Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes
2014-04-13
Interfaces ( BCIs ), and other systems in the same computational framework. Figure 11 below shows...Improving Brain-‐Computer Interfaces Using Independent Component Analysis, In: Towards Future BCIs , 2012
Eye-gaze independent EEG-based brain-computer interfaces for communication.
Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F
2012-08-01
The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.
Eye-gaze independent EEG-based brain-computer interfaces for communication
NASA Astrophysics Data System (ADS)
Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.
2012-08-01
The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.
Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives
Yuan, Han; He, Bin
2014-01-01
Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276
P300 brain computer interface: current challenges and emerging trends
Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea
2012-01-01
A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397
Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.
Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S
2014-01-01
Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.
An auditory brain-computer interface evoked by natural speech
NASA Astrophysics Data System (ADS)
Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto
2012-06-01
Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.
A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
NASA Astrophysics Data System (ADS)
Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.
2018-06-01
Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
2014-01-01
Background The fatigue that users suffer when using steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can cause a number of serious problems such as signal quality degradation and system performance deterioration, users’ discomfort and even risk of photosensitive epileptic seizures, posing heavy restrictions on the applications of SSVEP-based BCIs. Towards alleviating the fatigue, a fundamental step is to measure and evaluate it but most existing works adopt self-reported questionnaire methods which are subjective, offline and memory dependent. This paper proposes an objective and real-time approach based on electroencephalography (EEG) spectral analysis to evaluate the fatigue in SSVEP-based BCIs. Methods How the EEG indices (amplitudes in δ, θ, α and β frequency bands), the selected ratio indices (θ/α and (θ + α)/β), and SSVEP properties (amplitude and signal-to-noise ratio (SNR)) changes with the increasing fatigue level are investigated through two elaborate SSVEP-based BCI experiments, one validates mainly the effectiveness and another considers more practical situations. Meanwhile, a self-reported fatigue questionnaire is used to provide a subjective reference. ANOVA is employed to test the significance of the difference between the alert state and the fatigue state for each index. Results Consistent results are obtained in two experiments: the significant increases in α and (θ + α)/β, as well as the decrease in θ/α are found associated with the increasing fatigue level, indicating that EEG spectral analysis can provide robust objective evaluation of the fatigue in SSVEP-based BCIs. Moreover, the results show that the amplitude and SNR of the elicited SSVEP are significantly affected by users’ fatigue. Conclusions The experiment results demonstrate the feasibility and effectiveness of the proposed method as an objective and real-time evaluation of the fatigue in SSVEP-based BCIs. This method would be helpful in understanding the fatigue problem and optimizing the system design to alleviate the fatigue in SSVEP-based BCIs. PMID:24621009
Hardware enhance of brain computer interfaces
NASA Astrophysics Data System (ADS)
Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi
2015-05-01
The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.
Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei
2015-10-01
Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills. Copyright © 2014 Elsevier B.V. All rights reserved.
Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future
Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan
2016-01-01
Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611
On the control of brain-computer interfaces by users with cerebral palsy.
Daly, Ian; Billinger, Martin; Laparra-Hernández, José; Aloise, Fabio; García, Mariano Lloria; Faller, Josef; Scherer, Reinhold; Müller-Putz, Gernot
2013-09-01
Brain-computer interfaces (BCIs) have been proposed as a potential assistive device for individuals with cerebral palsy (CP) to assist with their communication needs. However, it is unclear how well-suited BCIs are to individuals with CP. Therefore, this study aims to investigate to what extent these users are able to gain control of BCIs. This study is conducted with 14 individuals with CP attempting to control two standard online BCIs (1) based upon sensorimotor rhythm modulations, and (2) based upon steady state visual evoked potentials. Of the 14 users, 8 are able to use one or other of the BCIs, online, with a statistically significant level of accuracy, without prior training. Classification results are driven by neurophysiological activity and not seen to correlate with occurrences of artifacts. However, many of these users' accuracies, while statistically significant, would require either more training or more advanced methods before practical BCI control would be possible. The results indicate that BCIs may be controlled by individuals with CP but that many issues need to be overcome before practical application use may be achieved. This is the first study to assess the ability of a large group of different individuals with CP to gain control of an online BCI system. The results indicate that six users could control a sensorimotor rhythm BCI and three a steady state visual evoked potential BCI at statistically significant levels of accuracy (SMR accuracies; mean ± STD, 0.821 ± 0.116, SSVEP accuracies; 0.422 ± 0.069). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947
Concentration on performance with P300-based BCI systems: a matter of interface features.
da Silva-Sauer, Leandro; Valero-Aguayo, Luis; de la Torre-Luque, Alejandro; Ron-Angevin, Ricardo; Varona-Moya, Sergio
2016-01-01
People who suffer from severe motor disabilities have difficulties to communicate with others or to interact with their environment using natural, i.e., muscular channels. These limitations can be overcome to some extent by using brain-computer interfaces (BCIs), because such systems allow users to communicate on the basis of their brain activity only. Among the several types of BCIs for spelling purposes, those that rely on the P300 event related potential-P300-based spellers-are chosen preferentially due to their high reliability. However, they demand from the user to sustain his/her attention to the desired character over a relatively long period of time. Therefore, the user's capacity to concentrate can affect his/her performance with a P300-based speller. The aim of this study was to test this hypothesis using three different interfaces: one based on the classic P300 speller paradigm, another also based on that speller but including a word predictor, and a third one that was based on the T9 interface developed for mobile phones. User performance was assessed by measuring the time to complete a spelling task and the accuracy of character selection. The d2 test was applied to assess attention and concentration. Sample (N = 14) was divided into two groups basing on of concentration scores. As a result, performance was better with the predictor-enriched interfaces: less time was needed to solve the task and participants made fewer errors (p < .05). There were also significant effects of concentration (p < .05) on performance with the standard P300 speller. In conclusion, the performance of those users with lower concentration level can be improved by providing BCIs with more interactive interfaces. These findings provide substantial evidence in order to highlight the impact of psychological features on BCI performance and should be taken into account for future assistive technology systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc
2016-10-01
Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.
Schicktanz, Silke; Amelung, Till; Rieger, Jochem W.
2015-01-01
Brain–computer–interfaces (BCIs) are important for the next generation of neuro-prosthesis innovations. Only few pilot projects have tested patients’ abilities to control BCIs as well as their satisfaction with the offered technologies. On the one hand, little is known about patients’ moral attitudes toward the benefit-risk-ratio of BCIs as well as their needs, priorities, and expectations. On the other hand, ethics experts intensively discuss the general risks of BCIs as well as the limits of neuro-enhancement. To our knowledge, we present here the first qualitative interview study with ten chronic patients matching the potential user categories for motor and communication BCIs to assess their practical and moral attitudes toward this technology. The interviews reveal practical and moral attitudes toward motor BCIs that can impact future technology development. We discuss our empirical findings on patients’ perspectives and compare them to neuroscientists’ and ethicists’ perspectives. Our analysis indicates only partial overlap between the potential users’ and the experts’ assessments of BCI-technology. It points out the importance of considering the needs and desires of the targeted patient group. Based on our findings, we suggest a multi-fold approach to the development of clinical BCIs, rooted in the participatory technology-development. We conclude that clinical BCI development needs to be explored in a disease-related and culturally sensitive way. PMID:25964745
The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing.
Nijboer, Femke; Clausen, Jens; Allison, Brendan Z; Haselager, Pim
2013-01-01
Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4 th International BCI conference, which took place in May-June 2010 in Asilomar, California. We assessed respondents' opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, we assessed respondents' expectations on the marketability of different BCI applications (BCIs for healthy people, BCIs for assistive technology, BCIs-controlled neuroprostheses and BCIs as therapy tools). Third, we investigated opinions about ethical issues related to BCI research for the development of assistive technology: informed consent process with locked-in patients, risk-benefit analyses, team responsibility, consequences of BCI on patients' and families' lives, liability and personal identity and interaction with the media. Finally, we asked respondents which issues are urgent in BCI research.
Critical issues using brain-computer interfaces for augmentative and alternative communication.
Hill, Katya; Kovacs, Thomas; Shin, Sangeun
2015-03-01
Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.
Riechmann, Hannes; Finke, Andrea; Ritter, Helge
2016-06-01
Brain-computer interfaces provide a means for controlling a device by brain activity alone. One major drawback of noninvasive BCIs is their low information transfer rate, obstructing a wider deployment outside the lab. BCIs based on codebook visually evoked potentials (cVEP) outperform all other state-of-the-art systems in that regard. Previous work investigated cVEPs for spelling applications. We present the first cVEP-based BCI for use in real-world settings to accomplish everyday tasks such as navigation or action selection. To this end, we developed and evaluated a cVEP-based on-line BCI that controls a virtual agent in a simulated, but realistic, 3-D kitchen scenario. We show that cVEPs can be reliably triggered with stimuli in less restricted presentation schemes, such as on dynamic, changing backgrounds. We introduce a novel, dynamic repetition algorithm that allows for optimizing the balance between accuracy and speed individually for each user. Using these novel mechanisms in a 12-command cVEP-BCI in the 3-D simulation results in ITRs of 50 bits/min on average and 68 bits/min maximum. Thus, this work supports the notion of cVEP-BCIs as a particular fast and robust approach suitable for real-world use.
Eyes-closed hybrid brain-computer interface employing frontal brain activation.
Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong
2018-01-01
Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces.
Lu, Jun; McFarland, Dennis J; Wolpaw, Jonathan R
2013-02-01
Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an 'adaptive Laplacian (ALAP) filter', can provide better performance for SMR-based BCIs. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Designing Guiding Systems for Brain-Computer Interfaces
Kosmyna, Nataliya; Lécuyer, Anatole
2017-01-01
Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400
Autonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard.
Gembler, Felix; Stawicki, Piotr; Volosyak, Ivan
2015-01-01
Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of parameters (e.g., stimulation frequencies). Calibration usually requires selecting predefined parameters by experienced/trained personnel, though in real-life scenarios an interface allowing people with no experience in programming to set up the BCI would be desirable. Another occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency). Many articles reported that BCI control could not be achieved by a non-negligible number of users. In order to bypass those problems we developed a SSVEP-BCI wizard, a system that automatically determines user-dependent key-parameters to customize SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy subjects. All subjects were asked to spell the phrase "RHINE WAAL UNIVERSITY" with a spelling application after key parameters were determined by the wizard. Results show that all subjects were able to control the spelling application. A mean (SD) accuracy of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25 subjects even reached 100% accuracy).
Online EEG Classification of Covert Speech for Brain-Computer Interfacing.
Sereshkeh, Alborz Rezazadeh; Trott, Robert; Bricout, Aurélien; Chau, Tom
2017-12-01
Brain-computer interfaces (BCIs) for communication can be nonintuitive, often requiring the performance of hand motor imagery or some other conversation-irrelevant task. In this paper, electroencephalography (EEG) was used to develop two intuitive online BCIs based solely on covert speech. The goal of the first BCI was to differentiate between 10[Formula: see text]s of mental repetitions of the word "no" and an equivalent duration of unconstrained rest. The second BCI was designed to discern between 10[Formula: see text]s each of covert repetition of the words "yes" and "no". Twelve participants used these two BCIs to answer yes or no questions. Each participant completed four sessions, comprising two offline training sessions and two online sessions, one for testing each of the BCIs. With a support vector machine and a combination of spectral and time-frequency features, an average accuracy of [Formula: see text] was reached across participants in the online classification of no versus rest, with 10 out of 12 participants surpassing the chance level (60.0% for [Formula: see text]). The online classification of yes versus no yielded an average accuracy of [Formula: see text], with eight participants exceeding the chance level. Task-specific changes in EEG beta and gamma power in language-related brain areas tended to provide discriminatory information. To our knowledge, this is the first report of online EEG classification of covert speech. Our findings support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.
The impact of loss of control on movement BCIs.
Reuderink, Boris; Poel, Mannes; Nijholt, Anton
2011-12-01
Brain-computer interfaces (BCIs) are known to suffer from spontaneous changes in the brain activity. If changes in the mental state of the user are reflected in the brain signals used for control, the behavior of a BCI is directly influenced by these states. We investigate the influence of a state of loss of control in a variant of Pacman on the performance of BCIs based on motor control. To study the effect a temporal loss of control has on the BCI performance, BCI classifiers were trained on electroencephalography (EEG) recorded during the normal control condition, and the classification performance on segments of EEG from the normal and loss of control condition was compared. Classifiers based on event-related desynchronization unexpectedly performed significantly better during the loss of control condition; for the event-related potential classifiers there was no significant difference in performance.
Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J
2009-03-01
Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.
Design and Evaluation of Fusion Approach for Combining Brain and Gaze Inputs for Target Selection
Évain, Andéol; Argelaguet, Ferran; Casiez, Géry; Roussel, Nicolas; Lécuyer, Anatole
2016-01-01
Gaze-based interfaces and Brain-Computer Interfaces (BCIs) allow for hands-free human–computer interaction. In this paper, we investigate the combination of gaze and BCIs. We propose a novel selection technique for 2D target acquisition based on input fusion. This new approach combines the probabilistic models for each input, in order to better estimate the intent of the user. We evaluated its performance against the existing gaze and brain–computer interaction techniques. Twelve participants took part in our study, in which they had to search and select 2D targets with each of the evaluated techniques. Our fusion-based hybrid interaction technique was found to be more reliable than the previous gaze and BCI hybrid interaction techniques for 10 participants over 12, while being 29% faster on average. However, similarly to what has been observed in hybrid gaze-and-speech interaction, gaze-only interaction technique still provides the best performance. Our results should encourage the use of input fusion, as opposed to sequential interaction, in order to design better hybrid interfaces. PMID:27774048
ERIC Educational Resources Information Center
Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom
2013-01-01
Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…
Addition of visual noise boosts evoked potential-based brain-computer interface.
Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili
2014-05-14
Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.
Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T
2017-02-01
Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.
Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces
NASA Astrophysics Data System (ADS)
Gutiérrez, David
2008-08-01
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.
Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, David
2008-08-11
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEGmore » data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.« less
A brain computer interface using electrocorticographic signals in humans
NASA Astrophysics Data System (ADS)
Leuthardt, Eric C.; Schalk, Gerwin; Wolpaw, Jonathan R.; Ojemann, Jeffrey G.; Moran, Daniel W.
2004-06-01
Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain. The authors declare that they have no competing financial interests.
Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K; Birch, Gary E
2007-06-01
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?
NASA Astrophysics Data System (ADS)
Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.
2007-06-01
Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?
A Brain-Based Communication and Orientation System
2014-10-06
Review of the BCI Competition IV, Frontiers in Neuroscience, ( 2012): 0. doi: 10.3389/fnins.2012.00055 Eric C. Leuthardt, Xiao-Mei Pei, Jonathan...hardware and software for brain– computer interfaces ( BCIs ), Journal of Neural Engineering, (04 2011): 1. doi: 10.1088/1741-2560/8/2/025001...Cincotti, G. Schalk, Peter Brunner. Current Trends in Brain–Computer Interface ( BCI ) Research and Development, Journal of Neural Engineering, (3 2011
Brain-Computer Interfaces in Medicine
Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.
2012-01-01
Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364
A novel task-oriented optimal design for P300-based brain-computer interfaces.
Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen
2014-10-01
Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan
2014-07-01
A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the performances of a variety of mental task combinations in order to determine the mental task pairs that are best suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while seven participants performed eight different mental tasks. Classification accuracies were then estimated for all possible pairs of the eight mental tasks (C=28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: "mental multiplication," "mental rotation," and "right-hand motor imagery." Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.
A novel task-oriented optimal design for P300-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen
2014-10-01
Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.
User-customized brain computer interfaces using Bayesian optimization
NASA Astrophysics Data System (ADS)
Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali
2016-04-01
Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.
Cipresso, Pietro; Carelli, Laura; Solca, Federica; Meazzi, Daniela; Meriggi, Paolo; Poletti, Barbara; Lulé, Dorothée; Ludolph, Albert C; Silani, Vincenzo; Riva, Giuseppe
2012-01-01
The use of augmentative and alternative communication (AAC) tools in patients with amyotrophic lateral sclerosis (ALS), as effective means to compensate for the progressive loss of verbal and gestural communication, has been deeply investigated in the recent literature. The development of advanced AAC systems, such as eye-tracking (ET) and brain-computer interface (BCI) devices, allowed to bypass the important motor difficulties present in ALS patients. In particular, BCIs could be used in moderate to severe stages of the disease, since they do not require preserved ocular-motor ability, which is necessary for ET applications. Furthermore, some studies have proved the reliability of BCIs, regardless of the severity of the disease and the level of physical decline. However, the use of BCI in ALS patients still shows some limitations, related to both technical and neuropsychological issues. In particular, a range of cognitive deficits in most ALS patients have been observed. At the moment, no effective verbal-motor free measures are available for the evaluation of ALS patients’ cognitive integrity; BCIs could offer a new possibility to administer cognitive tasks without the need of verbal or motor responses, as highlighted by preliminary studies in this field. In this review, we outline the essential features of BCIs systems, considering advantages and challenges of these tools with regard to ALS patients and the main applications developed in this field. We then outline the main findings with regard to cognitive deficits observed in ALS and some preliminary attempts to evaluate them by means of BCIs. The definition of specific cognitive profiles could help to draw flexible approaches tailored on patients’ needs. It could improve BCIs efficacy and reduce patients’ efforts. Finally, we handle the open question, represented by the use of BCIs with totally locked in patients, who seem unable to reliably learn to use such tool. PMID:22950051
Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha
2012-01-01
Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.
Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.
Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward
2014-01-01
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.
Brain-computer interfaces in medicine.
Shih, Jerry J; Krusienski, Dean J; Wolpaw, Jonathan R
2012-03-01
Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco
2017-05-01
Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.
Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future
Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward
2014-01-01
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284
2014-11-01
Paradigm ............................................................................19 3.4 Collaborative BCI for Improving Overall Performance...interfaces ( BCIs ) provide the biggest improvement in performance? Can we demonstrate clear advantages with BCIs ? 2 2. Simulator Development and...stimuli in real time. Fig. 18 ROC curves for each subject after the combination of 2 trials 3.4 Collaborative BCI for Improving Overall
Neuroanatomical correlates of brain-computer interface performance.
Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi
2015-04-15
Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Training and testing ERP-BCIs under different mental workload conditions
NASA Astrophysics Data System (ADS)
Ke, Yufeng; Wang, Peiyuan; Chen, Yuqian; Gu, Bin; Qi, Hongzhi; Zhou, Peng; Ming, Dong
2016-02-01
Objective. As one of the most popular and extensively studied paradigms of brain-computer interfaces (BCIs), event-related potential-based BCIs (ERP-BCIs) are usually built and tested in ideal laboratory settings in most existing studies, with subjects concentrating on stimuli and intentionally avoiding possible distractors. This study is aimed at examining the effect of simultaneous mental activities on ERP-BCIs by manipulating various levels of mental workload during the training and/or testing of an ERP-BCI. Approach. Mental workload was manipulated during the training or testing of a row-column P300-speller to investigate how and to what extent the spelling performance and the ERPs evoked by the oddball stimuli are affected by simultaneous mental workload. Main results. Responses of certain ERP components, temporal-occipital N200 and the late reorienting negativity evoked by the oddball stimuli and the classifiability of ERP features between targets and non-targets decreased with the increase of mental workload encountered by the subject. However, the effect of mental workload on the performance of ERP-BCI was not always negative but depended on the conditions where the ERP-BCI was built and applied. The performance of ERP-BCI built under an ideal lab setting without any irrelevant mental activities declined with the increasing mental workload of the testing data. However, the performance was significantly improved when an ERP-BCI was built under an appropriate mental workload level, compared to that built under speller-only conditions. Significance. The adverse effect of concurrent mental activities may present a challenge for ERP-BCIs trained in ideal lab settings but which are to be used in daily work, especially when users are performing demanding mental processing. On the other hand, the positive effects of the mental workload of the training data suggest that introducing appropriate mental workload during training ERP-BCIs is of potential benefit to the performance in practical applications.
Rupp, Rüdiger
2014-01-01
Brain computer interfaces (BCIs) are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons, or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological impairments supervised by clinical personnel or caregivers. However, clinicians and patients face many challenges in the application of BCIs. This particularly applies to high spinal cord injured patients, in whom artificial ventilation, autonomic dysfunctions, neuropathic pain, or the inability to achieve a sufficient level of control during a short-term training may limit the successful use of a BCI. Additionally, spasmolytic medication and the acute stress reaction with associated episodes of depression may have a negative influence on the modulation of brain waves and therefore the ability to concentrate over an extended period of time. Although BCIs seem to be a promising assistive technology for individuals with high spinal cord injury systematic investigations are highly needed to obtain realistic estimates of the percentage of users that for any reason may not be able to operate a BCI in a clinical setting. PMID:25309420
Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R
2016-02-01
There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs.
A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh
2016-02-06
Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.
Does bimodal stimulus presentation increase ERP components usable in BCIs?
NASA Astrophysics Data System (ADS)
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
Evolution of brain-computer interfaces: going beyond classic motor physiology
Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.
2010-01-01
The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892
Kaufmann, Tobias; Völker, Stefan; Gunesch, Laura; Kübler, Andrea
2012-01-01
Brain-computer interfaces (BCI) based on event-related potentials (ERP) allow for selection of characters from a visually presented character-matrix and thus provide a communication channel for users with neurodegenerative disease. Although they have been topic of research for more than 20 years and were multiply proven to be a reliable communication method, BCIs are almost exclusively used in experimental settings, handled by qualified experts. This study investigates if ERP-BCIs can be handled independently by laymen without expert support, which is inevitable for establishing BCIs in end-user's daily life situations. Furthermore we compared the classic character-by-character text entry against a predictive text entry (PTE) that directly incorporates predictive text into the character-matrix. N = 19 BCI novices handled a user-centered ERP-BCI application on their own without expert support. The software individually adjusted classifier weights and control parameters in the background, invisible to the user (auto-calibration). All participants were able to operate the software on their own and to twice correctly spell a sentence with the auto-calibrated classifier (once with PTE, once without). Our PTE increased spelling speed and, importantly, did not reduce accuracy. In sum, this study demonstrates feasibility of auto-calibrating ERP-BCI use, independently by laymen and the strong benefit of integrating predictive text directly into the character-matrix.
Kaufmann, Tobias; Völker, Stefan; Gunesch, Laura; Kübler, Andrea
2012-01-01
Brain–computer interfaces (BCI) based on event-related potentials (ERP) allow for selection of characters from a visually presented character-matrix and thus provide a communication channel for users with neurodegenerative disease. Although they have been topic of research for more than 20 years and were multiply proven to be a reliable communication method, BCIs are almost exclusively used in experimental settings, handled by qualified experts. This study investigates if ERP–BCIs can be handled independently by laymen without expert support, which is inevitable for establishing BCIs in end-user’s daily life situations. Furthermore we compared the classic character-by-character text entry against a predictive text entry (PTE) that directly incorporates predictive text into the character-matrix. N = 19 BCI novices handled a user-centered ERP–BCI application on their own without expert support. The software individually adjusted classifier weights and control parameters in the background, invisible to the user (auto-calibration). All participants were able to operate the software on their own and to twice correctly spell a sentence with the auto-calibrated classifier (once with PTE, once without). Our PTE increased spelling speed and, importantly, did not reduce accuracy. In sum, this study demonstrates feasibility of auto-calibrating ERP–BCI use, independently by laymen and the strong benefit of integrating predictive text directly into the character-matrix. PMID:22833713
Zander, Thorsten O; Kothe, Christian
2011-04-01
Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.
BCIs in the Laboratory and at Home: The Wadsworth Research Program
NASA Astrophysics Data System (ADS)
Sellers, Eric W.; McFarland, Dennis J.; Vaughan, Theresa M.; Wolpaw, Jonathan R.
Many people with severe motor disabilities lack the muscle control that would allow them to rely on conventional methods of augmentative communication and control. Numerous studies over the past two decades have indicated that scalp-recorded electroencephalographic (EEG) activity can be the basis for non-muscular communication and control systems, commonly called brain-computer interfaces (BCIs) [55]. EEG-based BCI systems measure specific features of EEG activity and translate these features into device commands. The most commonly used features are rhythms produced by the sensorimotor cortex [38, 55, 56, 59], slow cortical potentials [4, 5, 23], and the P300 event-related potential [12, 17, 46]. Systems based on sensorimotor rhythms or slow cortical potentials use oscillations or transient signals that are spontaneous in the sense that they are not dependent on specific sensory events. Systems based on the P300 response use transient signals in the EEG that are elicited by specific stimuli.
What we can and cannot (yet) do with functional near infrared spectroscopy
Strait, Megan; Scheutz, Matthias
2014-01-01
Functional near infrared spectroscopy (NIRS) is a relatively new technique complimentary to EEG for the development of brain-computer interfaces (BCIs). NIRS-based systems for detecting various cognitive and affective states such as mental and emotional stress have already been demonstrated in a range of adaptive human–computer interaction (HCI) applications. However, before NIRS-BCIs can be used reliably in realistic HCI settings, substantial challenges oncerning signal processing and modeling must be addressed. Although many of those challenges have been identified previously, the solutions to overcome them remain scant. In this paper, we first review what can be currently done with NIRS, specifically, NIRS-based approaches to measuring cognitive and affective user states as well as demonstrations of passive NIRS-BCIs. We then discuss some of the primary challenges these systems would face if deployed in more realistic settings, including detection latencies and motion artifacts. Lastly, we investigate the effects of some of these challenges on signal reliability via a quantitative comparison of three NIRS models. The hope is that this paper will actively engage researchers to acilitate the advancement of NIRS as a more robust and useful tool to the BCI community. PMID:24904261
Jiang, Jun; Zhou, Zongtan; Yin, Erwei; Yu, Yang; Liu, Yadong; Hu, Dewen
2015-11-01
Motor imagery (MI)-based brain-computer interfaces (BCIs) allow disabled individuals to control external devices voluntarily, helping us to restore lost motor functions. However, the number of control commands available in MI-based BCIs remains limited, limiting the usability of BCI systems in control applications involving multiple degrees of freedom (DOF), such as control of a robot arm. To address this problem, we developed a novel Morse code-inspired method for MI-based BCI design to increase the number of output commands. Using this method, brain activities are modulated by sequences of MI (sMI) tasks, which are constructed by alternately imagining movements of the left or right hand or no motion. The codes of the sMI task was detected from EEG signals and mapped to special commands. According to permutation theory, an sMI task with N-length allows 2 × (2(N)-1) possible commands with the left and right MI tasks under self-paced conditions. To verify its feasibility, the new method was used to construct a six-class BCI system to control the arm of a humanoid robot. Four subjects participated in our experiment and the averaged accuracy of the six-class sMI tasks was 89.4%. The Cohen's kappa coefficient and the throughput of our BCI paradigm are 0.88 ± 0.060 and 23.5bits per minute (bpm), respectively. Furthermore, all of the subjects could operate an actual three-joint robot arm to grasp an object in around 49.1s using our approach. These promising results suggest that the Morse code-inspired method could be used in the design of BCIs for multi-DOF control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brain–computer interfaces: communication and restoration of movement in paralysis
Birbaumer, Niels; Cohen, Leonardo G
2007-01-01
The review describes the status of brain–computer or brain–machine interface research. We focus on non-invasive brain–computer interfaces (BCIs) and their clinical utility for direct brain communication in paralysis and motor restoration in stroke. A large gap between the promises of invasive animal and human BCI preparations and the clinical reality characterizes the literature: while intact monkeys learn to execute more or less complex upper limb movements with spike patterns from motor brain regions alone without concomitant peripheral motor activity usually after extensive training, clinical applications in human diseases such as amyotrophic lateral sclerosis and paralysis from stroke or spinal cord lesions show only limited success, with the exception of verbal communication in paralysed and locked-in patients. BCIs based on electroencephalographic potentials or oscillations are ready to undergo large clinical studies and commercial production as an adjunct or a major assisted communication device for paralysed and locked-in patients. However, attempts to train completely locked-in patients with BCI communication after entering the complete locked-in state with no remaining eye movement failed. We propose that a lack of contingencies between goal directed thoughts and intentions may be at the heart of this problem. Experiments with chronically curarized rats support our hypothesis; operant conditioning and voluntary control of autonomic physiological functions turned out to be impossible in this preparation. In addition to assisted communication, BCIs consisting of operant learning of EEG slow cortical potentials and sensorimotor rhythm were demonstrated to be successful in drug resistant focal epilepsy and attention deficit disorder. First studies of non-invasive BCIs using sensorimotor rhythm of the EEG and MEG in restoration of paralysed hand movements in chronic stroke and single cases of high spinal cord lesions show some promise, but need extensive evaluation in well-controlled experiments. Invasive BMIs based on neuronal spike patterns, local field potentials or electrocorticogram may constitute the strategy of choice in severe cases of stroke and spinal cord paralysis. Future directions of BCI research should include the regulation of brain metabolism and blood flow and electrical and magnetic stimulation of the human brain (invasive and non-invasive). A series of studies using BOLD response regulation with functional magnetic resonance imaging (fMRI) and near infrared spectroscopy demonstrated a tight correlation between voluntary changes in brain metabolism and behaviour. PMID:17234696
NASA Astrophysics Data System (ADS)
Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F.
2014-06-01
Objective. Several ERP-based brain-computer interfaces (BCIs) that can be controlled even without eye movements (covert attention) have been recently proposed. However, when compared to similar systems based on overt attention, they displayed significantly lower accuracy. In the current interpretation, this is ascribed to the absence of the contribution of short-latency visual evoked potentials (VEPs) in the tasks performed in the covert attention modality. This study aims to investigate if this decrement (i) is fully explained by the lack of VEP contribution to the classification accuracy; (ii) correlates with lower temporal stability of the single-trial P300 potentials elicited in the covert attention modality. Approach. We evaluated the latency jitter of P300 evoked potentials in three BCI interfaces exploiting either overt or covert attention modalities in 20 healthy subjects. The effect of attention modality on the P300 jitter, and the relative contribution of VEPs and P300 jitter to the classification accuracy have been analyzed. Main results. The P300 jitter is higher when the BCI is controlled in covert attention. Classification accuracy negatively correlates with jitter. Even disregarding short-latency VEPs, overt-attention BCI yields better accuracy than covert. When the latency jitter is compensated offline, the difference between accuracies is not significant. Significance. The lower temporal stability of the P300 evoked potential generated during the tasks performed in covert attention modality should be regarded as the main contributing explanation of lower accuracy of covert-attention ERP-based BCIs.
The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces
Powers, J. Clark; Bieliaieva, Kateryna; Wu, Shuohao; Nam, Chang S.
2015-01-01
Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE) of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1) alternative signal evocation methods within the oddball paradigm; (2) environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3) measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications. PMID:26266424
Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong
2016-01-01
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently. PMID:27824089
Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong
2016-11-08
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently.
Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola
2016-10-01
Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public.
Käthner, Ivo; Halder, Sebastian; Hintermüller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Rafael-Palou, Xavier; Solà, Marc; Daly, Jean M.; Armstrong, Elaine; Martin, Suzanne; Kübler, Andrea
2017-01-01
Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis. PMID:28588442
Käthner, Ivo; Halder, Sebastian; Hintermüller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Rafael-Palou, Xavier; Solà, Marc; Daly, Jean M; Armstrong, Elaine; Martin, Suzanne; Kübler, Andrea
2017-01-01
Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes ( N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.
EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies
Royer, Audrey S.; Doud, Alexander J.; Rose, Minn L.
2011-01-01
Films like Firefox, Surrogates, and Avatar have explored the possibilities of using brain-computer interfaces (BCIs) to control machines and replacement bodies with only thought. Real world BCIs have made great progress toward that end. Invasive BCIs have enabled monkeys to fully explore 3-dimensional (3D) space using neuroprosthetics. However, non-invasive BCIs have not been able to demonstrate such mastery of 3D space. Here, we report our work, which demonstrates that human subjects can use a non-invasive BCI to fly a virtual helicopter to any point in a 3D world. Through use of intelligent control strategies, we have facilitated the realization of controlled flight in 3D space. We accomplished this through a reductionist approach that assigns subject-specific control signals to the crucial components of 3D flight. Subject control of the helicopter was comparable when using either the BCI or a keyboard. By using intelligent control strategies, the strengths of both the user and the BCI system were leveraged and accentuated. Intelligent control strategies in BCI systems such as those presented here may prove to be the foundation for complex BCIs capable of doing more than we ever imagined. PMID:20876032
EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies.
Royer, Audrey S; Doud, Alexander J; Rose, Minn L; He, Bin
2010-12-01
Films like Firefox, Surrogates, and Avatar have explored the possibilities of using brain-computer interfaces (BCIs) to control machines and replacement bodies with only thought. Real world BCIs have made great progress toward that end. Invasive BCIs have enabled monkeys to fully explore 3-D space using neuroprosthetics. However, noninvasive BCIs have not been able to demonstrate such mastery of 3-D space. Here, we report our work, which demonstrates that human subjects can use a noninvasive BCI to fly a virtual helicopter to any point in a 3-D world. Through use of intelligent control strategies, we have facilitated the realization of controlled flight in 3-D space. We accomplished this through a reductionist approach that assigns subject-specific control signals to the crucial components of 3-D flight. Subject control of the helicopter was comparable when using either the BCI or a keyboard. By using intelligent control strategies, the strengths of both the user and the BCI system were leveraged and accentuated. Intelligent control strategies in BCI systems such as those presented here may prove to be the foundation for complex BCIs capable of doing more than we ever imagined.
An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling
NASA Astrophysics Data System (ADS)
Moghadamfalahi, Mohammad; Akcakaya, Murat; Nezamfar, Hooman; Sourati, Jamshid; Erdogmus, Deniz
2017-10-01
A class of brain computer interfaces (BCIs) employs noninvasive recordings of electroencephalography (EEG) signals to enable users with severe speech and motor impairments to interact with their environment and social network. For example, EEG based BCIs for typing popularly utilize event related potentials (ERPs) for inference. Presentation paradigm design in current ERP-based letter by letter typing BCIs typically query the user with an arbitrary subset characters. However, the typing accuracy and also typing speed can potentially be enhanced with more informed subset selection and flash assignment. In this manuscript, we introduce the active recursive Bayesian state estimation (active-RBSE) framework for inference and sequence optimization. Prior to presentation in each iteration, rather than showing a subset of randomly selected characters, the developed framework optimally selects a subset based on a query function. Selected queries are made adaptively specialized for users during each intent detection. Through a simulation-based study, we assess the effect of active-RBSE on the performance of a language-model assisted typing BCI in terms of typing speed and accuracy. To provide a baseline for comparison, we also utilize standard presentation paradigms namely, row and column matrix presentation paradigm and also random rapid serial visual presentation paradigms. The results show that utilization of active-RBSE can enhance the online performance of the system, both in terms of typing accuracy and speed.
Probabilistic co-adaptive brain-computer interfacing
NASA Astrophysics Data System (ADS)
Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.
2013-12-01
Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.
NASA Astrophysics Data System (ADS)
Leeb, Robert; Sagha, Hesam; Chavarriaga, Ricardo; Millán, José del R.
