Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models
NASA Astrophysics Data System (ADS)
Sommer, Silke
2010-06-01
This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.
NASA Astrophysics Data System (ADS)
Zhang, Xi; Ma, Quanyang; Dai, Yu; Hu, Faping; Liu, Gang; Xu, Zouyuan; Wei, Guobing; Xu, Tiancai; Zeng, Qingwen; Xie, Weidong
2018-01-01
Fiber metal laminates based on magnesium alloys (MgFML) with different surface treatments and different bonding types were tested and analyzed. By using dynamic contact angle measurement and scanning electron microscopy (SEM), it was found that phosphating treatment can significantly improve the surface energy and wettability of magnesium alloy, and the surface energy of phosphated magnesium alloy was approximately 50% higher than that of abraded-only magnesium alloy. The single cantilever beam (SCB) test showed that the interfacial fracture energies of directly bonded MgFMLs based on abraded-only magnesium and abraded + phosphated magnesium were 650 J/m2 and 1030 J/m2, respectively, whereas the interfacial fracture energies of indirectly bonded MgFMLs were 1650 J/m2 and 2260 J/m2, respectively. Phosphating treatment and modified polypropylene interleaf were observed to improve the tensile strength and interfacial fracture toughness of MgFML. In addition, the rougher surface was more conducive to enhance the bonding strength and interfacial fracture toughness of MgFML.
Investigation of interfacial fracture behavior on injection molded parts
NASA Astrophysics Data System (ADS)
Fischer, Matthieu; Ausias, Gilles; Kuehnert, Ines
2016-03-01
In this study the interfacial morphology of different polymers joined by various assembly injection molding (AIM) technologies were discussed. Melt streams were injected successively using tools with core-back or rotation techniques. To compare bulk specimen strength and weld line strength, the fracture behavior of different specimen scales and thin sections were investigated. An in-situ SEM tensile test and a new thin section testing device which is used in polarized (transmitted) light microscopy were used to observe specimen failure. The effects of processing on spherulitic structures were linked to bonding strength and mechanical properties.
NASA Astrophysics Data System (ADS)
Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.
2014-01-01
A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.
NASA Astrophysics Data System (ADS)
Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime
2018-02-01
It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.
Latour, R A; Black, J
1992-05-01
Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.
Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior of DP 780 Steel Sheet
NASA Astrophysics Data System (ADS)
Pal, Tapan Kumar; Bhowmick, Kaushik
2012-02-01
Resistance spot welding characteristics of DP 780 steel was investigated using peel test, microhardness test, tensile shear test, and fatigue test. Tensile shear test provides better spot weld quality than conventional peel test and hardness is not a good indicator of the susceptibility to interfacial fracture. The results of high-cycle fatigue behavior of spot welded DP 780 steel under two different parameters show that at high load low cycle range a significant difference in the S- N curve and almost similar fatigue behavior of spot welds at low load high cycle range are obtained. However, when applied load was converted to stress intensity factor, the difference in the fatigue behavior between welds diminished. Furthermore, a transition in fracture mode, i.e., interfacial and plug and hole-type at about 50% of yield load is observed.
Roles of interfacial reaction on mechanical properties of solder interfaces
NASA Astrophysics Data System (ADS)
Liu, Pilin
This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the interface as the Bi segregants reduced the number of effective Cu vacancy sink sites and enhanced void nucleation at the interface. The Bi segregation was avoided by replacing the Cu metallization with Ni. It was found that Bi developed a concentration gradient in the Ni 3Sn4 during interfacial reaction, with the Bi concentration falling off to zero as the Ni/IMC interface was approached. Therefore, the inhibition of Bi segregation by Ni was due to the inability of Bi to reach Ni/IMC interface.
Bonding measurement -Strength and fracture mechanics approaches.
Anunmana, Chuchai; Wansom, Wiroj
2017-07-26
This study investigated the effect of cross-sectional areas on interfacial fracture toughness and bond strength of bilayered dental ceramics. Zirconia core ceramics were veneered and cut to produce specimens with three different cross-sectional areas. Additionally, monolithic specimens of glass veneer were also prepared. The specimens were tested in tension until fracture at the interface and reported as bond strength. Fracture surfaces were observed, and the apparent interfacial toughness was determined from critical crack size and failure stress. The results showed that cross-sectional area had no effect on the interfacial toughness whereas such factor had a significant effect on interfacial bond strength. The study revealed that cross-sectional area had no effect on the interfacial toughness, but had a significant effect on interfacial bond strength. The interfacial toughness may be a more reliable indicator for interfacial bond quality than interfacial bond strength.
NASA Technical Reports Server (NTRS)
Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)
1992-01-01
Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.
Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eldridge, Jeffrey I.; Setlock, John A.; Gyekenyesi, John Z.
1997-01-01
Zirconia coated sapphire reinforced alumina matrix composites have been tested both after heat treatment to 1400 C and at temperatures ranging from 800 C to 1200 C in. air. Interfacial shear stress has also been measured with fiber pushout tests performed in air at room temperature, 800 C and 1OOO C. Matrix crack spacing was measured for the tensile tested composites and used to estimate interfacial shear stress up to 1200 C. Electron microscopy was used to determine the source of fiber fracture and to study interfacial failure within the composite.
Delamination and debonding of materials
NASA Technical Reports Server (NTRS)
Johnson, W. S. (Editor)
1985-01-01
The general topics consist of stress analysis, mechanical behavior, and fractography/NDI of composite laminates. Papers are presented on a dynamic hybrid finite-element analysis for interfacial cracks in composites, energy release rate during delamination crack growth in composite laminates, matrix deformation and fracture in graphite-reinforced epoxies, and the role of delamination and damage development on the strength of thick notched laminates. In addition, consideration is given to a new ply model for interlaminar stress analysis, a fracture mechanics approach for designing adhesively bonded joints, the analysis of local delaminations and their influence on composite laminate behavior, and moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, O.; Li, Y.; Rabeeh, B.M.
1997-12-01
The effects of interfacial microstructure/thickness on the strength and fatigue behavior of a model four-ply [75]{sub 4} Ti-15V-3Al-3Cr-3Sn/SiC (SCS-6) composite are examined in this article. Interfacial microstructure was controlled by annealing at 815 C for 10, 50, or 100 hours. The reaction layer and coating thickness were observed to increase with increasing annealing duration. Damage initiation/propagation mechanisms were examined in as-received material and composites annealed at 815 C for 10 and 100 hours. Fatigue behavior was observed to be dependent upon the stress amplitude. At high stress amplitudes, the failure was dominated by overload phenomena. However, at all stress levels,more » fatigue crack initiation occurred by early debonding and matrix deformation by stress-induced precipitation. This was followed by matrix crack growth and fiber fracture prior to the onset of catastrophic failure. Matrix shear failure modes were also observed on the fracture surfaces in addition to fatigue striations in the matrix. Correlations were also established between the observed damage modes and acoustic emission signals that were detected under monotonic and cyclic loading conditions.« less
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1979-01-01
Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.
