and concise build instructions and a database to track the status of cables from order to build to delivery. Simultaneously, a distributed motor control system is being developed for potential use on the proposed 2018 Mars rover mission. This system would significantly reduce the mass necessary for rover motor control, making more mass space available to other important spacecraft systems. The current stage of the project consists of a desktop computer talking to a single "cold box" unit containing the electronics to drive a motor. In order to test the electronics, I developed a graphical user interface (GUI) using MATLAB to allow a user to send simple commands to the cold box and display the responses received in a user-friendly format.

  10. Technical Description of a Novel Sensor Network Architecture and Results of Radar and Optical Sensors contributing to a UK Cueing Experiment

    NASA Astrophysics Data System (ADS)

    Ladd, D.; Reeves, R.; Rumi, E.; Trethewey, M.; Fortescue, M.; Appleby, G.; Wilkinson, M.; Sherwood, R.; Ash, A.; Cooper, C.; Rayfield, P.

    The Science and Technology Facilities Council (STFC), Control Loop Concepts Limited (CL2), Natural Environment Research Council (NERC) and Defence Science and Technology Laboratory (DSTL), have recently participated in a campaign of satellite observations, with both radar and optical sensors, in order to demonstrate an initial network concept that enhances the value of coordinated observations. STFC and CL2 have developed a Space Surveillance and Tracking (SST) server/client architecture to slave one sensor to another. The concept was originated to enable the Chilbolton radar (an S-band radar on a 25 m diameter fully-steerable dish antenna called CASTR – Chilbolton Advanced Satellite Tracking Radar) which does not have an auto-track function to follow an object based on position data streamed from another cueing sensor. The original motivation for this was to enable tracking during re-entry of ATV-5, a highly manoeuvrable ISS re-supply vessel. The architecture has been designed to be extensible and allows the interface of both optical and radar sensors which may be geographically separated. Connectivity between the sensors is TCP/IP over the internet. The data transferred between the sensors is translated into an Earth centred frame of reference to accommodate the difference in location, and time-stamping and filtering are applied to cope with latency. The server can accept connections from multiple clients, and the operator can switch between the different clients. This architecture is inherently robust and will enable graceful degradation should parts of the system be unavailable. A demonstration was conducted in 2016 whereby a small telescope connected to an agile mount (an EO tracker known as COATS - Chilbolton Optical Advanced Tracking System) located 50m away from the radar at Chilbolton, autonomously tracked several objects and fed the look angle data into a client. CASTR, slaved to COATS through the server followed and successfully detected the objects. In 2017, the baseline was extended to 135 km by developing a client for the SLR (satellite laser ranger) telescope at the Space Geodesy Facility, Herstmonceux. Trials have already demonstrated that CASTR can accurately track the object using the position data being fed from the SLR.

  11. Approach for delineation of contributing areas and zones of transport to selected public-supply wells using a regional ground-water flow model, Palm Beach County, Florida