2011-04-01
Hybrid brain-computer interfaces (BCIs) are representing a recent approach to develop practical BCIs. In such a system disabled users are able to use all their remaining functionalities as control possibilities in parallel with the BCI. Sometimes these people have residual activity of their muscles. Therefore, in the presented hybrid BCI framework we want to explore the parallel usage of electroencephalographic (EEG) and electromyographic (EMG) activity, whereby the control abilities of both channels are fused. Results showed that the participants could achieve a good control of their hybrid BCI independently of their level of muscular fatigue. Thereby the multimodal fusion approach of muscular and brain activity yielded better and more stable performance compared to the single conditions. Even in the case of an increasing muscular fatigue a good control (moderate and graceful degradation of the performance compared to the non-fatigued case) and a smooth handover could be achieved. Therefore, such systems allow the users a very reliable hybrid BCI control although they are getting more and more exhausted or fatigued during the day.
Brain Computer Interface on Track to Home.
Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Solà, Marc; Müller-Putz, Gernot; Wriessnegger, Selina C; Pinegger, Andreas; Kübler, Andrea; Halder, Sebastian; Käthner, Ivo; Martin, Suzanne; Daly, Jean; Armstrong, Elaine; Guger, Christoph; Hintermüller, Christoph; Lowish, Hannah
2015-01-01
The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.
Brain Computer Interface on Track to Home
Miralles, Felip; Dauwalder, Stefan; Müller-Putz, Gernot; Wriessnegger, Selina C.; Pinegger, Andreas; Kübler, Andrea; Halder, Sebastian; Käthner, Ivo; Guger, Christoph; Lowish, Hannah
2015-01-01
The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life. PMID:26167530
Remsik, Alexander; Young, Brittany; Vermilyea, Rebecca; Kiekoefer, Laura; Abrams, Jessica; Elmore, Samantha Evander; Schultz, Paige; Nair, Veena; Edwards, Dorothy; Williams, Justin; Prabhakaran, Vivek
2016-01-01
Stroke is a leading cause of acquired disability resulting in distal upper extremity functional motor impairment. Stroke mortality rates continue to decline with advances in healthcare and medical technology. This has led to an increased demand for advanced, personalized rehabilitation. Survivors often experience some level of spontaneous recovery shortly after their stroke event; yet reach a functional plateau after which there is exiguous motor recovery. Nevertheless, studies have demonstrated the potential for recovery beyond this plateau. Non-traditional neurorehabilitation techniques, such as those incorporating the brain-computer interface (BCI), are being investigated for rehabilitation. BCIs may offer a gateway to the brain’s plasticity and revolutionize how humans interact with the world. Non-invasive BCIs work by closing the proprioceptive feedback loop with real-time, multi-sensory feedback allowing for volitional modulation of brain signals to assist hand function. BCI technology potentially promotes neuroplasticity and Hebbian-based motor recovery by rewarding cortical activity associated with sensory-motor rhythms through use with a variety of self-guided and assistive modalities. PMID:27112213
Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng
2016-02-01
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
A MUSIC-based method for SSVEP signal processing.
Chen, Kun; Liu, Quan; Ai, Qingsong; Zhou, Zude; Xie, Sheng Quan; Meng, Wei
2016-03-01
The research on brain computer interfaces (BCIs) has become a hotspot in recent years because it offers benefit to disabled people to communicate with the outside world. Steady state visual evoked potential (SSVEP)-based BCIs are more widely used because of higher signal to noise ratio and greater information transfer rate compared with other BCI techniques. In this paper, a multiple signal classification based method was proposed for multi-dimensional SSVEP feature extraction. 2-second data epochs from four electrodes achieved excellent accuracy rates including idle state detection. In some asynchronous mode experiments, the recognition accuracy reached up to 100%. The experimental results showed that the proposed method attained good frequency resolution. In most situations, the recognition accuracy was higher than canonical correlation analysis, which is a typical method for multi-channel SSVEP signal processing. Also, a virtual keyboard was successfully controlled by different subjects in an unshielded environment, which proved the feasibility of the proposed method for multi-dimensional SSVEP signal processing in practical applications.
Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface
Brunner, Clemens; Allison, Brendan Z.; Krusienski, Dean J.; Kaiser, Vera; Müller-Putz, Gernot R.; Pfurtscheller, Gert; Neuper, Christa
2012-01-01
In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user’s mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs. PMID:20153371
Mental workload during brain-computer interface training.
Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G
2012-01-01
It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.
Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery
NASA Astrophysics Data System (ADS)
Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M.
2011-06-01
The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.
Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
Barbosa, Sara; Pires, Gabriel; Nunes, Urbano
2016-03-01
Brain computer interfaces (BCIs) are one of the last communication options for patients in the locked-in state (LIS). For complete LIS patients, interfaces must be gaze-independent due to their eye impairment. However, unimodal gaze-independent approaches typically present levels of performance substantially lower than gaze-dependent approaches. The combination of multimodal stimuli has been pointed as a viable way to increase users' performance. A hybrid visual and auditory (HVA) P300-based BCI combining simultaneously visual and auditory stimulation is proposed. Auditory stimuli are based on natural meaningful spoken words, increasing stimuli discrimination and decreasing user's mental effort in associating stimuli to the symbols. The visual part of the interface is covertly controlled ensuring gaze-independency. Four conditions were experimentally tested by 10 healthy participants: visual overt (VO), visual covert (VC), auditory (AU) and covert HVA. Average online accuracy for the hybrid approach was 85.3%, which is more than 32% over VC and AU approaches. Questionnaires' results indicate that the HVA approach was the less demanding gaze-independent interface. Interestingly, the P300 grand average for HVA approach coincides with an almost perfect sum of P300 evoked separately by VC and AU tasks. The proposed HVA-BCI is the first solution simultaneously embedding natural spoken words and visual words to provide a communication lexicon. Online accuracy and task demand of the approach compare favorably with state-of-the-art. The proposed approach shows that the simultaneous combination of visual covert control and auditory modalities can effectively improve the performance of gaze-independent BCIs. Copyright © 2015 Elsevier B.V. All rights reserved.
Xie, Jun; Xu, Guanghua; Wang, Jing; Li, Min; Han, Chengcheng; Jia, Yaguang
Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of "stimulation type" and "fatigue level" also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.
Kim, Youngmoo E.
2017-01-01
Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training. PMID:28804712
Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J
2008-10-30
In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.
Automated selection of brain regions for real-time fMRI brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio
2017-02-01
Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.
Batula, Alyssa M; Kim, Youngmoo E; Ayaz, Hasan
2017-01-01
Motor-imagery tasks are a popular input method for controlling brain-computer interfaces (BCIs), partially due to their similarities to naturally produced motor signals. The use of functional near-infrared spectroscopy (fNIRS) in BCIs is still emerging and has shown potential as a supplement or replacement for electroencephalography. However, studies often use only two or three motor-imagery tasks, limiting the number of available commands. In this work, we present the results of the first four-class motor-imagery-based online fNIRS-BCI for robot control. Thirteen participants utilized upper- and lower-limb motor-imagery tasks (left hand, right hand, left foot, and right foot) that were mapped to four high-level commands (turn left, turn right, move forward, and move backward) to control the navigation of a simulated or real robot. A significant improvement in classification accuracy was found between the virtual-robot-based BCI (control of a virtual robot) and the physical-robot BCI (control of the DARwIn-OP humanoid robot). Differences were also found in the oxygenated hemoglobin activation patterns of the four tasks between the first and second BCI. These results corroborate previous findings that motor imagery can be improved with feedback and imply that a four-class motor-imagery-based fNIRS-BCI could be feasible with sufficient subject training.
Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016
Novak, Domen; Sigrist, Roland; Gerig, Nicolas J.; Wyss, Dario; Bauer, René; Götz, Ulrich; Riener, Robert
2018-01-01
This paper presents a new approach to benchmarking brain-computer interfaces (BCIs) outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance), it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others). Furthermore, the Cybathlon has the potential to showcase such devices to the general public. PMID:29375294
NASA Astrophysics Data System (ADS)
Vaughan, Theresa M.; Wolpaw, Jonathan R.
2011-04-01
This special issue of Journal of Neural Engineering is a result of the Fourth International Brain-Computer Interface Meeting, which was held at the Asilomar Conference Center in Monterey, California, USA from 31 May to 4 June, 2010. The meeting was sponsored by the National Institutes of Health, The National Science Foundation and the Department of Defense, and was organized by the Wadsworth Center of the New York State Department of Health. It attracted over 260 participants from 17 countries—including many graduate students and postdoctoral fellows—and featured 19 workshops, platform presentations from 26 research groups, 170 posters, multiple brain-computer interface (BCI) demonstrations, and a keynote address by W Zev Rymer of the Rehabilitation Institute of Chicago. The number of participants and the diversity of the topics covered greatly exceeded those of the previous meeting in 2005, and testified to the continuing rapid expansion and growing sophistication of this exciting and still relatively new research field. BCI research focuses primarily on using brain signals to replace or restore the motor functions that people have lost due to amyotrophic lateral sclerosis (ALS), a brainstem stroke, or some other devastating neuromuscular disorder. In the last few years, attention has also turned towards using BCIs to improve rehabilitation after a stroke, and beyond that to enhancing or supplementing the capabilities of even those without disabilities. These diverse interests were represented in the wide range of topics covered in the workshops. While some workshops addressed broad traditional topics, such as signal acquisition, feature extraction and translation, and software development, many addressed topics that were entirely new or focused sharply on areas that have become important only recently. These included workshops on optimizing P300-based BCIs; improving the mutual adaptations of the BCI and the user; BCIs that can control neuroprostheses, robotic arms, and other complex devices; moving BCIs from the laboratory to the home; BCIs that can induce neural plasticity and restore function; BCIs that use metabolic brain signals; novel BCI designs; non-medical BCI applications; ethical issues in BCI research; and contentious issues in BCI research. Dr Rymer's keynote address, 'BCI: a long range view from within a rehabilitation hospital', applied lessons from the field of rehabilitation robotics to the current state and future prospects of BCI technology. He noted that the present enthusiasm for BCI research and development reflects a desire to help people and to make basic research serve clinical needs, the excitement of the challenges for engineers and scientists, and (perhaps overly optimistic) anticipation of future benefits. He emphasized the importance of focusing research on major clinical problems that affect large numbers of people and can be addressed by BCI technology. In this regard, he identified the common and devastating motor problems produced by hemispheric stroke and limb loss as realistic and important targets for BCI research. He also cautioned against overly aggressive invasive BCI studies that might produce adverse events that could sharply curtail support and enthusiasm for further work. The keynote address, and presentations and discussions throughout the meeting, brought out five major issues that will help determine whether BCIs realize the exciting future that many envision for them. The first issue is the identification and characterization of those brain signals that are best able to encode user intent and the development of improved methods for recording these signals. Both noninvasive and invasive BCIs need sensors and associated hardware that are robust, convenient, cosmetically acceptable and function reliably and safely for long periods with minimal ongoing technical support. The second issue is the need for BCI software that optimizes the ongoing adaptive interactions between the BCI and the user to achieve the reliability lacking in current BCIs. Marked improvement in reliability is essential if BCIs are to move from the laboratory into widespread practical use for significant purposes in real life. The third issue is the development of BCI applications that serve the most important unmet needs of specific populations of potential users. BCI applications are needed that can extend the current spectrum of assistive technology or augment rehabilitation to move beyond what is possible using conventional methods. The fourth issue is the critical requirement for well-designed studies that validate the ability of BCIs to serve the needs and improve the lives of people with severe disabilities. Without such translational studies, BCIs will never realize the promise projected from laboratory results. Finally, the future of BCI technology depends on the realization of clinically and economically viable models for implementing and supporting its widespread dissemination. Effective attention to these five issues requires cooperation among researchers from many diverse disciplines: neuroscientists, engineers, psychologists, applied mathematicians, computer scientists, clinicians and rehabilitation specialists. The translational research essential for the validation of BCI technology is particularly dependent on such multidisciplinary collaborations. The need for multidisciplinary interactions has been the primary impetus for the four international BCI meetings to date. In the service of this continuing need, a discussion session at the meeting resulted in the formation of a multidisciplinary steering committee to organize future meetings at three-year intervals. Chaired by Jane E Huggins of the University of Michigan, this committee is planning the next meeting for 2013. The 28 primary research articles and workshop-based reviews that comprise this special issue reflect the substance and range of the meeting, and illustrate the current state of the field. The articles are loosely organized into three groups: signal acquisition; feature extraction and translation; and applications. The large number of application studies indicates the critical importance of this area for the ultimate significance of BCI research and development.
Goal selection versus process control while learning to use a brain-computer interface
NASA Astrophysics Data System (ADS)
Royer, Audrey S.; Rose, Minn L.; He, Bin
2011-06-01
A brain-computer interface (BCI) can be used to accomplish a task without requiring motor output. Two major control strategies used by BCIs during task completion are process control and goal selection. In process control, the user exerts continuous control and independently executes the given task. In goal selection, the user communicates their goal to the BCI and then receives assistance executing the task. A previous study has shown that goal selection is more accurate and faster in use. An unanswered question is, which control strategy is easier to learn? This study directly compares goal selection and process control while learning to use a sensorimotor rhythm-based BCI. Twenty young healthy human subjects were randomly assigned either to a goal selection or a process control-based paradigm for eight sessions. At the end of the study, the best user from each paradigm completed two additional sessions using all paradigms randomly mixed. The results of this study were that goal selection required a shorter training period for increased speed, accuracy, and information transfer over process control. These results held for the best subjects as well as in the general subject population. The demonstrated characteristics of goal selection make it a promising option to increase the utility of BCIs intended for both disabled and able-bodied users.
NASA Astrophysics Data System (ADS)
Boudria, Yacine; Feltane, Amal; Besio, Walter
2014-06-01
Objective. Brain-computer interfaces (BCIs) based on electroencephalography (EEG) have been shown to accurately detect mental activities, but the acquisition of high levels of control require extensive user training. Furthermore, EEG has low signal-to-noise ratio and low spatial resolution. The objective of the present study was to compare the accuracy between two types of BCIs during the first recording session. EEG and tripolar concentric ring electrode (TCRE) EEG (tEEG) brain signals were recorded and used to control one-dimensional cursor movements. Approach. Eight human subjects were asked to imagine either ‘left’ or ‘right’ hand movement during one recording session to control the computer cursor using TCRE and disc electrodes. Main results. The obtained results show a significant improvement in accuracies using TCREs (44%-100%) compared to disc electrodes (30%-86%). Significance. This study developed the first tEEG-based BCI system for real-time one-dimensional cursor movements and showed high accuracies with little training.
Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.
McCane, Lynn M; Sellers, Eric W; McFarland, Dennis J; Mak, Joseph N; Carmack, C Steve; Zeitlin, Debra; Wolpaw, Jonathan R; Vaughan, Theresa M
2014-06-01
Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.
Programmable neural processing on a smartdust for brain-computer interfaces.
Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C
2010-10-01
Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.
[Brain-computer interfaces, Locked-In syndrome, and disorders of consciousness].
Lesenfants, Damien; Chatelle, Camille; Laureys, Steven; Noirhomme, Quentin
2015-10-01
Detecting signs of consciousness in patients with severe brain injury constitutes a real challenge for clinicians. The current gold standard in clinical diagnosis is the behavioral scale relying on motor abilities, which are often impaired or nonexistent in these patients. In this context, brain-computer interfaces (BCIs) could offer a potential complementary tool to detect signs of consciousness whilst bypassing the usual motor pathway. In addition to complementing behavioral assessments and potentially reducing error rate, BCIs could also serve as a communication tool for paralyzed but conscious patients, e.g., suffering from Locked-In Syndrome. In this paper, we report on recent work conducted by the Coma Science Group on BCI technology, aiming to optimize diagnosis and communication in patients with disorders of consciousness and Locked-In syndrome. © 2015 médecine/sciences – Inserm.
Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.
2016-01-01
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system. PMID:27713685
Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J
2016-01-01
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.
NASA Astrophysics Data System (ADS)
Daly, Ian; Blanchard, Caroline; Holmes, Nicholas P.
2018-04-01
Objective. Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the strength of the event-related desynchronization (ERD), a neural correlate of motor imagination and execution, and corticospinal excitability. Additionally, a key component of BCIs used in neurorehabilitation is the provision of visual feedback to positively reinforce attempts at motor control. However, the ability of visual feedback of the ERD to modulate the activity in the motor system has not been fully explored. Approach. We investigate these relationships via transcranial magnetic stimulation delivered at different moments in the ongoing ERD related to hand contraction and relaxation during BCI control of a visual feedback bar. Main results. We identify a significant relationship between ERD strength and corticospinal excitability, and find that our visual feedback does not affect corticospinal excitability. Significance. Our results imply that efforts to promote functional recovery in stroke by targeting increases in corticospinal excitability may be aided by accounting for the time course of the ERD.
Development of speech prostheses: current status and recent advances
Brumberg, Jonathan S; Guenther, Frank H
2010-01-01
Brain–computer interfaces (BCIs) have been developed over the past decade to restore communication to persons with severe paralysis. In the most severe cases of paralysis, known as locked-in syndrome, patients retain cognition and sensation, but are capable of only slight voluntary eye movements. For these patients, no standard communication method is available, although some can use BCIs to communicate by selecting letters or words on a computer. Recent research has sought to improve on existing techniques by using BCIs to create a direct prediction of speech utterances rather than to simply control a spelling device. Such methods are the first steps towards speech prostheses as they are intended to entirely replace the vocal apparatus of paralyzed users. This article outlines many well known methods for restoration of communication by BCI and illustrates the difference between spelling devices and direct speech prediction or speech prosthesis. PMID:20822389
Zhang, Shen; Zheng, Yanchun; Wang, Daifa; Wang, Ling; Ma, Jianai; Zhang, Jing; Xu, Weihao; Li, Deyu; Zhang, Dan
2017-08-10
Motor imagery is one of the most investigated paradigms in the field of brain-computer interfaces (BCIs). The present study explored the feasibility of applying a common spatial pattern (CSP)-based algorithm for a functional near-infrared spectroscopy (fNIRS)-based motor imagery BCI. Ten participants performed kinesthetic imagery of their left- and right-hand movements while 20-channel fNIRS signals were recorded over the motor cortex. The CSP method was implemented to obtain the spatial filters specific for both imagery tasks. The mean, slope, and variance of the CSP filtered signals were taken as features for BCI classification. Results showed that the CSP-based algorithm outperformed two representative channel-wise methods for classifying the two imagery statuses using either data from all channels or averaged data from imagery responsive channels only (oxygenated hemoglobin: CSP-based: 75.3±13.1%; all-channel: 52.3±5.3%; averaged: 64.8±13.2%; deoxygenated hemoglobin: CSP-based: 72.3±13.0%; all-channel: 48.8±8.2%; averaged: 63.3±13.3%). Furthermore, the effectiveness of the CSP method was also observed for the motor execution data to a lesser extent. A partial correlation analysis revealed significant independent contributions from all three types of features, including the often-ignored variance feature. To our knowledge, this is the first study demonstrating the effectiveness of the CSP method for fNIRS-based motor imagery BCIs. Copyright © 2017 Elsevier B.V. All rights reserved.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
Iturrate, I; Montesano, L; Minguez, J
2013-04-01
A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis.
Cervera, María A; Soekadar, Surjo R; Ushiba, Junichi; Millán, José Del R; Liu, Meigen; Birbaumer, Niels; Garipelli, Gangadhar
2018-05-01
Brain-computer interfaces (BCIs) can provide sensory feedback of ongoing brain oscillations, enabling stroke survivors to modulate their sensorimotor rhythms purposefully. A number of recent clinical studies indicate that repeated use of such BCIs might trigger neurological recovery and hence improvement in motor function. Here, we provide a first meta-analysis evaluating the clinical effectiveness of BCI-based post-stroke motor rehabilitation. Trials were identified using MEDLINE, CENTRAL, PEDro and by inspection of references in several review articles. We selected randomized controlled trials that used BCIs for post-stroke motor rehabilitation and provided motor impairment scores before and after the intervention. A random-effects inverse variance method was used to calculate the summary effect size. We initially identified 524 articles and, after removing duplicates, we screened titles and abstracts of 473 articles. We found 26 articles corresponding to BCI clinical trials, of these, there were nine studies that involved a total of 235 post-stroke survivors that fulfilled the inclusion criterion (randomized controlled trials that examined motor performance as an outcome measure) for the meta-analysis. Motor improvements, mostly quantified by the upper limb Fugl-Meyer Assessment (FMA-UE), exceeded the minimal clinically important difference (MCID=5.25) in six BCI studies, while such improvement was reached only in three control groups. Overall, the BCI training was associated with a standardized mean difference of 0.79 (95% CI: 0.37 to 1.20) in FMA-UE compared to control conditions, which is in the range of medium to large summary effect size. In addition, several studies indicated BCI-induced functional and structural neuroplasticity at a subclinical level. This suggests that BCI technology could be an effective intervention for post-stroke upper limb rehabilitation. However, more studies with larger sample size are required to increase the reliability of these results.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Iturrate, I.; Montesano, L.; Minguez, J.
2013-04-01
Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
Adaptive hybrid brain-computer interaction: ask a trainer for assistance!
Müller-Putz, Gernot R; Steyrl, David; Faller, Josef
2014-01-01
In applying mental imagery brain-computer interfaces (BCIs) to end users, training is a key part for novice users to get control. In general learning situations, it is an established concept that a trainer assists a trainee to improve his/her aptitude in certain skills. In this work, we want to evaluate whether we can apply this concept in the context of event-related desynchronization (ERD) based, adaptive, hybrid BCIs. Hence, in a first session we merged the features of a high aptitude BCI user, a trainer, and a novice user, the trainee, in a closed-loop BCI feedback task and automatically adapted the classifier over time. In a second session the trainees operated the system unassisted. Twelve healthy participants ran through this protocol. Along with the trainer, the trainees achieved a very high overall peak accuracy of 95.3 %. In the second session, where users operated the BCI unassisted, they still achieved a high overall peak accuracy of 83.6%. Ten of twelve first time BCI users successfully achieved significantly better than chance accuracy. Concluding, we can say that this trainer-trainee approach is very promising. Future research should investigate, whether this approach is superior to conventional training approaches. This trainer-trainee concept could have potential for future application of BCIs to end users.
An independent SSVEP-based brain-computer interface in locked-in syndrome.
Lesenfants, D; Habbal, D; Lugo, Z; Lebeau, M; Horki, P; Amico, E; Pokorny, C; Gómez, F; Soddu, A; Müller-Putz, G; Laureys, S; Noirhomme, Q
2014-06-01
Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based 'interlaced squares' stimulation pattern. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.
Practical Designs of Brain-Computer Interfaces Based on the Modulation of EEG Rhythms
NASA Astrophysics Data System (ADS)
Wang, Yijun; Gao, Xiaorong; Hong, Bo; Gao, Shangkai
A brain-computer interface (BCI) is a communication channel which does not depend on the brain's normal output pathways of peripheral nerves and muscles [1-3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter "Brain Signals for Brain-Computer Interfaces". These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.
A brain computer interface-based explorer.
Bai, Lijuan; Yu, Tianyou; Li, Yuanqing
2015-04-15
In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.
Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.
McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong
2017-10-01
Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.
Towards a robust BCI: error potentials and online learning.
Buttfield, Anna; Ferrez, Pierre W; Millán, José del R
2006-06-01
Recent advances in the field of brain-computer interfaces (BCIs) have shown that BCIs have the potential to provide a powerful new channel of communication, completely independent of muscular and nervous systems. However, while there have been successful laboratory demonstrations, there are still issues that need to be addressed before BCIs can be used by nonexperts outside the laboratory. At IDIAP Research Institute, we have been investigating several areas that we believe will allow us to improve the robustness, flexibility, and reliability of BCIs. One area is recognition of cognitive error states, that is, identifying errors through the brain's reaction to mistakes. The production of these error potentials (ErrP) in reaction to an error made by the user is well established. We have extended this work by identifying a similar but distinct ErrP that is generated in response to an error made by the interface, (a misinterpretation of a command that the user has given). This ErrP can be satisfactorily identified in single trials and can be demonstrated to improve the theoretical performance of a BCI. A second area of research is online adaptation of the classifier. BCI signals change over time, both between sessions and within a single session, due to a number of factors. This means that a classifier trained on data from a previous session will probably not be optimal for a new session. In this paper, we present preliminary results from our investigations into supervised online learning that can be applied in the initial training phase. We also discuss the future direction of this research, including the combination of these two currently separate issues to create a potentially very powerful BCI.
Alpha neurofeedback training improves SSVEP-based BCI performance.
Wan, Feng; da Cruz, Janir Nuno; Nan, Wenya; Wong, Chi Man; Vai, Mang I; Rosa, Agostinho
2016-06-01
Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user's SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with 'low' performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects' performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.
Villa-Parra, Ana Cecilia; Bastos-Filho, Teodiano; López-Delis, Alberto; Frizera-Neto, Anselmo; Krishnan, Sridhar
2017-01-01
This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly (p<0.01) improved for most of the subjects (ACC≥74.79%), when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry. PMID:29186848
Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.
Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261
Performance assessment in brain-computer interface-based augmentative and alternative communication
2013-01-01
A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems. PMID:23680020
A Multi-purpose Brain-Computer Interface Output Device
Thompson, David E; Huggins, Jane E
2012-01-01
While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120
A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Zhang, Shangen; Gao, Shangkai; Hu, Yong; Gao, Xiaorong
2017-04-01
Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has been widely investigated because of its easy system configuration, high information transfer rate (ITR) and little user training. However, due to the limitations of brain responses and the refresh rate of a monitor, the available stimulation frequencies for practical BCI application are generally restricted. Approach. This study introduced a novel stimulation method using intermodulation frequencies for SSVEP-BCIs that had targets flickering at the same frequency but with different additional modulation frequencies. The additional modulation frequencies were generated on the basis of choosing desired flickering frequencies. The conventional frame-based ‘on/off’ stimulation method was used to realize the desired flickering frequencies. All visual stimulation was present on a conventional LCD screen. A 9-target SSVEP-BCI based on intermodulation frequencies was implemented for performance evaluation. To optimize the stimulation design, three approaches (C: chromatic; L: luminance; CL: chromatic and luminance) were evaluated by online testing and offline analysis. Main results. SSVEP-BCIs with different paradigms (C, L, and CL) enabled us not only to encode more targets, but also to reliably evoke intermodulation frequencies. The online accuracies for the three paradigms were 91.67% (C), 93.98% (L), and 96.41% (CL). The CL condition achieved the highest classification performance. Significance. These results demonstrated the efficacy of three approaches (C, L, and CL) for eliciting intermodulation frequencies for multi-class SSVEP-BCIs. The combination of chromatic and luminance characteristics of the visual stimuli is the most efficient way for the intermodulation frequency coding method.
Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika
2017-06-01
This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.
Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems
NASA Astrophysics Data System (ADS)
Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika
2017-06-01
Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations.
Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential
NASA Astrophysics Data System (ADS)
Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai
2012-02-01
Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.
Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; ...
2016-09-22
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.
Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less
NASA Astrophysics Data System (ADS)
Song, YoungJae; Sepulveda, Francisco
2017-02-01
Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies-Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs.
Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji
2016-01-01
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications. PMID:27746716
Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji
2016-01-01
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants ( N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.
An independent SSVEP-based brain-computer interface in locked-in syndrome
NASA Astrophysics Data System (ADS)
Lesenfants, D.; Habbal, D.; Lugo, Z.; Lebeau, M.; Horki, P.; Amico, E.; Pokorny, C.; Gómez, F.; Soddu, A.; Müller-Putz, G.; Laureys, S.; Noirhomme, Q.
2014-06-01
Objective. Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Approach. Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based ‘interlaced squares' stimulation pattern. Main results. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. Significance. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.
Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.
Zhou, Sijie; Allison, Brendan Z; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing
2016-01-01
Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.
Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph
2014-01-01
A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509
Classification of Movement and Inhibition Using a Hybrid BCI.
Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J
2017-01-01
Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)-when a person imagines a motion without executing it-is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory environments for motor rehabilitation in hospitals, and potentially for controlling a prosthetic.
Classification of Movement and Inhibition Using a Hybrid BCI
Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J.
2017-01-01
Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)—when a person imagines a motion without executing it—is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory environments for motor rehabilitation in hospitals, and potentially for controlling a prosthetic. PMID:28860986
Application of a single-flicker online SSVEP BCI for spatial navigation.
Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander
2017-01-01
A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.
BCI Use and Its Relation to Adaptation in Cortical Networks.
Casimo, Kaitlyn; Weaver, Kurt E; Wander, Jeremiah; Ojemann, Jeffrey G
2017-10-01
Brain-computer interfaces (BCIs) carry great potential in the treatment of motor impairments. As a new motor output, BCIs interface with the native motor system, but acquisition of BCI proficiency requires a degree of learning to integrate this new function. In this review, we discuss how BCI designs often take advantage of the brain's motor system infrastructure as sources of command signals. We highlight a growing body of literature examining how this approach leads to changes in activity across cortex, including beyond motor regions, as a result of learning the new skill of BCI control. We discuss the previous research identifying patterns of neural activity associated with BCI skill acquisition and use that closely resembles those associated with learning traditional native motor tasks. We then discuss recent work in animals probing changes in connectivity of the BCI control site, which were linked to BCI skill acquisition, and use this as a foundation for our original work in humans. We present our novel work showing changes in resting state connectivity across cortex following the BCI learning process. We find substantial, heterogeneous changes in connectivity across regions and frequencies, including interactions that do not involve the BCI control site. We conclude from our review and original work that BCI skill acquisition may potentially lead to significant changes in evoked and resting state connectivity across multiple cortical regions. We recommend that future studies of BCIs look beyond motor regions to fully describe the cortical networks involved and long-term adaptations resulting from BCI skill acquisition.
Alpha neurofeedback training improves SSVEP-based BCI performance
NASA Astrophysics Data System (ADS)
Wan, Feng; Nuno da Cruz, Janir; Nan, Wenya; Wong, Chi Man; Vai, Mang I.; Rosa, Agostinho
2016-06-01
Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user’s SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. Approach. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with ‘low’ performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. Main results. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. Significance. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects’ performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.
A high-speed BCI based on code modulation VEP
NASA Astrophysics Data System (ADS)
Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai
2011-04-01
Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.
Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen
2012-08-30
Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Caywood, Matthew S.; Roberts, Daniel M.; Colombe, Jeffrey B.; Greenwald, Hal S.; Weiland, Monica Z.
2017-01-01
There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as “black boxes” that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model’s predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy. PMID:28123359
Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance
Hammer, Eva M.; Halder, Sebastian; Kleih, Sonja C.; Kübler, Andrea
2018-01-01
Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor “emotional stability” was negatively correlated (Spearman's rho = −0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. “Emotional stability” was also negatively related to auditory P300-BCI performance (Spearman's rho = −0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors. PMID:29867319
Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?
Wenzel, Markus A; Almeida, Inês; Blankertz, Benjamin
2016-01-01
Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.
Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan
2016-01-01
Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.
A comparison study of visually stimulated brain-computer and eye-tracking interfaces
NASA Astrophysics Data System (ADS)
Suefusa, Kaori; Tanaka, Toshihisa
2017-06-01
Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.
Improving zero-training brain-computer interfaces by mixing model estimators
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.
2017-06-01
Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.
Simon, Nadine; Käthner, Ivo; Ruf, Carolin A; Pasqualotto, Emanuele; Kübler, Andrea; Halder, Sebastian
2014-01-01
Brain-computer interfaces (BCIs) can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g., in the completely locked-in state) or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on 2 consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS) in two sessions. In the first session, healthy participants spelled with an average accuracy of 76% (3.29 bits/min) that increased to 90% (4.23 bits/min) on the second day. Spelling accuracy by the participant with ALS was 20% in the first and 47% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.
Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas
2012-01-01
Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.
A cell-phone-based brain-computer interface for communication in daily life
NASA Astrophysics Data System (ADS)
Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping
2011-04-01
Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.
A cell-phone-based brain-computer interface for communication in daily life.
Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping
2011-04-01
Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.
Neuromodulation, agency and autonomy.
Glannon, Walter
2014-01-01
Neuromodulation consists in altering brain activity to restore mental and physical functions in individuals with neuropsychiatric disorders and brain and spinal cord injuries. This can be achieved by delivering electrical stimulation that excites or inhibits neural tissue, by using electrical signals in the brain to move computer cursors or robotic arms, or by displaying brain activity to subjects who regulate that activity by their own responses to it. As enabling prostheses, deep-brain stimulation and brain-computer interfaces (BCIs) are forms of extended embodiment that become integrated into the individual's conception of himself as an autonomous agent. In BCIs and neurofeedback, the success or failure of the techniques depends on the interaction between the learner and the trainer. The restoration of agency and autonomy through neuromodulation thus involves neurophysiological, psychological and social factors.
A novel brain-computer interface based on the rapid serial visual presentation paradigm.
Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin
2010-01-01
Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.
Lazarou, Ioulietta; Nikolopoulos, Spiros; Petrantonakis, Panagiotis C.; Kompatsiaris, Ioannis; Tsolaki, Magda
2018-01-01
People with severe neurological impairments face many challenges in sensorimotor functions and communication with the environment; therefore they have increased demand for advanced, adaptive and personalized rehabilitation. During the last several decades, numerous studies have developed brain–computer interfaces (BCIs) with the goals ranging from providing means of communication to functional rehabilitation. Here we review the research on non-invasive, electroencephalography (EEG)-based BCI systems for communication and rehabilitation. We focus on the approaches intended to help severely paralyzed and locked-in patients regain communication using three different BCI modalities: slow cortical potentials, sensorimotor rhythms and P300 potentials, as operational mechanisms. We also review BCI systems for restoration of motor function in patients with spinal cord injury and chronic stroke. We discuss the advantages and limitations of these approaches and the challenges that need to be addressed in the future. PMID:29472849
Rothschild, Ryan Mark
2010-01-01
The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.
Rothschild, Ryan Mark
2010-01-01
The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques. PMID:21060801
Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D
2018-01-31
We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.
Hübner, David; Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.
Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016
Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R; Shenoy, Krishna V; Henderson, Jaimie M
2017-02-21
Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.
NASA Astrophysics Data System (ADS)
Müller-Putz, G. R.; Daly, I.; Kaiser, V.
2014-06-01
Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.
Gaze-independent brain-computer interfaces based on covert attention and feature attention
NASA Astrophysics Data System (ADS)
Treder, M. S.; Schmidt, N. M.; Blankertz, B.
2011-10-01
There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.
A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection.
Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing
2015-06-30
Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC.
Adaptive Offset Correction for Intracortical Brain Computer Interfaces
Homer, Mark L.; Perge, János A.; Black, Michael J.; Harrison, Matthew T.; Cash, Sydney S.; Hochberg, Leigh R.
2014-01-01
Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs. PMID:24196868
Adaptive offset correction for intracortical brain-computer interfaces.
Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R
2014-03-01
Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.