An improved interfacial bonding model for material interface modeling
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2016-01-01
An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343
Design for progressive fracture in composite shell structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Murthy, Pappu L. N.
1992-01-01
The load carrying capability and structural behavior of composite shell structures and stiffened curved panels are investigated to provide accurate early design loads. An integrated computer code is utilized for the computational simulation of composite structural degradation under practical loading for realistic design. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Progressive fracture investigations providing design insight for several classes of composite shells are presented. Results demonstrate the significance of local defects, interfacial regions, and stress concentrations on the structural durability of composite shells.
Adhesion and interfacial fracture toughness between hard and soft materials
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Wolf, Kurt; Orana, Argjenta; Fennimore, Roy; Zong, Zong; Meng, Juan; Papandreou, George; Maryanoff, Cynthia; Soboyejo, Wole
2008-11-01
This paper presents the results of a combined experimental and theoretical study of adhesion between hard and soft layers that are relevant to medical devices such as drug-eluting stents and semiconductor applications. Brazil disk specimens were used to measure the interfacial fracture energies between model parylene C and 316L stainless steel over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.
Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-11-01
Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao
2017-01-01
AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity. PMID:29120374
Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao
2017-11-09
AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.
Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria
NASA Technical Reports Server (NTRS)
Chow, W-T.; Wang, L.; Atluri, S. N.
1998-01-01
This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1987-01-01
An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.
High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures
NASA Astrophysics Data System (ADS)
Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor
2015-04-01
Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.
Fracture behavior of the Space Shuttle thermal protection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komine, A.; Kobayashi, A.S.
1983-09-01
Stable crack-growth and fracture-toughness experiments were conducted using precracked specimens machined from LI-900 reusable surface insulation (RSI) tiles of the Space Shuttle thermal protection system (TPS) at room temperature. Similar fracture experiments were conducted on fracture specimens with preexisting cracks at the interface of the tile and the strain isolation pad (SIP). Stable crack growth was not observed in the LI-900 tile fracture specimens which had a fracture toughness of 12.0 kPa sq rt of m. The intermittent subcritical crack growth at the tile-pad interface of the fracture specimens was attributed to successive local pull-outs due to tensile overload inmore » the LI-900 tile and cannot be characterized by linear elastic fracture mechanics. No subcritical interfacial crack growth was observed in the fracture specimens with densified LI-900 tiles where brittle fracture initiated at an interior point away from the densification. 11 references.« less
Adhesion, friction and micromechanical properties of ceramics
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1988-01-01
The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.
1990-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Controlling Interfacial Separation in Porous Structures by Void Patterning
NASA Astrophysics Data System (ADS)
Ghareeb, Ahmed; Elbanna, Ahmed
Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.
Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu
2015-01-01
Objective A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. Methods The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37 °C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55 °C followed by 2-month aging at 37 °C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. Results The baseline and long-term GC for graded zirconia was 2–3 and 8 times that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. Significance The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. PMID:26365987
Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.
2017-08-21
In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.
In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing
Ge, Ting; Grest, Gary S.; Robbins, Mark O.
2014-09-26
Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less
Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.
Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K
2014-08-13
Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.
NASA Astrophysics Data System (ADS)
Rathod, Dinesh W.; Pandey, Sunil; Singh, P. K.; Kumar, Suranjit
2017-09-01
In present study, dissimilar metal weld (DMW) joints between SA508Gr.3cl.1 ferritic steel and SS304LN pipes were prepared using Inconel 82/182, and Inconel 52/152 consumables. Metallurgical properties and their influence on fracture toughness of weldment regions and interfacial regions could play a significant role in integrity assessment of these joints. Ni-based consumables exhibit complex metallurgical properties at interfacial regions. The metallurgical characterization and fracture toughness studies of Inconel 82/182 and Inconel 52/152 joints have been carried out for determining the optimum consumable for DMW joint requirements and the effect of microstructure on fracture toughness in weldment regions. The present codes and procedures for integrity assessment of DMW joints have not given due considerations of metallurgical properties. The requirements for metallurgical properties by considering their effect on fracture toughness properties in integrity assessment have been discussed for reliable analysis. Inconel 82/182 is preferred over Inconel 52/152 joints owing to favorable metallurgical and fracture toughness properties across the interfacial and weldment regions.
Mechanical behavior of glass and Blackglas{reg_sign} ceramic matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawovy, R.H.; Kampe, S.L.; Curtin, W.A.
Room temperature tensile tests are reported on two low-cost ceramic matrix composite materials, comprised of matrices of Blackglas{reg_sign} and a proprietary glass composition each reinforced with Nicalon{reg_sign} SiC-based fibers. The measured mechanical behaviors, supplemented by post-fracture analysis of fiber pullout and fiber fracture mirrors, are compared in detail to the performance predicted theoretically. This allows for an assessment of the roles of the matrix, fiber strength, residual stresses, fiber geometry, and the fiber/matrix interfacial properties in determining mechanical response. The Blackglas{reg_sign} matrix cracks extensively during processing, and so the mechanical response is controlled by the deformation and fracture of themore » fiber bundle. The interfacial sliding resistance, {tau}, is determined to be {approx} 17 MPa and the in-situ (post-processed) fiber characteristic strength, {sigma}{sub c} is found to be {approx} 2.0 GPa, both similar to values reported in the literature for Nicalon{reg_sign}/CAS-glass systems. For the glass matrix, the unidirectional and cross-ply materials show marked differences in mechanical behavior. In the cross-ply composites, {tau} {approx} 14 MPa and {sigma}{sub c} {approx} 2.9 GPa; in the unidirectional variants, these values were 1.7 MPa and 1.6 GPa, respectively. With these data and other derived micromechanical parameters, the stress-strain and failure point of these materials was predicted using existing models, and excellent agreement with the experiments was obtained. These materials thus perform as expected given the in-situ fiber and interface properties. Notably, the cross-ply glass matrix composites exhibit high fiber strength retention and hence show tensile strengths that are better than other Nicalon{reg_sign}-based materials tested to date.« less
Adhesion, friction, and wear behavior of clean metal-ceramic couples
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.
Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix
NASA Astrophysics Data System (ADS)
Zacharda, V.; Němeček, J.; Štemberk, P.
2017-09-01
The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.
The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM
NASA Astrophysics Data System (ADS)
Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa
2008-06-01
This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.
Bioinspired design and interfacial failure of biomedical systems
NASA Astrophysics Data System (ADS)
Rahbar, Nima
The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture is investigated using Brazil-nut specimens. The kinking in-and-out of the interface that occurs between glass/cement and zirconia/cement interfaces, is also shown to be consistent with predictions from a microstructure-based finite element model. The predictions are later verified using focused ion beam and scanning electron microscopy images. Finally, the adhesion between layers that are relevant to drug-eluting stents is explored. Brazil disk specimens were used to measure the interfacial fracture energies between the layers of a model drug eluting stent over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.
An algorithm for simulating fracture of cohesive-frictional materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nukala, Phani K; Sampath, Rahul S; Barai, Pallab
Fracture of disordered frictional granular materials is dominated by interfacial failure response that is characterized by de-cohesion followed by frictional sliding response. To capture such an interfacial failure response, we introduce a cohesive-friction random fuse model (CFRFM), wherein the cohesive response of the interface is represented by a linear stress-strain response until a failure threshold, which is then followed by a constant response at a threshold lower than the initial failure threshold to represent the interfacial frictional sliding mechanism. This paper presents an efficient algorithm for simulating fracture of such disordered frictional granular materials using the CFRFM. We note that,more » when applied to perfectly plastic disordered materials, our algorithm is both theoretically and numerically equivalent to the traditional tangent algorithm (Roux and Hansen 1992 J. Physique II 2 1007) used for such simulations. However, the algorithm is general and is capable of modeling discontinuous interfacial response. Our numerical simulations using the algorithm indicate that the local and global roughness exponents ({zeta}{sub loc} and {zeta}, respectively) of the fracture surface are equal to each other, and the two-dimensional crack roughness exponent is estimated to be {zeta}{sub loc} = {zeta} = 0.69 {+-} 0.03.« less
NASA Astrophysics Data System (ADS)
Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang
2014-01-01
The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.
Lin, Liqiang; Zeng, Xiaowei
2015-01-01
The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546
Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength
NASA Technical Reports Server (NTRS)
Atkins, A. G.
1974-01-01
The high tensile strength characteristic of strong interfacial filament/matrix bonding can be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of high and low shear stress (and low and high toughness). Such weak and strong areas can be achieved by appropriate intermittent coating of the fibers. An analysis is presented for toughness and strength which demonstrates, in broad terms, the effects of varying the coating parameters of concern. Results show that the toughness of interfaces is an important parameter, differences in which may not be shown up in terms of interfacial strength. Some observations are made upon methods of measuring the components of toughness in composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAdams, Brian J.; Pearson, Raymond A.
With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believedmore » to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub-critical load levels. The results display an interfacial strength ranking similar to that observed during monotonic testing. The fatigue results indicate that monotonic fracture mechanics testing may be an adequate screening tool to help predict cyclic underfill failure; however lifetime data is required to predict reliability.« less
NASA Astrophysics Data System (ADS)
Seo, Wonil; Kim, Kyoung-Ho; Kim, Young-Ho; Yoo, Sehoon
2018-01-01
The growth of interfacial intermetallic compound and the brittle fracture behavior of Sn-3.0Ag-0.5-Cu solder (SAC305) joints on electroless nickel immersion gold (ENIG) surface finish have been investigated using Ni-P plating solution at temperatures from 75°C to 85°C and fixed pH of 4.5. SAC305 solder balls with diameter of 450 μm were mounted on the prepared ENIG-finished Cu pads and reflowed with peak temperature of 250°C. The interfacial intermetallic compound (IMC) thickness after reflow decreased with increasing Ni-P plating temperature. After 800 h of thermal aging, the IMC thickness of the sample prepared at 85°C was higher than for that prepared at 75°C. Scanning electron microscopy of the Ni-P surface after removal of the Au layer revealed a nodular structure on the Ni-P surface. The nodule size of the Ni-P decreased with increasing Ni-P plating temperature. The Cu content near the IMC layer increased to 0.6 wt.%, higher than the original Cu content of 0.5 wt.%, indicating that Cu diffused from the Cu pad to the solder ball through the Ni-P layer at a rate depending on the nodule size. The sample prepared at 75°C with thicker interfacial IMC showed greater high-speed shear strength than the sample prepared at 85°C. Brittle fracture increased with decreasing Ni-P plating temperature.
Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends.
Taguet, Aurélie; Bureau, Martin N; Huneault, Michel A; Favis, Basil D
2014-12-19
The mechanical behavior of polymer blends containing 80 wt% of HDPE and 20 wt% of TPS and compatibilized with HDPE-g-MA grafted copolymer was investigated. Unmodified HDPE/TPS blends exhibit high fracture resistance, however, the interfacial modification of those blends by addition of HDPE-g-MA leads to a dramatic drop in fracture resistance. The compatibilization of HDPE/TPS blends increases the surface area of TPS particles by decreasing their size. It was postulated that the addition of HDPE-g-MA induces a reaction between maleic anhydride and hydroxyl groups of the glycerol leading to a decrease of the glycerol content in the TPS phase. This phenomenon increases the stiffness of the modified TPS particles and stiffer TPS particles leading to an important reduction in toughness and plastic deformation, as measured by the EWF method. It is shown that the main toughening mechanism in HDPE/TPS blends is shear-yielding. This article demonstrates that stiff, low diameter TPS particles reduce shear band formation and consequently decrease the resistance to crack propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Davide, Apicella; Raffaella, Aversa; Marco, Tatullo; Michele, Simeone; Syed, Jamaluddin; Massimo, Marrelli; Marco, Ferrari; Antonio, Apicella
2015-12-01
To quantify the influence of fracture geometry and restorative materials rigidity on the stress intensity and distribution of restored fractured central maxillary incisors (CMI) with particular investigation of the adhesive interfaces. Ancillary objectives are to present an innovative technology to measure the in vivo strain state of sound maxillary incisors and to present the collected data. A validation experimental biomechanics approach has been associated to finite element analysis. FEA models consisted of CMI, periodontal ligament and the corresponding alveolar bone process. Three models were created representing different orientation of the fracture planes. Three different angulations of the fracture plane in buccal-palatal direction were modeled: the fracture plane perpendicular to the long axis in the buccal-palatal direction (0°); the fracture plane inclined bucco-palatally in apical-coronal direction (-30°); the fracture plane inclined palatal-buccally in apical-coronal direction (+30°). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 50N force was applied on the buccal aspect of the CMI models. Ten patients were selected and subjected to the strain measurement of CMI under controlled loading conditions. The main differences were noticed in the middle and incisal thirds of incisors crowns, due to the presence of the incisal portion restoration. The stress intensity in -30° models is increased in the enamel structure close to the restoration, due to a thinning of the remaining natural tissues. The rigidity of the restoring material slightly reduces such phenomenon. -30° model exhibits the higher interfacial stress in the adhesive layer with respect to +30° and 0° models. The lower stress intensity was noticed in the 0° models, restoration material rigidity did not influenced the interfacial stress state in 0° models. On the contrary, material rigidity influenced the interfacial stress state in +30° and -30° models, higher rigidity restoring materials exhibits lower interfacial stress with respect to low rigidity materials. Fracture planes inclined palatal-buccally in apical-coronal direction (+30°) reduce the interfacial stress intensity and natural tissues stress intensity with respect to the other tested configurations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fracture Micromechanics of Intermetallic and Ceramic Matrix Continuous Fiber Composites
1991-05-01
mechanical properties of titanium matrix composites, but much less information has been published. Only data in the published literature is referenced in...1984, pp. 1931-1940. 18. C.J. Yang, S.M. Jeng and J.-M. Yang " Interfacial properties measurements for SiC fiber-reinforced titanium alloy composites...Analyses of these parameters allowed a determination of interfacial shear strength. Fracture mechanics was used to correlate the micromechanical
Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint
NASA Astrophysics Data System (ADS)
Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo
2011-09-01
Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.