    USGS Publications Warehouse

    Renken, R.A.; Patterson, R.D.; Orzol, L.L.; Dixon, Joann

    2001-01-01

    Rapid urban development and population growth in Palm Beach County, Florida, have been accompanied with the need for additional freshwater withdrawals from the surficial aquifer system. To maintain water quality, County officials protect capture areas and determine zones of transport of municipal supply wells. A multistep process was used to help automate the delineation of wellhead protection areas. A modular ground-water flow model (MODFLOW) Telescopic Mesh Refinement program (MODTMR) was used to construct an embedded flow model and combined with particle tracking to delineate zones of transport to supply wells; model output was coupled with a geographic information system. An embedded flow MODFLOW model was constructed using input and output file data from a preexisting three-dimensional, calibrated model of the surficial aquifer system. Three graphical user interfaces for use with the geographic information software, ArcView, were developed to enhance the telescopic mesh refinement process. These interfaces include AvMODTMR for use with MODTMR; AvHDRD to build MODFLOW river and drain input files from dynamically segmented linear (canals) data sets; and AvWELL Refiner, an interface designed to examine and convert well coverage spatial data layers to a MODFLOW Well package input file. MODPATH (the U.S. Geological Survey particle-tracking postprocessing program) and MODTOOLS (the set of U.S. Geological Survey computer programs to translate MODFLOW and MODPATH output to a geographic information system) were used to map zones of transport. A steady-state, five-layer model of the Boca Raton area was created using the telescopic mesh refinement process and calibrated to average conditions during January 1989 to June 1990. A sensitivity analysis of various model parameters indicates that the model is most sensitive to changes in recharge rates, hydraulic conductivity for layer 1, and leakance for layers 3 and 4 (Biscayne aquifer). Recharge (58 percent); river (canal) leakance (29 percent); and inflow through the northern, western, and southern prescribed flux model boundaries (10 percent) represent the major inflow components. Principal outflow components in the Boca Raton well field area include well discharge (56 percent), river (canal) leakance (27 percent), and water that discharges along the coast (10 percent). A particle-tracking analysis using MODPATH was conducted to better understand well-field ground-water flow patterns and time of travel. MODTOOLS was used to construct zones-of-transport spatial data for municipal supply wells. Porosity estimates were uniformly increased to study the effect of porosity on zones of transport. Where porosity was increased, the size of the zones of transport were shown to decrease.

  12. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    PubMed

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  13. Parallel image registration with a thin client interface

    NASA Astrophysics Data System (ADS)

    Saiprasad, Ganesh; Lo, Yi-Jung; Plishker, William; Lei, Peng; Ahmad, Tabassum; Shekhar, Raj

    2010-03-01

    Despite its high significance, the clinical utilization of image registration remains limited because of its lengthy execution time and a lack of easy access. The focus of this work was twofold. First, we accelerated our course-to-fine, volume subdivision-based image registration algorithm by a novel parallel implementation that maintains the accuracy of our uniprocessor implementation. Second, we developed a thin-client computing model with a user-friendly interface to perform rigid and nonrigid image registration. Our novel parallel computing model uses the message passing interface model on a 32-core cluster. The results show that, compared with the uniprocessor implementation, the parallel implementation of our image registration algorithm is approximately 5 times faster for rigid image registration and approximately 9 times faster for nonrigid registration for the images used. To test the viability of such systems for clinical use, we developed a thin client in the form of a plug-in in OsiriX, a well-known open source PACS workstation and DICOM viewer, and used it for two applications. The first application registered the baseline and follow-up MR brain images, whose subtraction was used to track progression of multiple sclerosis. The second application registered pretreatment PET and intratreatment CT of radiofrequency ablation patients to demonstrate a new capability of multimodality imaging guidance. The registration acceleration coupled with the remote implementation using a thin client should ultimately increase accuracy, speed, and access of image registration-based interpretations in a number of diagnostic and interventional applications.

  14. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management. The low power detection mode is implemented by monitoring any of the sensor analog outputs at lower sample rates for detection over a software controllable threshold.

  15. Dual System for Enhancing Cognitive Abilities of Children with ADHD Using Leap Motion and eye-Tracking Technologies.

    PubMed

    Garcia-Zapirain, Begoña; de la Torre Díez, Isabel; López-Coronado, Miguel

    2017-07-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder marked by an ongoing pattern of inattention and/or hyperactivity-impulsivity that affects with development or functioning. It affects 3-5% of all American and European children. The objective of this paper is to develop and test a dual system for the rehabilitation of cognitive functions in children with ADHD. A technological platform has been developed using the ". NET framework", which makes use of two physiological sensors, -an eye-tracker and a hand gesture recognition sensor- in order to provide children with the opportunity to develop their learning and attention skills. The two physiological sensors we utilized for the development are the Tobii X1 Light Eye Tracker and the Leap Motion. SUS and QUIS questionnaires have been carried out. 19 users tested the system and the average age was 10.88 years (SD = 3.14). The results obtained after tests were performed were quite positive and hopeful. The learning of the users caused by the system and the interfaces item got a high punctuation with a mean of 7.34 (SD = 1.06) for SUS questionnaire and 7.73 (SD = 0.6) for QUIS questionnaire. We didn't find differences between boys and girls. The developed multimodal rehabilitation system can help to children with attention deficit and learning issues. Moreover, the teachers may utilize this system to track the progression of their students and see their behavior.