A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection
Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing
2015-01-01
Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC. PMID:26123281
Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.
Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
NASA Astrophysics Data System (ADS)
Yang, Yuan; Chevallier, Sylvain; Wiart, Joe; Bloch, Isabelle
2014-12-01
To enforce a widespread use of efficient and easy to use brain-computer interfaces (BCIs), the inter-subject robustness should be increased and the number of electrodes should be reduced. These two key issues are addressed in this contribution, proposing a novel method to identify subject-specific time-frequency characteristics with a minimal number of electrodes. In this method, two alternative criteria, time-frequency discrimination factor ( TFDF) and F score, are proposed to evaluate the discriminative power of time-frequency regions. Distinct from classical measures (e.g., Fisher criterion, r 2 coefficient), the TFDF is based on the neurophysiologic phenomena, on which the motor imagery BCI paradigm relies, rather than only from statistics. F score is based on the popular Fisher's discriminant and purely data driven; however, it differs from traditional measures since it provides a simple and effective measure for quantifying the discriminative power of a multi-dimensional feature vector. The proposed method is tested on BCI competition IV datasets IIa and IIb for discriminating right and left hand motor imagery. Compared to state-of-the-art methods, our method based on both criteria led to comparable or even better classification results, while using fewer electrodes (i.e., only two bipolar channels, C3 and C4). This work indicates that time-frequency optimization can not only improve the classification performance but also contribute to reducing the number of electrodes required in motor imagery BCIs.
Language Model Applications to Spelling with Brain-Computer Interfaces
Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.
2014-01-01
Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760
Toward a hybrid brain-computer interface based on imagined movement and visual attention
NASA Astrophysics Data System (ADS)
Allison, B. Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G. R.; Neuper, C.; Pfurtscheller, G.
2010-04-01
Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely event-related desynchronization (ERD) and steady state visual evoked potential (SSVEP), both individually and in a 'hybrid' condition that combines both tasks. Electroencephalographic (EEG) data were recorded across three conditions. Subjects imagined moving the left or right hand (ERD), focused on one of the two oscillating visual stimuli (SSVEP), and then simultaneously performed both tasks. Accuracy and subjective measures were assessed. Offline analyses suggested that half of the subjects did not produce brain patterns that could be accurately discriminated in response to at least one of the two tasks. If these subjects produced comparable EEG patterns when trying to use a BCI, these subjects would not be able to communicate effectively because the BCI would make too many errors. Results also showed that switching to a different task used in BCIs could improve accuracy in some of these users. Switching to a hybrid approach eliminated this problem completely, and subjects generally did not consider the hybrid condition more difficult. Results validate this hybrid approach and suggest that subjects who cannot use a BCI should consider switching to a different BCI approach, especially a hybrid BCI. Subjects proficient with both approaches might combine them to increase information throughput by improving accuracy, reducing selection time, and/or increasing the number of possible commands.
Task-induced frequency modulation features for brain-computer interfacing.
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Scott, William W; Sharp, Steven; Figueroa, Stephen A; Eastman, Alexander L; Hatchette, Charles V; Madden, Christopher J; Rickert, Kim L
2015-05-01
Proper screening, management, and follow-up of Grade 1 and 2 blunt carotid artery injuries (BCIs) remains controversial. These low-grade BCIs were analyzed to define their natural history and establish a rational management plan based on lesion progression and cerebral infarction. A retrospective review of a prospectively maintained database of all blunt traumatic carotid and vertebral artery injuries treated between August 2003 and April 2013 was performed and Grade 1 and 2 BCIs were identified. Grade 1 injuries are defined as a vessel lumen stenosis of less than 25%, and Grade 2 injuries are defined as a stenosis of the vessel lumen between 25% and 50%. Demographic information, radiographic imaging, number of imaging sessions performed per individual, length of radiographic follow-up, radiographic outcome at end of follow-up, treatment(s) provided, and documentation of ischemic stroke or transient ischemic attack were recorded. One hundred seventeen Grade 1 and 2 BCIs in 100 patients were identified and available for follow-up. The mean follow-up duration was 60 days. Final imaging of Grade 1 and 2 BCIs demonstrated that 64% of cases had resolved, 13% of cases were radiographically stable, and 9% were improved, whereas 14% radiographically worsened. Of the treatments received, 54% of cases were treated with acetylsalicylic acid (ASA), 31% received no treatment, and 15% received various medications and treatments, including endovascular stenting. There was 1 cerebral infarction that was thought to be related to bilateral Grade 2 BCI, which developed soon after hospital admission. The majority of Grade 1 and 2 BCIs remained stable or improved at final follow-up. Despite a 14% rate of radiographic worsening in the Grade 1 and 2 BCIs cohort, there were no adverse clinical outcomes associated with these radiographic changes. The stroke rate was 1% in this low-grade BCIs cohort, which may be an overestimate. The use of ASA or other antiplatelet or anticoagulant medications in these low-grade BCIs did not appear to correlate with radiographic injury stability, nor with a decreased rate of cerebral infarction. Although these data suggest that these Grade 1 and 2 BCIs may require less intensive radiographic follow-up, future prospective studies are needed to make conclusive changes related to treatment and management.
Non-causal spike filtering improves decoding of movement intention for intracortical BCIs
Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.
2014-01-01
Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256
Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L
2015-01-01
A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.
As above, so below? Towards understanding inverse models in BCI
NASA Astrophysics Data System (ADS)
Lindgren, Jussi T.
2018-02-01
Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.
Ganin, Ilya P.; Shishkin, Sergei L.; Kaplan, Alexander Y.
2013-01-01
Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games. PMID:24302977
A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI
Stawicki, Piotr; Gembler, Felix; Rezeika, Aya; Volosyak, Ivan
2017-01-01
Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques. PMID:28379187
McCane, Lynn M; Heckman, Susan M; McFarland, Dennis J; Townsend, George; Mak, Joseph N; Sellers, Eric W; Zeitlin, Debra; Tenteromano, Laura M; Wolpaw, Jonathan R; Vaughan, Theresa M
2015-11-01
Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6×6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin with studies in HVs but also needs to include studies in people with ALS. Their differences in ERP components may affect the selection of electrode montages, and might also affect the selection of presentation parameters (e.g., matrix design, stimulation rate). P300-based BCI performance in people severely disabled by ALS is similar to that of age-matched control subjects. At the same time, their ERP components differ to some degree from those of controls. Attention to these differences could contribute to the development of BCIs useful to those with ALS and possibly to others with severe neuromuscular disabilities. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing
2016-09-01
The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient’s state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.
Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing
2016-09-13
The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient's state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.
Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela
2016-01-01
A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.
Thought-based row-column scanning communication board for individuals with cerebral palsy.
Scherer, Reinhold; Billinger, Martin; Wagner, Johanna; Schwarz, Andreas; Hettich, Dirk Tassilo; Bolinger, Elaina; Lloria Garcia, Mariano; Navarro, Juan; Müller-Putz, Gernot
2015-02-01
Impairment of an individual's ability to communicate is a major hurdle for active participation in education and social life. A lot of individuals with cerebral palsy (CP) have normal intelligence, however, due to their inability to communicate, they fall behind. Non-invasive electroencephalogram (EEG) based brain-computer interfaces (BCIs) have been proposed as potential assistive devices for individuals with CP. BCIs translate brain signals directly into action. Motor activity is no longer required. However, translation of EEG signals may be unreliable and requires months of training. Moreover, individuals with CP may exhibit high levels of spontaneous and uncontrolled movement, which has a large impact on EEG signal quality and results in incorrect translations. We introduce a novel thought-based row-column scanning communication board that was developed following user-centered design principles. Key features include an automatic online artifact reduction method and an evidence accumulation procedure for decision making. The latter allows robust decision making with unreliable BCI input. Fourteen users with CP participated in a supporting online study and helped to evaluate the performance of the developed system. Users were asked to select target items with the row-column scanning communication board. The results suggest that seven among eleven remaining users performed better than chance and were consequently able to communicate by using the developed system. Three users were excluded because of insufficient EEG signal quality. These results are very encouraging and represent a good foundation for the development of real-world BCI-based communication devices for users with CP. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Höhne, Johannes; Holz, Elisa; Staiger-Sälzer, Pit; Müller, Klaus-Robert; Kübler, Andrea; Tangermann, Michael
2014-01-01
Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution. For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT.
Task-induced frequency modulation features for brain-computer interfacing
NASA Astrophysics Data System (ADS)
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Höhne, Johannes; Holz, Elisa; Staiger-Sälzer, Pit; Müller, Klaus-Robert; Kübler, Andrea; Tangermann, Michael
2014-01-01
Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution. For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT. PMID:25162231
Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas; Niazi, Imran Khan; Kostic, Vladimir; Pavlovic, Aleksandra; Radovanovic, Sasa; Djuric-Jovicic, Milica; Agosta, Federica; Dremstrup, Kim; Farina, Dario
2016-03-01
Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention. Copyright © 2016 the American Physiological Society.
Stevenson, Andrew James Thomas; Kostic, Vladimir; Pavlovic, Aleksandra; Radovanovic, Sasa; Djuric-Jovicic, Milica; Agosta, Federica; Dremstrup, Kim; Farina, Dario
2015-01-01
Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention. PMID:26719088
Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R
2017-01-01
Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function. Clinical Trial No: NCT00912041 DOI: http://dx.doi.org/10.7554/eLife.18554.001 PMID:28220753
A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives
Lee, Yushin; Yun, Myung Hwan
2017-01-01
A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation. PMID:28453547
A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives.
Choi, Inchul; Rhiu, Ilsun; Lee, Yushin; Yun, Myung Hwan; Nam, Chang S
2017-01-01
A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI system. Although some hybrid BCI studies have shown promising results, the field of hybrid BCI is still in its infancy and there is much to be done. Especially, since the hybrid BCI systems are so complicated and complex, it is difficult to understand the constituent and role of a hybrid BCI system at a glance. Also, the complicated and complex systems make it difficult to evaluate the usability of the systems. We systematically reviewed and analyzed the current state-of-the-art hybrid BCI studies, and proposed a systematic taxonomy for classifying the types of hybrid BCIs with multiple taxonomic criteria. After reviewing 74 journal articles, hybrid BCIs could be categorized with respect to 1) the source of brain signals, 2) the characteristics of the brain signal, and 3) the characteristics of operation in each system. In addition, we exhaustively reviewed recent literature on usability of BCIs. To identify the key evaluation dimensions of usability, we focused on task and measurement characteristics of BCI usability. We classified and summarized 31 BCI usability journal articles according to task characteristics (type and description of task) and measurement characteristics (subjective and objective measures). Afterwards, we proposed usability dimensions for BCI and hybrid BCI systems according to three core-constructs: Satisfaction, effectiveness, and efficiency with recommendations for further research. This paper can help BCI researchers, even those who are new to the field, can easily understand the complex structure of the hybrid systems at a glance. Recommendations for future research can also be helpful in establishing research directions and gaining insight in how to solve ergonomics and HCI design issues surrounding BCI and hybrid BCI systems by usability evaluation.
A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry.
Falk, Bryan G; Snow, Ray W; Reed, Robert N
2017-01-01
Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of 'true' body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.
A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry
Falk, Bryan; Snow, Ray W.; Reed, Robert N.
2017-01-01
Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of ‘true’ body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.
Training to use a commercial brain-computer interface as access technology: a case study.
Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn
2016-01-01
This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.
Decoding Onset and Direction of Movements Using Electrocorticographic (ECoG) Signals in Humans
2012-08-08
Institute, Troy, NY, USA 2 J Crayton Pruitt Family Department of Biomed Engineering, University of Florida, Gainesville, FL, USA 3 BCI R&D Program...INTRODUCTION Brain-computer interfaces ( BCIs ) aim to translate a person’s intentions into meaningful computer commands using brain activity alone...applications for those suffering from neuromuscular disorders (Sejnowski et al., 2007; Tan and Nijholt, 2010). For example, a BCI that detects intended move
2011-01-01
Background The Beck Cognitive Insight Scale (BCIS) was designed for the assessment of the cognitive processes involved in self-reflection and the ability to modify erroneous beliefs and misinterpretations. Studies investigating the factor structure of the BCIS have indicated a two-factor model in the psychotic population. The factor structure of the BCIS, however, has not received much consideration in the nonpsychiatric population. The present study examined the factor structure and validity of the BCIS and compared its scores between nonpsychiatric individuals and outpatients with psychosis. Method The Taiwanese version of the BCIS was administered to 507 nonpsychiatric individuals and 118 outpatients with schizophrenia. The psychometric properties of the BCIS were examined through the following analyses: exploratory and confirmatory factor analyses, reliability, correlation analyses, and discriminative validity. Results The BCIS showed adequate internal consistency and stability over time. Exploratory and confirmatory factor analyses on the 15-item measure indicated a two-factor solution that supported the two dimensions of the Taiwanese BCIS, which was also observed with the original BCIS. Following the construct validation, we obtained a composite index (self-reflectiveness minus self-certainty) of the Taiwanese BCIS that reflected cognitive insight. Consistent with previous studies, our results indicated that psychosis is associated with low self-reflectiveness and high self-certainty, which possibly reflect lower cognitive insight. Our results also showed that better cognitive insight is related to worse depression in patients with schizophrenia spectrum disorders, but not in nonpsychiatric individuals. The receiver operating characteristic (ROC) analyses revealed that the area under the curve (AUC) was 0.731. A composite index of 3 was a good limit, with a sensitivity of 87% and a specificity of 51%. Conclusion The BCIS proved to be useful for measuring cognitive insight in Taiwanese nonpsychiatric and psychotic populations. PMID:22018413
NASA Astrophysics Data System (ADS)
Kaufmann, Tobias; Kübler, Andrea
2014-10-01
Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.
Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien
2016-06-01
While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.
Goal-directed or aimless? EEG differences during the preparation of a reach-and-touch task.
Pereira, Joana; Ofner, Patrick; Muller-Putz, Gernot R
2015-08-01
The natural control of neuroprostheses is currently a challenge in both rehabilitation engineering and brain-computer interfaces (BCIs) research. One of the recurrent problems is to know exactly when to activate such devices. For the execution of the most common activities of daily living, these devices only need to be active when in the presence of a goal. Therefore, we believe that the distinction between the planning of goal-directed and aimless movements, using non-invasive recordings, can be useful for the implementation of a simple and effective activation method for these devices. We investigated whether those differences are detectable during a reach-and-touch task, using electroencephalography (EEG). Event-related potentials and oscillatory activity changes were studied. Our results show that there are statistically significant differences between both types of movement. Combining this information with movement decoding would allow a natural control strategy for BCIs, exclusively relying on the cognitive processes behind movement preparation and execution.
Brain-computer interface technology: a review of the Second International Meeting.
Vaughan, Theresa M; Heetderks, William J; Trejo, Leonard J; Rymer, William Z; Weinrich, Michael; Moore, Melody M; Kübler, Andrea; Dobkin, Bruce H; Birbaumer, Niels; Donchin, Emanuel; Wolpaw, Elizabeth Winter; Wolpaw, Jonathan R
2003-06-01
This paper summarizes the Brain-Computer Interfaces for Communication and Control, The Second International Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by the National Institutes of Health and organized by the Wadsworth Center of the New York State Department of Health, the meeting addressed current work and future plans in brain-computer interface (BCI) research. Ninety-two researchers representing 38 different research groups from the United States, Canada, Europe, and China participated. The BCIs discussed at the meeting use electroencephalographic activity recorded from the scalp or single-neuron activity recorded within cortex to control cursor movement, select letters or icons, or operate neuroprostheses. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI that recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of up to 25 b/min. Achievement of greater speed and accuracy requires improvements in signal acquisition and processing, in translation algorithms, and in user training. These improvements depend on interdisciplinary cooperation among neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective criteria for evaluating alternative methods. The practical use of BCI technology will be determined by the development of appropriate applications and identification of appropriate user groups, and will require careful attention to the needs and desires of individual users.
Peters, Betts; Bieker, Gregory; Heckman, Susan M; Huggins, Jane E; Wolf, Catherine; Zeitlin, Debra; Fried-Oken, Melanie
2015-03-01
More than 300 researchers gathered at the 2013 International Brain-Computer Interface (BCI) Meeting to discuss current practice and future goals for BCI research and development. The authors organized the Virtual Users' Forum at the meeting to provide the BCI community with feedback from users. We report on the Virtual Users' Forum, including initial results from ongoing research being conducted by 2 BCI groups. Online surveys and in-person interviews were used to solicit feedback from people with disabilities who are expert and novice BCI users. For the Virtual Users' Forum, their responses were organized into 4 major themes: current (non-BCI) communication methods, experiences with BCI research, challenges of current BCIs, and future BCI developments. Two authors with severe disabilities gave presentations during the Virtual Users' Forum, and their comments are integrated with the other results. While participants' hopes for BCIs of the future remain high, their comments about available systems mirror those made by consumers about conventional assistive technology. They reflect concerns about reliability (eg, typing accuracy/speed), utility (eg, applications and the desire for real-time interactions), ease of use (eg, portability and system setup), and support (eg, technical support and caregiver training). People with disabilities, as target users of BCI systems, can provide valuable feedback and input on the development of BCI as an assistive technology. To this end, participatory action research should be considered as a valuable methodology for future BCI research. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS
NASA Astrophysics Data System (ADS)
Fomina, Tatiana; Lohmann, Gabriele; Erb, Michael; Ethofer, Thomas; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2016-12-01
Objective. Electroencephalographic (EEG) brain-computer interfaces (BCIs) hold promise in restoring communication for patients with completely locked-in stage amyotrophic lateral sclerosis (ALS). However, these patients cannot use existing EEG-based BCIs, arguably because such systems rely on brain processes that are impaired in the late stages of ALS. In this work, we introduce a novel BCI designed for patients in late stages of ALS based on high-level cognitive processes that are less likely to be affected by ALS. Approach. We trained two ALS patients via EEG-based neurofeedback to use self-regulation of theta or gamma oscillations in the precuneus for basic communication. Because there is a tight connection between the precuneus and consciousness, precuneus oscillations are arguably generated by high-level cognitive processes, which are less likely to be affected by ALS than processes linked to the peripheral nervous system. Main results. Both patients learned to self-regulate their precuneus oscillations and achieved stable online decoding accuracy over the course of disease progression. One patient achieved a mean online decoding accuracy in a binary decision task of 70.55% across 26 training sessions, and the other patient achieved 59.44% across 16 training sessions. We provide empirical evidence that these oscillations were cortical in nature and originated from the intersection of the precuneus, cuneus, and posterior cingulate. Significance. Our results establish that ALS patients can employ self-regulation of precuneus oscillations for communication. Such a BCI is likely to be available to ALS patients as long as their consciousness supports communication.
Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.
2014-01-01
Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546
New KF-PP-SVM classification method for EEG in brain-computer interfaces.
Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian
2014-01-01
Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.
Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K. R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chase, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.
2017-01-01
The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development. PMID:29152523
Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J
2017-01-01
The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.
Effect of mindfulness meditation on brain-computer interface performance.
Tan, Lee-Fan; Dienes, Zoltan; Jansari, Ashok; Goh, Sing-Yau
2014-01-01
Electroencephalogram based brain-computer interfaces (BCIs) enable stroke and motor neuron disease patients to communicate and control devices. Mindfulness meditation has been claimed to enhance metacognitive regulation. The current study explores whether mindfulness meditation training can thus improve the performance of BCI users. To eliminate the possibility of expectation of improvement influencing the results, we introduced a music training condition. A norming study found that both meditation and music interventions elicited clear expectations for improvement on the BCI task, with the strength of expectation being closely matched. In the main 12 week intervention study, seventy-six healthy volunteers were randomly assigned to three groups: a meditation training group; a music training group; and a no treatment control group. The mindfulness meditation training group obtained a significantly higher BCI accuracy compared to both the music training and no-treatment control groups after the intervention, indicating effects of meditation above and beyond expectancy effects. Copyright © 2013 Elsevier Inc. All rights reserved.
Mental Workload during Brain-Computer Interface Training
Felton, Elizabeth A.; Williams, Justin C.; Vanderheiden, Gregg C.; Radwin, Robert G.
2012-01-01
It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts’ law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0 – 100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. PMID:22506483
Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A
2015-12-01
When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A
2017-11-01
Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.
Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria
2012-01-01
Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.
NASA Astrophysics Data System (ADS)
Treder, Matthias S.
2012-08-01
Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects of stimuli and systematic class confusions in auditory BCIs [3]. Andersson et al use fMRI for online-decoding of covert shifts of visual attention [4]. Thurlings et al show that multi-sensory integration of tactile and visual information can enhance the amplitude of ERP components [5]. Schaeff et al investigate the use of motion VEPs in gaze-independent visual BCIs [6]. Wilson et al substitute visual feedback by mapping the screen's cursor onto a tactor grid that stimulates the tongue [7]. Brouwer et al explore the use of ERP features and spectral features for estimating mental workload in an n-back task [8]. Falzon et al extend the Common Spatial Patterns (CSP) method to the complex plane, taking into account both amplitude and phase relationships [9]. Eliseyev et al present a method for the sparse sub-selection of electrodes for classification [10]. Tonin et al demonstrate that the classification of covert attention shifts is improved by considering sub-bands of the alpha band [11]. Aloise et al investigate effects of classification scheme and decimation on the performance of a gaze-independent BCI [12]. References [1] Riccio A et al 2012 J. Neural Eng. 9 045001 [2] van der Waal M et al 2012 J. Neural Eng. 9 045002 [3] Höhne J et al 2012 J. Neural Eng. 9 045003 [4] Andersson P et al 2012 J. Neural Eng. 9 045004 [5] Thurlings M E et al 2012 J. Neural Eng. 9 045005 [6] Schaeff S et al 2012 J. Neural Eng. 9 045006 [7] Wilson J A et al 2012 J. Neural Eng. 9 045007 [8] Brouwer A-M et al 2012 J. Neural Eng. 9 045008 [9] Falzon O et al 2012 J. Neural Eng. 9 045009 [10] Eliseyev A et al 2012 J. Neural Eng. 9 045010 [11] Tonin L et al 2012 J. Neural Eng. 9 045011 [12] Aloise F et al 2012 J. Neural Eng. 9 045012
Neurofeedback Training for BCI Control
NASA Astrophysics Data System (ADS)
Neuper, Christa; Pfurtscheller, Gert
Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].
The Shape of Things to Come: The Military Benefits of the Brain-Computer Interface in 2040
2015-04-01
blood flow using a method referred to as blood-oxygen-level contrast (BOLD).20, 21 The hemodynamic responses are an indication of increased demand...both human and animal studies. One key disadvantage to fMRI/BOLD is that since the basis of measurement is the indirect detection of blood flow ...analytical tool to assess brain injury, BCIs enhance a patient’s quality of life. For example, the cochlear implant, developed in 1976, can be seen as an
Huo, Xueliang; Ghovanloo, Maysam
2010-01-01
The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue–computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2–C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course. PMID:20332552
Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals
NASA Astrophysics Data System (ADS)
Syan, Chanan S.; Harnarinesingh, Randy E. S.; Beharry, Rishi
2014-07-01
Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing.
Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex.
Ibayashi, Kenji; Kunii, Naoto; Matsuo, Takeshi; Ishishita, Yohei; Shimada, Seijiro; Kawai, Kensuke; Saito, Nobuhito
2018-01-01
Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs) is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local field potential (LFP), and electrocorticography (ECoG) are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs.
Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex
Ibayashi, Kenji; Kunii, Naoto; Matsuo, Takeshi; Ishishita, Yohei; Shimada, Seijiro; Kawai, Kensuke; Saito, Nobuhito
2018-01-01
Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs) is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA), local field potential (LFP), and electrocorticography (ECoG) are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC), we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs. PMID:29674950
Zhang, Haihong; Guan, Cuntai; Ang, Kai Keng; Wang, Chuanchu
2012-01-01
Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set. PMID:22347153
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
Devlaminck, Dieter; Wyns, Bart; Grosse-Wentrup, Moritz; Otte, Georges; Santens, Patrick
2011-01-01
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low. PMID:22007194
Write, read and answer emails with a dry 'n' wireless brain-computer interface system.
Pinegger, Andreas; Deckert, Lisa; Halder, Sebastian; Barry, Norbert; Faller, Josef; Käthner, Ivo; Hintermüller, Christoph; Wriessnegger, Selina C; Kübler, Andrea; Müller-Putz, Gernot R
2014-01-01
Brain-computer interface (BCI) users can control very complex applications such as multimedia players or even web browsers. Therefore, different biosignal acquisition systems are available to noninvasively measure the electrical activity of the brain, the electroencephalogram (EEG). To make BCIs more practical, hardware and software are nowadays designed more user centered and user friendly. In this paper we evaluated one of the latest innovations in the area of BCI: A wireless EEG amplifier with dry electrode technology combined with a web browser which enables BCI users to use standard webmail. With this system ten volunteers performed a daily life task: Write, read and answer an email. Experimental results of this study demonstrate the power of the introduced BCI system.
Biased feedback in brain-computer interfaces.
Barbero, Alvaro; Grosse-Wentrup, Moritz
2010-07-27
Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject's current skill level.
Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin
2012-01-01
The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.
The Beck Cognitive Insight Scale (BCIS): translation and validation of the Taiwanese version.
Kao, Yu-Chen; Liu, Yia-Ping
2010-04-09
Over the last few decades, research concerning the insight of patients with schizophrenia and its relationships with other clinical variables has been given much attention in the clinical setting. Since that time, a series of instruments assessing insight have been developed. The purpose of this study was to examine the reliability and validity of the Taiwanese version of the Beck Cognitive Insight Scale (BCIS). The BCIS is a self-administered instrument designed to evaluate cognitive processes that involves reevaluating patients' anomalous experiences and specific misinterpretations. The English language version of the BCIS was translated into Taiwanese for use in this study. A total of 180 subjects with and without psychosis completed the Taiwanese version of the BCIS and additional evaluations to assess researcher-rated insight scales and psychopathology. Psychometric properties (factor structures and various types of reliability and validity) were assessed for this translated questionnaire. Overall, the Taiwanese version of the BCIS showed good reliability and stability over time. This translated scale comprised a two-factor solution corresponding to reflective attitude and certain attitude subscales. Following the validation of the internal structure of the scale, we obtained an R-C (reflective attitude minus certain attitude) index of the translated BCIS, representing the measurement of cognitive insight by subtracting the score of the certain attitude subscale from that of the reflective attitude subscale. As predicted, the differences in mean reflective attitude, certain attitude and R-C index between subjects with and without psychosis were significant. Our data also demonstrated that psychotic patients were significantly less reflective, more confident in their beliefs, and had less cognitive insight compared with nonpsychotic control groups. In light of these findings, we believe that the Taiwanese version of BCIS is a valid and reliable instrument for the assessment of cognitive insight in psychotic patients.
A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces.
Wang, Yijun; Chen, Xiaogang; Gao, Xiaorong; Gao, Shangkai
2017-10-01
This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.
Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface.
Faller, J; Torrellas, S; Miralles, F; Holzner, C; Kapeller, C; Guger, C; Bund, J; Müller-Putz, G R; Scherer, R
2012-01-01
We present the prototype of a context-aware framework that allows users to control smart home devices and to access internet services via a Hybrid BCI system of an auto-calibrating sensorimotor rhythm (SMR) based BCI and another assistive device (Integra Mouse mouth joystick). While there is extensive literature that describes the merit of Hybrid BCIs, auto-calibrating and co-adaptive ERD BCI training paradigms, specialized BCI user interfaces, context-awareness and smart home control, there is up to now, no system that includes all these concepts in one integrated easy-to-use framework that can truly benefit individuals with severe functional disabilities by increasing independence and social inclusion. Here we integrate all these technologies in a prototype framework that does not require expert knowledge or excess time for calibration. In a first pilot-study, 3 healthy volunteers successfully operated the system using input signals from an ERD BCI and an Integra Mouse and reached average positive predictive values (PPV) of 72 and 98% respectively. Based on what we learned here we are planning to improve the system for a test with a larger number of healthy volunteers so we can soon bring the system to benefit individuals with severe functional disability.
NASA Astrophysics Data System (ADS)
Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien
2016-06-01
Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.
Brain-computer interfacing under distraction: an evaluation study
NASA Astrophysics Data System (ADS)
Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech
2016-10-01
Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.
On the role of cost-sensitive learning in multi-class brain-computer interfaces.
Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick
2010-06-01
Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.
A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis.
Hohmann, M R; Fomina, T; Jayaram, V; Widmann, N; Förster, C; Just, J; Synofzik, M; Schölkopf, B; Schöls, L; Grosse-Wentrup, M
2016-01-01
Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis (ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit information from the user to the BCI. We instructed five ALS patients and twelve healthy subjects to either activate self-referential memories or to focus on a process without mnemonic content while recording a high-density electroencephalogram (EEG). Both tasks are designed to modulate activity in the default mode network (DMN) without involving sensorimotor pathways. We find that the two tasks can be distinguished after only one experimental session from the average of the combined bandpower modulations in the theta- (4-7Hz) and alpha-range (8-13Hz), with an average accuracy of 62.5% and 60.8% for healthy subjects and ALS patients, respectively. The spatial weights of the decoding algorithm show a preference for the parietal area, consistent with modulation of neural activity in primary nodes of the DMN. © 2016 Elsevier B.V. All rights reserved.
Brain-computer interfaces in neurological rehabilitation.
Daly, Janis J; Wolpaw, Jonathan R
2008-11-01
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
Combaz, Adrien; Van Hulle, Marc M
2015-01-01
We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
How stimulation speed affects Event-Related Potentials and BCI performance.
Höhne, Johannes; Tangermann, Michael
2012-01-01
In most paradigms for Brain-Computer Interfaces (BCIs) that are based on Event-Related Potentials (ERPs), stimuli are presented with a pre-defined and constant speed. In order to boost BCI performance by optimizing the parameters of stimulation, this offline study investigates the impact of the stimulus onset asynchrony (SOA) on ERPs and the resulting classification accuracy. The SOA is defined as the time between the onsets of two consecutive stimuli, which represents a measure for stimulation speed. A simple auditory oddball paradigm was tested in 14 SOA conditions with a SOA between 50 ms and 1000 ms. Based on an offline ERP analysis, the BCI performance (quantified by the Information Transfer Rate, ITR in bits/min) was simulated. A great variability in the simulated BCI performance was observed within subjects (N=11). This indicates a potential increase in BCI performance (≥ 1.6 bits/min) for ERP-based paradigms, if the stimulation speed is specified for each user individually.
Toward an Open-Ended BCI: A User-Centered Coadaptive Design.
Dhindsa, Kiret; Carcone, Dean; Becker, Suzanna
2017-10-01
Brain-computer interfaces (BCIs) allow users to control a device by interpreting their brain activity. For simplicity, these devices are designed to be operated by purposefully modulating specific predetermined neurophysiological signals, such as the sensorimotor rhythm. However, the ability to modulate a given neurophysiological signal is highly variable across individuals, contributing to the inconsistent performance of BCIs for different users. These differences suggest that individuals who experience poor BCI performance with one class of brain signals might have good results with another. In order to take advantage of individual abilities as they relate to BCI control, we need to move beyond the current approaches. In this letter, we explore a new BCI design aimed at a more individualized and user-focused experience, which we call open-ended BCI. Individual users were given the freedom to discover their own mental strategies as opposed to being trained to modulate a given brain signal. They then underwent multiple coadaptive training sessions with the BCI. Our first open-ended BCI performed similarly to comparable BCIs while accommodating a wider variety of mental strategies without a priori knowledge of the specific brain signals any individual might use. Post hoc analysis revealed individual differences in terms of which sensory modality yielded optimal performance. We found a large and significant effect of individual differences in background training and expertise, such as in musical training, on BCI performance. Future research should be focused on finding more generalized solutions to user training and brain state decoding methods to fully utilize the abilities of different individuals in an open-ended BCI. Accounting for each individual's areas of expertise could have important implications on BCI training and BCI application design.
Control-display mapping in brain-computer interfaces.
Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter
2012-01-01
Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.
Papers from the Fifth International Brain-Computer Interface Meeting
NASA Astrophysics Data System (ADS)
Huggins, Jane E.; Wolpaw, Jonathan R.