NASA Technical Reports Server (NTRS)
Kim, W. M.; Koczak, M. J.; Lawley, A.
1979-01-01
The microstructural and interface stability of FPalpha-Al203/Al-Li composites are investigated as a function of isothermal exposure at 500 C or thermal cycling between 140 and 500 C with hold time at Tmax. Interfacial morphology, growth kinetics, crystal structure, and composition of interfacial reaction products are characterized. Strength is monitored in the transverse orientation, and fracture mechanics is analyzed in terms of interface reaction products. The interfacial reaction product in FP/Al is Li2O.5Al2O3. Significant fiber-matrix reaction occurs during fabrication. The number of thermal cycles rather than total time at Tmax is the determining factor in strength degradation, thermal cycling giving rise to voids at the fiber-matrix interface. Extensive interface failures occur at composite fracture stresses below about 128 MPa; above this stress level failure is attributed to ductile matrix fracture.
Effects of H content on the tensile properties and fracture behavior of SA508-III steel
NASA Astrophysics Data System (ADS)
Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan
2015-08-01
SA508-III steel was charged with different hydrogen (H) contents using a high-pressure thermal charging method to study the effects of H content on the tensile properties and evaluate the H embrittlement behavior of the steel. The results indicate that the ultimate tensile strength remains nearly unchanged with the addition of H. In contrast, the yielding strength slightly increases, and the elongation significantly decreases with increasing H content, especially at concentrations exceeding 5.6 × 10-6. On the basis of fractographic analysis, it is clear that the addition of H changes the fracture mode from microvoid coalescence to a mixture of river patterns and dimples. Carbides are strong traps for H; thus, the H atoms easily migrate in the form of Cottrell atmosphere toward the carbides following moving dislocations during tensile deformation. In addition, stress-induced H atoms accumulate at the interface between carbides and the matrix after necking under three-dimensional stress, which weakens the interfacial bonding force. Consequently, when the local H concentration reaches a critical value, microcracks occur at the interface, resulting in fracture.
Hooshmand, Tabassom; Rostami, Golriz; Behroozibakhsh, Marjan; Fatemi, Mostafa; Keshvad, Alireza; van Noort, Richard
2012-02-01
To evaluate the effect of HF acid etching and silane treatment on the interfacial fracture toughness of a self-adhesive and two conventional resin-based cements bonded to a lithium disilicate glass ceramic. Lithium disilicate glass ceramic discs were prepared with two different surface preparations consisting of gritblasted with aluminium oxide, and gritblasted and etched with hydrofluoric acid. Ceramic surfaces with a chevron shaped circular hole were treated by an optimized silane treatment followed by an unfilled resin and then three different resin cements (Variolink II, Panavia F2, and Multilink Sprint). Specimens were kept in distilled water at 37°C for 24h and then subjected to thermocycling. The interfacial fracture toughness was measured and mode of failures was also examined. Data were analysed using analysis of variance followed by T-test analysis. No statistically significant difference in the mean fracture toughness values between the gritblasted and gritblasted and etched surfaces for Variolink II resin cement was found (P>0.05). For the gritblasted ceramic surfaces, no significant difference in the mean fracture toughness values between Panavia F2 and Variolink II was observed (P>0.05). For the gritblasted and etched ceramic surfaces, a significantly higher fracture toughness for Panavia F2 than the other cements was found (P<0.05). The interfacial fracture toughness for the lithium disilicate glass ceramic system was affected by the surface treatment and the type of luting agent. Dual-cured resin cements demonstrated a better bonding efficacy to the lithium disilicate glass ceramic compared to the self-adhesive resin cement. The lithium disilicate glass ceramic surfaces should be gritblasted and etched to get the best bond when used with Panavia F2 and Multilink Sprint resin cements, whereas for the Variolink II only gritblasting is required. The best bond overall is achieved with Panavia F2. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.
Qiu, Liewei; Shen, Yiding; Wang, Tao; Wang, Chen
2018-05-15
A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry. Copyright © 2017. Published by Elsevier B.V.
Apparent Interfacial Fracture Toughness of Resin/Ceramic Systems
Della Bona, A.; Anusavice, K.J.; Mecholsky, J.J.
2008-01-01
We suggest that the apparent interfacial fracture toughness (KA) may be estimated by fracture mechanics and fractography. This study tested the hypothesis that the KA of the adhesion zone of resin/ceramic systems is affected by the ceramic microstructure. Lithia disilicate-based (Empress2-E2) and leucite-based (Empress-E1) ceramics were surface-treated with hydrofluoric acid (HF) and/or silane (S), followed by an adhesive resin. Microtensile test specimens (n = 30; area of 1 ± 0.01 mm2) were indented (9.8 N) at the interface and loaded to failure in tension. We used tensile strength (σ) and the critical crack size (c) to calculate KA (KA = Yσc1/2) (Y = 1.65). ANOVA and Weibull analyses were used for statistical analyses. Mean KA (MPa•m1/2) values were: (E1HF) 0.26 ± 0.06; (E1S) 0.23 ± 0.06; (E1HFS) 0.30 ± 0.06; (E2HF) 0.31 ± 0.06; (E2S) 0.13 ± 0.05; and (E2HFS) 0.41 ± 0.07. All fractures originated from indentation sites. Estimation of interfacial toughness was feasible by fracture mechanics and fractography. The KA for the systems tested was affected by the ceramic microstructure and surface treatment. PMID:17062746
Failure processes in soft and quasi-brittle materials with nonhomogeneous microstructures
NASA Astrophysics Data System (ADS)
Spring, Daniel W.