  16. An auxiliary frequency tracking system for general purpose lock-in amplifiers

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Chen, Liuhao; Huang, Anfeng; Zhao, Kai; Zhang, Hanlu

    2018-04-01

    Lock-in amplifiers (LIAs) are designed to measure weak signals submerged by noise. This is achieved with a signal modulator to avoid low-frequency noise and a narrow-band filter to suppress out-of-band noise. In asynchronous measurement, even a slight frequency deviation between the modulator and the reference may lead to measurement error because the filter’s passband is not flat. Because many commercial LIAs are unable to track frequency deviations, in this paper we propose an auxiliary frequency tracking system. We analyze the measurement error caused by the frequency deviation and propose both a tracking method and an auto-tracking system. This approach requires only three basic parameters, which can be obtained from any general purpose LIA via its communications interface, to calculate the frequency deviation from the phase difference. The proposed auxiliary tracking system is designed as a peripheral connected to the LIA’s serial port, removing the need for an additional power supply. The test results verified the effectiveness of the proposed system; the modified commercial LIA (model SR-850) was able to track the frequency deviation and continuous drift. For step frequency deviations, a steady tracking error of less than 0.001% was achieved within three adjustments, and the worst tracking accuracy was still better than 0.1% for a continuous frequency drift. The tracking system can be used to expand the application scope of commercial LIAs, especially for remote measurements in which the modulation clock and the local reference are separated.

  17. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  18. Issues and prospects for the next generation of the spatial data transfer standard (SDTS)

    USGS Publications Warehouse

    Arctur, D.; Hair, D.; Timson, G.; Martin, E.P.; Fegeas, R.

    1998-01-01

    The Spatial Data Transfer Standard (SDTS) was designed to be capable of representing virtually any data model, rather than being a prescription for a single data model. It has fallen short of this ambitious goal for a number of reasons, which this paper investigates. In addition to issues that might have been anticipated in its design, a number of new issues have arisen since its initial development. These include the need to support explicit feature definitions, incremental update, value-added extensions, and change tracking within large, national databases. It is time to consider the next stage of evolution for SDTS. This paper suggests development of an Object Profile for SDTS that would integrate concepts for a dynamic schema structure, OpenGIS interface, and CORBA IDL.

  19. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  20. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  1. Real-time shipboard displays for science operation and planning on CGC Healy

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Chayes, D.; Arko, R.

    2007-12-01

    To facilitate effective science planning and decision making, we have developed a real-time geospatial browser and other displays widely used by many if not all members of USCGC Healy's science cruises and some officers and crew since 2004. In order to enable a 'zero-configuration' experience to the end user with nearly any modern browser, on any platform, anywhere on the ship with wired (or wireless) network access, we chose a Web-based/server-centric approach that provides a very low barrier to access in an environment where we have many participants constantly coming and going, often with their own computers. The principle interface for planning and operational decision making is a georeferenced, Web-based user interface built on the MapServer Web GIS platform developed at the University of Minnesota (http://mapserver.gis.umn.edu/), using the PostGIS spatial database extensions (http://postgis.refractions.net/) to enable live database connectivity. Data available include current ship position and orientation, historical ship tracks and data, seafloor bathymetry, station locations, RADARSAT, and subbottom profiles among others. In addition to the user interfaces that are part of individual instrumentation (such as the sonars and navigation systems), custom interfaces have been developed to centralize data with high update rates such as sea surface temperature, vessel attitude, position, etc. Underlying data acquisition and storage is provided by the Lamont Data System (LDS) and the NOAA SCS system. All data are stored on RAIDed disk systems and shared across a switched network with a gigabit fiber backbone. The real-time displays access data in a number of ways including real-time UDP datagrams from LDS, accessing files on disk, and querying a PostgreSQL relational backend. This work is supported by grants from the U.S. National Science Foundation, Office of Polar Programs, Arctic Science section.