2014-06-01
Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including neuroscience, engineering, applied mathematics, computer science, psychology and rehabilitation. In addition, this fifth meeting extended the spectrum in two very important ways. For the first time, presentations were given by several people who could potentially benefit from current BCI technology-people with severe disabilities who need assistive technology for communication. One presented in person and one remotely. A Virtual BCI User's Forum allowed these presenters and other potential BCI users to speak directly to the BCI research community about the advantages and disadvantages of current BCIs and important directions for future study (see [7]). Their personal experiences and desires can help guide BCI research and development. Their active participation, particularly in regard to the selection of goals and the evaluation and optimization of new methods and systems, is essential if BCIs are to become clinically valuable and widely used technology. The second major innovation in this meeting was the strong emphasis on ethical issues related to BCI development and use. The meeting opened with a keynote presentation entitled 'Neuroethics, BCIs and the Cyborg Myth' by Dr Joseph Fins, a noted authority on neuroethics from the Weill Cornell Medical College and the Rockefeller University. He focused on the ability of BCIs to relieve suffering and restore function, while cautioning against applications that take intentional control away from the user. Ethical issues were also addressed in several of the workshops, and arose on multiple occasions and in multiple contexts over the course of the meeting. Their prominence reflected the growing importance and difficulty of ethical issues as BCI capacities and applications grow and extend to potentially enhancing or supplementing normal nervous system function. The 16 articles in this special section reflect the breadth, depth, growing maturity and future directions of BCI research. The first paper presents a tutorial on best practices in BCI performance measurement [8]. The following eight papers focus on specific BCI applications and on methods for increasing their usefulness for people with severe disabilities. The next two examine how brain activity and BCI use affect each other. The final five studies investigate brain signals and evaluate new signal processing algorithms in order to improve BCI performance and broaden its possible applications in some of the newest areas of BCI research, including the direct interpretation of speech from electrocorticographic (ECoG) activity [9]. Together, these papers span many aspects of BCI research, including different recording modalities (i.e. electroencephalogram (EEG), ECoG, functional magnetic resonance imaging (fMRI)) and signal types (e.g. P300 event-related potentials (ERPs), sensorimotor rhythms, steady-state visual evoked potentials (SSVEPs)). Furthermore, additional clinically related studies that were presented at the meeting but were considered to be outside the scope of the Journal of Neural Engineering will appear in a special issue of the Archives of Physical Medicine and Rehabilitation . With a theme of 'Defining the Future' the Fifth International BCI Meeting tackled the issues of a rapidly growing multidisciplinary research and development enterprise that is now entering clinical use. Important new areas that received attention included the need for active involvement of the people with severe disabilities who are the primary initial users of BCI technology and the growing importance and difficulty of the multiple ethical questions raised by BCIs and their potential applications. The meeting also marked the launching of the new journal Brain--Computer Interfaces , dedicated to BCI research and development, and initiated the establishment of the Brain--Computer Interface Society, which will organize and manage the Sixth International BCI Meeting to be held in 2016. References [1] http://bcimeeting.org/2013/sponsors.html [2] http://bcimeeting.org/2013/meetinginfo.html [3] http://bcimeeting.org/2013/researchsessions.html (indexes individual abstracts) [4] http://bcimeeting.org/2013/posters.html (indexes individual abstracts) [5] http://castor.tugraz.at/doku/BCIMeeting2013/BCIMeeting2013_all.pdf [6] Huggins J E et al 2014 Workshops of the Fifth International Brain--Computer Interface Meeting: Defining the Future Brain--Computer Interface J. 1 27-49 [7] Peters B, Bieker G, Heckman S M, Huggins J E, Wolf C, Zeitlin D and Fried-Oken M 2014 Brain--computer interface users speak up: the Virtual Users' Forum at the 2013 International BCI Meeting Archives of Physical Medicine and Rehabilitation vol 95 fall supplement at press [8] Thompson D E et al 2014 Performance measurement for brain-computer or brain-machine interfaces: a tutorial J. Neural Eng. 11 035001 [9] Mugler E, Patton J, Flint R, Wright Z, Schuele S, Rosenow J, Shih J, Krusienski D and Slutzky M 2014 Direct classification of all American English phonemes using signals from functional speech motor cortex J. Neural Eng. 11 035015
EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces
NASA Astrophysics Data System (ADS)
Ashari, Rehab Bahaaddin
Brain-Computer Interfaces (BCIs) help paralyzed people who have lost some or all of their ability to communicate and control the outside environment from loss of voluntary muscle control. Most BCIs are based on the classification of multichannel electroencephalography (EEG) signals recorded from users as they respond to external stimuli or perform various mental activities. The classification process is fraught with difficulties caused by electrical noise, signal artifacts, and nonstationarity. One approach to reducing the effects of similar difficulties in other domains is the use of principal angles between subspaces, which has been applied mostly to video sequences. This dissertation studies and examines different ideas using principal angles and subspaces concepts. It introduces a novel mathematical approach for comparing sets of EEG signals for use in new BCI technology. The success of the presented results show that principal angles are also a useful approach to the classification of EEG signals that are recorded during a BCI typing application. In this application, the appearance of a subject's desired letter is detected by identifying a P300-wave within a one-second window of EEG following the flash of a letter. Smoothing the signals before using them is the only preprocessing step that was implemented in this study. The smoothing process based on minimizing the second derivative in time is implemented to increase the classification accuracy instead of using the bandpass filter that relies on assumptions on the frequency content of EEG. This study examines four different ways of removing outliers that are based on the principal angles and shows that the outlier removal methods did not help in the presented situations. One of the concepts that this dissertation focused on is the effect of the number of trials on the classification accuracies. The achievement of the good classification results by using a small number of trials starting from two trials only, should make this approach more appropriate for online BCI applications. In order to understand and test how EEG signals are different from one subject to another, different users are tested in this dissertation, some with motor impairments. Furthermore, the concept of transferring information between subjects is examined by training the approach on one subject and testing it on the other subject using the training subject's EEG subspaces to classify the testing subject's trials.
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie
2014-10-01
Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.
To sort or not to sort: the impact of spike-sorting on neural decoding performance
NASA Astrophysics Data System (ADS)
Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie
2014-10-01
Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.
Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie
2013-01-01
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652
Leveraging anatomical information to improve transfer learning in brain-computer interfaces
NASA Astrophysics Data System (ADS)
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K. C.
2015-08-01
Objective. Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. Approach. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Main results. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. Significance. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.
Leveraging anatomical information to improve transfer learning in brain-computer interfaces.
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K C
2015-08-01
Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.
Noise Reduction in Brainwaves by Using Both EEG Signals and Frontal Viewing Camera Images
Bang, Jae Won; Choi, Jong-Suk; Park, Kang Ryoung
2013-01-01
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have been used in various applications, including human–computer interfaces, diagnosis of brain diseases, and measurement of cognitive status. However, EEG signals can be contaminated with noise caused by user's head movements. Therefore, we propose a new method that combines an EEG acquisition device and a frontal viewing camera to isolate and exclude the sections of EEG data containing these noises. This method is novel in the following three ways. First, we compare the accuracies of detecting head movements based on the features of EEG signals in the frequency and time domains and on the motion features of images captured by the frontal viewing camera. Second, the features of EEG signals in the frequency domain and the motion features captured by the frontal viewing camera are selected as optimal ones. The dimension reduction of the features and feature selection are performed using linear discriminant analysis. Third, the combined features are used as inputs to support vector machine (SVM), which improves the accuracy in detecting head movements. The experimental results show that the proposed method can detect head movements with an average error rate of approximately 3.22%, which is smaller than that of other methods. PMID:23669713
Leveraging anatomical information to improve transfer learning in brain-computer interfaces
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian KC
2015-01-01
Objective Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. Approach We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Main Results Based on simulated and measured EEG activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. Significance These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time. PMID:26169961
Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg
2013-01-01
Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504
A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.
Suk, Heung-Il; Lee, Seong-Whan
2013-02-01
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
[The P300 based brain-computer interface: effect of stimulus position in a stimulus train].
Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia
2012-01-01
The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.
Emotion-prints: interaction-driven emotion visualization on multi-touch interfaces
NASA Astrophysics Data System (ADS)
Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas
2015-01-01
Emotions are one of the unique aspects of human nature, and sadly at the same time one of the elements that our technological world is failing to capture and consider due to their subtlety and inherent complexity. But with the current dawn of new technologies that enable the interpretation of emotional states based on techniques involving facial expressions, speech and intonation, electrodermal response (EDS) and brain-computer interfaces (BCIs), we are finally able to access real-time user emotions in various system interfaces. In this paper we introduce emotion-prints, an approach for visualizing user emotional valence and arousal in the context of multi-touch systems. Our goal is to offer a standardized technique for representing user affective states in the moment when and at the location where the interaction occurs in order to increase affective self-awareness, support awareness in collaborative and competitive scenarios, and offer a framework for aiding the evaluation of touch applications through emotion visualization. We show that emotion-prints are not only independent of the shape of the graphical objects on the touch display, but also that they can be applied regardless of the acquisition technique used for detecting and interpreting user emotions. Moreover, our representation can encode any affective information that can be decomposed or reduced to Russell's two-dimensional space of valence and arousal. Our approach is enforced by a BCI-based user study and a follow-up discussion of advantages and limitations.
The cortical mouse: a piece of forgotten history in noninvasive brain–computer interfaces.
Principe, Jose C
2013-07-01
Early research on brain-computer interfaces (BCIs) was fueled by the study of event-related potentials (ERPs) by Farwell and Donchin, who are rightly credited for laying important groundwork for the BCI field. However, many other researchers have made substantial contributions that have escaped the radar screen of the current BCI community. For example, in the late 1980s, I worked with a brilliant multidisciplinary research group in electrical engineering at the University of Florida, Gainesville, headed by Dr. Donald Childers. Childers should be well known to long-time members of the IEEE Engineering in Medicine and Biology Society since he was the editor-in-chief of IEEE Transactions on Biomedical Engineering in the 1970s and the recipient of one of the most prestigious society awards, the William J. Morlock Award, in 1973.
Iturrate, Iñaki; Montesano, Luis; Chavarriaga, Ricardo; del R Millán, Jose; Minguez, Javier
2011-01-01
One of the main problems of both synchronous and asynchronous EEG-based BCIs is the need of an initial calibration phase before the system can be used. This phase is necessary due to the high non-stationarity of the EEG, since it changes between sessions and users. The calibration process limits the BCI systems to scenarios where the outputs are very controlled, and makes these systems non-friendly and exhausting for the users. Although it has been studied how to reduce calibration time for asynchronous signals, it is still an open issue for event-related potentials. Here, we propose the minimization of the calibration time on single-trial error potentials by using classifiers based on inter-subject information. The results show that it is possible to have a classifier with a high performance from the beginning of the experiment, and which is able to adapt itself making the calibration phase shorter and transparent to the user.
Feasibility of BCI Control in a Realistic Smart Home Environment.
Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand
2016-01-01
Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the "Domus" smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%).
Feasibility of BCI Control in a Realistic Smart Home Environment
Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand
2016-01-01
Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the “Domus”1 smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%). PMID:27616986
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
Wang, Deng; Miao, Duoqian; Blohm, Gunnar
2012-01-01
Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607
Ludwig, Simone A; Kong, Jun
2017-12-01
Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.
Buchy, L.; Czechowska, Y.; Chochol, C.; Malla, A.; Joober, R.; Pruessner, J.; Lepage, M.
2010-01-01
Our previous work has linked verbal learning and memory with cognitive insight, but not clinical insight, in individuals with a first-episode psychosis (FEP). The current study reassessed the neurocognitive basis of cognitive and clinical insight and explored their neural basis in 61 FEP patients. Cognitive insight was measured with the Beck Cognitive Insight Scale (BCIS) and clinical insight with the Scale to assess Unawareness of Mental Disorder (SUMD). Global measures for 7 domains of cognition were examined. Hippocampi were manually segmented in to 3 parts: the body, head, and tail. Verbal learning and memory significantly correlated with the BCIS composite index. Composite index scores were significantly associated with total left hippocampal (HC) volume; partial correlations, however, revealed that this relationship was attributable largely to verbal memory performance. The BCIS self-certainty subscale significantly and inversely correlated with bilateral HC volumes, and these associations were independent of verbal learning and memory performance. The BCIS self-reflectiveness subscale significantly correlated with verbal learning and memory but not with HC volume. No significant correlations emerged between the SUMD and verbal memory or HC volume. These results strengthen our previous assertion that in individuals with an FEP cognitive insight may rely on memory whereby current experiences are appraised based on previous ones. The HC may be a viable location among others for the brain system that underlies aspects of cognitive insight in individuals with an FEP. PMID:19346315
Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface
Metzen, Jan H.
2013-01-01
A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays. PMID:23844021
Vibrotactile Feedback for Brain-Computer Interface Operation
Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.
2007-01-01
To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734
Rehabilitation of gait after stroke: a review towards a top-down approach
2011-01-01
This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity. The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches), functional electrical stimulation (FES), robotic devices, and brain-computer interfaces (BCI). From the analysis of these approaches, we can draw the following conclusions. Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than other. Combination of different rehabilitation strategies seems to be more effective than over-ground gait training alone. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. The use of FES combined with different walking retraining strategies has shown to result in improvements in hemiplegic gait. Reports on non-invasive BCIs for stroke recovery are limited to the rehabilitation of upper limbs; however, some works suggest that there might be a common mechanism which influences upper and lower limb recovery simultaneously, independently of the limb chosen for the rehabilitation therapy. Functional near infrared spectroscopy (fNIRS) enables researchers to detect signals from specific regions of the cortex during performance of motor activities for the development of future BCIs. Future research would make possible to analyze the impact of rehabilitation on brain plasticity, in order to adapt treatment resources to meet the needs of each patient and to optimize the recovery process. PMID:22165907
Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian
2018-01-01
The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate "Enheduanna-A Manifesto of Falling," a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of attention and emotional engagement. Also, the results obtained from the performer's data analysis are consistent with the recall of working memory representations and the increase of cognitive load. Thus, these results prove the efficiency of the interaction design, as well as the importance of the directing strategy, dramaturgy and narrative structure on the audience's perception, cognitive state, and engagement.
Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian
2018-01-01
The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate “Enheduanna—A Manifesto of Falling,” a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of attention and emotional engagement. Also, the results obtained from the performer's data analysis are consistent with the recall of working memory representations and the increase of cognitive load. Thus, these results prove the efficiency of the interaction design, as well as the importance of the directing strategy, dramaturgy and narrative structure on the audience's perception, cognitive state, and engagement. PMID:29666566
Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.
Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio
2017-07-01
This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.
Hybrid BCI approach to control an artificial tibio-femoral joint.
Mercado, Luis; Rodriguez-Linan, Angel; Torres-Trevino, Luis M; Quiroz, G
2016-08-01
Brain-Computer Interfaces (BCIs) for disabled people should allow them to use their remaining functionalities as control possibilities. BCIs connect the brain with external devices to perform the volition or intent of movement, regardless if that individual is unable to perform the task due to body impairments. In this work we fuse electromyographic (EMG) with electroencephalographic (EEG) activity in a framework called "Hybrid-BCI" (hBCI) approach to control the movement of a simulated tibio-femoral joint. Two mathematical models of a tibio-femoral joint are used to emulate the kinematic and dynamic behavior of the knee. The interest is to reproduce different velocities of the human gait cycle. The EEG signals are used to classify the user intent, which are the velocity changes, meanwhile the superficial EMG signals are used to estimate the amplitude of such intent. A multi-level controller is used to solve the trajectory tracking problem involved. The lower level consists of an individual controller for each model, it solves the tracking of the desired trajectory even considering different velocities of the human gait cycle. The mid-level uses a combination of a logical operator and a finite state machine for the switching between models. Finally, the highest level consists in a support vector machine to classify the desired activity.
Online EEG artifact removal for BCI applications by adaptive spatial filtering.
Guarnieri, Roberto; Marino, Marco; Barban, Federico; Ganzetti, Marco; Mantini, Dante
2018-06-28
The performance of brain computer interfaces (BCIs) based on electroencephalography (EEG) data strongly depends on the effective attenuation of artifacts that are mixed in the recordings. To address this problem, we have developed a novel online EEG artifact removal method for BCI applications, which combines blind source separation (BSS) and regression (REG) analysis. The BSS-REG method relies on the availability of a calibration dataset of limited duration for the initialization of a spatial filter using BSS. Online artifact removal is implemented by dynamically adjusting the spatial filter in the actual experiment, based on a linear regression technique. Our results showed that the BSS-REG method is capable of attenuating different kinds of artifacts, including ocular and muscular, while preserving true neural activity. Thanks to its low computational requirements, BSS-REG can be applied to low-density as well as high-density EEG data. We argue that BSS-REG may enable the development of novel BCI applications requiring high-density recordings, such as source-based neurofeedback and closed-loop neuromodulation. © 2018 IOP Publishing Ltd.
Control of an electrical prosthesis with an SSVEP-based BCI.
Müller-Putz, Gernot R; Pfurtscheller, Gert
2008-01-01
Brain-computer interfaces (BCIs) are systems that establish a direct connection between the human brain and a computer, thus providing an additional communication channel. They are used in a broad field of applications nowadays. One important issue is the control of neuroprosthetic devices for the restoration of the grasp function in spinal-cord-injured people. In this communication, an asynchronous (self-paced) four-class BCI based on steady-state visual evoked potentials (SSVEPs) was used to control a two-axes electrical hand prosthesis. During training, four healthy participants reached an online classification accuracy between 44% and 88%. Controlling the prosthetic hand asynchronously, the participants reached a performance of 75.5 to 217.5 s to copy a series of movements, whereas the fastest possible duration determined by the setup was 64 s. The number of false negative (FN) decisions varied from 0 to 10 (the maximal possible decisions were 34). It can be stated that the SSVEP-based BCI, operating in an asynchronous mode, is feasible for the control of neuroprosthetic devices with the flickering lights mounted on its surface.
Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming
2015-08-01
The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.
Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav
2016-08-01
Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.
Wearable ear EEG for brain interfacing
NASA Astrophysics Data System (ADS)
Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.
2017-02-01
Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.
Lysaker, Paul H; Olesek, Kyle L; Warman, Debbie M; Martin, Joel M; Salzman, Anlize K; Nicolò, Giuseppe; Salvatore, Giampaolo; Dimaggio, Giancarlo
2011-11-30
Research suggests that many with schizophrenia experience a range of deficits in metacognition including difficulties recognizing the emotions and intentions of others as well as reflecting upon and questioning their own thinking. Unclear, however, is the extent to which these deficits are stable over time, how closely related they are to one another and whether their associations with core aspects of the disorder such as disorganization symptoms are stable over time. To explore this issue, we administered three assessments of Theory of Mind (ToM), the Beck Cognitive Insight Scale (BCIS), and the Positive and Negative Syndrome Scale at baseline and 6 months to 36 participants with schizophrenia. Correlations revealed the ToM and BCIS scores were stable across the two test administrations and that the ToM tests were closely linked to each other but not to the BCIS. Poorer baseline performance on the ToM tests and the Self-Certainty scale of the BCIS were linked to greater cognitive symptoms at baseline and follow-up, while greater Self-Reflectivity on the BCIS was linked to greater levels of emotional distress at both baseline and 6-month follow-up. Results are consistent with assertions that deficits in metacognition are a stable feature of schizophrenia. Published by Elsevier Ireland Ltd.
EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb.
Cincotti, F; Pichiorri, F; Aricò, P; Aloise, F; Leotta, F; de Vico Fallani, F; Millán, J del R; Molinari, M; Mattia, D
2012-01-01
Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one-month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI-mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.
NASA Astrophysics Data System (ADS)
Choi, Hoseok; Lee, Jeyeon; Park, Jinsick; Lee, Seho; Ahn, Kyoung-ha; Kim, In Young; Lee, Kyoung-Min; Jang, Dong Pyo
2018-02-01
Objective. In arm movement BCIs (brain-computer interfaces), unimanual research has been much more extensively studied than its bimanual counterpart. However, it is well known that the bimanual brain state is different from the unimanual one. Conventional methodology used in unimanual studies does not take the brain stage into consideration, and therefore appears to be insufficient for decoding bimanual movements. In this paper, we propose the use of a two-staged (effector-then-trajectory) decoder, which combines the classification of movement conditions and uses a hand trajectory predicting algorithm for unimanual and bimanual movements, for application in real-world BCIs. Approach. Two micro-electrode patches (32 channels) were inserted over the dura mater of the left and right hemispheres of two rhesus monkeys, covering the motor related cortex for epidural electrocorticograph (ECoG). Six motion sensors (inertial measurement unit) were used to record the movement signals. The monkeys performed three types of arm movement tasks: left unimanual, right unimanual, bimanual. To decode these movements, we used a two-staged decoder, which combines the effector classifier for four states (left unimanual, right unimanual, bimanual movements, and stationary state) and movement predictor using regression. Main results. Using this approach, we successfully decoded both arm positions using the proposed decoder. The results showed that decoding performance for bimanual movements were improved compared to the conventional method, which does not consider the effector, and the decoding performance was significant and stable over a period of four months. In addition, we also demonstrated the feasibility of epidural ECoG signals, which provided an adequate level of decoding accuracy. Significance. These results provide evidence that brain signals are different depending on the movement conditions or effectors. Thus, the two-staged method could be useful if BCIs are used to generalize for both unimanual and bimanual operations in human applications and in various neuro-prosthetics fields.
Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue
2017-01-01
The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.
Jin, Jing; Allison, Brendan Z; Kaufmann, Tobias; Kübler, Andrea; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej
2012-01-01
One of the most common types of brain-computer interfaces (BCIs) is called a P300 BCI, since it relies on the P300 and other event-related potentials (ERPs). In the canonical P300 BCI approach, items on a monitor flash briefly to elicit the necessary ERPs. Very recent work has shown that this approach may yield lower performance than alternate paradigms in which the items do not flash but instead change in other ways, such as moving, changing colour or changing to characters overlaid with faces. The present study sought to extend this research direction by parametrically comparing different ways to change items in a P300 BCI. Healthy subjects used a P300 BCI across six different conditions. Three conditions were similar to our prior work, providing the first direct comparison of characters flashing, moving, and changing to faces. Three new conditions also explored facial motion and emotional expression. The six conditions were compared across objective measures such as classification accuracy and bit rate as well as subjective measures such as perceived difficulty. In line with recent studies, our results indicated that the character flash condition resulted in the lowest accuracy and bit rate. All four face conditions (mean accuracy >91%) yielded significantly better performance than the flash condition (mean accuracy = 75%). Objective results reaffirmed that the face paradigm is superior to the canonical flash approach that has dominated P300 BCIs for over 20 years. The subjective reports indicated that the conditions that yielded better performance were not considered especially burdensome. Therefore, although further work is needed to identify which face paradigm is best, it is clear that the canonical flash approach should be replaced with a face paradigm when aiming at increasing bit rate. However, the face paradigm has to be further explored with practical applications particularly with locked-in patients.
A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature
NASA Astrophysics Data System (ADS)
Xu, Minpeng; Qi, Hongzhi; Wan, Baikun; Yin, Tao; Liu, Zhipeng; Ming, Dong
2013-04-01
Objective. Hybrid brain-computer interfaces (BCIs) have been proved to be more effective in mental control by combining another channel of physiologic control signals. Among those studies, little attention has been paid to the combined use of a steady-state visual evoked potential (SSVEP) and P300 potential, both providing the fastest and the most reliable EEG based BCIs. In this paper, a novel hybrid BCI speller is developed to elicit P300 potential and SSVEP blocking (SSVEP-B) distinctly and simultaneously with the same target stimulus. Approach. Twelve subjects were involved in the study and every one performed offline spelling twice in succession with two different speller paradigms for comparison: hybrid speller and control P300-speller. Feature analysis was adopted from the view of time domain, frequency domain and spatial distribution; the performances were evaluated by character accuracy and information transfer rate (ITR). Main results. Signal analysis of the hybrid paradigm shows that SSVEPs are an evident EEG component during the nontarget phase but are dismissed and replaced by P300 potentials after target stimuli. The absence of an SSVEP, called SSVEP-B, mostly appearing in channel Oz, presents a sharp distinction between target responses and nontarget responses. The r2 value of SSVEP-B in channel Oz is comparable to that of P300 in channel Cz. Compared with the control P300-speller, the hybrid speller achieves significantly higher accuracy and ITR with combined features. Significance. The results indicate that the combination of P300 with an SSVEP-B improves target discrimination greatly; the proposed hybrid paradigm is superior to the control paradigm in spelling performance. Thus, our findings provide a new approach to improve BCI performances.
Real-time fMRI and its application to neurofeedback.
Weiskopf, Nikolaus
2012-08-15
Real-time fMRI (rtfMRI) allows immediate access to experimental results by analyzing data as fast as they are acquired. It was devised soon after the inception of fMRI and has undergone a rapid development since then. The availability of results during the ongoing experiment facilitates a variety of applications such as quality assurance or fast functional localization. RtfMRI can also be used as a brain-computer interface (BCI) with high spatial resolution and whole-brain coverage, overcoming limitations of EEG based BCIs. This review will focus on the application of rtfMRI BCIs to neurofeedback, i.e., the online feedback of the blood oxygen level dependent (BOLD) response. I will motivate its development and place its beginnings into the contemporary scientific context by providing an account of our early work at the University of Tübingen, followed by a review of the accomplishments and the current state of rtfMRI neurofeedback. RtfMRI neurofeedback has been used to train self-regulation of the local BOLD response in various different brain areas and to study consequential behavioral effects. Behavioral effects such as modulation of pain, reaction time, linguistic or emotional processing have been shown in healthy and/or patient populations. RtfMRI neurofeedback presents a new paradigm for studying the relation between brain behavior and physiology, because the latter can be regarded as the independent variable (unlike in conventional neuroimaging studies where behavior is the independent variable). The initial results in patient populations improving pain, tinnitus, depression or modulating perception in schizophrenia are encouraging and merit further controlled clinical studies. Copyright © 2011 Elsevier Inc. All rights reserved.
Towards a holistic assessment of the user experience with hybrid BCIs.
Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen
2014-06-01
In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)--resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users' experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.
Towards a holistic assessment of the user experience with hybrid BCIs
NASA Astrophysics Data System (ADS)
Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen
2014-06-01
Objective. In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. Approach. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)—resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Main results. Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Significance. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users’ experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.
Non-invasive brain-computer interface system: towards its application as assistive technology.
Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio
2008-04-15
The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain-computer interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI.
Non invasive Brain-Computer Interface system: towards its application as assistive technology
Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio
2010-01-01
The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI. PMID:18394526
A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs
NASA Astrophysics Data System (ADS)
Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.
2016-12-01
Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.
Zeid, Elias Abou; Sereshkeh, Alborz Rezazadeh; Chau, Tom
2016-12-01
In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.
NASA Astrophysics Data System (ADS)
Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Chau, Tom
2016-12-01
Objective. In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. Approach. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. Main results. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Significance. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.
Zhang, Tao; Liu, Tiejun; Li, Fali; Li, Mengchen; Liu, Dongbo; Zhang, Rui; He, Hui; Li, Peiyang; Gong, Jinnan; Luo, Cheng; Yao, Dezhong; Xu, Peng
2016-07-01
Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual MI-BCI performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Towards psychologically adaptive brain-computer interfaces
NASA Astrophysics Data System (ADS)
Myrden, A.; Chau, T.
2016-12-01
Objective. Brain-computer interface (BCI) performance is sensitive to short-term changes in psychological states such as fatigue, frustration, and attention. This paper explores the design of a BCI that can adapt to these short-term changes. Approach. Eleven able-bodied individuals participated in a study during which they used a mental task-based EEG-BCI to play a simple maze navigation game while self-reporting their perceived levels of fatigue, frustration, and attention. In an offline analysis, a regression algorithm was trained to predict changes in these states, yielding Pearson correlation coefficients in excess of 0.45 between the self-reported and predicted states. Two means of fusing the resultant mental state predictions with mental task classification were investigated. First, single-trial mental state predictions were used to predict correct classification by the BCI during each trial. Second, an adaptive BCI was designed that retrained a new classifier for each testing sample using only those training samples for which predicted mental state was similar to that predicted for the current testing sample. Main results. Mental state-based prediction of BCI reliability exceeded chance levels. The adaptive BCI exhibited significant, but practically modest, increases in classification accuracy for five of 11 participants and no significant difference for the remaining six despite a smaller average training set size. Significance. Collectively, these findings indicate that adaptation to psychological state may allow the design of more accurate BCIs.
Physiological properties of brain-machine interface input signals.
Slutzky, Marc W; Flint, Robert D
2017-08-01
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability. Copyright © 2017 the American Physiological Society.
Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces
NASA Astrophysics Data System (ADS)
Waytowich, Nicholas R.; Krusienski, Dean J.
2015-06-01
Objective. Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have proven to achieve among the highest information transfer rates for noninvasive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial separation and boundary positioning. Approach. For the paradigm, the flashing stimuli form a ring that encompasses the intended non-flashing targets, which are spatially separated from the stimuli. The user fixates on the desired target, which is classified using the changes to the EEG induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of targets is also positioned at or near the stimulus boundaries, which decouples targets from direct association with a single stimulus. This allows a greater number of target locations for a fixed number of flashing stimuli. Main results. Results from 11 subjects showed practical classification accuracies for the non-foveal condition, with comparable performance to the direct-foveal condition for longer observation lengths. Online results from 5 subjects confirmed the offline results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline analysis also indicated that targets positioned at or near the boundaries of two stimuli could be classified with the same accuracy as traditional superimposed (non-boundary) targets. Significance. The implications of this research are that c-VEPs can be detected and accurately classified to achieve comparable BCI performance without requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the number of targets beyond the number of stimuli without degrading performance. Given the superior information transfer rate of c-VEP paradigms, these results can lead to the development of more practical and ergonomic BCIs.
Can cognitive insight predict symptom remission in a first episode psychosis cohort?
O'Connor, Jennifer A; Ellett, Lyn; Ajnakina, Olesya; Schoeler, Tabea; Kollliakou, Anna; Trotta, Antonella; Wiffen, Benjamin D; Falcone, Aurora M; Di Forti, Marta; Murray, Robin M; Bhattacharyya, Sagnik; David, Anthony S
2017-02-06
The outcome of first episode psychosis (FEP) is highly variable and difficult to predict. Cognitive insight measured at illness onset has previously been found to predict psychopathology 12-months later. The aims of this study were to examine whether the prospective relationship between cognitive insight and symptom severity is evident at four-years following FEP and to examine some psychological correlates of cognitive insight. FEP participants (n = 90) completed the Beck Cognitive Insight Scale (BCIS) at illness onset, and associations between BCIS scores with symptom severity outcomes (4-years after FEP) were assessed. The BCIS scales (self-reflectiveness and self-certainty) were examined as a composite score, and individually compared to other cognitive measures (IQ and jumping to conclusions (JTC) bias). Regression analyses revealed that the cognitive insight composite did not predict 4-year symptom remission in this study while the self-reflection subscale of the BCIS predicted severity of symptoms at 4-years. Self-certainty items of the BCIS were not associated with symptom severity. Significant correlations between the JTC bias, self-certainty and IQ were found, but self-reflection did not correlate with these other cognitive measures. Self-reflective capacity is a more relevant and independent cognitive construct than self-certainty for predicting prospective symptom severity in psychosis. Improving self-reflection may be a useful target for early intervention research.
A multi-purpose brain-computer interface output device.
Thompson, David E; Huggins, Jane E
2011-10-01
While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.
Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Schultz, Benjamin; Chau, Tom
2017-01-01
In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication. PMID:28596725
Ventura, Valérie; Todorova, Sonia
2015-05-01
Spike-based brain-computer interfaces (BCIs) have the potential to restore motor ability to people with paralysis and amputation, and have shown impressive performance in the lab. To transition BCI devices from the lab to the clinic, decoding must proceed automatically and in real time, which prohibits the use of algorithms that are computationally intensive or require manual tweaking. A common choice is to avoid spike sorting and treat the signal on each electrode as if it came from a single neuron, which is fast, easy, and therefore desirable for clinical use. But this approach ignores the kinematic information provided by individual neurons recorded on the same electrode. The contribution of this letter is a linear decoding model that extracts kinematic information from individual neurons without spike-sorting the electrode signals. The method relies on modeling sample averages of waveform features as functions of kinematics, which is automatic and requires minimal data storage and computation. In offline reconstruction of arm trajectories of a nonhuman primate performing reaching tasks, the proposed method performs as well as decoders based on expertly manually and automatically sorted spikes.
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification.
Dai, Mengxi; Zheng, Dezhi; Liu, Shucong; Zhang, Pengju
2018-01-01
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods.
Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms.
Athanasiou, Alkinoos; Xygonakis, Ioannis; Pandria, Niki; Kartsidis, Panagiotis; Arfaras, George; Kavazidi, Kyriaki Rafailia; Foroglou, Nicolas; Astaras, Alexander; Bamidis, Panagiotis D
2017-01-01
Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality.
Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms
Xygonakis, Ioannis; Pandria, Niki; Kartsidis, Panagiotis; Arfaras, George; Kavazidi, Kyriaki Rafailia; Foroglou, Nicolas
2017-01-01
Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality. PMID:28948168
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
Dai, Mengxi; Liu, Shucong; Zhang, Pengju
2018-01-01
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods. PMID:29743934
Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces
Gupta, Rishabh; Falk, Tiago H.
2017-01-01
Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021
SCoT: a Python toolbox for EEG source connectivity.
Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R
2014-01-01
Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT-a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.
SCoT: a Python toolbox for EEG source connectivity
Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R.
2014-01-01
Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT—a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT. PMID:24653694
Wisneski, Kimberly J; Anderson, Nicholas; Schalk, Gerwin; Smyth, Matt; Moran, Daniel; Leuthardt, Eric C
2008-12-01
Brain computer interfaces (BCIs) offer little direct benefit to patients with hemispheric stroke because current platforms rely on signals derived from the contralateral motor cortex (the same region injured by the stroke). For BCIs to assist hemiparetic patients, the implant must use unaffected cortex ipsilateral to the affected limb. This requires the identification of distinct electrophysiological features from the motor cortex associated with ipsilateral hand movements. In this study we studied 6 patients undergoing temporary placement of intracranial electrode arrays. Electrocorticographic (ECoG) signals were recorded while the subjects engaged in specific ipsilateral or contralateral hand motor tasks. Spectral changes were identified with regards to frequency, location, and timing. Ipsilateral hand movements were associated with electrophysiological changes that occur in lower frequency spectra, at distinct anatomic locations, and earlier than changes associated with contralateral hand movements. In a subset of 3 patients, features specific to ipsilateral and contralateral hand movements were used to control a cursor on a screen in real time. In ipsilateral derived control this was optimal with lower frequency spectra. There are distinctive cortical electrophysiological features associated with ipsilateral movements which can be used for device control. These findings have implications for patients with hemispheric stroke because they offer a potential methodology for which a single hemisphere can be used to enhance the function of a stroke induced hemiparesis.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2014-01-01
The current trend to use Brain-Computer Interfaces (BCIs) with mobile devices mandates the development of efficient EEG data processing methods. In this paper, we demonstrate the performance of a Principal Component Analysis (PCA) ensemble classifier for P300-based spellers. We recorded EEG data from multiple subjects using the Emotiv neuroheadset in the context of a classical oddball P300 speller paradigm. We compare the performance of the proposed ensemble classifier to the performance of traditional feature extraction and classifier methods. Our results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average accuracy of 86.29% on cross-validation data. In addition, offline testing of the recorded data reveals an average classification accuracy of 73.3% that is significantly higher than that achieved using traditional methods. Finally, we demonstrate the effect of the parameters of the P300 speller paradigm on the performance of the method.
A UML model for the description of different brain-computer interface systems.
Quitadamo, Lucia Rita; Abbafati, Manuel; Saggio, Giovanni; Marciani, Maria Grazia; Cardarilli, Gian Carlo; Bianchi, Luigi
2008-01-01
BCI research lacks a universal descriptive language among labs and a unique standard model for the description of BCI systems. This results in a serious problem in comparing performances of different BCI processes and in unifying tools and resources. In such a view we implemented a Unified Modeling Language (UML) model for the description virtually of any BCI protocol and we demonstrated that it can be successfully applied to the most common ones such as P300, mu-rhythms, SCP, SSVEP, fMRI. Finally we illustrated the advantages in utilizing a standard terminology for BCIs and how the same basic structure can be successfully adopted for the implementation of new systems.
The Behavior Chain Interruption Strategy: A Review of Research and Discussion of Future Directions.
ERIC Educational Resources Information Center
Carter, Mark; Grunsell, Julie
2001-01-01
A review of 10 studies that utilize the behavior chain interruption strategy (BCIS) to teach communication skills to individuals with severe disabilities found that BCIS has been successfully applied to individuals across a wide range of ages and levels of disability, including learners with multiple disabilities. Generalization concerns are…
Saa, Jaime F Delgado; Çetin, Müjdat
2012-04-01
We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on autoregressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for the classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy.
A high-speed brain speller using steady-state visual evoked potentials.
Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping
2014-09-01
Implementing a complex spelling program using a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) remains a challenge due to difficulties in stimulus presentation and target identification. This study aims to explore the feasibility of mixed frequency and phase coding in building a high-speed SSVEP speller with a computer monitor. A frequency and phase approximation approach was developed to eliminate the limitation of the number of targets caused by the monitor refresh rate, resulting in a speller comprising 32 flickers specified by eight frequencies (8-15 Hz with a 1 Hz interval) and four phases (0°, 90°, 180°, and 270°). A multi-channel approach incorporating Canonical Correlation Analysis (CCA) and SSVEP training data was proposed for target identification. In a simulated online experiment, at a spelling rate of 40 characters per minute, the system obtained an averaged information transfer rate (ITR) of 166.91 bits/min across 13 subjects with a maximum individual ITR of 192.26 bits/min, the highest ITR ever reported in electroencephalogram (EEG)-based BCIs. The results of this study demonstrate great potential of a high-speed SSVEP-based BCI in real-life applications.
Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.
Vidaurre, C; Pascual, J; Ramos-Murguialday, A; Lorenz, R; Blankertz, B; Birbaumer, N; Müller, K-R
2013-09-01
Regardless of the paradigm used to implement a brain-computer interface (BCI), all systems suffer from BCI-inefficiency. In the case of patients the inefficiency can be high. Some solutions have been proposed to overcome this problem, however they have not been completely successful yet. EEG from 10 healthy users was recorded during neuromuscular electrical stimulation (NMES) of hands and feet and during motor imagery (MI) of the same limbs. Features and classifiers were computed using part of these data to decode MI. Offline analyses showed that it was possible to decode MI using a classifier based on afferent patterns induced by NMES and even infer a better model than with MI data. Afferent NMES motor patterns can support the calibration of BCI systems and be used to decode MI. This finding might be a new way to train sensorimotor rhythm (SMR) based BCI systems for healthy users having difficulties to attain BCI control. It might also be an alternative to train MI-based BCIs for users who cannot perform real movements but have remaining afferents (ALS, stroke patients). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Shin, Jaeyoung; Kim, Do-Won; Müller, Klaus-Robert; Hwang, Han-Jeong
2018-06-05
Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (≥10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 ± 7.1/85.5 ± 8.1% and 85.8 ± 8.6/79.5 ± 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies.
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik
2014-01-01
The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844
Heading for new shores! Overcoming pitfalls in BCI design
Chavarriaga, Ricardo; Fried-Oken, Melanie; Kleih, Sonja; Lotte, Fabien; Scherer, Reinhold
2017-01-01
Research in brain-computer interfaces has achieved impressive progress towards implementing assistive technologies for restoration or substitution of lost motor capabilities, as well as supporting technologies for able-bodied subjects. Notwithstanding this progress, effective translation of these interfaces from proof-of concept prototypes into reliable applications remains elusive. As a matter of fact, most of the current BCI systems cannot be used independently for long periods of time by their intended end-users. Multiple factors that impair achieving this goal have already been identified. However, it is not clear how do they affect the overall BCI performance or how they should be tackled. This is worsened by the publication bias where only positive results are disseminated, preventing the research community from learning from its errors. This paper is the result of a workshop held at the 6th International BCI meeting in Asilomar. We summarize here the discussion on concrete research avenues and guidelines that may help overcoming common pitfalls and make BCIs become a useful alternative communication device. PMID:29629393
Heading for new shores! Overcoming pitfalls in BCI design.
Chavarriaga, Ricardo; Fried-Oken, Melanie; Kleih, Sonja; Lotte, Fabien; Scherer, Reinhold
2017-01-01
Research in brain-computer interfaces has achieved impressive progress towards implementing assistive technologies for restoration or substitution of lost motor capabilities, as well as supporting technologies for able-bodied subjects. Notwithstanding this progress, effective translation of these interfaces from proof-of concept prototypes into reliable applications remains elusive. As a matter of fact, most of the current BCI systems cannot be used independently for long periods of time by their intended end-users. Multiple factors that impair achieving this goal have already been identified. However, it is not clear how do they affect the overall BCI performance or how they should be tackled. This is worsened by the publication bias where only positive results are disseminated, preventing the research community from learning from its errors. This paper is the result of a workshop held at the 6th International BCI meeting in Asilomar. We summarize here the discussion on concrete research avenues and guidelines that may help overcoming common pitfalls and make BCIs become a useful alternative communication device.
The brain-computer interface cycle.
van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter
2009-08-01
Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.
Functional near-infrared spectroscopy for adaptive human-computer interfaces
NASA Astrophysics Data System (ADS)
Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.
2015-03-01
We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.
NASA Astrophysics Data System (ADS)
Salvaris, Mathew; Sepulveda, Francisco
2010-10-01
Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).
Salvaris, Mathew; Sepulveda, Francisco
2010-10-01
Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).
NASA Astrophysics Data System (ADS)
Pulido Castro, Sergio D.; López López, Juan M.
2017-11-01
Movement intention (MI) is the mental state in which it is desired to make an action that implies movement. There are certain signals that are directly related with MI; mainly obtained in the primary motor cortex. These signals can be used in a brain-computer interface (BCI). BCIs have a wide variety of applications for the general population, classified in two groups: optimization of conventional neuromuscular performances and enhancement of conventional neuromuscular performances beyond normal capacities. The main goal of this project is to analyze if neural rhythm modulation enhancement could be achieved by practicing, through a BCI based on MI detection, which was designed in a previous study. A six-session experiment was made with eight healthy subjects. Each session was composed by two stages: a training stage and a testing stage, which allowed control of a videogame. The scores in the game were recorded and analyzed. Changes in alpha and beta bands were also analyzed in order to observe if attention could in fact be enhanced. The obtained results were partially satisfactory, as most subjects showed a clear improvement in performance at some point in the trials. As well, the alpha to beta wave ratio of all the tasks was analyzed to observe if there are changes as the experiment progresses. The results are promising, and a different protocol must be implemented to assess the impact of the BCI on the attention span, which can be analyzed with the alpha and beta waves.
NASA Astrophysics Data System (ADS)
Allison, Brendan Z.
The preceding chapters in this book described modern BCI systems. This concluding chapter instead discusses future directions. While there are some specific predictions, I mainly analyze key factors and trends relating to practical mainstream BCI development. While I note some disruptive technologies that could dramatically change BCIs, this chapter focuses mainly on realistic, incremental progress and how progress could affect user groups and ethical issues.
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
A Semisupervised Support Vector Machines Algorithm for BCI Systems
Qin, Jianzhao; Li, Yuanqing; Sun, Wei
2007-01-01
As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong
2015-08-01
Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.
An adaptive P300-based online brain-computer interface.
Lenhardt, Alexander; Kaper, Matthias; Ritter, Helge J
2008-04-01
The P300 component of an event related potential is widely used in conjunction with brain-computer interfaces (BCIs) to translate the subjects intent by mere thoughts into commands to control artificial devices. A well known application is the spelling of words while selection of the letters is carried out by focusing attention to the target letter. In this paper, we present a P300-based online BCI which reaches very competitive performance in terms of information transfer rates. In addition, we propose an online method that optimizes information transfer rates and/or accuracies. This is achieved by an algorithm which dynamically limits the number of subtrial presentations, according to the subject's current online performance in real-time. We present results of two studies based on 19 different healthy subjects in total who participated in our experiments (seven subjects in the first and 12 subjects in the second one). In the first, study peak information transfer rates up to 92 bits/min with an accuracy of 100% were achieved by one subject with a mean of 32 bits/min at about 80% accuracy. The second experiment employed a dynamic classifier which enables the user to optimize bitrates and/or accuracies by limiting the number of subtrial presentations according to the current online performance of the subject. At the fastest setting, mean information transfer rates could be improved to 50.61 bits/min (i.e., 13.13 symbols/min). The most accurate results with 87.5% accuracy showed a transfer rate of 29.35 bits/min.
Multi-brain fusion and applications to intelligence analysis
NASA Astrophysics Data System (ADS)
Stoica, A.; Matran-Fernandez, A.; Andreou, D.; Poli, R.; Cinel, C.; Iwashita, Y.; Padgett, C.
2013-05-01
In a rapid serial visual presentation (RSVP) images are shown at an extremely rapid pace. Yet, the images can still be parsed by the visual system to some extent. In fact, the detection of specific targets in a stream of pictures triggers a characteristic electroencephalography (EEG) response that can be recognized by a brain-computer interface (BCI) and exploited for automatic target detection. Research funded by DARPA's Neurotechnology for Intelligence Analysts program has achieved speed-ups in sifting through satellite images when adopting this approach. This paper extends the use of BCI technology from individual analysts to collaborative BCIs. We show that the integration of information in EEGs collected from multiple operators results in performance improvements compared to the single-operator case.
Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.
2015-01-01
Background Multiple types of neural signals are available for controlling assistive devices through brain–computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. PMID:25681017
Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng
2017-01-01
A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems.
Liu, Yu-Ting; Pal, Nikhil R.; Marathe, Amar R.; Wang, Yu-Kai; Lin, Chin-Teng
2017-01-01
A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems. PMID:28676734
An auditory oddball brain-computer interface for binary choices.
Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A
2010-04-01
Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Lulé, Dorothée; Noirhomme, Quentin; Kleih, Sonja C; Chatelle, Camille; Halder, Sebastian; Demertzi, Athena; Bruno, Marie-Aurélie; Gosseries, Olivia; Vanhaudenhuyse, Audrey; Schnakers, Caroline; Thonnard, Marie; Soddu, Andrea; Kübler, Andrea; Laureys, Steven
2013-01-01
To determine if brain-computer interfaces (BCIs) could serve as supportive tools for detecting consciousness in patients with disorders of consciousness by detecting response to command and communication. We tested a 4-choice auditory oddball EEG-BCI paradigm on 16 healthy subjects and 18 patients in a vegetative state/unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and in locked-in syndrome (LIS). Subjects were exposed to 4 training trials and 10 -12 questions. Thirteen healthy subjects and one LIS patient were able to communicate using the BCI. Four of those did not present with a P3. One MCS patient showed command following with the BCI while no behavioral response could be detected at bedside. All other patients did not show any response to command and could not communicate with the BCI. The present study provides evidence that EEG based BCI can detect command following in patients with altered states of consciousness and functional communication in patients with locked-in syndrome. However, BCI approaches have to be simplified to increase sensitivity. For some patients without any clinical sign of consciousness, a BCI might bear the potential to employ a "yes-no" spelling device offering the hope of functional interactive communication. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Emami, Zahra; Chau, Tom
2018-06-01
Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance. Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy. The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials. This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors. A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges
Millán, J. d. R.; Rupp, R.; Müller-Putz, G. R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; Neuper, C.; Müller, K.-R.; Mattia, D.
2010-01-01
In recent years, new research has brought the field of electroencephalogram (EEG)-based brain–computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, “Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user–machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human–computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices. PMID:20877434
Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi
2013-01-01
This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.
The cost of space independence in P300-BCI spellers.
Chennu, Srivas; Alsufyani, Abdulmajeed; Filetti, Marco; Owen, Adrian M; Bowman, Howard
2013-07-29
Though non-invasive EEG-based Brain Computer Interfaces (BCI) have been researched extensively over the last two decades, most designs require control of spatial attention and/or gaze on the part of the user. In healthy adults, we compared the offline performance of a space-independent P300-based BCI for spelling words using Rapid Serial Visual Presentation (RSVP), to the well-known space-dependent Matrix P300 speller. EEG classifiability with the RSVP speller was as good as with the Matrix speller. While the Matrix speller's performance was significantly reliant on early, gaze-dependent Visual Evoked Potentials (VEPs), the RSVP speller depended only on the space-independent P300b. However, there was a cost to true spatial independence: the RSVP speller was less efficient in terms of spelling speed. The advantage of space independence in the RSVP speller was concomitant with a marked reduction in spelling efficiency. Nevertheless, with key improvements to the RSVP design, truly space-independent BCIs could approach efficiencies on par with the Matrix speller. With sufficiently high letter spelling rates fused with predictive language modelling, they would be viable for potential applications with patients unable to direct overt visual gaze or covert attentional focus.
Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.
Ko, Li-Wei; Ranga, S S K; Komarov, Oleksii; Chen, Chung-Chiang
2017-01-01
Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6 ± 7.7% in a two-class task.
Barsotti, Michele; Leonardis, Daniele; Vanello, Nicola; Bergamasco, Massimo; Frisoli, Antonio
2018-01-01
Feedback plays a crucial role for using brain computer interface systems. This paper proposes the use of vibration-evoked kinaesthetic illusions as part of a novel multisensory feedback for a motor imagery (MI)-based BCI and investigates its contributions in terms of BCI performance and electroencephalographic (EEG) correlates. sixteen subjects performed two different right arm MI-BCI sessions: with the visual feedback only and with both visual and vibration-evoked kinaesthetic feedback, conveyed by the stimulation of the biceps brachi tendon. In both conditions, the sensory feedback was driven by the MI-BCI. The rich and more natural multisensory feedback was expected to facilitate the execution of MI, and thus to improve the performance of the BCI. The EEG correlates of the proposed feedback were also investigated with and without the performing of MI. the contribution of vibration-evoked kinaesthetic feedback led to statistically higher BCI performance (Anova, F (1,14) = 18.1, p < .01) and more stable EEG event-related-desynchronization. Obtained results suggest promising application of the proposed method in neuro-rehabilitation scenarios: the advantage of an improved usability could make the MI-BCIs more applicable for those patients having difficulties in performing kinaesthetic imagery.
Defining and quantifying users' mental Imagery-based BCI skills: a first step.
Lotte, Fabien; Jeunet, Camille
2018-05-17
While promising for many applications, Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are still scarcely used outside laboratories, due to a poor reliability. It is thus necessary to study and fix this reliability issue. Doing so requires the use of appropriate reliability metrics to quantify both the classification algorithm and the BCI user's performances. So far, Classification Accuracy (CA) is the typical metric used for both aspects. However, we argue in this paper that CA is a poor metric to study BCI users' skills. Here, we propose a definition and new metrics to quantify such BCI skills for Mental Imagery (MI) BCIs, independently of any classification algorithm. Approach: We first show in this paper that CA is notably unspecific, discrete, training data and classifier dependent, and as such may not always reflect successful self-modulation of EEG patterns by the user. We then propose a definition of MI-BCI skills that reflects how well the user can self-modulate EEG patterns, and thus how well he could control an MI-BCI. Finally, we propose new performance metrics, classDis, restDist and classStab that specifically measure how distinct and stable the EEG patterns produced by the user are, independently of any classifier. Main results: By re-analyzing EEG data sets with such new metrics, we indeed confirmed that CA may hide some increase in MI-BCI skills or hide the user inability to self-modulate a given EEG pattern. On the other hand, our new metrics could reveal such skill improvements as well as identify when a mental task performed by a user was no different than rest EEG. Significance: Our results showed that when studying MI-BCI users' skills, CA should be used with care, and complemented with metrics such as the new ones proposed. Our results also stressed the need to redefine BCI user training by considering the different BCI subskills and their measures. To promote the complementary use of our new metrics, we provide the Matlab code to compute them for free and open-source. © 2018 IOP Publishing Ltd.
Boston Community Information System 1987-1988 Experimental Test Results
1989-05-01
criteria which users can put in their filter lines and advertisers can target. The users largely regarded BCIS as an effective medium for advertisement ...financial service industries. BCIS would be effective for advertisement of: classified advertisements ; employment opportunities (as a job mart); books and...of ads that can be filtered for personal interests. I think this could be a very effective advertising method - possibly very profitable. Ads can be
Astrand, Elaine; Wardak, Claire; Ben Hamed, Suliann
2014-01-01
Brain–machine interfaces (BMIs) using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy, and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from non-invasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive brain-computer interfaces (BCIs), including the rehabilitation of cognitive deficits, restored communication in locked-in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other cognitive signal. PMID:25161613
A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks
Geng, Tao; Gan, John Q.; Dyson, Matthew; Tsui, Chun SL; Sepulveda, Francisco
2008-01-01
A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms. PMID:18584040
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller
NASA Astrophysics Data System (ADS)
Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.
2014-06-01
Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
Perdikis, S; Leeb, R; Williamson, J; Ramsay, A; Tavella, M; Desideri, L; Hoogerwerf, E-J; Al-Khodairy, A; Murray-Smith, R; Millán, J D R
2014-06-01
While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.
Neurobionics and the brain-computer interface: current applications and future horizons.
Rosenfeld, Jeffrey V; Wong, Yan Tat
2017-05-01
The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.
Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.
2016-01-01
Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018
Novel semi-dry electrodes for brain-computer interface applications
NASA Astrophysics Data System (ADS)
Wang, Fei; Li, Guangli; Chen, Jingjing; Duan, Yanwen; Zhang, Dan
2016-08-01
Objectives. Modern applications of brain-computer interfaces (BCIs) based on electroencephalography rely heavily on the so-called wet electrodes (e.g. Ag/AgCl electrodes) which require gel application and skin preparation to operate properly. Recently, alternative ‘dry’ electrodes have been developed to increase ease of use, but they often suffer from higher electrode-skin impedance and signal instability. In the current paper, we have proposed a novel porous ceramic-based ‘semi-dry’ electrode. The key feature of the semi-dry electrodes is that their tips can slowly and continuously release a tiny amount of electrolyte liquid to the scalp, which provides an ionic conducting path for detecting neural signals. Approach. The performance of the proposed electrode was evaluated by simultaneous recording of the wet and semi-dry electrodes pairs in five classical BCI paradigms: eyes open/closed, the motor imagery BCI, the P300 speller, the N200 speller and the steady-state visually evoked potential-based BCI. Main results. The grand-averaged temporal cross-correlation was 0.95 ± 0.07 across the subjects and the nine recording positions, and these cross-correlations were stable throughout the whole experimental protocol. In the spectral domain, the semi-dry/wet coherence was greater than 0.80 at all frequencies and greater than 0.90 at frequencies above 10 Hz, with the exception of a dip around 50 Hz (i.e. the powerline noise). More importantly, the BCI classification accuracies were also comparable between the two types of electrodes. Significance. Overall, these results indicate that the proposed semi-dry electrode can effectively capture the electrophysiological responses and is a feasible alternative to the conventional dry electrode in BCI applications.
Novel semi-dry electrodes for brain-computer interface applications.
Wang, Fei; Li, Guangli; Chen, Jingjing; Duan, Yanwen; Zhang, Dan
2016-08-01
Modern applications of brain-computer interfaces (BCIs) based on electroencephalography rely heavily on the so-called wet electrodes (e.g. Ag/AgCl electrodes) which require gel application and skin preparation to operate properly. Recently, alternative 'dry' electrodes have been developed to increase ease of use, but they often suffer from higher electrode-skin impedance and signal instability. In the current paper, we have proposed a novel porous ceramic-based 'semi-dry' electrode. The key feature of the semi-dry electrodes is that their tips can slowly and continuously release a tiny amount of electrolyte liquid to the scalp, which provides an ionic conducting path for detecting neural signals. The performance of the proposed electrode was evaluated by simultaneous recording of the wet and semi-dry electrodes pairs in five classical BCI paradigms: eyes open/closed, the motor imagery BCI, the P300 speller, the N200 speller and the steady-state visually evoked potential-based BCI. The grand-averaged temporal cross-correlation was 0.95 ± 0.07 across the subjects and the nine recording positions, and these cross-correlations were stable throughout the whole experimental protocol. In the spectral domain, the semi-dry/wet coherence was greater than 0.80 at all frequencies and greater than 0.90 at frequencies above 10 Hz, with the exception of a dip around 50 Hz (i.e. the powerline noise). More importantly, the BCI classification accuracies were also comparable between the two types of electrodes. Overall, these results indicate that the proposed semi-dry electrode can effectively capture the electrophysiological responses and is a feasible alternative to the conventional dry electrode in BCI applications.
Pardon the Interruption: Enhancing Communication Skills for Students with Intellectual Disability
ERIC Educational Resources Information Center
Bayes, Daniel A.; Heath, Amy K.; Williams, Carol; Ganz, Jennifer B.
2013-01-01
This article provides teachers and parents with a description of the behavior chain interruption strategy (BCIS), an evidence-based intervention for increasing requesting behaviors in individuals with moderate to severe disabilities. A review of the relevant literature is provided, as well as a description of the behavioral principles that…
Cognitive insight in schizophrenia patients and their biological parents: a pilot study.
Raffard, Stéphane; Bortolon, Catherine; Macgregor, Alexandra; Norton, Joanna; Boulenger, Jean-Philippe; El Haj, Mohamad; Capdevielle, Delphine
2014-11-01
Clinical insight in schizophrenia patients is partly associated with familial environment but has been poorly studied to date. We aimed to explore (1) the relationship between parents' cognitive insight and their offspring's; (2) the relationship between parents' cognitive insight and their clinical insight into the disease of their offspring; and (3) the clinical and cognitive determinants of cognitive insight in parents. Cognitive insight was assessed in 37 patient-biological parent pairs/dyads with the Beck Cognitive Insight Scale (BCIS). Other measures included the Scale to assess Unawareness of Mental Disorder and cognitive assessments. We found no significant association between parents' cognitive insight and their offspring's. Conversely, a positive association between parents' cognitive insight and parents' insight into their offspring's symptoms was found. Better awareness of their offspring's specific symptoms was associated with lower levels of overconfidence in one's beliefs and with BCIS total score. BCIS Self-Certainty and BCIS total score were associated with better executive functioning and verbal comprehension. Better insight into their offspring's symptoms is associated with cognitive insight in biological parents of schizophrenia patients. Our results support the integration of cognitive intervention targeting parents' cognitive flexibility in family psychoeducational programs and provide an important first step towards developing a more refined understanding of the factors involved in insight into symptoms of illness in parents of schizophrenia patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Current trends in hardware and software for brain-computer interfaces (BCIs)
NASA Astrophysics Data System (ADS)
Brunner, P.; Bianchi, L.; Guger, C.; Cincotti, F.; Schalk, G.
2011-04-01
A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.
The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2016-01-01
Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects’ performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android’s hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training. PMID:27598310
The Importance of Visual Feedback Design in BCIs; from Embodiment to Motor Imagery Learning.
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2016-01-01
Brain computer interfaces (BCIs) have been developed and implemented in many areas as a new communication channel between the human brain and external devices. Despite their rapid growth and broad popularity, the inaccurate performance and cost of user-training are yet the main issues that prevent their application out of the research and clinical environment. We previously introduced a BCI system for the control of a very humanlike android that could raise a sense of embodiment and agency in the operators only by imagining a movement (motor imagery) and watching the robot perform it. Also using the same setup, we further discovered that the positive bias of subjects' performance both increased their sensation of embodiment and improved their motor imagery skills in a short period. In this work, we studied the shared mechanism between the experience of embodiment and motor imagery. We compared the trend of motor imagery learning when two groups of subjects BCI-operated different looking robots, a very humanlike android's hands and a pair of metallic gripper. Although our experiments did not show a significant change of learning between the two groups immediately during one session, the android group revealed better motor imagery skills in the follow up session when both groups repeated the task using the non-humanlike gripper. This result shows that motor imagery skills learnt during the BCI-operation of humanlike hands are more robust to time and visual feedback changes. We discuss the role of embodiment and mirror neuron system in such outcome and propose the application of androids for efficient BCI training.
Wittevrongel, Benjamin; Van Hulle, Marc M
2017-01-01
Brain-Computer Interfaces (BCIs) decode brain activity with the aim to establish a direct communication channel with an external device. Albeit they have been hailed to (re-)establish communication in persons suffering from severe motor- and/or communication disabilities, only recently BCI applications have been challenging other assistive technologies. Owing to their considerably increased performance and the advent of affordable technological solutions, BCI technology is expected to trigger a paradigm shift not only in assistive technology but also in the way we will interface with technology. However, the flipside of the quest for accuracy and speed is most evident in EEG-based visual BCI where it has led to a gamut of increasingly complex classifiers, tailored to the needs of specific stimulation paradigms and use contexts. In this contribution, we argue that spatiotemporal beamforming can serve several synchronous visual BCI paradigms. We demonstrate this for three popular visual paradigms even without attempting to optimizing their electrode sets. For each selectable target, a spatiotemporal beamformer is applied to assess whether the corresponding signal-of-interest is present in the preprocessed multichannel EEG signals. The target with the highest beamformer output is then selected by the decoder (maximum selection). In addition to this simple selection rule, we also investigated whether interactions between beamformer outputs could be employed to increase accuracy by combining the outputs for all targets into a feature vector and applying three common classification algorithms. The results show that the accuracy of spatiotemporal beamforming with maximum selection is at par with that of the classification algorithms and interactions between beamformer outputs do not further improve that accuracy.
Morikawa, Naoki; Tanaka, Toshihisa; Islam, Md Rabiul
2018-07-01
Mixed frequency and phase coding (FPC) can achieve the significant increase of the number of commands in steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI). However, the inconsistent phases of the SSVEP over channels in a trial and the existence of non-contributing channels due to noise effects can decrease accurate detection of stimulus frequency. We propose a novel command detection method based on a complex sparse spatial filter (CSSF) by solving ℓ 1 - and ℓ 2,1 -regularization problems for a mixed-coded SSVEP-BCI. In particular, ℓ 2,1 -regularization (aka group sparsification) can lead to the rejection of electrodes that are not contributing to the SSVEP detection. A calibration data based canonical correlation analysis (CCA) and CSSF with ℓ 1 - and ℓ 2,1 -regularization cases were demonstrated for a 16-target stimuli with eleven subjects. The results of statistical test suggest that the proposed method with ℓ 1 - and ℓ 2,1 -regularization significantly achieved the highest ITR. The proposed approaches do not need any reference signals, automatically select prominent channels, and reduce the computational cost compared to the other mixed frequency-phase coding (FPC)-based BCIs. The experimental results suggested that the proposed method can be usable implementing BCI effectively with reduce visual fatigue. Copyright © 2018 Elsevier B.V. All rights reserved.
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea
2013-01-01
Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444
Erlbeck, Helena; Mochty, Ursula; Kübler, Andrea; Real, Ruben G L
2017-01-07
Accidents or neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) can lead to progressing, extensive, and complete paralysis leaving patients aware but unable to communicate (locked-in state). Brain-computer interfaces (BCI) based on electroencephalography represent an important approach to establish communication with these patients. The most common BCI for communication rely on the P300, a positive deflection arising in response to rare events. To foster broader application of BCIs for restoring lost function, also for end-users with impaired vision, we explored whether there were specific time windows during the day in which a P300 driven BCI should be preferably applied. The present study investigated the influence of time of the day and modality (visual vs. auditory) on P300 amplitude and latency. A sample of 14 patients (end-users) with ALS and 14 healthy age matched volunteers participated in the study and P300 event-related potentials (ERP) were recorded at four different times (10, 12 am, 2, & 4 pm) during the day. Results indicated no differences in P300 amplitudes or latencies between groups (ALS patients v. healthy participants) or time of measurement. In the auditory condition, latencies were shorter and amplitudes smaller as compared to the visual condition. Our findings suggest applicability of EEG/BCI sessions in patients with ALS throughout normal waking hours. Future studies using actual BCI systems are needed to generalize these findings with regard to BCI effectiveness/efficiency and other times of day.
Luckraz, Heyman; Norell, Michael; Buch, Mamta; James, Rachael; Cooper, Graham
2015-10-01
The decision-making process in the management of patients with ischaemic heart disease has historically been the responsibility of the cardiologist and encompasses medical management, percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG). Currently, there is significant geographical variability in the PCI:CABG ratio. There are now emerging recommendations that this decision-making process should be carried out through a multidisciplinary approach, namely the Heart Team. This work was carried out on behalf of The British Cardiovascular Society (BCS), Society for Cardiothoracic Surgery in Great Britain and Ireland (SCTS) and British Cardiovascular Intervention Society (BCIS). This manuscript sets out the principles for the functioning of the Heart Team. This work has been approved by the Executive Committees of BCS/BCIS/SCTS. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
SSVEP-based BCI for manipulating three-dimensional contents and devices
NASA Astrophysics Data System (ADS)
Mun, Sungchul; Cho, Sungjin; Whang, Mincheol; Ju, Byeong-Kwon; Park, Min-Chul
2012-06-01
Brain Computer Interface (BCI) studies have been done to help people manipulate electronic devices in a 2D space but less has been done for a vigorous 3D environment. The purpose of this study was to investigate the possibility of applying Steady State Visual Evoked Potentials (SSVEPs) to a 3D LCD display. Eight subjects (4 females) ranging in age between 20 to 26 years old participated in the experiment. They performed simple navigation tasks on a simple 2D space and virtual environment with/without 3D flickers generated by a Flim-Type Patterned Retarder (FPR). The experiments were conducted in a counterbalanced order. The results showed that 3D stimuli enhanced BCI performance, but no significant effects were found due to the small number of subjects. Visual fatigue that might be evoked by 3D stimuli was negligible in this study. The proposed SSVEP BCI combined with 3D flickers can allow people to control home appliances and other equipment such as wheelchairs, prosthetics, and orthotics without encountering dangerous situations that may happen when using BCIs in real world. 3D stimuli-based SSVEP BCI would motivate people to use 3D displays and vitalize the 3D related industry due to its entertainment value and high performance.
Gomez-Pilar, Javier; Corralejo, Rebeca; Nicolas-Alonso, Luis F; Álvarez, Daniel; Hornero, Roberto
2016-11-01
Neurofeedback training (NFT) has shown to be promising and useful to rehabilitate cognitive functions. Recently, brain-computer interfaces (BCIs) were used to restore brain plasticity by inducing brain activity with an NFT. In our study, we hypothesized that an NFT with a motor imagery-based BCI (MI-BCI) could enhance cognitive functions related to aging effects. To assess the effectiveness of our MI-BCI application, 63 subjects (older than 60 years) were recruited. This novel application was used by 31 subjects (NFT group). Their Luria neuropsychological test scores were compared with the remaining 32 subjects, who did not perform NFT (control group). Electroencephalogram changes measured by relative power (RP) endorsed cognitive potential findings under study: visuospatial, oral language, memory, intellectual and attention functions. Three frequency bands were selected to assess cognitive changes: 12, 18, and 21 Hz (bandwidth 3 Hz). Significant increases (p < 0.01) in the RP of these frequency bands were found. Moreover, results from cognitive tests showed significant improvements (p < 0.01) in four cognitive functions after performing five NFT sessions: visuospatial, oral language, memory, and intellectual. This established evidence in the association between NFT performed by a MI-BCI and enhanced cognitive performance. Therefore, it could be a novel approach to help elderly people.
Hill, N J; Schölkopf, B
2012-01-01
We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135
NASA Astrophysics Data System (ADS)
Hill, N. J.; Schölkopf, B.
2012-04-01
We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.
Envelope Responses in Single-Trial EEG Indicate Attended Speaker in a Cocktail Party
2013-06-20
users to modulate their brain activity, such as motor rhythms, in order to signal intent [13], but these often require considerable training . Other...BCIs forgo training and instead have subjects make choices by attending to one of multiple visual and/or auditory stimuli. By presenting each stimulus...modulated). An envelope-based BCI could operate on more naturalistic auditory stimuli, such as speech or music . For example, an envelope-based BCI
Brain-computer interface analysis of a dynamic visuo-motor task.
Logar, Vito; Belič, Aleš
2011-01-01
The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could, therefore, be further used for the development of a closed-loop, non-invasive, brain-computer interface. For the case of this study two types of measurements were performed, i.e., the electroencephalographic (EEG) signals and the wrist movements were measured simultaneously, during the subject's performance of a dynamic visuo-motor task. Wrist-movement predictions were computed by using the EEG data-processing methodology of double brain-rhythm filtering, double phase demodulation and double principal component analyses (PCA), each with a separate set of parameters. For the movement-prediction model a fuzzy inference system was used. The results have shown that the EEG signals measured during the dVM tasks carry enough information about the subjects' wrist movements for them to be successfully decoded using the presented methodology. Reasonably high values of the correlation coefficients suggest that the validation of the proposed approach is satisfactory. Moreover, since the causality of the rhythm filtering and the PCA transformation has been achieved, we have shown that these methods can also be used in a real-time, brain-computer interface. The study revealed that using non-causal, optimized methods yields better prediction results in comparison with the causal, non-optimized methodology; however, taking into account that the causality of these methods allows real-time processing, the minor decrease in prediction quality is acceptable. The study suggests that the methodology that was proposed in our previous studies is also valid for identifying the EEG-coded content during dVM tasks, albeit with various modifications, which allow better prediction results and real-time data processing. The results have shown that wrist movements can be predicted in simulated or real time; however, the results of the non-causal, optimized methodology (simulated) are slightly better. Nevertheless, the study has revealed that these methods should be suitable for use in the development of a non-invasive, brain-computer interface. Copyright © 2010 Elsevier B.V. All rights reserved.
Gerjets, Peter; Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Zander, Thorsten O.
2014-01-01
According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work. PMID:25538544
Classification of mouth movements using 7 T fMRI.
Bleichner, M G; Jansma, J M; Salari, E; Freudenburg, Z V; Raemaekers, M; Ramsey, N F
2015-12-01
A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a 'winner-takes-all' design. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.
Weyand, Sabine; Takehara-Nishiuchi, Kaori; Chau, Tom
2015-10-30
Near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs) enable users to interact with their environment using only cognitive activities. This paper presents the results of a comparison of four methodological frameworks used to select a pair of tasks to control a binary NIRS-BCI; specifically, three novel personalized task paradigms and the state-of-the-art prescribed task framework were explored. Three types of personalized task selection approaches were compared, including: user-selected mental tasks using weighted slope scores (WS-scores), user-selected mental tasks using pair-wise accuracy rankings (PWAR), and researcher-selected mental tasks using PWAR. These paradigms, along with the state-of-the-art prescribed mental task framework, where mental tasks are selected based on the most commonly used tasks in literature, were tested by ten able-bodied participants who took part in five NIRS-BCI sessions. The frameworks were compared in terms of their accuracy, perceived ease-of-use, computational time, user preference, and length of training. Most notably, researcher-selected personalized tasks resulted in significantly higher accuracies, while user-selected personalized tasks resulted in significantly higher perceived ease-of-use. It was also concluded that PWAR minimized the amount of data that needed to be collected; while, WS-scores maximized user satisfaction and minimized computational time. In comparison to the state-of-the-art prescribed mental tasks, our findings show that overall, personalized tasks appear to be superior to prescribed tasks with respect to accuracy and perceived ease-of-use. The deployment of personalized rather than prescribed mental tasks ought to be considered and further investigated in future NIRS-BCI studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Doud, Alexander J.; Lucas, John P.; Pisansky, Marc T.; He, Bin
2011-01-01
Brain-computer interfaces (BCIs) allow a user to interact with a computer system using thought. However, only recently have devices capable of providing sophisticated multi-dimensional control been achieved non-invasively. A major goal for non-invasive BCI systems has been to provide continuous, intuitive, and accurate control, while retaining a high level of user autonomy. By employing electroencephalography (EEG) to record and decode sensorimotor rhythms (SMRs) induced from motor imaginations, a consistent, user-specific control signal may be characterized. Utilizing a novel method of interactive and continuous control, we trained three normal subjects to modulate their SMRs to achieve three-dimensional movement of a virtual helicopter that is fast, accurate, and continuous. In this system, the virtual helicopter's forward-backward translation and elevation controls were actuated through the modulation of sensorimotor rhythms that were converted to forces applied to the virtual helicopter at every simulation time step, and the helicopter's angle of left or right rotation was linearly mapped, with higher resolution, from sensorimotor rhythms associated with other motor imaginations. These different resolutions of control allow for interplay between general intent actuation and fine control as is seen in the gross and fine movements of the arm and hand. Subjects controlled the helicopter with the goal of flying through rings (targets) randomly positioned and oriented in a three-dimensional space. The subjects flew through rings continuously, acquiring as many as 11 consecutive rings within a five-minute period. In total, the study group successfully acquired over 85% of presented targets. These results affirm the effective, three-dimensional control of our motor imagery based BCI system, and suggest its potential applications in biological navigation, neuroprosthetics, and other applications. PMID:22046274
Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects
NASA Astrophysics Data System (ADS)
Ioana Sburlea, Andreea; Montesano, Luis; Minguez, Javier
2017-06-01
Objective. One use of EEG-based brain-computer interfaces (BCIs) in rehabilitation is the detection of movement intention. In this paper we investigate for the first time the instantaneous phase of movement related cortical potential (MRCP) and its application to the detection of gait intention. Approach. We demonstrate the utility of MRCP phase in two independent datasets, in which 10 healthy subjects and 9 chronic stroke patients executed a self-initiated gait task in three sessions. Phase features were compared to more conventional amplitude and power features. Main results. The neurophysiology analysis showed that phase features have higher signal-to-noise ratio than the other features. Also, BCI detectors of gait intention based on phase, amplitude, and their combination were evaluated under three conditions: session-specific calibration, intersession transfer, and intersubject transfer. Results show that the phase based detector is the most accurate for session-specific calibration (movement intention was correctly detected in 66.5% of trials in healthy subjects, and in 63.3% in stroke patients). However, in intersession and intersubject transfer, the detector that combines amplitude and phase features is the most accurate one and the only that retains its accuracy (62.5% in healthy subjects and 59% in stroke patients) w.r.t. session-specific calibration. Significance. MRCP phase features improve the detection of gait intention and could be used in practice to remove time-consuming BCI recalibration.
Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin
2012-01-01
Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436
Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design
Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.
2014-01-01
Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941
Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N
2016-01-01
We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Brain computer interfaces, a review.
Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime
2012-01-01
A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-01-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915
A reductionist approach to the analysis of learning in brain-computer interfaces.
Danziger, Zachary
2014-04-01
The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.
Spatio-Temporal EEG Models for Brain Interfaces
Gonzalez-Navarro, P.; Moghadamfalahi, M.; Akcakaya, M.; Erdogmus, D.
2016-01-01
Multichannel electroencephalography (EEG) is widely used in non-invasive brain computer interfaces (BCIs) for user intent inference. EEG can be assumed to be a Gaussian process with unknown mean and autocovariance, and the estimation of parameters is required for BCI inference. However, the relatively high dimensionality of the EEG feature vectors with respect to the number of labeled observations lead to rank deficient covariance matrix estimates. In this manuscript, to overcome ill-conditioned covariance estimation, we propose a structure for the covariance matrices of the multichannel EEG signals. Specifically, we assume that these covariances can be modeled as a Kronecker product of temporal and spatial covariances. Our results over the experimental data collected from the users of a letter-by-letter typing BCI show that with less number of parameter estimations, the system can achieve higher classification accuracies compared to a method that uses full unstructured covariance estimation. Moreover, in order to illustrate that the proposed Kronecker product structure could enable shortening the BCI calibration data collection sessions, using Cramer-Rao bound analysis on simulated data, we demonstrate that a model with structured covariance matrices will achieve the same estimation error as a model with no covariance structure using fewer labeled EEG observations. PMID:27713590
Choi, Bongjae; Jo, Sungho
2013-01-01
This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system. PMID:24023953
Choi, Bongjae; Jo, Sungho
2013-01-01
This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.
Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial.
Gilbert, F; Cook, M; O'Brien, T; Illes, J
2017-11-11
While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.
Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation
Widge, Alik S.; Dougherty, Darin D.; Moritz, Chet T.
2014-01-01
There is a pressing clinical need for responsive neurostimulators, which sense a patient’s brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient’s intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation. PMID:25580443
Research on steady-state visual evoked potentials in 3D displays
NASA Astrophysics Data System (ADS)
Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.
2015-05-01
Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.
Jensen, Ole; Bahramisharif, Ali; Oostenveld, Robert; Klanke, Stefan; Hadjipapas, Avgis; Okazaki, Yuka O.; van Gerven, Marcel A. J.
2011-01-01
Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work. PMID:21687463
Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.
Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara
2018-04-01
Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.
Towards an architecture of a hybrid BCI based on SSVEP-BCI and passive-BCI.
Cotrina, Anibal; Benevides, Alessandro; Ferreira, Andre; Bastos, Teodiano; Castillo, Javier; Menezes, Maria Luiza; Pereira, Carlos
2014-01-01
Recent decades have seen BCI applications as a novel and promising new channel of communication, control and entertainment for disabled and healthy people. However, BCI technology can be prone to errors due to the basic emotional state of the user: the performance of reactive and active BCIs decrease when user becomes stressed or bored, for example. Passive-BCI is a recent approach that fuses BCI technology with cognitive monitoring, providing valuable information about the user's intentions, the situational interpretations and mainly the emotional state. In this work, an architecture composed by passive-BCI co-working with SSVEP-BCI is proposed, with the aim of improving the performance of the reactive-BCI. The possibility of adjusting recognition characteristics of SSVEP-BCIs using a passive-BCI output is evaluated. In this sense, two ways to recover the accuracy of SSVEP are presented in this paper: 1) Adjusting of Amplitude of the SSVEP and 2) Adjusting of Frequency of the SSVEP response. The results are promising, because accuracy of SSVEP-BCI can be recovered in the case that it was reduced by the BCI user's emotional state.
Ekinci, Okan; Ekinci, Asli
2016-11-01
Cognitive insight, a recently developed insight measure, refers to metacognitive processes of the re-evaluation and correction of distorted beliefs and misinterpretations. However, to the best of the authors' knowledge, no study has specifically examined cognitive insight, demographics, psychopathological variables, and distorted beliefs in OCD. The aim of this research was to examine links between cognitive insight and demographics, clinical factors, and distorted beliefs among patients with OCD. Eighty-four consecutive outpatients with a diagnosis of OCD underwent a detailed clinical assessment for OCD, including the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Beck Cognitive Insight Scale (BCIS), Thought-Action Fusion Scale (TAFS), White Bear Thought Suppression Inventory, Metacognition Questioniarre-30 (MCQ-30), and a sociodemographic questionnaire. In addition, 82 control subjects matched for age, education, and gender were tested. BCIS-self-certainty scores were all substantially higher in subjects with remitted and unremitted OCD than in healthy comparison subjects, while BCIS-composite scores were significantly lower in both patient groups than controls. Obsession and compulsion severity had significant effects on BCIS scores. In addition, it was found that the specific symptoms were linked to self-certainty scores. Self-reflectiveness and composite scores had positive correlations with the sub-scale scores of the MCQ-30, while the TAF-morality score was positively correlated with self-certainty scores. The results demonstrated poor cognitive insight among remitted and unremitted OCD patients. In addition, the present study suggested significant associations between sociodemographic and clinical features and dysfunctional appraisals. Cognitive-behavioural techniques aimed at enhancing cognitive insight may be beneficial for patients with OCD, particularly patients who have prominent dysfunctional beliefs.
Kim, Jong-Hoon; Lee, Seul; Han, Ah-Young; Kim, Kyungwook; Lee, Jinyoung
2015-01-01
The concept of cognitive insight refers to the cognitive processes involved in patients' re-evaluation of their anomalous experiences and of their misinterpretations. The purpose of the present study was to examine the relationship between cognitive insight and subjective quality of life in patients with schizophrenia to further shed light on the nature of cognitive insight and its functional correlates in schizophrenia. Seventy-one stable outpatients with schizophrenia were evaluated for cognitive insight and subjective quality of life using the Beck Cognitive Insight Scale (BCIS) and the Schizophrenia Quality of Life Scale Revision 4 (SQLS-R4). The symptoms of schizophrenia were also assessed. Pearson's correlation analysis and partial correlation analysis that controlled for the severity of symptoms were performed to adjust for the possible effects of symptoms. The self-reflectiveness subscale score of the BCIS had significant positive correlations with the SQLS-R4 psychosocial domain and total SQLS-R4 scores, indicating that the higher the level of cognitive insight, the lower the subjective quality of life. In partial correlation analysis controlling for symptoms, the BCIS self-reflectiveness subscale score still had a significant correlation with the SQLS-R4 psychosocial domain score. The correlation coefficient between the BCIS self-reflectiveness and total SQLS-R4 scores was reduced to a nonsignificant statistical tendency. The results of our study suggest that cognitive insight, particularly the level of self-reflectiveness, is negatively associated with the level of subjective quality of life in outpatients with schizophrenia and that this relationship is not wholly due to the confounding effect of symptoms. Future studies are necessary to explore possible mediating and moderating factors and to evaluate the effects of therapeutic interventions on the relationship.
Mainsah, B O; Reeves, G; Collins, L M; Throckmorton, C S
2017-08-01
The role of a brain-computer interface (BCI) is to discern a user's intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.
NASA Astrophysics Data System (ADS)
Mainsah, B. O.; Reeves, G.; Collins, L. M.; Throckmorton, C. S.
2017-08-01
Objective. The role of a brain-computer interface (BCI) is to discern a user’s intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. Approach. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. Main results. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. Significance. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.
The effects of semantic congruency: a research of audiovisual P300-speller.
Cao, Yong; An, Xingwei; Ke, Yufeng; Jiang, Jin; Yang, Hanjun; Chen, Yuqian; Jiao, Xuejun; Qi, Hongzhi; Ming, Dong
2017-07-25
Over the past few decades, there have been many studies of aspects of brain-computer interface (BCI). Of particular interests are event-related potential (ERP)-based BCI spellers that aim at helping mental typewriting. Nowadays, audiovisual unimodal stimuli based BCI systems have attracted much attention from researchers, and most of the existing studies of audiovisual BCIs were based on semantic incongruent stimuli paradigm. However, no related studies had reported that whether there is difference of system performance or participant comfort between BCI based on semantic congruent paradigm and that based on semantic incongruent paradigm. The goal of this study was to investigate the effects of semantic congruency in system performance and participant comfort in audiovisual BCI. Two audiovisual paradigms (semantic congruent and incongruent) were adopted, and 11 healthy subjects participated in the experiment. High-density electrical mapping of ERPs and behavioral data were measured for the two stimuli paradigms. The behavioral data indicated no significant difference between congruent and incongruent paradigms for offline classification accuracy. Nevertheless, eight of the 11 participants reported their priority to semantic congruent experiment, two reported no difference between the two conditions, and only one preferred the semantic incongruent paradigm. Besides, the result indicted that higher amplitude of ERP was found in incongruent stimuli based paradigm. In a word, semantic congruent paradigm had a better participant comfort, and maintained the same recognition rate as incongruent paradigm. Furthermore, our study suggested that the paradigm design of spellers must take both system performance and user experience into consideration rather than merely pursuing a larger ERP response.
The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-01-01
Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.
von Lühmann, Alexander; Herff, Christian; Heger, Dominic; Schultz, Tanja
2015-01-01
Brain-Computer Interfaces (BCIs) and neuroergonomics research have high requirements regarding robustness and mobility. Additionally, fast applicability and customization are desired. Functional Near-Infrared Spectroscopy (fNIRS) is an increasingly established technology with a potential to satisfy these conditions. EEG acquisition technology, currently one of the main modalities used for mobile brain activity assessment, is widely spread and open for access and thus easily customizable. fNIRS technology on the other hand has either to be bought as a predefined commercial solution or developed from scratch using published literature. To help reducing time and effort of future custom designs for research purposes, we present our approach toward an open source multichannel stand-alone fNIRS instrument for mobile NIRS-based neuroimaging, neuroergonomics and BCI/BMI applications. The instrument is low-cost, miniaturized, wireless and modular and openly documented on www.opennirs.org. It provides features such as scalable channel number, configurable regulated light intensities, programmable gain and lock-in amplification. In this paper, the system concept, hardware, software and mechanical implementation of the lightweight stand-alone instrument are presented and the evaluation and verification results of the instrument's hardware and physiological fNIRS functionality are described. Its capability to measure brain activity is demonstrated by qualitative signal assessments and a quantitative mental arithmetic based BCI study with 12 subjects. PMID:26617510
Brain Computer Interfaces, a Review
Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime
2012-01-01
A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708
Baxter, Bryan S; Edelman, Bradley J; Nesbitt, Nicholas; He, Bin
Transcranial direct current stimulation (tDCS) has been used to alter the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex before or during task learning. The motor cortex is also active during the performance of motor imagination, a cognitive task during which a person imagines, but does not execute, a movement. Motor imagery can be used with noninvasive brain computer interfaces (BCIs) to control virtual objects in up to three dimensions, but to master control of such devices requires long training times. To evaluate the effect of high-definition tDCS on the performance and underlying electrophysiology of motor imagery based BCI. We utilize high-definition tDCS to investigate the effect of stimulation on motor imagery-based BCI performance across and within sessions over multiple training days. We report a decreased time-to-hit with anodal stimulation both within and across sessions. We also found differing electrophysiological changes of the stimulated sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal stimulation led to a decrease in alpha and beta band power during task performance compared to sham stimulation for right hand imagination trials. These results suggest that unilateral tDCS over the sensorimotor motor cortex differentially affects cortical areas based on task specific neural activation. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantitative analysis of task selection for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Llera, Alberto; Gómez, Vicenç; Kappen, Hilbert J.
2014-10-01
Objective. To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). Approach. We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection on a large-scale basis (109 users) and evaluate the possibility of transferring task-pair information across days for a given subject. Main results. Selecting the subject-dependent optimal task-pair among three different imagery movement tasks results in approximately 20% potential increase in the number of users that can be expected to control a binary BCI. The improvement is observed with respect to the best task-pair fixed across subjects. The best task-pair selected for each subject individually during a first day of recordings is generally a good task-pair in subsequent days. In general, task learning from the user side has a positive influence in the generalization of the optimal task-pair, but special attention should be given to inexperienced subjects. Significance. These results add significant evidence to existing literature that advocates task selection as a necessary step towards usable BCIs. This contribution motivates further research focused on deriving adaptive methods for task selection on larger sets of mental tasks in practical online scenarios.
3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.
Beveridge, R; Wilson, S; Coyle, D
2016-01-01
A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.
Enhancing detection of steady-state visual evoked potentials using individual training data.
Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Jung, Tzyy-Ping
2014-01-01
Although the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has improved gradually in the past decades, it still does not meet the requirement of a high communication speed in many applications. A major challenge is the interference of spontaneous background EEG activities in discriminating SSVEPs. An SSVEP BCI using frequency coding typically does not have a calibration procedure since the frequency of SSVEPs can be recognized by power spectrum density analysis (PSDA). However, the detection rate can be deteriorated by the spontaneous EEG activities within the same frequency range because phase information of SSVEPs is ignored in frequency detection. To address this problem, this study proposed to incorporate individual SSVEP training data into canonical correlation analysis (CCA) to improve the frequency detection of SSVEPs. An eight-class SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment was used for performance evaluation. Compared to the standard CCA method, the proposed method obtained significantly improved detection accuracy (95.2% vs. 88.4%, p<0.05) and information transfer rates (ITR) (104.6 bits/min vs. 89.1 bits/min, p<0.05). The results suggest that the employment of individual SSVEP training data can significantly improve the detection rate and thereby facilitate the implementation of a high-speed BCI.
Spataro, Rossella; Chella, Antonio; Allison, Brendan; Giardina, Marcello; Sorbello, Rosario; Tramonte, Salvatore; Guger, Christoph; La Bella, Vincenzo
2017-01-01
Locked-in Amyotrophic Lateral Sclerosis (ALS) patients are fully dependent on caregivers for any daily need. At this stage, basic communication and environmental control may not be possible even with commonly used augmentative and alternative communication devices. Brain Computer Interface (BCI) technology allows users to modulate brain activity for communication and control of machines and devices, without requiring a motor control. In the last several years, numerous articles have described how persons with ALS could effectively use BCIs for different goals, usually spelling. In the present study, locked-in ALS patients used a BCI system to directly control the humanoid robot NAO (Aldebaran Robotics, France) with the aim of reaching and grasping a glass of water. Four ALS patients and four healthy controls were recruited and trained to operate this humanoid robot through a P300-based BCI. A few minutes training was sufficient to efficiently operate the system in different environments. Three out of the four ALS patients and all controls successfully performed the task with a high level of accuracy. These results suggest that BCI-operated robots can be used by locked-in ALS patients as an artificial alter-ego, the machine being able to move, speak and act in his/her place. PMID:28298888
Towards Development of a 3-State Self-Paced Brain-Computer Interface
Bashashati, Ali; Ward, Rabab K.; Birch, Gary E.
2007-01-01
Most existing brain-computer interfaces (BCIs) detect specific mental activity in a so-called synchronous paradigm. Unlike synchronous systems which are operational at specific system-defined periods, self-paced (asynchronous) interfaces have the advantage of being operational at all times. The low-frequency asynchronous switch design (LF-ASD) is a 2-state self-paced BCI that detects the presence of a specific finger movement in the ongoing EEG. Recent evaluations of the 2-state LF-ASD show an average true positive rate of 41% at the fixed false positive rate of 1%. This paper proposes two designs for a 3-state self-paced BCI that is capable of handling idle brain state. The two proposed designs aim at detecting right- and left-hand extensions from the ongoing EEG. They are formed of two consecutive detectors. The first detects the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement). It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1%) in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1%) in the context of a 2-state self-paced BCI. PMID:18288260
Holz, Elisa Mira; Höhne, Johannes; Staiger-Sälzer, Pit; Tangermann, Michael; Kübler, Andrea
2013-10-01
Connect-Four, a new sensorimotor rhythm (SMR) based brain-computer interface (BCI) gaming application, was evaluated by four severely motor restricted end-users; two were in the locked-in state and had unreliable eye-movement. Following the user-centred approach, usability of the BCI prototype was evaluated in terms of effectiveness (accuracy), efficiency (information transfer rate (ITR) and subjective workload) and users' satisfaction. Online performance varied strongly across users and sessions (median accuracy (%) of end-users: A=.65; B=.60; C=.47; D=.77). Our results thus yielded low to medium effectiveness in three end-users and high effectiveness in one end-user. Consequently, ITR was low (0.05-1.44bits/min). Only two end-users were able to play the game in free-mode. Total workload was moderate but varied strongly across sessions. Main sources of workload were mental and temporal demand. Furthermore, frustration contributed to the subjective workload of two end-users. Nevertheless, most end-users accepted the BCI application well and rated satisfaction medium to high. Sources for dissatisfaction were (1) electrode gel and cap, (2) low effectiveness, (3) time-consuming adjustment and (4) not easy-to-use BCI equipment. All four end-users indicated ease of use as being one of the most important aspect of BCI. Effectiveness and efficiency are lower as compared to applications using the event-related potential as input channel. Nevertheless, the SMR-BCI application was satisfactorily accepted by the end-users and two of four could imagine using the BCI application in their daily life. Thus, despite moderate effectiveness and efficiency BCIs might be an option when controlling an application for entertainment. Copyright © 2013 Elsevier B.V. All rights reserved.
Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions
NASA Astrophysics Data System (ADS)
Chien, Yu-Yi; Lin, Fang-Cheng; Zao, John K.; Chou, Ching-Chi; Huang, Yi-Pai; Kuo, Heng-Yuan; Wang, Yijun; Jung, Tzyy-Ping; Shieh, Han-Ping D.
2017-02-01
Objective. Interactive displays armed with natural user interfaces (NUIs) will likely lead the next breakthrough in consumer electronics, and brain-computer interfaces (BCIs) are often regarded as the ultimate NUI-enabling machines to respond to human emotions and mental states. Steady-state visual evoked potentials (SSVEPs) are a commonly used BCI modality due to the ease of detection and high information transfer rates. However, the presence of flickering stimuli may cause user discomfort and can even induce migraines and seizures. With the aim of designing visual stimuli that can be embedded into video images, this study developed a novel approach to induce detectable SSVEPs using a composition of red/green/blue flickering lights. Approach. Based on the opponent theory of colour vision, this study used 32 Hz/40 Hz rectangular red-green or red-blue LED light pulses with a 50% duty cycle, balanced/equal luminance and 0°/180° phase shifts as the stimulating light sources and tested their efficacy in producing SSVEP responses with high signal-to-noise ratios (SNRs) while reducing the perceived flickering sensation. Main results. The empirical results from ten healthy subjects showed that dual-colour lights flickering at 32 Hz/40 Hz with a 50% duty cycle and 180° phase shift achieved a greater than 90% detection accuracy with little or no flickering sensation. Significance. As a first step in developing an embedded SSVEP stimulus in commercial displays, this study provides a foundation for developing a combination of three primary colour flickering backlights with adjustable luminance proportions to create a subtle flickering polychromatic light that can elicit SSVEPs at the basic flickering frequency.
An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation
NASA Astrophysics Data System (ADS)
Tonin, L.; Leeb, R.; Sobolewski, A.; Millán, J. del R.
2013-10-01
Objective. In this work we present—for the first time—the online operation of an electroencephalogram (EEG) brain-computer interface (BCI) system based on covert visuospatial attention (CVSA), without relying on any evoked responses. Electrophysiological correlates of pure top-down CVSA have only recently been proposed as a control signal for BCI. Such systems are expected to share the ease of use of stimulus-driven BCIs (e.g. P300, steady state visually evoked potential) with the autonomy afforded by decoding voluntary modulations of ongoing activity (e.g. motor imagery). Approach. Eight healthy subjects participated in the study. EEG signals were acquired with an active 64-channel system. The classification method was based on a time-dependent approach tuned to capture the most discriminant spectral features of the temporal evolution of attentional processes. The system was used by all subjects over two days without retraining, to verify its robustness and reliability. Main results. We report a mean online accuracy across the group of 70.6 ± 1.5%, and 88.8 ± 5.8% for the best subject. Half of the participants produced stable features over the entire duration of the study. Additionally, we explain drops in performance in subjects showing stable features in terms of known electrophysiological correlates of fatigue, suggesting the prospect of online monitoring of mental states in BCI systems. Significance. This work represents the first demonstration of the feasibility of an online EEG BCI based on CVSA. The results achieved suggest the CVSA BCI as a promising alternative to standard BCI modalities.
The work is never ending: uncovering teamwork sustainability using realistic evaluation.
Frykman, Mandus; von Thiele Schwarz, Ulrica; Muntlin Athlin, Åsa; Hasson, Henna; Mazzocato, Pamela
2017-03-20
Purpose The purpose of this paper is to uncover the mechanisms influencing the sustainability of behavior changes following the implementation of teamwork. Design/methodology/approach Realistic evaluation was combined with a framework (DCOM®) based on applied behavior analysis to study the sustainability of behavior changes two and a half years after the initial implementation of teamwork at an emergency department. The DCOM® framework was used to categorize the mechanisms of behavior change interventions (BCIs) into the four categories of direction, competence, opportunity, and motivation. Non-participant observation and interview data were used. Findings The teamwork behaviors were not sustained. A substantial fallback in managerial activities in combination with a complex context contributed to reduced direction, opportunity, and motivation. Reduced direction made staff members unclear about how and why they should work in teams. Deterioration of opportunity was evident from the lack of problem-solving resources resulting in accumulated barriers to teamwork. Motivation in terms of management support and feedback was reduced. Practical implications The implementation of complex organizational changes in complex healthcare contexts requires continuous adaption and managerial activities well beyond the initial implementation period. Originality/value By integrating the DCOM® framework with realistic evaluation, this study responds to the call for theoretically based research on behavioral mechanisms that can explain how BCIs interact with context and how this interaction influences sustainability.
Classification of different reaching movements from the same limb using EEG
NASA Astrophysics Data System (ADS)
Shiman, Farid; López-Larraz, Eduardo; Sarasola-Sanz, Andrea; Irastorza-Landa, Nerea; Spüler, Martin; Birbaumer, Niels; Ramos-Murguialday, Ander
2017-08-01
Objective. Brain-computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, due to the stochastic nature, poor spatial resolution and signal to noise ratio from electroencephalography (EEG), multidimensional decoding has been the main obstacle to implement non-invasive BCIs in real-live rehabilitation scenarios. This study explores the classification of several functional reaching movements from the same limb using EEG oscillations in order to create a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed four 3D center-out reaching tasks in four different sessions while wearing a passive robotic exoskeleton at their right upper limb. Kinematics data were acquired from the robotic exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into four forward reaching movements (from a starting position towards four target positions), a backward movement (from any of the targets to the starting position and rest). Recalibrating the classifier using data from previous or the same session was also investigated and compared. Main results. Average EEG decoding accuracy were significantly above chance with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, respectively. Furthermore, classification accuracy could be increased when using data from the beginning of each session as training data to recalibrate the classifier. Significance. Our results demonstrate that classification from several functional movements performed by the same limb is possible with acceptable accuracy using EEG oscillations, especially if data from the same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic devices using EEG data. These results have important implications towards assistive and rehabilitative neuroprostheses control in paralyzed patients.
Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R
2015-01-01
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.
Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.
2015-01-01
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910
Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko
2017-12-28
Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.
Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping
2014-01-01
In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the approximation approach, this study implemented an eight-target BCI using frequencies from 8-15 Hz. The SSVEPs elicited by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz. The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120 bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely facilitate various SSVEP-related studies in neural engineering and visual neuroscience.
Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement.
Qiu, Zhaoyang; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Wang, Xingyu; Li, Wei; Cichocki, Andrzej
2017-07-01
motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involve abstract motor tasks and are time-consuming. to improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, and mean 23.6±1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements corresponding to the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p < 0.001). Questionnaire replies indicated that most subjects thought that the new paradigm was easier. the proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.
Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.
Foldes, Stephen T; Taylor, Dawn M
2013-12-21
Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance.
A gaze independent hybrid-BCI based on visual spatial attention
NASA Astrophysics Data System (ADS)
Egan, John M.; Loughnane, Gerard M.; Fletcher, Helen; Meade, Emma; Lalor, Edmund C.
2017-08-01
Objective. Brain-computer interfaces (BCI) use measures of brain activity to convey a user’s intent without the need for muscle movement. Hybrid designs, which use multiple measures of brain activity, have been shown to increase the accuracy of BCIs, including those based on EEG signals reflecting covert attention. Our study examined whether incorporating a measure of the P3 response improved the performance of a previously reported attention-based BCI design that incorporates measures of steady-state visual evoked potentials (SSVEP) and alpha band modulations. Approach. Subjects viewed stimuli consisting of two bi-laterally located flashing white boxes on a black background. Streams of letters were presented sequentially within the boxes, in random order. Subjects were cued to attend to one of the boxes without moving their eyes, and they were tasked with counting the number of target-letters that appeared within. P3 components evoked by target appearance, SSVEPs evoked by the flashing boxes, and power in the alpha band are modulated by covert attention, and the modulations can be used to classify trials as left-attended or right-attended. Main Results. We showed that classification accuracy was improved by including a P3 feature along with the SSVEP and alpha features (the inclusion of a P3 feature lead to a 9% increase in accuracy compared to the use of SSVEP and Alpha features alone). We also showed that the design improves the robustness of BCI performance to individual subject differences. Significance. These results demonstrate that incorporating multiple neurophysiological indices of covert attention can improve performance in a gaze-independent BCI.
Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.
Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan
2016-06-01
Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate helpless sub-bands for each subject and make remaining fewer sub-bands keep better separability by fisher distance, which leads to a higher classification accuracy than WPD-CSP method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance.
Saeedi, Sareh; Chavarriaga, Ricardo; Millan, Jose Del R
2017-04-01
Performance variation is one of the main challenges that BCIs are confronted with, when being used over extended periods of time. Shared control techniques could partially cope with such a problem. In this paper, we propose a taxonomy of shared control approaches used for BCIs and we review some of the recent studies at the light of these approaches. We posit that the level of assistance provided to the BCI user should be adjusted in real time in order to enhance BCI reliability over time. This approach has not been extensively studied in the recent literature on BCIs. In addition, we investigate the effectiveness of providing online adaptive assistance in a motor-imagery BCI for a tetraplegic end-user with an incomplete locked-in syndrome in a longitudinal study lasting 11 months. First, we report a reliable estimation of the BCI performance (in terms of command delivery time) using only a window of 1 s in the beginning of trials (AUC ≈ 0.8 ). Second, we demonstrate how adaptive shared control can exploit the output of the performance estimator to adjust online the level of assistance in a BCI game by regulating its speed. In particular, online adaptive assistance was superior to a fixed condition in terms of success rate ( ). Remarkably, the results exhibited a stable performance over severalmonths without recalibration of the BCI classifier or the performance estimator.
Decoding of intended saccade direction in an oculomotor brain-computer interface
NASA Astrophysics Data System (ADS)
Jia, Nan; Brincat, Scott L.; Salazar-Gómez, Andrés F.; Panko, Mikhail; Guenther, Frank H.; Miller, Earl K.
2017-08-01
Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for ‘point and click’ computer operation as used in most current AAC systems.
Control of a visual keyboard using an electrocorticographic brain-computer interface.
Krusienski, Dean J; Shih, Jerry J
2011-05-01
Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.
Brain-computer interface control along instructed paths
NASA Astrophysics Data System (ADS)
Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.
2015-02-01
Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.
The metabolic basis of cognitive insight in psychosis: A positron emission tomography study
Paoli, Riccardo A.; Cigliobianco, Michela; Prunas, Cecilia; Zugno, Elisa; Bottinelli, Francesca; Brambilla, Paolo; Altamura, A. Carlo
2017-01-01
The purpose of this study was to investigate the relationship between cognitive insight and cerebral metabolism in patients suffering from psychosis. The Beck Cognitive Insight Scale (BCIS) was administered to 63 patients with psychosis undergoing Positron Emission Tomography investigation. The sample was divided into two groups considering the BCIS score. Data were analyzed using Statistical Parametric Mapping. Results: patients with low insight, compared to those with high insight, showed decreased metabolism in the right fusiform gyrus, left precuneus, superior temporal gyrus and insula bilaterally, as well as increased metabolism in the left orbito-frontal gyrus (all p<0.005). Our results suggest that reduced posterior (occipito-temporo-insulo-parietal) and increased anterior (orbitofrontal) cerebral metabolism may sustain low cognitive insight in psychosis. PMID:28414766
Evaluating the ergonomics of BCI devices for research and experimentation.
Ekandem, Joshua I; Davis, Timothy A; Alvarez, Ignacio; James, Melva T; Gilbert, Juan E
2012-01-01
The use of brain computer interface (BCI) devices in research and applications has exploded in recent years. Applications such as lie detectors that use functional magnetic resonance imaging (fMRI) to video games controlled using electroencephalography (EEG) are currently in use. These developments, coupled with the emergence of inexpensive commercial BCI headsets, such as the Emotiv EPOC ( http://emotiv.com/index.php ) and the Neurosky MindWave, have also highlighted the need of performing basic ergonomics research since such devices have usability issues, such as comfort during prolonged use, and reduced performance for individuals with common physical attributes, such as long or coarse hair. This paper examines the feasibility of using consumer BCIs in scientific research. In particular, we compare user comfort, experiment preparation time, signal reliability and ease of use in light of individual differences among subjects for two commercially available hardware devices, the Emotiv EPOC and the Neurosky MindWave. Based on these results, we suggest some basic considerations for selecting a commercial BCI for research and experimentation. STATEMENT OF RELEVANCE: Despite increased usage, few studies have examined the usability of commercial BCI hardware. This study assesses usability and experimentation factors of two commercial BCI models, for the purpose of creating basic guidelines for increased usability. Finding that more sensors can be less comfortable and accurate than devices with fewer sensors.
Latency correction of event-related potentials between different experimental protocols
NASA Astrophysics Data System (ADS)
Iturrate, I.; Chavarriaga, R.; Montesano, L.; Minguez, J.; Millán, JdR
2014-06-01
Objective. A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP. Approach. We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification. Main results. The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes. Significance. These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.
Effects of user mental state on EEG-BCI performance.
Myrden, Andrew; Chau, Tom
2015-01-01
Changes in psychological state have been proposed as a cause of variation in brain-computer interface performance, but little formal analysis has been conducted to support this hypothesis. In this study, we investigated the effects of three mental states-fatigue, frustration, and attention-on BCI performance. Twelve able-bodied participants were trained to use a two-class EEG-BCI based on the performance of user-specific mental tasks. Following training, participants completed three testing sessions, during which they used the BCI to play a simple maze navigation game while periodically reporting their perceived levels of fatigue, frustration, and attention. Statistical analysis indicated that there is a significant relationship between frustration and BCI performance while the relationship between fatigue and BCI performance approached significance. BCI performance was 7% lower than average when self-reported fatigue was low and 7% higher than average when self-reported frustration was moderate. A multivariate analysis of mental state revealed the presence of contiguous regions in mental state space where BCI performance was more accurate than average, suggesting the importance of moderate fatigue for achieving effortless focus on BCI control, frustration as a potential motivating factor, and attention as a compensatory mechanism to increasing frustration. Finally, a visual analysis showed the sensitivity of underlying class distributions to changes in mental state. Collectively, these results indicate that mental state is closely related to BCI performance, encouraging future development of psychologically adaptive BCIs.