Material failure pervades the fields of materials science and engineering; it occurs at various scales and in various contexts. Understanding the mechanisms by which a material fails can lead to advancements in the way we design and build the world around us. For example, in structural engineering, understanding the fracture of concrete and steel can lead to improved structural systems and safer designs; in geological engineering, understanding the fracture of rock can lead to increased efficiency in oil and gas extraction; and in biological engineering, understanding the fracture of bone can lead to improvements in the design of bio-composites and medical implants. In this thesis, we numerically investigate a wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous microstructures considering a statistical distribution of material properties. The first topic we investigate considers the influence of interfacial interactions on the macroscopic constitutive response of particle reinforced elastomers. When a particle is embedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of the particle; creating a region in the vicinity of each particle (often referred to as an interphase) with distinct properties from those in the bulk elastomer. This interphasial region has been known to exist for many decades, but is primarily omitted in computational investigations of such composites. In this thesis, we present an investigation into the influence of interphases on the macroscopic constitutive response of particle filled elastomers undergoing large deformations. In addition, at large deformations, a localized region of failure tends to accumulate around inclusions. To capture this localized region of failure (often referred to as interfacial debonding), we use cohesive zone elements which follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we present a new, coupled cohesive-friction relation and detail its formulation and implementation. In the process of this investigation, we developed a small library of cohesive elements for use with a commercially available finite element analysis software package. Additionally, in this thesis, we present a series of methods for reducing mesh dependency in two-dimensional dynamic cohesive fracture simulations of quasi-brittle materials. In this setting, cracks are only permitted to propagate along element facets, thus a poorly designed discretization of the problem domain can introduce artifacts into the fracture behavior. To reduce mesh induced artifacts, we consider unstructured polygonal finite elements. A randomly-seeded polygonal mesh leads to an isotropic discretization of the problem domain, which does not bias the direction of crack propagation. However, polygonal meshes tend to limit the possible directions a crack may travel at each node, making this discretization a poor candidate for dynamic cohesive fracture simulations. To alleviate this problem, we propose two new topological operators. The first operator we propose is adaptive element-splitting, and the second is adaptive mesh refinement. Both operators are designed to improve the ability of unstructured polygonal meshes to capture crack patterns in dynamic cohesive fracture simulations. However, we demonstrate that element-splitting is more suited to pervasive fracture problems, whereas, adaptive refinement is more suited to problems exhibiting a dominant crack. Finally, we investigate the use of geometric and constitutive design features to regularize pervasive fragmentation behavior in three-dimensions. Throughout pervasive fracture simulations, many cracks initiate, propagate, branch and coalesce simultaneously. Because of the cohesive element method's unique framework, this behavior can be captured in a regularized manner. In this investigation, unstructuring techniques are used to introduce randomness into a numerical model. The behavior of quasi-brittle materials undergoing pervasive fracture and fragmentation is then examined using three examples. The examples are selected to investigate some of the significant factors influencing pervasive fracture and fragmentation behavior; including, geometric features, loading conditions, and material gradation.
Cho, Yi Je; Lee, Wookjin; Park, Yong Ho
2017-01-01
The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement. PMID:29048346
Cracking and debonding of a thin fiber reinforced concrete overlay : research brief.
DOT National Transportation Integrated Search
2017-03-01
Experimental tests found that the tensile interfacial energy : increased with fiber-reinforcement. Also bond tests indicated : that interfacial fracture occurred through the overlay mixture and : was proportional to the number of fibers which interse...
Requirements of frictional debonding at fiber/matrix interfaces for tough ceramic composites
NASA Astrophysics Data System (ADS)
Hsueh, Chun-Hway
1992-11-01
Optimum toughening of fiber-reinforced ceramic composites requires debonding at fiber/matrix interfaces and subsequent frictional sliding between the fibers and the matrix as the main crack extends through the composite. Criteria of both interfacial debonding vs fiber fracture, and frictional debonding vs frictionless debonding, are illustrated. To achieve interfacial debonding, the ratio of the fiber strength to the interfacial shear strength must exceed a critical value; to achieve a frictional interface after interfacial debonding, the ratio of the interfacial residual clamping stress to the interfacial shear strength must also exceed a critical value. While interfacial debonding is not sensitive to Poisson's effect, the frictional interface is sensitive to Poisson's effect.
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Wei, Yaochi; Horie, Yasuyuki; Zhou, Min
2018-05-01
The design of new materials requires establishment of macroscopic measures of material performance as functions of microstructure. Traditionally, this process has been an empirical endeavor. An approach to computationally predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs) using mesoscale simulations is developed. The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to directly mimic relevant experiments for quantification of statistical variations of material behavior due to inherent material heterogeneities. The particular thresholds and ignition probabilities predicted are expressed in James type and Walker-Wasley type relations, leading to the establishment of explicit analytical expressions for the ignition probability as function of loading. Specifically, the ignition thresholds corresponding to any given level of ignition probability and ignition probability maps are predicted for PBX 9404 for the loading regime of Up = 200-1200 m/s where Up is the particle speed. The predicted results are in good agreement with available experimental measurements. A parametric study also shows that binder properties can significantly affect the macroscopic ignition behavior of PBXs. The capability to computationally predict the macroscopic engineering material response relations out of material microstructures and basic constituent and interfacial properties lends itself to the design of new materials as well as the analysis of existing materials.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-06-18
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.
Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Lovato, M. L.; Clarke, K. D.
We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.
Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture
Liu, C.; Lovato, M. L.; Clarke, K. D.; ...
2017-10-13
We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.