  2. Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale

    PubMed Central

    Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.

    2016-01-01

    Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257

  3. A finite-element model for moving contact line problems in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Kucala, Alec

    2017-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  4. Tracking variations in the alpha activity in an electroencephalogram

    NASA Technical Reports Server (NTRS)

    Prabhu, K. S.

    1971-01-01

    The problem of tracking Alpha voltage variations in an electroencephalogram is discussed. This problem is important in encephalographic studies of sleep and effects of different stimuli on the brain. Very often the Alpha voltage is tracked by passing the EEG signal through a bandpass filter centered at the Alpha frequency, which hopefully will filter out unwanted noise from the Alpha activity. Some alternative digital techniques are suggested and their performance is compared with the standard technique. These digital techniques can be used in an environment where an electroencephalograph is interfaced with a small digital computer via an A/D convertor. They have the advantage that statistical statements about their variability can sometimes be made so that the effect sought can be assessed correctly in the presence of random fluctuations.

  5. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  6. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  7. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  8. Experiencing Light's Properties within Your Own Eye

    ERIC Educational Resources Information Center

    Mauser, Michael

    2011-01-01

    Seeing the reflection, refraction, dispersion, absorption, polarization, and scattering or diffraction of light within your own eye makes these properties of light truly personal. There are practical aspects of these within the eye phenomena, such as eye tracking for computer interfaces. They also offer some intriguing diversions, for example,…

  9. Teaching Motion with the Global Positioning System

    ERIC Educational Resources Information Center

    Budisa, Marko; Planinsic, Gorazd

    2003-01-01

    We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)

  10. Iterative Exploration, Design and Evaluation of Support for Query Reformulation in Interactive Information Retrieval.

    ERIC Educational Resources Information Center

    Belkin, N. J.; Cool, C.; Kelly, D.; Lin, S. -J.; Park, S. Y.; Perez-Carballo, J.; Sikora, C.

    2001-01-01

    Reports on the progressive investigation of techniques for supporting interactive query reformulation in the TREC (Text Retrieval Conference) Interactive Track. Highlights include methods of term suggestion; interface design to support different system functionalities; an overview of each year's TREC investigation; and relevance to the development…

  11. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-11-29

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  12. Triply redundant integrated navigation and asset visibility system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2013-01-22

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  13. Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-05-01

    Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.

  14. Neuromorphic vision sensors and preprocessors in system applications

    NASA Astrophysics Data System (ADS)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  15. Project Integration Architecture: Architectural Overview

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2001-01-01

    The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture which encapsulates all of the information associated with engineering applications. The architecture allows the progress of a project to be tracked and documented in its entirety. By being a single, self-revealing architecture, the ability to develop single tools, for example a single graphical user interface, to span all applications is enabled. Additionally, by bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport information between those applications becomes possible, Object-encapsulation further allows information to become in a sense self-aware, knowing things such as its own dimensionality and providing functionality appropriate to its kind.

  16. ScienceOrganizer System and Interface Summary

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2001-01-01

    ScienceOrganizer is a specialized knowledge management tool designed to enhance the information storage, organization, and access capabilities of distributed NASA science teams. Users access ScienceOrganizer through an intuitive Web-based interface that enables them to upload, download, and organize project information - including data, documents, images, and scientific records associated with laboratory and field experiments. Information in ScienceOrganizer is "threaded", or interlinked, to enable users to locate, track, and organize interrelated pieces of scientific data. Linkages capture important semantic relationships among information resources in the repository, and these assist users in navigating through the information related to their projects.

  17. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  18. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System.