Hammad, Sofyan H. H.; Farina, Dario; Kamavuako, Ernest N.; Jensen, Winnie
2013-01-01
Invasive brain–computer interfaces (BCIs) may prove to be a useful rehabilitation tool for severely disabled patients. Although some systems have shown to work well in restricted laboratory settings, their usefulness must be tested in less controlled environments. Our objective was to investigate if a specific motor task could reliably be detected from multi-unit intra-cortical signals from freely moving animals. Four rats were trained to hit a retractable paddle (defined as a “hit”). Intra-cortical signals were obtained from electrodes placed in the primary motor cortex. First, the signal-to-noise ratio was increased by wavelet denoising. Action potentials were then detected using an adaptive threshold, counted in three consecutive time intervals and were used as features to classify either a “hit” or a “no-hit” (defined as an interval between two “hits”). We found that a “hit” could be detected with an accuracy of 75 ± 6% when wavelet denoising was applied whereas the accuracy dropped to 62 ± 5% without prior denoising. We compared our approach with the common daily practice in BCI that consists of using a fixed, manually selected threshold for spike detection without denoising. The results showed the feasibility of detecting a motor task in a less restricted environment than commonly applied within invasive BCI research. PMID:24298254
MindEdit: A P300-based text editor for mobile devices.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2017-01-01
Practical application of Brain-Computer Interfaces (BCIs) requires that the whole BCI system be portable. The mobility of BCI systems involves two aspects: making the electroencephalography (EEG) recording devices portable, and developing software applications with low computational complexity to be able to run on low computational-power devices such as tablets and smartphones. This paper addresses the development of MindEdit; a P300-based text editor for Android-based devices. Given the limited resources of mobile devices and their limited computational power, a novel ensemble classifier is utilized that uses Principal Component Analysis (PCA) features to identify P300 evoked potentials from EEG recordings. PCA computations in the proposed method are channel-based as opposed to concatenating all channels as in traditional feature extraction methods; thus, this method has less computational complexity compared to traditional P300 detection methods. The performance of the method is demonstrated on data recorded from MindEdit on an Android tablet using the Emotiv wireless neuroheadset. Results demonstrate the capability of the introduced PCA ensemble classifier to classify P300 data with maximum average accuracy of 78.37±16.09% for cross-validation data and 77.5±19.69% for online test data using only 10 trials per symbol and a 33-character training dataset. Our analysis indicates that the introduced method outperforms traditional feature extraction methods. For a faster operation of MindEdit, a variable number of trials scheme is introduced that resulted in an online average accuracy of 64.17±19.6% and a maximum bitrate of 6.25bit/min. These results demonstrate the efficacy of using the developed BCI application with mobile devices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barrdahl, Myrto; Canzian, Federico; Gaudet, Mia M; Gapstur, Susan M; Trichopoulou, Antonia; Tsilidis, Kostas; van Gils, Carla H; Borgquist, Signe; Weiderpass, Elisabete; Khaw, Kay-Tee; Giles, Graham G; Milne, Roger L; Le Marchand, Loic; Haiman, Christopher; Lindström, Sara; Kraft, Peter; Hunter, David J; Ziegler, Regina; Chanock, Stephen J; Yang, Xiaohong R; Buring, Julie E; Lee, I-Min; Kaaks, Rudolf; Campa, Daniele
2018-03-15
We assessed the association between 1,414 single nucleotide polymorphisms (SNPs) in genes involved in synthesis and metabolism of steroid hormones and insulin-like growth factor 1, and risk of breast cancer in situ (BCIS), with the aim of determining whether any of these were disease specific. This was carried out using 1,062 BCIS cases and 10,126 controls as well as 6,113 invasive breast cancer cases from the Breast and Prostate Cancer Cohort Consortium (BPC3). Three SNPs showed at least one nominally significant association in homozygous minor versus homozygous major models. ACVR2A-rs2382112 (OR hom = 3.05, 95%CI = 1.72-5.44, P hom = 1.47 × 10 -4 ), MAST2-rs12124649 (OR hom = 1.73, 95% CI =1.18-2.54, P hom = 5.24 × 10 -3 ), and INSR-rs10500204 (OR hom = 1.96, 95% CI = 1.44-2.67, P hom =1.68 × 10 -5 ) were associated with increased risk of BCIS; however, only the latter association was significant after correcting for multiple testing. Furthermore, INSR-rs10500204 was more strongly associated with the risk of BCIS than invasive disease in case-only analyses using the homozygous minor versus homozygous major model (OR hom = 1.78, 95% CI = 1.30-2.44, P hom = 3.23 × 10 -4 ). The SNP INSR-rs10500204 is located in an intron of the INSR gene and is likely to affect binding of the promyelocytic leukemia (PML) protein. The PML gene is known as a tumor suppressor and growth regulator in cancer. However, it is not clear on what pathway the A-allele of rs10500204 could operate to influence the binding of the protein. Hence, functional studies are warranted to investigate this further. © 2017 UICC.
Examination of clinical and cognitive insight in acute schizophrenia patients.
Greenberger, Cheryl; Serper, Mark R
2010-07-01
Lack of insight or awareness of illness is a hallmark feature of schizophrenic illness and has become an increasingly important area of investigation. Although clinical insight focuses on awareness of illness factors, the concept of cognitive insight focuses on the cognitive processes involved in correcting erroneous judgments and certainty about mistaken judgments. The present study was aimed at further investigating the clinical utility and the statistical coherence of the Beck Cognitive Insight Scale (BCIS) (Beck et al., 2004) in acute schizoaffective and schizophrenia (SZ) patients. The present study examined the internal consistency of the scale, as well as its discriminative and predictive validity relative to a well-established traditional measure of clinical insight in a sample of 50 DSM-IV diagnosed SZ patients, presenting for acute inpatient treatment. The BCIS was found to be an internally consistent and a coherent measure of cognitive insight. The BCIS was unassociated with clinical insight, indicating the 2 constructs share little empirical overlap. Cognitive insight was found to be inversely associated with patients' severity of autistic preoccupation symptoms such that those individuals with more cognitive insight, exhibited fewer autistic/cognitive symptoms. Patients' clinical insight, however, was found to be inversely associated specifically with patients' severity of depression. Additionally, clinical insight was also found to be more impaired in patients residing in nursing home environments relative to their counterparts living in less restrictive settings when outside the hospital. Results are discussed in terms of the relationship between clinical and cognitive insight constructs to SZ symptom domains.
Townsend, G; Platsko, V
2016-04-01
A new presentation paradigm for the P300-based brain-computer interface (BCI) referred to as the 'asynchronous paradigm' (ASP) is introduced and studied. It is based on the principle of performance guided constraints (Townsend et al 2012 Neurosci. Lett. 531 63-8) extended from the spatial domain into the temporal domain. The traditional constraint of flashing targets in predefined constant epochs of time is eliminated and targets flash asynchronously with timing based instead on constraints intended to improve performance. We propose appropriate temporal constraints to derive the ASP and compare its performance to that of the 'checkerboard paradigm' (CBP), which has previously been shown to be superior to the standard 'row/column paradigm' introduced by Farwell and Donchin (1988 Electroencephalogr. Clin. Neurophysiol. 70 510-23). Ten participants were tested in the ASP and CBP conditions both with traditional flashing items and with flashing faces in place of the targets (see Zhang et al 2012 J. Neural Eng. 9 026018; Kaufmann and Kübler 2014 J. Neural Eng. 11 ; Chen et al 2015 J. Neurosci. Methods 239 18-27). Eleven minutes of calibration data were used as input to a stepwise linear discriminant analysis to derive classification coefficients used for online classification. Accuracy was consistently high for both paradigms (87% and 93%) while information transfer rate was 45% higher for the ASP than the CBP. In a free spelling task, one subject spelled a 66 character sentence (from a 72 item matrix) with 100% accuracy in 3 min and 24 s demonstrating a practical throughput of 120 bits per minute (bpm) with a theoretical upper bound of 258 bpm. The subject repeated the task three times in a row without error. This work represents an advance in P300 speller technology and raises the ceiling that was being reached on P300-based BCIs. Most importantly, the research presented here is a novel and effective general strategy for organising timing for flashing items. The ASP is only one possible implementation of this work since in general it can be used to describe all previous existing presentation paradigms as well as any possible new ones. This may be especially important for people with neuromuscular disabilities.
Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping
2012-01-01
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377
An improved P300 pattern in BCI to catch user’s attention
NASA Astrophysics Data System (ADS)
Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej
2017-06-01
Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p < 0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.
Automatic motor task selection via a bandit algorithm for a brain-controlled button
NASA Astrophysics Data System (ADS)
Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen
2013-02-01
Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.
An improved P300 pattern in BCI to catch user's attention.
Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej
2017-06-01
Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p < 0.05) compared to the honeycomb-shaped stimulus without red dots. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.
Efficient FIR Filter Implementations for Multichannel BCIs Using Xilinx System Generator.
Ghani, Usman; Wasim, Muhammad; Khan, Umar Shahbaz; Mubasher Saleem, Muhammad; Hassan, Ali; Rashid, Nasir; Islam Tiwana, Mohsin; Hamza, Amir; Kashif, Amir
2018-01-01
Background . Brain computer interface (BCI) is a combination of software and hardware communication protocols that allow brain to control external devices. Main purpose of BCI controlled external devices is to provide communication medium for disabled persons. Now these devices are considered as a new way to rehabilitate patients with impunities. There are certain potentials present in electroencephalogram (EEG) that correspond to specific event. Main issue is to detect such event related potentials online in such a low signal to noise ratio (SNR). In this paper we propose a method that will facilitate the concept of online processing by providing an efficient filtering implementation in a hardware friendly environment by switching to finite impulse response (FIR). Main focus of this research is to minimize latency and computational delay of preprocessing related to any BCI application. Four different finite impulse response (FIR) implementations along with large Laplacian filter are implemented in Xilinx System Generator. Efficiency of 25% is achieved in terms of reduced number of coefficients and multiplications which in turn reduce computational delays accordingly.
NASA Astrophysics Data System (ADS)
Schudlo, Larissa C.; Chau, Tom
2014-02-01
Objective. Near-infrared spectroscopy (NIRS) has recently gained attention as a modality for brain-computer interfaces (BCIs), which may serve as an alternative access pathway for individuals with severe motor impairments. For NIRS-BCIs to be used as a real communication pathway, reliable online operation must be achieved. Yet, only a limited number of studies have been conducted online to date. These few studies were carried out under a synchronous paradigm and did not accommodate an unconstrained resting state, precluding their practical clinical implication. Furthermore, the potentially discriminative power of spatiotemporal characteristics of activation has yet to be considered in an online NIRS system. Approach. In this study, we developed and evaluated an online system-paced NIRS-BCI which was driven by a mental arithmetic activation task and accommodated an unconstrained rest state. With a dual-wavelength, frequency domain near-infrared spectrometer, measurements were acquired over nine sites of the prefrontal cortex, while ten able-bodied participants selected letters from an on-screen scanning keyboard via intentionally controlled brain activity (using mental arithmetic). Participants were provided dynamic NIR topograms as continuous visual feedback of their brain activity as well as binary feedback of the BCI's decision (i.e. if the letter was selected or not). To classify the hemodynamic activity, temporal features extracted from the NIRS signals and spatiotemporal features extracted from the dynamic NIR topograms were used in a majority vote combination of multiple linear classifiers. Main results. An overall online classification accuracy of 77.4 ± 10.5% was achieved across all participants. The binary feedback was found to be very useful during BCI use, while not all participants found value in the continuous feedback provided. Significance. These results demonstrate that mental arithmetic is a potent mental task for driving an online system-paced NIRS-BCI. BCI feedback that reflects the classifier's decision has the potential to improve user performance. The proposed system can provide a framework for future online NIRS-BCI development and testing.
Zander, Thorsten O.; Andreessen, Lena M.; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R.; Gramann, Klaus
2017-01-01
We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort. PMID:28293184
Zander, Thorsten O; Andreessen, Lena M; Berg, Angela; Bleuel, Maurice; Pawlitzki, Juliane; Zawallich, Lars; Krol, Laurens R; Gramann, Klaus
2017-01-01
We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort.
Farquhar, J; Hill, N J
2013-04-01
Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.
Münßinger, Jana I.; Halder, Sebastian; Kleih, Sonja C.; Furdea, Adrian; Raco, Valerio; Hösle, Adi; Kübler, Andrea
2010-01-01
Brain–computer interfaces (BCIs) enable paralyzed patients to communicate; however, up to date, no creative expression was possible. The current study investigated the accuracy and user-friendliness of P300-Brain Painting, a new BCI application developed to paint pictures using brain activity only. Two different versions of the P300-Brain Painting application were tested: A colored matrix tested by a group of ALS-patients (n = 3) and healthy participants (n = 10), and a black and white matrix tested by healthy participants (n = 10). The three ALS-patients achieved high accuracies; two of them reaching above 89% accuracy. In healthy subjects, a comparison between the P300-Brain Painting application (colored matrix) and the P300-Spelling application revealed significantly lower accuracy and P300 amplitudes for the P300-Brain Painting application. This drop in accuracy and P300 amplitudes was not found when comparing the P300-Spelling application to an adapted, black and white matrix of the P300-Brain Painting application. By employing a black and white matrix, the accuracy of the P300-Brain Painting application was significantly enhanced and reached the accuracy of the P300-Spelling application. ALS-patients greatly enjoyed P300-Brain Painting and were able to use the application with the same accuracy as healthy subjects. P300-Brain Painting enables paralyzed patients to express themselves creatively and to participate in the prolific society through exhibitions. PMID:21151375
Holz, Elisa Mira; Botrel, Loic; Kaufmann, Tobias; Kübler, Andrea
2015-03-01
Despite intense brain-computer interface (BCI) research for >2 decades, BCIs have hardly been established at patients' homes. The current study aimed at demonstrating expert independent BCI home use by a patient in the locked-in state and the effect it has on quality of life. In this case study, the P300 BCI-controlled application Brain Painting was facilitated and installed at the patient's home. Family and caregivers were trained in setting up the BCI system. After every BCI session, the end user indicated subjective level of control, loss of control, level of exhaustion, satisfaction, frustration, and enjoyment. To monitor BCI home use, evaluation data of every session were automatically sent and stored on a remote server. Satisfaction with the BCI as an assistive device and subjective workload was indicated by the patient. In accordance with the user-centered design, usability of the BCI was evaluated in terms of its effectiveness, efficiency, and satisfaction. The influence of the BCI on quality of life of the end user was assessed. At the patient's home. A 73-year-old patient with amyotrophic lateral sclerosis in the locked-in state. Not applicable. The BCI has been used by the patient independent of experts for >14 months. The patient painted in about 200 BCI sessions (1-3 times per week) with a mean painting duration of 81.86 minutes (SD=52.15, maximum: 230.41). BCI improved quality of life of the patient. In most of the BCI sessions the end user's satisfaction was high (mean=7.4, SD=3.24; range, 0-10). Dissatisfaction occurred mostly because of technical problems at the beginning of the study or varying BCI control. The subjective workload was moderate (mean=40.61; range, 0-100). The end user was highy satisfied with all components of the BCI (mean 4.42-5.0; range, 1-5). A perfect match between the user and the BCI technology was achieved (mean: 4.8; range, 1-5). Brain Painting had a positive impact on the patient's life on all three dimensions: competence (1.5), adaptability (2.17) and self-esteem (1.5); (range: -3 = maximum negative impact; 3 maximum positive impact). The patient had her first public art exhibition in July 2013; future exhibitions are in preparation. Independent BCI home use is possible with high satisfaction for the end user. The BCI indeed positively influenced quality of life of the patient and supports social inclusion. Results demonstrate that visual P300 BCIs can be valuable for patients in the locked-in state even if other means of communication are still available (eye tracker). Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-06-01
Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
NASA Astrophysics Data System (ADS)
Schudlo, Larissa C.; Chau, Tom
2015-12-01
Objective. The majority of near-infrared spectroscopy (NIRS) brain-computer interface (BCI) studies have investigated binary classification problems. Limited work has considered differentiation of more than two mental states, or multi-class differentiation of higher-level cognitive tasks using measurements outside of the anterior prefrontal cortex. Improvements in accuracies are needed to deliver effective communication with a multi-class NIRS system. We investigated the feasibility of a ternary NIRS-BCI that supports mental states corresponding to verbal fluency task (VFT) performance, Stroop task performance, and unconstrained rest using prefrontal and parietal measurements. Approach. Prefrontal and parietal NIRS signals were acquired from 11 able-bodied adults during rest and performance of the VFT or Stroop task. Classification was performed offline using bagging with a linear discriminant base classifier trained on a 10 dimensional feature set. Main results. VFT, Stroop task and rest were classified at an average accuracy of 71.7% ± 7.9%. The ternary classification system provided a statistically significant improvement in information transfer rate relative to a binary system controlled by either mental task (0.87 ± 0.35 bits/min versus 0.73 ± 0.24 bits/min). Significance. These results suggest that effective communication can be achieved with a ternary NIRS-BCI that supports VFT, Stroop task and rest via measurements from the frontal and parietal cortices. Further development of such a system is warranted. Accurate ternary classification can enhance communication rates offered by NIRS-BCIs, improving the practicality of this technology.
Rana, Mohit; Prasad, Vinod A.; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha
2016-01-01
Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. PMID:27467528
Leamy, Darren J; Kocijan, Juš; Domijan, Katarina; Duffin, Joseph; Roche, Richard Ap; Commins, Sean; Collins, Ronan; Ward, Tomas E
2014-01-28
Brain-Computer Interfaces (BCI) can potentially be used to aid in the recovery of lost motor control in a limb following stroke. BCIs are typically used by subjects with no damage to the brain therefore relatively little is known about the technical requirements for the design of a rehabilitative BCI for stroke. 32-channel electroencephalogram (EEG) was recorded during a finger-tapping task from 10 healthy subjects for one session and 5 stroke patients for two sessions approximately 6 months apart. An off-line BCI design based on Filter Bank Common Spatial Patterns (FBCSP) was implemented to test and compare the efficacy and accuracy of training a rehabilitative BCI with both stroke-affected and healthy data. Stroke-affected EEG datasets have lower 10-fold cross validation results than healthy EEG datasets. When training a BCI with healthy EEG, average classification accuracy of stroke-affected EEG is lower than the average for healthy EEG. Classification accuracy of the late session stroke EEG is improved by training the BCI on the corresponding early stroke EEG dataset. This exploratory study illustrates that stroke and the accompanying neuroplastic changes associated with the recovery process can cause significant inter-subject changes in the EEG features suitable for mapping as part of a neurofeedback therapy, even when individuals have scored largely similar with conventional behavioural measures. It appears such measures can mask this individual variability in cortical reorganization. Consequently we believe motor retraining BCI should initially be tailored to individual patients.
Morphometric body condition indices of wild Florida manatees (Trichechus manatus latirostris)
Harshaw, Lauren T.; Larkin, Iskande V.; Bonde, Robert K.; Deutsch, Charles J.; Hill, Richard C.
2016-01-01
In many species, body weight (W) increases geometrically with body length (L), so W/L3 provides a body condition index (BCI) that can be used to evaluate nutritional status once a normal range has been established. No such index has been established for Florida manatees (Trichechus manatus latirostris). This study was designed to determine a normal range of BCIs of Florida manatees by comparing W in kg with straight total length (SL), curvilinear total length (CL), and umbilical girth (UG) in m for 146 wild manatees measured during winter health assessments at three Florida locations. Small calves to large adults of SL from 1.47 to 3.23 m and W from 77 to 751 kg were compared. BCIs were significantly greater in adult females than in adult males (p < 0.05). W scaled proportionally to L3 in females but not in males, which were slimmer than females. The logarithms of W and of each linear measurement were regressed to develop amended indices that allow for sex differences. The regression slope for log W against log SL was 2.915 in females and 2.578 in males; W/SL2.915 ranged from 18.9 to 29.6 (mean 23.2) in females and from 24.6 to 37.3 (mean 29.8) in males. Some BCIs were slightly (4%), but significantly (p ≤ 0.05), higher for females in Crystal River than in Tampa Bay or Indian River, but there was no evidence of geographic variation in condition among males. These normal ranges should help evaluate the nutritional status of both wild and rehabilitating captive manatees.
Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study
NASA Astrophysics Data System (ADS)
Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.
2015-02-01
Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user’s EEG data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.
Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
Mainsah, B O; Collins, L M; Colwell, K A; Sellers, E W; Ryan, D B; Caves, K; Throckmorton, C S
2015-02-01
The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user's EEG data. We further enhanced the algorithm by incorporating information about the user's language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.
Predicting BCI subject performance using probabilistic spatio-temporal filters.
Suk, Heung-Il; Fazli, Siamac; Mehnert, Jan; Müller, Klaus-Robert; Lee, Seong-Whan
2014-01-01
Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.
Increasing BCI Communication Rates with Dynamic Stopping Towards More Practical Use: An ALS Study
Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.
2015-01-01
Objective The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute signal-to-noise ratio of a user’s electroencephalography data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main Results Results from online testing of the dynamic stopping algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/sec (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the dynamic stopping algorithms. Significance We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication. PMID:25588137
An optimized ERP brain-computer interface based on facial expression changes.
Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej
2014-06-01
Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.
An optimized ERP brain-computer interface based on facial expression changes
NASA Astrophysics Data System (ADS)
Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej
2014-06-01
Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). Significance. The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.
Prediction of P300 BCI Aptitude in Severe Motor Impairment
Halder, Sebastian; Ruf, Carolin Anne; Furdea, Adrian; Pasqualotto, Emanuele; De Massari, Daniele; van der Heiden, Linda; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea; Matuz, Tamara
2013-01-01
Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with performance. The amplitude of the P2 (r = −0.77) and of the N2 (r = −0.86) had the strongest correlations. Aptitude prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches to improve performance. PMID:24204597
Natural stimuli improve auditory BCIs with respect to ergonomics and performance
NASA Astrophysics Data System (ADS)
Höhne, Johannes; Krenzlin, Konrad; Dähne, Sven; Tangermann, Michael
2012-08-01
Moving from well-controlled, brisk artificial stimuli to natural and less-controlled stimuli seems counter-intuitive for event-related potential (ERP) studies. As natural stimuli typically contain a richer internal structure, they might introduce higher levels of variance and jitter in the ERP responses. Both characteristics are unfavorable for a good single-trial classification of ERPs in the context of a multi-class brain-computer interface (BCI) system, where the class-discriminant information between target stimuli and non-target stimuli must be maximized. For the application in an auditory BCI system, however, the transition from simple artificial tones to natural syllables can be useful despite the variance introduced. In the presented study, healthy users (N = 9) participated in an offline auditory nine-class BCI experiment with artificial and natural stimuli. It is shown that the use of syllables as natural stimuli does not only improve the users’ ergonomic ratings; also the classification performance is increased. Moreover, natural stimuli obtain a better balance in multi-class decisions, such that the number of systematic confusions between the nine classes is reduced. Hopefully, our findings may contribute to make auditory BCI paradigms more user friendly and applicable for patients.
Towards a symbiotic brain-computer interface: exploring the application-decoder interaction
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Buteneers Wiersema, P., Jr.; Dambre, J.; Kindermans, PJ
2015-12-01
Objective. State of the art brain-computer interface (BCI) research focuses on improving individual components such as the application or the decoder that converts the user’s brain activity to control signals. In this study, we investigate the interaction between these components in the P300 speller, a BCI for communication. We introduce a synergistic approach in which the stimulus presentation sequence is modified to enhance the machine learning decoding. In this way we aim for an improved overall BCI performance. Approach. First, a new stimulus presentation paradigm is introduced which provides us flexibility in tuning the sequence of visual stimuli presented to the user. Next, an experimental setup in which this paradigm is compared to other paradigms uncovers the underlying mechanism of the interdependence between the application and the performance of the decoder. Main results. Extensive analysis of the experimental results reveals the changing requirements of the decoder concerning the data recorded during the spelling session. When few data is recorded, the balance in the number of target and non-target stimuli shown to the user is more important than the signal-to-noise rate (SNR) of the recorded response signals. Only when more data has been collected, the SNR becomes the dominant factor. Significance. For BCIs in general, knowing the dominant factor that affects the decoder performance and being able to respond to it is of utmost importance to improve system performance. For the P300 speller, the proposed tunable paradigm offers the possibility to tune the application to the decoder’s needs at any time and, as such, fully exploit this application-decoder interaction.
BCI`s RBSM test methods: Eight years in the making
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-03-01
RBSM stands for recombinant battery separator mat. This is the acronym chosen after a lot of debate during eight years of committee work to develop test methods to characterize separators which are used in valve regulated lead acid batteries. This paper discusses the test methods.
Hill, N Jeremy; Moinuddin, Aisha; Häuser, Ann-Katrin; Kienzle, Stephan; Schalk, Gerwin
2012-01-01
Most brain-computer interface (BCI) systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two simultaneously presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously published variants provides superior performance: a fixed-phase (FP) design in which the streams have equal period and opposite phase, or a drifting-phase (DP) design where the periods are unequal. We found FP to be superior to DP (p = 0.002): average performance levels were 80 and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one's eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely paralyzed users.
A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Mrachacz-Kersting, Natalie; Zhu, Xiangyang; Farina, Dario
2017-09-01
Distinctive EEG signals from the motor and somatosensory cortex are generated during mental tasks of motor imagery (MI) and somatosensory attentional orientation (SAO). In this paper, we hypothesize that a combination of these two signal modalities provides improvements in a brain-computer interface (BCI) performance with respect to using the two methods separately, and generate novel types of multi-class BCI systems. Thirty two subjects were randomly divided into a Control-Group and a Hybrid-Group. In the Control-Group, the subjects performed left and right hand motor imagery (i.e., L-MI and R-MI). In the Hybrid-Group, the subjects performed the four mental tasks (i.e., L-MI, R-MI, L-SAO, and R-SAO). The results indicate that combining two of the tasks in a hybrid manner (such as L-SAO and R-MI) resulted in a significantly greater classification accuracy than when using two MI tasks. The hybrid modality reached 86.1% classification accuracy on average, with a 7.70% increase with respect to MI ( ), and 7.21% to SAO ( ) alone. Moreover, all 16 subjects in the hybrid modality reached at least 70% accuracy, which is considered the threshold for BCI illiteracy. In addition to the two-class results, the classification accuracy was 68.1% and 54.1% for the three-class and four-class hybrid BCI. Combining the induced brain signals from motor and somatosensory cortex, the proposed stimulus-independent hybrid BCI has shown improved performance with respect to individual modalities, reducing the portion of BCI-illiterate subjects, and provided novel types of multi-class BCIs.
Milner, Allison; Witt, Katrina; Burnside, Lewis; Wilson, Caitlyn; LaMontagne, Anthony D
2015-10-16
Males employed in the construction industry have high rates of suicide. Although reasons underpinning this risk are multifaceted, poor help-seeking and stigma are represent major contributors. Males in the construction industry are also exposed to other risk factors for mental ill health and suicide, including unemployment. Sigma-reducing interventions that are accessible and attractive to recently unemployed males in the construction industry could therefore improve help-seeking, and address depression and suicidal behaviour in this population. Contact&Connect will use a parallel individual randomized design to evaluate the effectiveness of a multimedia-based intervention aimed at reducing stigma. The intervention consists of a package of 12 brief contact interventions (BCIs) delivered over a six month period. BCIs will direct participants to informational programs and microsites. Content will address three major themes: debunking depression myths and stereotypes, normalisation, and empowerment. Target enrollment is 630 (315 in each arm), each to be followed for 12 months. Eligible participants will be males, between 30 and 64 years, unemployed at the time of recruitment, registered with Incolink (a social welfare trustee company for unemployed members of the construction industry), and own a smart phone with enabled internet connectivity. At present, there are no programs that have been shown to be effective in reducing stigma in the blue-collar male population. Contact&Connect promises to provide a tailored, efficient, and scalable approach to reducing stigma, depressive symptoms and suicidality among unemployed males. Australian New Zealand Clinical Trials Register ACTRN12615000792527 (date of registration: 30 July, 2015).
Engh, John A; Sundet, Kjetil; Simonsen, Carmen; Vaskinn, Anja; Lagerberg, Trine V; Opjordsmoen, Stein; Friis, Svein; Andreassen, Ole A
2011-06-01
Patients with schizophrenia exhibit distorted beliefs and experiences, and their own evaluation of this is labeled cognitive insight. We examined the relationship between cognitive insight and neurocognition, as well as the contribution of neurocognition in explaining cognitive insight. Clinically characterized patients with schizophrenia (n=102) were assessed with a measure of cognitive insight, Beck Cognitive Insight Scale (BCIS) and a neuropsychological test battery. The contribution of neurocognition to the explained variance in BCIS components self-reflectiveness (i.e. objectivity and reflectiveness) and self-certainty (i.e. overconfidence in own beliefs) was examined controlling for current affective and psychotic symptoms. A significant negative correlation was found between self-certainty and verbal learning, whereas no associations were found between self-reflectiveness and any of the neuropsychological tests. Verbal learning was added significantly to the explained variance in self-certainty after controlling for potential confounders. High self-certainty was associated with poor verbal learning. This suggests that overconfidence in own beliefs is associated with cognitive dysfunction in schizophrenia. Copyright © 2011 Elsevier Inc. All rights reserved.
Van Camp, L S C; Oldenburg, J F E; Sabbe, B G C
2016-01-01
The pattern of associations between clinical insight, cognitive insight, and neurocognitive functioning was assessed in bipolar disorder patients. Data from 42 bipolar disorder patients were examined. Cognitive insight was measured using the Beck Cognitive Insight Scale (BCIS). The BCIS is a 15-item self-report instrument consisting of two subscales, self-reflectiveness and self-certainty. Clinical insight was measured by the use of the item G12 of the Positive and Negative Syndrome Scale. Neurocognitive functioning was assessed using the International Society for Bipolar Disorders-Battery for Assessment of Neurocognition. Correlation analyses revealed significant positive associations between self-reflectiveness and speed of processing, attention, working memory, visual learning, and reasoning and problem solving. The subscale self-certainty was negatively correlated to working memory, however, this correlation disappeared when we controlled for confounding variables. No correlations between clinical insight and neurocognition were found. In addition, there was no association between cognitive insight and clinical insight. Better neurocognitive functioning was more related to higher levels of self-reflectiveness than to diminished self-certainty.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.
2017-01-01
Objective The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. Significance These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system. PMID:27064824
Rapid P300 brain-computer interface communication with a head-mounted display
Käthner, Ivo; Kübler, Andrea; Halder, Sebastian
2015-01-01
Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 × 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 × 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely paralyzed persons. PMID:26097447
Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study
2013-01-01
Background Brain-computer interfaces (BCIs) were recently recognized as a method to promote neuroplastic effects in motor rehabilitation. The core of a BCI is a decoding stage by which signals from the brain are classified into different brain-states. The goal of this paper was to test the feasibility of a single trial classifier to detect motor execution based on signals from cortical motor regions, measured by functional near-infrared spectroscopy (fNIRS), and the response of the autonomic nervous system. An approach that allowed for individually tuned classifier topologies was opted for. This promises to be a first step towards a novel form of active movement therapy that could be operated and controlled by paretic patients. Methods Seven healthy subjects performed repetitions of an isometric finger pinching task, while changes in oxy- and deoxyhemoglobin concentrations were measured in the contralateral primary motor cortex and ventral premotor cortex using fNIRS. Simultaneously, heart rate, breathing rate, blood pressure and skin conductance response were measured. Hidden Markov models (HMM) were used to classify between active isometric pinching phases and rest. The classification performance (accuracy, sensitivity and specificity) was assessed for two types of input data: (i) fNIRS-signals only and (ii) fNIRS- and biosignals combined. Results fNIRS data were classified with an average accuracy of 79.4%, which increased significantly to 88.5% when biosignals were also included (p=0.02). Comparable increases were observed for the sensitivity (from 78.3% to 87.2%, p=0.008) and specificity (from 80.5% to 89.9%, p=0.062). Conclusions This study showed, for the first time, promising classification results with hemodynamic fNIRS data obtained from motor regions and simultaneously acquired biosignals. Combining fNIRS data with biosignals has a beneficial effect, opening new avenues for the development of brain-body-computer interfaces for rehabilitation applications. Further research is required to identify the contribution of each modality to the decoding capability of the subject’s hemodynamic and physiological state. PMID:23336819
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L
2016-06-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
Heger, Dominic; Herff, Christian; Schultz, Tanja
2014-01-01
In this paper, we show that multiple operations of the typical pattern recognition chain of an fNIRS-based BCI, including feature extraction and classification, can be unified by solving a convex optimization problem. We formulate a regularized least squares problem that learns a single affine transformation of raw HbO(2) and HbR signals. We show that this transformation can achieve competitive results in an fNIRS BCI classification task, as it significantly improves recognition of different levels of workload over previously published results on a publicly available n-back data set. Furthermore, we visualize the learned models and analyze their spatio-temporal characteristics.
Nambu, Isao; Ebisawa, Masashi; Kogure, Masumi; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro
2013-01-01
The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system. PMID:23437338
Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R
2013-10-01
Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.
Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study.
Luo, Tian-Jian; Lv, Jitu; Chao, Fei; Zhou, Changle
2018-01-01
Action observation (AO) generates event-related desynchronization (ERD) suppressions in the human brain by activating partial regions of the human mirror neuron system (hMNS). The activation of the hMNS response to AO remains controversial for several reasons. Therefore, this study investigated the activation of the hMNS response to a speed factor of AO by controlling the movement speed modes of a humanoid robot's arm movements. Since hMNS activation is reflected by ERD suppressions, electroencephalography (EEG) with BCI analysis methods for ERD suppressions were used as the recording and analysis modalities. Six healthy individuals were asked to participate in experiments comprising five different conditions. Four incremental-speed AO tasks and a motor imagery (MI) task involving imaging of the same movement were presented to the individuals. Occipital and sensorimotor regions were selected for BCI analyses. The experimental results showed that hMNS activation was higher in the occipital region but more robust in the sensorimotor region. Since the attended information impacts the activations of the hMNS during AO, the pattern of hMNS activations first rises and subsequently falls to a stable level during incremental-speed modes of AO. The discipline curves suggested that a moderate speed within a decent inter-stimulus interval (ISI) range produced the highest hMNS activations. Since a brain computer/machine interface (BCI) builds a path-way between human and computer/mahcine, the discipline curves will help to construct BCIs made by patterns of action observation (AO-BCI). Furthermore, a new method for constructing non-invasive brain machine brain interfaces (BMBIs) with moderate AO-BCI and motor imagery BCI (MI-BCI) was inspired by this paper.
The Cluster Variation Method: A Primer for Neuroscientists.
Maren, Alianna J
2016-09-30
Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables , is defined in terms of a single interaction enthalpy parameter ( h ) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.
Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio
2016-10-01
Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.
Information Theoretic Extraction of EEG Features for Monitoring Subject Attention
NASA Technical Reports Server (NTRS)
Principe, Jose C.
2000-01-01
The goal of this project was to test the applicability of information theoretic learning (feasibility study) to develop new brain computer interfaces (BCI). The difficulty to BCI comes from several aspects: (1) the effective data collection of signals related to cognition; (2) the preprocessing of these signals to extract the relevant information; (3) the pattern recognition methodology to detect reliably the signals related to cognitive states. We only addressed the two last aspects in this research. We started by evaluating an information theoretic measure of distance (Bhattacharyya distance) for BCI performance with good predictive results. We also compared several features to detect the presence of event related desynchronization (ERD) and synchronization (ERS), and concluded that at least for now the bandpass filtering is the best compromise between simplicity and performance. Finally, we implemented several classifiers for temporal - pattern recognition. We found out that the performance of temporal classifiers is superior to static classifiers but not by much. We conclude by stating that the future of BCI should be found in alternate approaches to sense, collect and process the signals created by populations of neurons. Towards this goal, cross-disciplinary teams of neuroscientists and engineers should be funded to approach BCIs from a much more principled view point.
Robust artifactual independent component classification for BCI practitioners.
Winkler, Irene; Brandl, Stephanie; Horn, Franziska; Waldburger, Eric; Allefeld, Carsten; Tangermann, Michael
2014-06-01
EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain-computer interfaces (BCIs). Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.
The Cluster Variation Method: A Primer for Neuroscientists
Maren, Alianna J.
2016-01-01
Effective Brain–Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found. PMID:27706022
A pilot study of cognitive insight and structural covariance in first-episode psychosis.