Interfacial self-healing of nanocomposite hydrogels: Theory and experiment
NASA Astrophysics Data System (ADS)
Wang, Qiming; Gao, Zheming; Yu, Kunhao
2017-12-01
Polymers with dynamic bonds are able to self-heal their fractured interfaces and restore the mechanical strengths. It is largely elusive how to analytically model this self-healing behavior to construct the mechanistic relationship between the self-healing properties (e.g., healed interfacial strength and equilibrium healing time) and the material compositions and healing conditions. Here, we take a self-healable nanocomposite hydrogel as an example to illustrate an interfacial self-healing theory for hydrogels with dynamic bonds. In the theory, we consider the free polymer chains diffuse across the interface and reform crosslinks to bridge the interface. We analytically reveal that the healed strengths of nanocomposite hydrogels increase with the healing time in an error-function-like form. The equilibrium self-healing time of the full-strength recovery decreases with the temperature and increases with the nanoparticle concentration. We further analytically reveal that the healed interfacial strength decreases with increasing delaying time before the healing process. The theoretical results quantitatively match with our experiments on nanosilica hydrogels, and also agree well with other researchers' experiments on nanoclay hydrogels. We expect that this theory would open promising avenues for quantitative understanding of the self-healing mechanics of various polymers with dynamic bonds, and offer insights for designing high-performance self-healing polymers.
Jiao, D; Liu, Z Q; Qu, R T; Zhang, Z F
2016-02-01
Crossed-lamellar structure is one of the most common organizations found in mollusk shells and may serve as a natural mimetic model for designing bio-inspired synthetic materials. Nonetheless, the mechanical behaviors and corresponding mechanisms have rarely been investigated for individual macro-layer of such structure. The integrated effects of orientation and hydration also remain unclear. In this study, the mechanical behaviors and their structural dependences of pure crossed-lamellar structure in Saxidomus purpuratus shell were systematically examined by three-point bending and compression tests. Mechanical properties and fracture mechanisms were revealed to depend strongly on the orientation, hydration state and loading condition. Three basic cracking modes of inter-platelet, trans-platelet, and along the interfaces between first-order lamellae were identified, and the interfacial separation was enhanced by hydration. Macroscopic compressive fracture was accomplished through axial splitting during which multiple toughening mechanisms were activated. The competition among different cracking modes was quantitatively evaluated by analyzing their driving stresses and resistances from fundamental mechanics. This study helps to clarify the mechanical behaviors of naturally occurring crossed-lamellar structure, and accordingly, aids in designing new bio-inspired synthetic materials by mimicking it. Copyright © 2015 Elsevier B.V. All rights reserved.
On the identification of cohesive parameters for printed metal-polymer interfaces
NASA Astrophysics Data System (ADS)
Heinrich, Felix; Langner, Hauke H.; Lammering, Rolf
2017-05-01
The mechanical behavior of printed electronics on fiber reinforced composites is investigated. A methodology based on cohesive zone models is employed, considering interfacial strengths, stiffnesses and critical strain energy release rates. A double cantilever beam test and an end notched flexure test are carried out to experimentally determine critical strain energy release rates under fracture modes I and II. Numerical simulations are performed in Abaqus 6.13 to model both tests. Applying the simulations, an inverse parameter identification is run to determine the full set of cohesive parameters.
On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.
Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu
2014-08-01
Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, X.; Xu, W.
2017-11-01
This study presents an investigation on the behavior of adhesive contact between a rigid sphere and an elastic film which is either perfectly bonded (case I) or in frictionless contact (case II) with a rigid substrate. By using linear fracture mechanics, we formulate an convenient semi-analytical approach to develop relations between the applied force, penetration depth and contact radius. Finite element analysis (FEA) is used to verify the relationships. Our results reveal that the interfacial boundary conditions between the film and substrate have distinct effects on the adhesive contact behavior between the sphere and the film. The aim of the present study is to provide an instructive inspiration for controlling adhesion strength of the thin film subject to adhesive contact.
Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao
2017-01-01
As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718. PMID:28772702
Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao
2017-03-25
As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Buckley, Donald H.; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.
1987-01-01
An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.; Buckley, Donald H.
1987-01-01
An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Li, Fenghui; Guo, Fu; Shi, Yaowu
2011-01-01
The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from -25°C to 125°C and -40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.
Experimental study of interfacial fracture toughness in a SiN(x)/PMMA barrier film.
Kim, Yongjin; Bulusu, Anuradha; Giordano, Anthony J; Marder, Seth R; Dauskardt, Reinhold; Graham, Samuel
2012-12-01
Organic/inorganic multilayer barrier films play an important role in the semihermetic packaging of organic electronic devices. With the rise in use of flexible organic electronics, there exists the potential for mechanical failure due to the loss of adhesion/cohesion when exposed to harsh environmental operating conditions. Although barrier performance has been the predominant metric for evaluating these encapsulation films, interfacial adhesion between the organic/inorganic barrier films and factors that influence their mechanical strength and reliability has received little attention. In this work, we present the interfacial fracture toughness of a model organic/inorganic multilayer barrier (SiN(x)-PMMA). Data from four point bending (FPB) tests showed that adhesive failure occurred between the SiN(x) and PMMA, and that the adhesion increased from 4.8 to 10 J/m(2) by using a variety of chemical treatments to vary the surface energy at the interface. Moreover, the adhesion strength increased to 28 J/m(2) by creating strong covalent bonds at the interface. Overall, three factors were found to have the greatest impact on the interfacial fracture toughness which were (a) increasing the polar component of the surface energy, (b) creating strong covalent bonds at the organic/inorganic interface, and (c) by increasing the plastic zone size at the crack tip by increasing the thickness of the PMMA layer.
Martin, Anneke H; Cohen Stuart, Martien A; Bos, Martin A; van Vliet, Ton
2005-04-26
The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, sigma(f), and fracture strain, gamma(f), were determined, as well as the relaxation behavior after macroscopic fracture. The dilatational measurements were performed in a Langmuir trough equipped with an infra-red reflection absorption spectroscopy (IRRAS) accessory. During compression and relaxation of the surface, the surface pressure, Pi, and adsorbed amount, Gamma (determined from the IRRAS spectra), were determined simultaneously. In addition, IRRAS spectra revealed information on conformational changes in terms of secondary structure. Possible correlations between macroscopic film properties and intrinsic stability of the proteins were determined and discussed in terms of molecular dimensions of single proteins and interfacial protein films. Molecular properties involved the area per protein molecule at Pi approximately 0 mN/m (A(0)), A(0)/M (M = molecular weight) and the maximum slope of the Pi-Gamma curves (dPi/dGamma). The differences observed in mechanical properties and relaxation behavior indicate that the behavior of a protein film subjected to large deformation may vary widely from predominantly viscous (yielding) to more elastic (fracture). This transition is also observed in gradual changes in A(0)/M. It appeared that in general protein layers with high A(0)/M have a high gamma(f) and behave more fluidlike, whereas solidlike behavior is characterized by low A(0)/M and low gamma(f). Additionally, proteins with a low A(0)/M value have a low adaptability in changing their conformation upon adsorption at the air/water interface. Both results support the conclusion that the hardness (internal cohesion) of protein molecules determines predominantly the mechanical behavior of adsorbed protein layers.
Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.
Kim, Jong-Woong; Jung, Seung-Boo
2012-04-01
The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.
NASA Astrophysics Data System (ADS)
Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu
2018-01-01
Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.
Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun
2013-01-01
This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths areachieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition. PMID:28809285
Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.
De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart
2013-06-01
To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmauder, S.; Haake, S.; Mueller, W.H.
Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less
Wetting of TiC by Al-Cu alloys and interfacial characterization.
Contreras, A
2007-07-01
The wetting behavior and the interfacial reactions that occurred between molten Al-Cu alloys (1, 4, 8, 20, 33, and 100 wt% Cu) and solid TiC substrates were studied by the sessile drop technique in the temperature range of 800-1130 degrees C. The effect of wetting behavior on the interfacial reaction layer was studied. All the Al-Cu alloys react with TiC at the interface forming an extensive reaction layer. The interface thickness varied with the samples, and depends on the temperature, chemical composition of the alloy and the time of the test. Wetting increases with increasing concentration of copper in the Al-Cu alloy at 800 and 900 degrees C. In contrast, at higher temperature such as 1000 degrees C wetting decreases with increasing copper content. The spreading kinetics and the work of adhesion were evaluated. The high values of activation energies indicated that spreading is not a simple viscosity controlled phenomenon but is a chemical reaction process. The spreading of the aluminum drop is observed to occur according to the formation of Al4C3, CuAl2O4, CuAl2, TiCux mainly, leading to a decreases in the contact angle. As the contact angle decreases the work of adhesion increases with increasing temperature. Al-Cu/TiC assemblies showed cohesive fracture corresponding to a strong interface. However, using pure Cu the adhesion work is poor, and the percentage of cohesion work is also too low (27-34%).
Interfacial Fracture Toughness of Adhesive Resin Cement-Lithium-Disilicate/Resin-Composite Blocks.
Mesmar, Samer; Ruse, N Dorin
2017-09-15
Resin composite blocks (RCB) are advocated as alternative to ceramic blocks (CB). Prior to use, adherence to these materials should characterized. This study aimed to test the null hypothesis (H 0 ) that material and surface treatment combinations do not influence interfacial fracture toughness (K IC ) of a self-cured adhesive resin cement [RelyX Ultimate (RXU)] to RCB or CB, under nonaged and aged conditions. Two RCB, Lava Ultimate (LU) and Enamic (EN), and one CB, IPS e.max Press (EMP) were used. Half-size [(6 × 6 × 6 × 6 mm)] specimens were prepared for EMP (n = 30), EN (n = 30), and LU (n = 60). RCB specimens were prepared by wet cutting/grinding, while CB specimens were pressed. Surfaces of EMP and EN were preconditioned with hydrofluoric acid (5%); surfaces of LU were sandblasted with either 27 μm alumina (LUS) or 30 μm silica-modified alumina Rocatec soft (LUR). All specimens were bonded with Scotchbond Universal adhesive and RXU. Additionally, twenty (4 × 4 × 4 × 8 mm) RXU specimens were prepared. All specimens were stored in water at 37°C and tested after 1 and 60 days. Interfacial K IC was determined with the notchless triangular prism specimen K IC test. Results were analyzed with two-way ANOVA and Scheffé multiple means comparisons (α = 0.05). Preconditioned and selected fractured surfaces were characterized with scanning electron microscopy. At 24 hours, LUS-RXU and LUR-RXU had significantly higher interfacial K IC than EN-RXU and EMP-RXU and were not different from K IC of RXU. Aging lead to a significant decrease in K IC of RXU and interfacial K IC of LUS-RXU, LUR-RXU, and EMP-RXU; interfacial K IC of EN-RXU was not affected. Based on the results, H 0 was rejected. Under the conditions of this study, at 24 hours, interfacial K IC of LUS-RXU and LUR-RXU was superior to EMP-RXU and EN-RXU. Aging in water at 37°C did not affect interfacial K IC of EN-RXU but adversely affected K IC of RXU and the other interfacial K IC . The results suggest that RXU and its adherence to LU and EMP deteriorates upon exposure to water at 37°C. In making clinical decisions related to material selection, practitioners should consider in vitro results. © 2017 by the American College of Prosthodontists.
Distinct Element Method modelling of fold-related fractures in a multilayer sequence
NASA Astrophysics Data System (ADS)
Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard
2017-04-01
Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.
Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.
Her, Shiuh-Chuan; Chien, Pao-Chu
2017-04-13
Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.
Afroze, J D; Abden, M J; Islam, M A
2018-05-01
Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knechtel, M.; Prielipp, H.; Claussen, N.
The rising fracture resistance with crack length in metal-toughened ceramics due to ductile bridging has been discussed from some selected microstructures and metal-ceramic combinations. An intriguing feature of these composites is the influence of interfacial fracture strength. Strong interfacial bonding leads to high geometrical constraint for the metal and high degree of triaxial tension in the metal ligament, thereby increasing the uniaxial yield strength by a factor of 5--7. This in turn increases the closure stress of the metal ligament, but ultimately limits the total plastic dissipation in the ductile reinforcement. The intent of this paper is to provide somemore » insight on the influence of metal ligament size on both fracture toughness and fracture strength. The materials chosen are Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites, both prepared by gas-pressure metal-infiltration of porous alumina preforms. SEM observations of fracture surfaces in conjunction with preliminary TEM and PEELS investigations of the metal-ceramic interfaces are used to explain the trends in mechanical property data.« less
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Honecy, F. S.
1990-01-01
AES depth profiling and a fiber push-out test for interfacial shear-strength determination have been used to ascertain the mechanical/chemical properties of the fiber/matrix interface in SiC-reinforced reaction-bonded Si3N4, with attention to the weak point where interfacial failure occurs. In the cases of both composite fracture and fiber push-outs, the interfacial failure occurred either between the two C-rich coatings that are present on the double-coated SiC fibers, or between the inner C-rich coating and the SiC fiber. Interface failure occurs at points of very abrupt concentration changes.
Friction and wear behavior of glasses and ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.
The dentin-enamel junction and the fracture of human teeth.