    PubMed

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-09-14

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  19. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    PubMed Central

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-01-01

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance. PMID:27649181

  20. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  1. GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome.

    PubMed

    Simovski, Boris; Vodák, Daniel; Gundersen, Sveinung; Domanska, Diana; Azab, Abdulrahman; Holden, Lars; Holden, Marit; Grytten, Ivar; Rand, Knut; Drabløs, Finn; Johansen, Morten; Mora, Antonio; Lund-Andersen, Christin; Fromm, Bastian; Eskeland, Ragnhild; Gabrielsen, Odd Stokke; Ferkingstad, Egil; Nakken, Sigve; Bengtsen, Mads; Nederbragt, Alexander Johan; Thorarensen, Hildur Sif; Akse, Johannes Andreas; Glad, Ingrid; Hovig, Eivind; Sandve, Geir Kjetil

    2017-07-01

    Recent large-scale undertakings such as ENCODE and Roadmap Epigenomics have generated experimental data mapped to the human reference genome (as genomic tracks) representing a variety of functional elements across a large number of cell types. Despite the high potential value of these publicly available data for a broad variety of investigations, little attention has been given to the analytical methodology necessary for their widespread utilisation. We here present a first principled treatment of the analysis of collections of genomic tracks. We have developed novel computational and statistical methodology to permit comparative and confirmatory analyses across multiple and disparate data sources. We delineate a set of generic questions that are useful across a broad range of investigations and discuss the implications of choosing different statistical measures and null models. Examples include contrasting analyses across different tissues or diseases. The methodology has been implemented in a comprehensive open-source software system, the GSuite HyperBrowser. To make the functionality accessible to biologists, and to facilitate reproducible analysis, we have also developed a web-based interface providing an expertly guided and customizable way of utilizing the methodology. With this system, many novel biological questions can flexibly be posed and rapidly answered. Through a combination of streamlined data acquisition, interoperable representation of dataset collections, and customizable statistical analysis with guided setup and interpretation, the GSuite HyperBrowser represents a first comprehensive solution for integrative analysis of track collections across the genome and epigenome. The software is available at: https://hyperbrowser.uio.no. © The Author 2017. Published by Oxford University Press.

  2. Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking

    PubMed Central

    Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2012-01-01

    The “soft” (i.e. non-covalent) interactions between molecules and surfaces are complex and highly-varied (e.g. hydrophobic, hydrogen bonding, ionic) often leading to heterogeneous interfacial behavior. Heterogeneity can arise either from spatial variation of the surface/interface itself or from molecular configurations (i.e. conformation, orientation, aggregation state, etc.). By observing adsorption, diffusion, and desorption of individual fluorescent molecules, single-molecule tracking can characterize these types of heterogeneous interfacial behavior in ways that are inaccessible to traditional ensemble-averaged methods. Moreover, the fluorescence intensity or emission wavelength (in resonance energy transfer experiments) can be used to simultaneously track molecular configuration and directly relate this to the resulting interfacial mobility or affinity. In this feature article, we review recent advances involving the use of single-molecule tracking to characterize heterogeneous molecule-surface interactions including: multiple modes of diffusion and desorption associated with both internal and external molecular configuration, Arrhenius activated interfacial transport, spatially dependent interactions, and many more. PMID:22716995

  3. AAVSO Target Tool: A Web-Based Service for Tracking Variable Star Observations (Abstract)

    NASA Astrophysics Data System (ADS)

    Burger, D.; Stassun, K. G.; Barnes, C.; Kafka, S.; Beck, S.; Li, K.