Kuang, Corin; Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; MacMaster, Frank P; Bray, Signe; Deighton, Stephanie; Addington, Jean
2017-01-01
Cognitive insight is described as a balance between one's self-reflectiveness (recognition and correction of dysfunctional reasoning), and self-certainty (overconfidence). Neuroimaging studies have linked the ventrolateral prefrontal cortex (VLPFC) to cognitive insight in people with psychosis. However, the relationship between cognitive insight and structural connectivity between the VLPFC and other brain areas is unknown. Here, we investigated the modulation of cognitive insight on structural covariance networks involving the VLPFC in a first-episode psychosis sample. Fifteen patients with a first-episode psychosis provided magnetic resonance (MR) scans and completed the Beck Cognitive Insight Scale (BCIS). MR scans were also available for 15 historical controls. Seed-based analysis of structural covariance was conducted using the Mapping Anatomical Correlations Across the Cerebral Cortex (MACACC) methodology, whereby Pearson correlation coefficients were extracted between seed regions in left and right VLPFC and cortical thickness across the brain. Structural covariance maps between groups were compared at each vertex. In first-episode subjects, we evaluated the modulation of BCIS scores on cortical covariance between VLPFC and every other vertex. Findings showed no significant group difference between first-episode psychosis subjects and controls in thickness covariance seeded from left or right VLPFC. However, in first-episode psychosis subjects, a positive association with self-certainty was found in networks seeded from both left and right VLPFC with thickness in medial frontal cortex and right pars triangularis. No significant associations were found for self-reflectiveness. These results suggest that self-certainty, but not self-reflectiveness, positively modulated cortical covariance in a frontal network in patients with a first-episode psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Eilbeigi, Elnaz; Setarehdan, Seyed Kamaledin
2018-05-26
Brain-computer interfaces (BCIs) are a promising tool in neurorehabilitation. The intention to perform a motor action can be detected from brain signals and used to control robotic devices. Most previous studies have focused on the starting of movements from a resting state, while in daily life activities, motions occur continuously and the neural activities correlated to the evolving movements are yet to be investigated. First we investigate the existence of neural correlates of intention to replace an object on the table during a holding phase. Next, we present a new method to extract the movement-related cortical potentials (MRCP) from a single-trial EEG. A novel method called Global optimal constrained ICA (GocICA) is proposed to overcome the limitations of cICA which is implemented based on Particle Swarm Optimization (PSO) and Charged System Search (CSS) techniques. GocICA is then utilized for decoding the intention to grasp and lift and intention to replace movements where the results were compared. It was found that GocICA significantly improves the intention detection performance. Best results in offline detection were obtained with CSS-cICA for both kinds of intentions. Furthermore, pseudo-online decoding showed that GocICA was able to predict both intentions before the onset of related movements with the highest probability. Decoding of the next movement intention during current movement is possible, which can be used to create more natural neuroprostheses. The results demonstrate that GocICA is a promising new algorithm for single-trial MRCP detection which can be used for detecting other types of ERPs such as P300. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact of Short Social Training on Prosocial Behaviors: An fMRI Study.
Lukinova, Evgeniya; Myagkov, Mikhail
2016-01-01
Efficient brain-computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner's Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects.
Impact of Short Social Training on Prosocial Behaviors: An fMRI Study
Lukinova, Evgeniya; Myagkov, Mikhail
2016-01-01
Efficient brain–computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner’s Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects. PMID:27458349
Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features
NASA Astrophysics Data System (ADS)
Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong
2016-12-01
Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ˜80% (peak values above 90%) when using 2 s long data. Significance. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.
Verdière, Kevin J.; Roy, Raphaëlle N.; Dehais, Frédéric
2018-01-01
Monitoring pilot's mental states is a relevant approach to mitigate human error and enhance human machine interaction. A promising brain imaging technique to perform such a continuous measure of human mental state under ecological settings is Functional Near-InfraRed Spectroscopy (fNIRS). However, to our knowledge no study has yet assessed the potential of fNIRS connectivity metrics as long as passive Brain Computer Interfaces (BCI) are concerned. Therefore, we designed an experimental scenario in a realistic simulator in which 12 pilots had to perform landings under two contrasted levels of engagement (manual vs. automated). The collected data were used to benchmark the performance of classical oxygenation features (i.e., Average, Peak, Variance, Skewness, Kurtosis, Area Under the Curve, and Slope) and connectivity features (i.e., Covariance, Pearson's, and Spearman's Correlation, Spectral Coherence, and Wavelet Coherence) to discriminate these two landing conditions. Classification performance was obtained by using a shrinkage Linear Discriminant Analysis (sLDA) and a stratified cross validation using each feature alone or by combining them. Our findings disclosed that the connectivity features performed significantly better than the classical concentration metrics with a higher accuracy for the wavelet coherence (average: 65.3/59.9 %, min: 45.3/45.0, max: 80.5/74.7 computed for HbO/HbR signals respectively). A maximum classification performance was obtained by combining the area under the curve with the wavelet coherence (average: 66.9/61.6 %, min: 57.3/44.8, max: 80.0/81.3 computed for HbO/HbR signals respectively). In a general manner all connectivity measures allowed an efficient classification when computed over HbO signals. Those promising results provide methodological cues for further implementation of fNIRS-based passive BCIs. PMID:29422841
BCI`S domestic automotive replacement battery shipments by channel of distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
Thirteen manufacturing members, of Battery Council International, supplied the shipment figures contained in this report. This Channel of Distribution continues to account for an estimated 97% of the domestic replacement battery industry. This report indicates solely domestic replacement battery shipments for the following battery classifications: passenger car & light commercial; heavy duty commercial; special tractor; marine; general utility and golf car.
Does the Beck Cognitive Insight Scale Predict Response to Cognitive Remediation in Schizophrenia?
Benoit, Audrey; Harvey, Philippe-Olivier; Bherer, Louis; Lepage, Martin
2016-01-01
Cognitive remediation therapy (CRT) has emerged as a viable treatment option for people diagnosed with schizophrenia presenting disabling cognitive deficits. However, it is important to determine which variables can influence response to CRT in order to provide cost-effective treatment. This study's aim was to explore cognitive insight as a potential predictor of cognitive improvement after CRT. Twenty patients with schizophrenia completed a 24-session CRT program involving 18 hours of computer exercises and 6 hours of group discussion to encourage generalization of cognitive training to everyday activities. Pre- and posttest assessments included the CogState Research Battery and the Beck Cognitive Insight Scale (BCIS). Lower self-certainty on the BCIS at baseline was associated with greater improvement in speed of processing (r s = -0.48; p < 0.05) and visual memory (r s = -0.46; p < 0.05). The results of this study point out potential associations between self-certainty and cognitive improvement after CRT, a variable that can easily be measured in clinical settings to help evaluate which patients may benefit most from the intervention. They also underline the need to keep investigating the predictors of good CRT outcomes, which can vary widely between patients.
A new EEG measure using the 1D cluster variation method
NASA Astrophysics Data System (ADS)
Maren, Alianna J.; Szu, Harold H.
2015-05-01
A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.
Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia
2017-01-01
Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p < 0.01) and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points ( p < 0.01). Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT) and 15.8% (FMMA). These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.
Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface
NASA Astrophysics Data System (ADS)
Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.
2016-10-01
Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and interaction between neural adaptation and machine learning are critical to optimizing ECoG BCI performance.
Power, Sarah D; Kushki, Azadeh; Chau, Tom
2011-12-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI) for individuals with severe motor impairments. For the most part, previous research has investigated the development of NIRS-BCIs operating under synchronous control paradigms, which require the user to exert conscious control over their mental activity whenever the system is vigilant. Though functional, this is mentally demanding and an unnatural way to communicate. An attractive alternative to the synchronous control paradigm is system-paced control, in which users are required to consciously modify their brain activity only when they wish to affect the BCI output, and can remain in a more natural, 'no-control' state at all other times. In this study, we investigated the feasibility of a system-paced NIRS-BCI with one intentional control (IC) state corresponding to the performance of either mental arithmetic or mental singing. In particular, this involved determining if these tasks could be distinguished, individually, from the unconstrained 'no-control' state. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while eight able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a six-dimensional feature set, an overall classification accuracy of 71.2% across participants was achieved for the mental arithmetic versus no-control classification problem. While the mental singing versus no-control classification was less successful across participants (62.7% on average), four participants did attain accuracies well in excess of chance, three of which were above 70%. Analyses were performed offline. Collectively, these results are encouraging, and demonstrate the potential of a system-paced NIRS-BCI with one IC state corresponding to either mental arithmetic or mental singing.
Dose-response relationships using brain–computer interface technology impact stroke rehabilitation
Young, Brittany M.; Nigogosyan, Zack; Walton, Léo M.; Remsik, Alexander; Song, Jie; Nair, Veena A.; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek
2015-01-01
Brain–computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 < p < 0.1) negative correlations with LI changes, while therapy frequency did not affect LI. Reductions in LI were then correlated (p ≤ 0.05) with increased SIS Activities of Daily Living scores and improved 9-HPT performance. Therefore, some behavioral changes may be reflected by brain changes sensitive to differences in BCI therapy administration, while others such as SIS Strength may be directly responsive to BCI therapy administration. Data preliminarily suggest that when using BCI in stroke rehabilitation, therapy frequency may be less important than dose and intensity. PMID:26157378
NASA Astrophysics Data System (ADS)
Power, Sarah D.; Kushki, Azadeh; Chau, Tom
2011-10-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI) for individuals with severe motor impairments. For the most part, previous research has investigated the development of NIRS-BCIs operating under synchronous control paradigms, which require the user to exert conscious control over their mental activity whenever the system is vigilant. Though functional, this is mentally demanding and an unnatural way to communicate. An attractive alternative to the synchronous control paradigm is system-paced control, in which users are required to consciously modify their brain activity only when they wish to affect the BCI output, and can remain in a more natural, 'no-control' state at all other times. In this study, we investigated the feasibility of a system-paced NIRS-BCI with one intentional control (IC) state corresponding to the performance of either mental arithmetic or mental singing. In particular, this involved determining if these tasks could be distinguished, individually, from the unconstrained 'no-control' state. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while eight able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a six-dimensional feature set, an overall classification accuracy of 71.2% across participants was achieved for the mental arithmetic versus no-control classification problem. While the mental singing versus no-control classification was less successful across participants (62.7% on average), four participants did attain accuracies well in excess of chance, three of which were above 70%. Analyses were performed offline. Collectively, these results are encouraging, and demonstrate the potential of a system-paced NIRS-BCI with one IC state corresponding to either mental arithmetic or mental singing.
Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F
2016-01-01
In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.
Fei Wang; Yanbin He; Jun Qu; Qiuyou Xie; Qing Lin; Xiaoxiao Ni; Yan Chen; Ronghao Yu; Chin-Teng Lin; Yuanqing Li
2016-08-01
The JFK Coma Recovery Scale-Revised (JFK CRS-R), a behavioral scale, is often used for clinical assessments of patients with disorders of consciousness (DOC), such as patients in a vegetative state. However, there has been a high rate of clinical misdiagnosis with the JFK CRS-R because patients with severe brain injures cannot provide sufficient behavioral responses. It is particularly difficult to evaluate the communication function in DOC patients using the JFK CRS-R because a higher level of behavioral responses is needed for communication assessments than for many other assessments, such as an auditory startle assessment. Brain-computer interfaces (BCIs), which provide control and communication by detecting changes in brain signals, can be used to evaluate patients with DOC without the need of behavioral expressions. In this paper, we proposed an audiovisual BCI system to supplement the JFK CRS-R in assessing the communication ability of patients with DOC. In the graphic user interface of the BCI system, two word buttons ("Yes" and "No" in Chinese) were randomly displayed in the left and right sides and flashed in an alternating manner. When a word button flashed, its corresponding spoken word was broadcast from an ipsilateral headphone. The use of semantically congruent audiovisual stimuli improves the detection performance of the BCI system. Similar to the JFK CRS-R, several situation-orientation questions were presented one by one to patients with DOC. For each question, the patient was required to provide his/her answer by selectively focusing on an audiovisual stimulus (audiovisual "Yes" or "No"). As a case study, we applied our BCI system in a patient with DOC who was clinically diagnosed as being in a minimally conscious state (MCS). According to the JFK CRS-R assessment, this patient was unable to communicate consistently. However, he achieved a high accuracy of 86.5% in our BCI experiment. This result indicates his reliable communication ability and demonstrates the effectiveness of our system.
Electric field encephalography for brain activity monitoring.
Versek, Craig William; Frasca, Tyler; Zhou, Jianlin; Chowdhury, Kaushik; Sridhar, Srinivas
2018-05-11
Objective - We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG. Approach - We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2cm x 2cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state Visually Evoked Potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies. Main results - We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute - though these preliminary results are likely sensitive to inter-subject variations and choice of scalp locations, so require further investigation. Significance - Enhancement of ssVEP SNR using EFEG has the potential to improve visually based BCIs and diagnostic paradigms. The time domain analysis of tVEPF signals shows robust features in the electric field components that might have clinical relevance beyond classical VEP approaches. . © 2018 IOP Publishing Ltd.
Wearable electroencephalography. What is it, why is it needed, and what does it entail?
Casson, Alexander; Yates, David; Smith, Shelagh; Duncan, John; Rodriguez-Villegas, Esther
2010-01-01
The electroencephalogram (EEG) is a classic noninvasive method for measuring a person's brain waves and is used in a large number of fields: from epilepsy and sleep disorder diagnosis to brain-computer interfaces (BCIs). Electrodes are placed on the scalp to detect the microvolt-sized signals that result from synchronized neuronal activity within the brain. Current long-term EEG monitoring is generally either carried out as an inpatient in combination with video recording and long cables to an amplifier and recording unit or is ambulatory. In the latter, the EEG recorder is portable but bulky, and in principle, the subject can go about their normal daily life during the recording. In practice, however, this is rarely the case. It is quite common for people undergoing ambulatory EEG monitoring to take time off work and stay at home rather than be seen in public with such a device. Wearable EEG is envisioned as the evolution of ambulatory EEG units from the bulky, limited lifetime devices available today to small devices present only on the head that can record EEG for days, weeks, or months at a time. Such miniaturized units could enable prolonged monitoring of chronic conditions such as epilepsy and greatly improve the end-user acceptance of BCI systems. In this article, we aim to provide a review and overview of wearable EEG technology, answering the questions: What is it, why is it needed, and what does it entail? We first investigate the requirements of portable EEG systems and then link these to the core applications of wearable EEG technology: epilepsy diagnosis, sleep disorder diagnosis, and BCIs. As a part of our review, we asked 21 neurologists (as a key user group) for their views on wearable EEG. This group highlighted that wearable EEG will be an essential future tool. Our descriptions here will focus mainly on epilepsy and the medical applications of wearable EEG, as this is the historical background of the EEG, our area of expertise, and a core motivating area in itself, but we will also discuss the other application areas. We continue by considering the forthcoming research challenges, principally new electrode technology and lower power electronics, and we outline our approach for dealing with the electronic power issues. We believe that the optimal approach to realizing wearable EEG technology is not to optimize any one part but to find the best set of tradeoffs at both the system and implementation level. In this article, we discuss two of these tradeoffs in detail: investigating the online compression of EEG data to reduce the system power consumption and the optimal method for providing this data compression.
Palmer, Emma C; Gilleen, James; David, Anthony S
2015-08-01
Lack of insight is a commonly observed problem in patients with psychosis and schizophrenia. Clinical insight in patients has been associated with low mood. Cognitive insight is a recently defined concept, relating to the ability to self-reflect and the degree to which patients are over-confident regarding their interpretations of illness-related experiences, and is related to clinical insight. We therefore sought to investigate whether there is a positive relationship between cognitive insight and mood. A literature search identified 17 relevant papers published between 2004 and 2014. Our analysis indicated that there was a small but significant positive correlation between the composite index (CI) of the Beck Cognitive Insight Scale (BCIS) and depression scores, but this was driven by a significant positive relationship between depression and the BCIS self-reflection (SR) sub-scale, where low mood was related to higher SR scores. There was no significant relationship between the self-certainty sub-scale and depression. Post-hoc analysis indicated that different depression scales did not significantly affect the relationship with SR. Our results support the idea that cognitive insight is significantly related to mood in schizophrenia, and the effect size is similar to that between clinical insight and mood. Potential applications of this knowledge into treatment and rehabilitation are discussed and a model of cognitive insight is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Ohtachi, Hiroaki; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi
2018-01-01
Although prior studies identified a relationship between cognitive insight and subjective quality of life (QOL) in patients with schizophrenia, the brain regions mediating this relationship remain unknown. Recent studies have shown that the ventrolateral prefrontal cortex may be particularly important for cognitive insight in individuals with schizophrenia. Here, we examined whether frontotemporal function mediates the relationship between cognitive insight and QOL in 64 participants, including 32 patients with schizophrenia and 32 healthy controls. Cognitive insight was measured using the Beck Cognitive Insight Scale (BCIS), while participants’ subjective QOL was assessed using the Medical Outcomes Study 36-item Short-form Health Survey. Frontotemporal function was evaluated during a verbal fluency task using multichannel near-infrared spectroscopy. Consistent with previous findings, we found that frontotemporal function was impaired in patients with schizophrenia. Interestingly, our data also revealed that the right ventrolateral PFC and the right anterior part of the temporal cortex significantly mediated the relationship between the self-reflectiveness (SR) subscale of the BCIS and subjective QOL. These findings suggest that cognitive insight, particularly SR, is associated with subjective QOL in patients with schizophrenia via right frontotemporal function. The findings of this study provide important insight into a QOL model of schizophrenia, which may guide the development of cost-effective interventions that target frontotemporal function in patients with schizophrenia. PMID:29456514
Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Ohtachi, Hiroaki; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi
2018-01-01
Although prior studies identified a relationship between cognitive insight and subjective quality of life (QOL) in patients with schizophrenia, the brain regions mediating this relationship remain unknown. Recent studies have shown that the ventrolateral prefrontal cortex may be particularly important for cognitive insight in individuals with schizophrenia. Here, we examined whether frontotemporal function mediates the relationship between cognitive insight and QOL in 64 participants, including 32 patients with schizophrenia and 32 healthy controls. Cognitive insight was measured using the Beck Cognitive Insight Scale (BCIS), while participants' subjective QOL was assessed using the Medical Outcomes Study 36-item Short-form Health Survey. Frontotemporal function was evaluated during a verbal fluency task using multichannel near-infrared spectroscopy. Consistent with previous findings, we found that frontotemporal function was impaired in patients with schizophrenia. Interestingly, our data also revealed that the right ventrolateral PFC and the right anterior part of the temporal cortex significantly mediated the relationship between the self-reflectiveness (SR) subscale of the BCIS and subjective QOL. These findings suggest that cognitive insight, particularly SR, is associated with subjective QOL in patients with schizophrenia via right frontotemporal function. The findings of this study provide important insight into a QOL model of schizophrenia, which may guide the development of cost-effective interventions that target frontotemporal function in patients with schizophrenia.
NASA Astrophysics Data System (ADS)
Sousa, Teresa; Amaral, Carlos; Andrade, João; Pires, Gabriel; Nunes, Urbano J.; Castelo-Branco, Miguel
2017-08-01
Objective. The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface (BCI) systems. Here we test the hypothesis that pure visual motion imagery of an external actuator can be used as a tool to achieve three classes of electroencephalographic (EEG) based control, which might be useful in attention disorders. Approach. We hypothesize that different numbers of imagined motion alternations lead to distinctive signals, as predicted by distinct motion patterns. Accordingly, a distinct number of alternating sensory/perceptual signals would lead to distinct neural responses as previously demonstrated using functional magnetic resonance imaging (fMRI). We anticipate that differential modulations should also be observed in the EEG domain. EEG recordings were obtained from twelve participants using three imagery tasks: imagery of a static dot, imagery of a dot with two opposing motions in the vertical axis (two motion directions) and imagery of a dot with four opposing motions in vertical or horizontal axes (four directions). The data were analysed offline. Main results. An increase of alpha-band power was found in frontal and central channels as a result of visual motion imagery tasks when compared with static dot imagery, in contrast with the expected posterior alpha decreases found during simple visual stimulation. The successful classification and discrimination between the three imagery tasks confirmed that three different classes of control based on visual motion imagery can be achieved. The classification approach was based on a support vector machine (SVM) and on the alpha-band relative spectral power of a small group of six frontal and central channels. Patterns of alpha activity, as captured by single-trial SVM closely reflected imagery properties, in particular the number of imagined motion alternations. Significance. We found a new mental task based on visual motion imagery with potential for the implementation of multiclass (3) BCIs. Our results are consistent with the notion that frontal alpha synchronization is related with high internal processing demands, changing with the number of alternation levels during imagery. Together, these findings suggest the feasibility of pure visual motion imagery tasks as a strategy to achieve multiclass control systems with potential for BCI and in particular, neurofeedback applications in non-motor (attentional) disorders.
Michie, Susan; Wood, Caroline E; Johnston, Marie; Abraham, Charles; Francis, Jill J; Hardeman, Wendy
2015-11-01
Meeting global health challenges requires effective behaviour change interventions (BCIs). This depends on advancing the science of behaviour change which, in turn, depends on accurate intervention reporting. Current reporting often lacks detail, preventing accurate replication and implementation. Recent developments have specified intervention content into behaviour change techniques (BCTs) - the 'active ingredients', for example goal-setting, self-monitoring of behaviour. BCTs are 'the smallest components compatible with retaining the postulated active ingredients, i.e. the proposed mechanisms of change. They can be used alone or in combination with other BCTs' (Michie S, Johnston M. Theories and techniques of behaviour change: developing a cumulative science of behaviour change. Health Psychol Rev 2012;6:1-6). Domain-specific taxonomies of BCTs have been developed, for example healthy eating and physical activity, smoking cessation and alcohol consumption. We need to build on these to develop an internationally shared language for specifying and developing interventions. This technology can be used for synthesising evidence, implementing effective interventions and testing theory. It has enormous potential added value for science and global health. (1) To develop a method of specifying content of BCIs in terms of component BCTs; (2) to lay a foundation for a comprehensive methodology applicable to different types of complex interventions; (3) to develop resources to support application of the taxonomy; and (4) to achieve multidisciplinary and international acceptance for future development. Four hundred participants (systematic reviewers, researchers, practitioners, policy-makers) from 12 countries engaged in investigating, designing and/or delivering BCIs. Development of the taxonomy involved a Delphi procedure, an iterative process of revisions and consultation with 41 international experts; hierarchical structure of the list was developed using inductive 'bottom-up' and theory-driven 'top-down' open-sort procedures (n = 36); training in use of the taxonomy (1-day workshops and distance group tutorials) (n = 161) was evaluated by changes in intercoder reliability and validity (agreement with expert consensus); evaluating the taxonomy for coding interventions was assessed by reliability (intercoder; test-retest) and validity (n = 40 trained coders); and evaluating the taxonomy for writing descriptions was assessed by reliability (intercoder; test-retest) and by experimentally testing its value (n = 190). Ninety-three distinct, non-overlapping BCTs with clear labels and definitions formed Behaviour Change Technique Taxonomy version 1 (BCTTv1). BCTs clustered into 16 groupings using a 'bottom-up' open-sort procedure; there was overlap between these and groupings produced by a theory-driven, 'top-down' procedure. Both training methods improved validity (both p < 0.05), doubled the proportion of coders achieving competence and improved confidence in identifying BCTs in workshops (both p < 0.001) but did not improve intercoder reliability. Good intercoder reliability was observed for 80 of the 93 BCTs. Good within-coder agreement was observed after 1 month (p < 0.001). Validity was good for 14 of 15 BCTs in the descriptions. The usefulness of BCTTv1 to report descriptions of observed interventions had mixed results. The developed taxonomy (BCTTv1) provides a methodology for identifying content of complex BCIs and a foundation for international cross-disciplinary collaboration for developing more effective interventions to improve health. Further work is needed to examine its usefulness for reporting interventions. This project was funded by the Medical Research Council Ref: G0901474/1. Funding also came from the Peninsula Collaboration for Leadership in Applied Health Research and Care.
Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.
Maye, Alexander; Zhang, Dan; Engel, Andreas K
2017-07-01
In brain-computer interfaces (BCIs) that use the steady-state visual evoked response (SSVEP), the user selects a control command by directing attention overtly or covertly to one out of several flicker stimuli. The different control channels are encoded in the frequency, phase, or time domain of the flicker signals. Here, we present a new type of SSVEP BCI, which uses only a single flicker stimulus and yet affords controlling multiple channels. The approach rests on the observation that the relative position between the stimulus and the foci of overt attention result in distinct topographies of the SSVEP response on the scalp. By classifying these topographies, the computer can determine at which position the user is gazing. Offline data analysis in a study on 12 healthy volunteers revealed that 9 targets can be recognized with about 95±3% accuracy, corresponding to an information transfer rate (ITR) of 40.8 ± 3.3 b/min on average. We explored how the classification accuracy is affected by the number of control channels, the trial length, and the number of EEG channels. Our findings suggest that the EEG data from five channels over parieto-occipital brain areas are sufficient for reliably classifying the topographies and that there is a large potential to improve the ITR by optimizing the trial length. The robust performance and the simple stimulation setup suggest that this approach is a prime candidate for applications on desktop and tablet computers.
A mechanical mounting system for functional near-infrared spectroscopy brain imaging studies
NASA Astrophysics Data System (ADS)
Coyle, Shirley; Markham, Charles; Lanigan, William; Ward, Tomas
2005-06-01
In this work a mechanical optode mounting system for functional brain imaging with light is presented. The particular application here is a non-invasive optical brain computer interface (BCI) working in the near-infrared range. A BCI is a device that allows a user to interact with their environment through thought processes alone. Their most common use is as a communication aid for the severely disabled. We have recently pioneered the use of optical techniques for such BCI systems rather than the usual electrical modality. Our optical BCI detects characteristic changes in the cerebral haemodynamic responses that occur during motor imagery tasks. On detection of features of the optical response, resulting from localised haemodynamic changes, the BCI translates such responses and provides visual feedback to the user. While signal processing has a large part to play in terms of optimising performance we have found that it is the mechanical mounting of the optical sources and detectors (optodes) that has the greatest bearing on the performance of the system and indeed presents many interesting and novel challenges with regard to sensor placement, depth of penetration, signal intensity, artifact reduction and robustness of measurement. Here a solution is presented that accommodates the range of experimental parameters required for the application as well as meeting many of the challenges outlined above. This is the first time that a concerted study on optode mounting systems for optical BCIs has been attempted and it is hoped this paper may stimulate further research in this area.
Adaptive deep brain stimulation in advanced Parkinson disease.
Little, Simon; Pogosyan, Alex; Neal, Spencer; Zavala, Baltazar; Zrinzo, Ludvic; Hariz, Marwan; Foltynie, Thomas; Limousin, Patricia; Ashkan, Keyoumars; FitzGerald, James; Green, Alexander L; Aziz, Tipu Z; Brown, Peter
2013-09-01
Brain-computer interfaces (BCIs) could potentially be used to interact with pathological brain signals to intervene and ameliorate their effects in disease states. Here, we provide proof-of-principle of this approach by using a BCI to interpret pathological brain activity in patients with advanced Parkinson disease (PD) and to use this feedback to control when therapeutic deep brain stimulation (DBS) is delivered. Our goal was to demonstrate that by personalizing and optimizing stimulation in real time, we could improve on both the efficacy and efficiency of conventional continuous DBS. We tested BCI-controlled adaptive DBS (aDBS) of the subthalamic nucleus in 8 PD patients. Feedback was provided by processing of the local field potentials recorded directly from the stimulation electrodes. The results were compared to no stimulation, conventional continuous stimulation (cDBS), and random intermittent stimulation. Both unblinded and blinded clinical assessments of motor effect were performed using the Unified Parkinson's Disease Rating Scale. Motor scores improved by 66% (unblinded) and 50% (blinded) during aDBS, which were 29% (p = 0.03) and 27% (p = 0.005) better than cDBS, respectively. These improvements were achieved with a 56% reduction in stimulation time compared to cDBS, and a corresponding reduction in energy requirements (p < 0.001). aDBS was also more effective than no stimulation and random intermittent stimulation. BCI-controlled DBS is tractable and can be more efficient and efficacious than conventional continuous neuromodulation for PD. Copyright © 2013 American Neurological Association.
Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review.
Jeunet, Camille; Lotte, Fabien; Batail, Jean-Marie; Philip, Pierre; Micoulaud Franchi, Jean-Arthur
2018-05-15
In their recent paper, Alkoby et al. (2017) provide the readership with an extensive and very insightful review of the factors influencing NeuroFeedback (NF) performance. These factors are drawn from both the NF literature and the Brain-Computer Interface (BCI) literature. Our short review aims to complement Alkoby et al.'s review by reporting recent additions to the BCI literature. The object of this paper is to highlight this literature and discuss its potential relevance and usefulness to better understand the processes underlying NF and further improve the design of clinical trials assessing NF efficacy. Indeed, we are convinced that while NF and BCI are fundamentally different in many ways, both the BCI and NF communities could reach compelling achievements by building upon one another. By reviewing the recent BCI literature, we identified three types of factors that influence BCI performance: task-specific, cognitive/motivational and technology-acceptance-related factors. Since BCIs and NF share a common goal (i.e., learning to modulate specific neurophysiological patterns), similar cognitive and neurophysiological processes are likely to be involved during the training process. Thus, the literature on BCI training may help (1) to deepen our understanding of neurofeedback training processes and (2) to understand the variables that influence the clinical efficacy of NF. This may help to properly assess and/or control the influence of these variables during randomized controlled trials. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Real-time decoding of the direction of covert visuospatial attention
NASA Astrophysics Data System (ADS)
Andersson, Patrik; Ramsey, Nick F.; Raemaekers, Mathijs; Viergever, Max A.; Pluim, Josien P. W.
2012-08-01
Brain-computer interfaces (BCIs) make it possible to translate a person’s intentions into actions without depending on the muscular system. Brain activity is measured and classified into commands, thereby creating a direct link between the mind and the environment, enabling, e.g., cursor control or navigation of a wheelchair or robot. Most BCI research is conducted with scalp EEG but recent developments move toward intracranial electrodes for paralyzed people. The vast majority of BCI studies focus on the motor system as the appropriate target for recording and decoding movement intentions. However, properties of the visual system may make the visual system an attractive and intuitive alternative. We report on a study investigating feasibility of decoding covert visuospatial attention in real time, exploiting the full potential of a 7 T MRI scanner to obtain the necessary signal quality, capitalizing on earlier fMRI studies indicating that covert visuospatial attention changes activity in the visual areas that respond to stimuli presented in the attended area of the visual field. Healthy volunteers were instructed to shift their attention from the center of the screen to one of four static targets in the periphery, without moving their eyes from the center. During the first part of the fMRI-run, the relevant brain regions were located using incremental statistical analysis. During the second part, the activity in these regions was extracted and classified, and the subject was given visual feedback of the result. Performance was assessed as the number of trials where the real-time classifier correctly identified the direction of attention. On average, 80% of trials were correctly classified (chance level <25%) based on a single image volume, indicating very high decoding performance. While we restricted the experiment to five attention target regions (four peripheral and one central), the number of directions can be higher provided the brain activity patterns can be distinguished. In summary, the visual system promises to be an effective target for BCI control.
Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P
2012-03-01
Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.
Truccolo, Wilson; Vargas-Irwin, Carlos E.; Donoghue, John P.
2012-01-01
Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control. PMID:22157115
3D hand motion trajectory prediction from EEG mu and beta bandpower.
Korik, A; Sosnik, R; Siddique, N; Coyle, D
2016-01-01
A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R~0.45) compared to the standard PTS model (R~0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs. © 2016 Elsevier B.V. All rights reserved.
User-centered design in brain-computer interfaces-a case study.
Schreuder, Martijn; Riccio, Angela; Risetti, Monica; Dähne, Sven; Ramsay, Andrew; Williamson, John; Mattia, Donatella; Tangermann, Michael
2013-10-01
The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies on both categories, the visual paradigm could be used with lower cognitive workload. Besides attention and working memory, several other neurophysiological and -psychological indicators - and the role they play in the BCIs at hand - are discussed. The user's performance on the first BCI paradigm would typically have excluded her from further ERP-based BCI studies. However, this study clearly shows that, with the numerous paradigms now at our disposal, the pursuit for a functioning BCI system should not be stopped after an initial failed attempt. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1997-09-01
Leader Brian S. Cohen Michael B. Marks mom m fanC QUALITY DJBPECTED 1 This work was conducted under IDA’S independent research program. The...addition to novel resonator structures. This DTO supports F-22 radar and EW, GBR, GEN -X, GPS, CEC, B-6 MILSTAR, Scamp, Longbow, BCIS, SADARM...generator set for use in the Gen II and Hunter Sensor Suite ATDs in FY98; and demonstrate liquid-fueled fuel cell in FY99. B.1.13 Power Control and
Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan
2018-01-01
The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.
Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J
2016-03-01
The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.
Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy
Norman, Sumner L.; Dennison, Mark; Wolbrecht, Eric; Cramer, Steven C.; Srinivasan, Ramesh; Reinkensmeyer, David J.
2017-01-01
Brain-computer interfacing is a technology that has the potential to improve patient engagement in robot-assisted rehabilitation therapy. For example, movement intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic assistance for movement. Here we investigated how ERD changed as a function of audio-visual stimuli, overt movement from the participant, and robotic assistance. Twelve unimpaired subjects played a computer game designed for rehabilitation therapy with their fingers using the FINGER robotic exoskeleton. In the game, the participant and robot matched movement timing to audio-visual stimuli in the form of notes approaching a target on the screen set to the consistent beat of popular music. The audio-visual stimulation of the game alone did not cause ERD, before or after training. In contrast, overt movement by the subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD was also present when the subjects remained passive and the robot moved their fingers to play the game. This ERD occurred in anticipation of the passive finger movement with similar onset timing as for the overt movement conditions. These results demonstrate that ERD can be contingent on expectation of robotic assistance; that is, the brain generates an anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a caveat that should be considered in designing BCIs for enhancing patient effort in roboticallyassisted therapy. PMID:26891487
Müller-Putz, G R; Schwarz, A; Pereira, J; Ofner, P
2016-01-01
In this chapter, we give an overview of the Graz-BCI research, from the classic motor imagery detection to complex movement intentions decoding. We start by describing the classic motor imagery approach, its application in tetraplegic end users, and the significant improvements achieved using coadaptive brain-computer interfaces (BCIs). These strategies have the drawback of not mirroring the way one plans a movement. To achieve a more natural control-and to reduce the training time-the movements decoded by the BCI need to be closely related to the user's intention. Within this natural control, we focus on the kinematic level, where movement direction and hand position or velocity can be decoded from noninvasive recordings. First, we review movement execution decoding studies, where we describe the decoding algorithms, their performance, and associated features. Second, we describe the major findings in movement imagination decoding, where we emphasize the importance of estimating the sources of the discriminative features. Third, we introduce movement target decoding, which could allow the determination of the target without knowing the exact movement-by-movement details. Aside from the kinematic level, we also address the goal level, which contains relevant information on the upcoming action. Focusing on hand-object interaction and action context dependency, we discuss the possible impact of some recent neurophysiological findings in the future of BCI control. Ideally, the goal and the kinematic decoding would allow an appropriate matching of the BCI to the end users' needs, overcoming the limitations of the classic motor imagery approach. © 2016 Elsevier B.V. All rights reserved.