    2018-06-01

    (Abstract only) The AAVSO Target Tool is a web-based interface for bringing stars in need of observation to the attention of AAVSOís network of amateur and professional astronomers. The site currently tracks over 700 targets of interest, collecting data from them on a regular basis from AAVSOís servers and sorting them based on priority. While the target tool does not require a login, users can obtain visibility times for each target by signing up and entering a telescope location. Other key features of the site include filtering by AAVSO observing section, sorting by different variable types, formatting the data for printing, and exporting the data to a CSV file. The AAVSO Target Tool builds upon seven years of experience developing web applications for astronomical data analysis, most notably on Filtergraph (Burger, D., et al. 2013, Astronomical Data Analysis Software and Systems XXII, Astronomical Society of the Pacific, San Francisco, 399), and is built using the web2py web framework based on the python programming language. The target tool is available at http://filtergraph.com/aavso.

  4. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  5. Flexible Peripheral Component Interconnect Input/Output Card

    NASA Technical Reports Server (NTRS)

    Bigelow, Kirk K.; Jerry, Albert L.; Baricio, Alisha G.; Cummings, Jon K.

    2010-01-01

    The Flexible Peripheral Component Interconnect (PCI) Input/Output (I/O) Card is an innovative circuit board that provides functionality to interface between a variety of devices. It supports user-defined interrupts for interface synchronization, tracks system faults and failures, and includes checksum and parity evaluation of interface data. The card supports up to 16 channels of high-speed, half-duplex, low-voltage digital signaling (LVDS) serial data, and can interface combinations of serial and parallel devices. Placement of a processor within the field programmable gate array (FPGA) controls an embedded application with links to host memory over its PCI bus. The FPGA also provides protocol stacking and quick digital signal processor (DSP) functions to improve host performance. Hardware timers, counters, state machines, and other glue logic support interface communications. The Flexible PCI I/O Card provides an interface for a variety of dissimilar computer systems, featuring direct memory access functionality. The card has the following attributes: 8/16/32-bit, 33-MHz PCI r2.2 compliance, Configurable for universal 3.3V/5V interface slots, PCI interface based on PLX Technology's PCI9056 ASIC, General-use 512K 16 SDRAM memory, General-use 1M 16 Flash memory, FPGA with 3K to 56K logical cells with embedded 27K to 198K bits RAM, I/O interface: 32-channel LVDS differential transceivers configured in eight, 4-bit banks; signaling rates to 200 MHz per channel, Common SCSI-3, 68-pin interface connector.

  6. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  7. Fostering learners' interaction with content: A learner-centered mobile device interface

    NASA Astrophysics Data System (ADS)

    Abdous, M.

    2015-12-01

    With the ever-increasing omnipresence of mobile devices in student life, leveraging smart devices to foster students' interaction with course content is critical. Following a learner-centered design iterative approach, we designed a mobile interface that may enable learners to access and interact with online course content efficiently and intuitively. Our design process leveraged recent technologies, such as bootstrap, Google's Material Design, HTML5, and JavaScript to design an intuitive, efficient, and portable mobile interface with a variety of built-in features, including context sensitive bookmarking, searching, progress tracking, captioning, and transcript display. The mobile interface also offers students the ability to ask context-related questions and to complete self-checks as they watch audio/video presentations. Our design process involved ongoing iterative feedback from learners, allowing us to refine and tweak the interface to provide learners with a unified experience across platforms and devices. The innovative combination of technologies built around well-structured and well-designed content seems to provide an effective learning experience to mobile learners. Early feedback indicates a high level of satisfaction with the interface's efficiency, intuitiveness, and robustness from both students and faculty.

  8. Numerical Simulations for Turbulent Drag Reduction Using Liquid Infused Surfaces

    NASA Astrophysics Data System (ADS)

    Arenas-Navarro, Isnardo

    Numerical simulations of the turbulent flow over Super Hydrophobic and Liquid Infused Surfaces have been performed in this work. Three different textured surfaces have been considered: longitudinal square bars, transversal square bars and staggered cubes. The numerical code combines an immersed boundary method to mimic the substrate and a level set method to track the interface. Liquid Infused Surfaces reduce the drag by locking a lubricant within structured roughness to facilitate a slip velocity at the surface interface. The conceptual idea is similar to Super Hydrophobic Surfaces, which rely on a lubricant air layer, whereas liquid-infused surfaces use a preferentially wetting liquid lubricant to create a fluid-fluid interface. This slipping interface has been shown to be an effective method of passively reducing skin friction drag in turbulent flows. Details are given on the effect of the viscosity ratio between the two fluids and the dynamics of the interface on drag reduction. An attempt has been made to reconcile Super-Hydrophobic, Liquid Infused and rough wall under the same framework by correlating the drag to the wall normal velocity fluctuations.

  9. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  10. LES of stratified-wavy flows using novel near-interface treatment

    NASA Astrophysics Data System (ADS)

    Karnik, Aditya; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.

    2017-11-01

    The pressure drop in horizontal stratified wavy flows is influenced by interfacial shear stress. The near-interface behavior of the lighter phase is akin to that near a moving wall. We employ a front-tracking code, Blue, to simulate and capture the near-interface behaviour of both phases. Blue uses a modified Smagorinsky LES model incorporating a novel near-interface treatment for the sub-grid viscosity, which is influenced by damping due to the wall-like interface, and enhancement of the turbulent kinetic energy (TKE) due to the interfacial waves. Simulations are carried out for both air-water and oil-water stratified configurations to demonstrate the applicability of the present method. The mean velocities and tangential Reynolds stresses are compared with experiments for both configurations. At the higher Re, the waves penetrate well into the buffer region of the boundary layer above the interface thus altering its dynamics. Previous attempts to capture the secondary structures associated with such flows using RANS or standard LES methodologies have been unsuccessful. The ability of the present method to reproduce these structures is due to the correct estimation of the near-interface TKE governing energy transfer from the normal to tangential directions. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  11. Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz, Ulrich

    2015-08-31

    The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implementedmore » in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the McGill, Texas A&M, and LBNL groups.« less

  12. Ultrasonic ranging for the oculometer

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1981-01-01

    Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.

  13. Evaluating input device usability as a function of task difficulty in a tracking task.

    PubMed

    Rupp, Michael A; Oppold, Paul; McConnell, Daniel S

    2015-01-01

    Game controllers are emerging as a preferred choice for the manual control of unmanned vehicles, but an understanding of their usability characteristics has yet to emerge. We compared the usability of an Xbox 360 game controller in a dual task situation using MATB II to the traditional joystick and keyboard interface in two experiments. In the first experiment, performance with the game controller was associated with fewer tracking errors. In a second experiment, we trained users on the devices, and found that even after training the game controller was still associated with fewer tracking errors as well as higher usability and lower workload ratings. These results are consistent with the idea that game controllers are highly usable input devices and do not require high mental workload to operate, thus making them suitable for complex control tasks.

  14. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data

    EPA Pesticide Factsheets

    RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The RadNet network, which has stations in each state, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents.

  15. FirstSearch and NetFirst--Web and Dial-up Access: Plus Ca Change, Plus C'est la Meme Chose?

    ERIC Educational Resources Information Center

    Koehler, Wallace; Mincey, Danielle

    1996-01-01

    Compares and evaluates the differences between OCLC's dial-up and World Wide Web FirstSearch access methods and their interfaces with the underlying databases. Also examines NetFirst, OCLC's new Internet catalog, the only Internet tracking database from a "traditional" database service. (Author/PEN)

  16. Engaging Teens with Asthma in Designing a Patient-Centered Mobile App to Aid Disease Self-Management.

    PubMed

    Schneider, Tali; Panzera, Anthony D; Couluris, Marisa; Lindenberger, James; McDermott, Robert; Bryant, Carol A

    2015-08-10

    Despite the growing market of e-health disease self-management tools, few studies have reported the presence of teen patients in all phases of product design. While rates of American teens using mobile Internet grow, an opportunity to deliver disease self-management targeted for teen patients exists. Building on findings from previous investigations with teens with asthma, we explored teens' insights on the development of a patient-centered asthma management application (app). Two existing asthma apps were used by 16 teen asthmatics for 7-10 days. At the end of the trial period, in-depth interviews were conducted with each participant to gather insights about the user experience. Participants requested more asthma-related content that educates them about their condition. Suggested improvements to currently available apps included a longer list of selectable symptoms to track, medication tracking, and more compelling interface features. Participants showed interest in using apps for managing their asthma, yet recommended improvements on current design. Whereas national figures point to a more ubiquitous mobile device environment, implementation efforts must respond to participants' recommendations while minding lingering digital divides. Currently available apps lack appealing components that teens seek or desire. Subsequent development should include teens' participation in component design insights.

  17. Three-Dimensional Tracking of Interfacial Hopping Diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Wu, Haichao; Schwartz, Daniel K.

    2017-12-01

    Theoretical predictions have suggested that molecular motion at interfaces—which influences processes including heterogeneous catalysis, (bio)chemical sensing, lubrication and adhesion, and nanomaterial self-assembly—may be dominated by hypothetical "hops" through the adjacent liquid phase, where a diffusing molecule readsorbs after a given hop according to a probabilistic "sticking coefficient." Here, we use three-dimensional (3D) single-molecule tracking to explicitly visualize this process for human serum albumin at solid-liquid interfaces that exert varying electrostatic interactions on the biomacromolecule. Following desorption from the interface, a molecule experiences multiple unproductive surface encounters before readsorption. An average of approximately seven surface collisions is required for the repulsive surfaces, decreasing to approximately two and a half for surfaces that are more attractive. The hops themselves are also influenced by long-range interactions, with increased electrostatic repulsion causing hops of longer duration and distance. These findings explicitly demonstrate that interfacial diffusion is dominated by biased 3D Brownian motion involving bulk-surface coupling and that it can be controlled by influencing short- and long-range adsorbate-surface interactions.

  18. Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking

    PubMed Central

    Madaoui, Hocine; Guerois, Raphaël

    2008-01-01

    Protein surfaces are under significant selection pressure to maintain interactions with their partners throughout evolution. Capturing how selection pressure acts at the interfaces of protein–protein complexes is a fundamental issue with high interest for the structural prediction of macromolecular assemblies. We tackled this issue under the assumption that, throughout evolution, mutations should minimally disrupt the physicochemical compatibility between specific clusters of interacting residues. This constraint drove the development of the so-called Surface COmplementarity Trace in Complex History score (SCOTCH), which was found to discriminate with high efficiency the structure of biological complexes. SCOTCH performances were assessed not only with respect to other evolution-based approaches, such as conservation and coevolution analyses, but also with respect to statistically based scoring methods. Validated on a set of 129 complexes of known structure exhibiting both permanent and transient intermolecular interactions, SCOTCH appears as a robust strategy to guide the prediction of protein–protein complex structures. Of particular interest, it also provides a basic framework to efficiently track how protein surfaces could evolve while keeping their partners in contact. PMID:18511568

  19. Data transmission and acquisition in NEMO

    NASA Astrophysics Data System (ADS)

    Bunkheila, G.

    2006-11-01

    A comprehensive system for data transmission and acquisition has been developed for an "à la NEMO" underwater neutrino telescope based on Čerenkov light detection using photomultipliers (PMTs) as sensors. Signals generated by each sensor are triggered, sampled and tagged by an electronics board, called Front End Module (FEM). Data streams from up to eight FEMs located on one tower floor are collected by a concentration board called Floor Control Module (FCM) and sent to a twin FCM board—located at the onshore station and plugged into an interface machine (FCM Interface, or FCMI) via a PCI bus—through a DWDM-compliant optical fiber and using a self-synchronous serial protocol. All sensor data reach the onshore lab through FCMI where they are made available to subsequent elaboration processes, such as time-wise alignment and muon track event-triggering. To meet requirements of the latter, onshore data unpacking is carried out with respect to their topological origin. The system promised, and keeps on showing, very light charges on power consumption and infrastructure complexity, while having recently proved to behave at high performance levels in its optical part.

  20. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

Top