Imbeni, V; Kruzic, J J; Marshall, G W; Marshall, S J; Ritchie, R O
2005-03-01
The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness ( approximately 5 to 10 times higher than enamel but approximately 75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.
The dentin-enamel junction and the fracture of human teeth
NASA Astrophysics Data System (ADS)
Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O.
2005-03-01
The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (~5 to 10 times higher than enamel but ~75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.
Self-Assembly Behavior of Pullulan Abietate
NASA Astrophysics Data System (ADS)
Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas
2003-03-01
Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.
NASA Astrophysics Data System (ADS)
Jin, Shicun; Li, Kuang; Li, Jianzhang
2018-07-01
Biopolymers show a broad prospect as an effective alternative to petroleum-based materials. However, assembling biopolymers into the composites with integrated high strength and toughness still remains a great challenge. Herein, we developed a novel and versatile mussel-inspired modification design for tough and high-performance graphene oxide (GO)/soy protein isolate (SPI) nanocomposite films, where the GO nanosheets were modified with poly(dopamine) (PDA) to improve the dispersion of GO nanosheets in SPI matrix and enhance their interfacial adhesion. As expected, at 0.6 wt% of PDA-modified GO (PDG) loading, the tensile strength and toughness of the SPI/PDG films reached 8.87 MPa and 22.82 MJ m-3, respectively, which simultaneously showed 86.34% and 263.95% higher than those of pristine film. The great enhancement of mechanical behaviors was due to the increased fracture line energy and the lack of significant coalescence of microcracks, as well as the strong interfacial adhesion force between peptide chains and PDG nanosheets. The resultant nanocomposite films also exhibited favorable vapor barrier behavior and water-resistance. The proposed method in this paper opens a new avenue for assembling two-dimensional nanosheets into the biopolymer-based composites with integrated high strength and great toughness for a series of innovative future applications.
Bapna, M S; Mueller, H J
1993-01-01
Chevron-notch fracture toughness, diametrical tensile strength and fractography were evaluated for bulk amalgams and for bonds formed between new and 1-day-old amalgams of the same type. Three types of bonded specimens were prepared: 1) by mechanically roughening the 1-day-old amalgam with 600-grit paper; 2) using a new mercury-rich amalgam; and 3) using a bonding resin, either 4-META or a phosphate ester monomer. Similar values in bond properties were obtained with all bonding techniques for two commercial dispersed-phase bonded amalgams, one of which contained palladium; however, bulk fracture toughness of the palladium-containing amalgam was significantly less than for the palladium-free amalgam. This result reveals that the bonding of amalgam to amalgam, at least for these two amalgams, is a surface-related phenomenon, and thus, the traditional reporting of bonding properties as a percentage of bulk properties loses meaning. Short-rod geometry was more representative of the interfacial bond properties since these samples fractured within the interfacial bonds, while diametrical strength samples often fractured slightly away from the interface. The use of bonding resins did not improve bond fracture toughness for either amalgam, while the diametrical strength improved for one of the amalgams. The use of mercury-rich amalgam significantly improved the fracture toughness over all other techniques for one amalgam while proving to be similar to a 600-grit preparation for the second amalgam.(ABSTRACT TRUNCATED AT 250 WORDS)
Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei
2014-01-01
An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.
Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei
2014-01-01
An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10−3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical. PMID:25409507
NASA Astrophysics Data System (ADS)
Yang, Jianlei; Wang, Guofeng; Jiao, Xueyan; Gu, Yibin; Liu, Qing; Li, You
2018-05-01
Spark plasma sintering (SPS) technology was used to current-assisted bond extruded Ti-22Al-25Nb alloy. The effects of bonding temperature (920-980 °C) and bonding time (10-30 min) on the microstructure evolution and shear strength of this alloy were investigated systematically. The temperature distribution in the specimen during the current-assisted bonding process was also analyzed by numerical simulation. It is noted that the highest temperature was obtained at the bonding interface. As the bonding temperature and bonding time increased, the voids in the interface shrank increasingly until they vanished. A complete metallurgical bonding interface could be produced at 960 °C/20 min/10 MPa, exhibiting the highest shear strength of 269.3 MPa. In addition, the shear strength of the bonded specimen depended on its interfacial microstructure. With increased bonding temperature, the fracture mode transformed from the intergranular fracture at the bonding interface to the cleavage fracture in the substrate.
Inclusion models of tensile fracture in fiber-reinforced brittle-matrix composites. Ph.D. Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, W.
1993-12-31
Inclusion models of tensile fracture in fiber-reinforced brittle-matrix composites are proposed in this study. Three stages of matrix cracking including initiation of microcracks, propagation of a bridged crack and multiplication of periodic cracks are modeled using the unique approach - Eshelby`s equivalent inclusion method. Moreover, the interfacial debonding may occur during matrix cracking and is taken into account by the present analysis. After interfacial debonding initiates, the fiber slides against the friction which is assumed to be constant in chapter 2 and chapter 3. However, the fiber-matrix interfaces are assumed to be Coulomb`s friction controlled in chapter 4. Energy releasemore » rate and crack resistance are obtained analytically. From the fracture criterion, the equivalence of energy release rate and crack resistance, the critical applied stress is also obtained. On the critical applied stress the effects of material parameters such as interfacial frictional stress, interfacial surface energy, volume fraction of fibers, misfit strain are evaluated. These evaluations are important for the purpose of material design. Finally, it is attempted in chapter 5 to solve the crack-inhomogeneity interaction problem inhomogeneities. First, the formulation of two inhomogeneities without overlapping is derived in detail. When one of the inhomogeneities is the penny-shape crack and the other one is the ellipsoidal inhomogeneity, the interaction energy between the crack and the applied stress and the energy release rate of the crack are evaluated. Based on the framework of this chapter, one can deal with the real configuration including many inhomogeneities in the similar way. Also, the misfit strains due to thermal mismatch, phase transformation et al. can be included in the present analysis with no difficulty.« less
NASA Astrophysics Data System (ADS)
Yang, Zhenyu; Wang, Dandan; Lu, Zixing; Hu, Wenjun
2016-11-01
Molecular dynamics simulations were performed to investigate the plastic deformation and fracture behaviors of bio-inspired graphene/metal nanocomposites, which have a "brick-and-mortar" nanostructure, consisting of hard graphene single-layers embedded in a soft Ni matrix. The plastic deformation mechanisms of the nanocomposites were analyzed as well as their effects on the mechanical properties with various geometrical variations. It was found that the strength and ductility of the metal matrix can be highly enhanced with the addition of the staggered graphene layers, and the plastic deformation can be attributed to the interfacial sliding, dislocation nucleation, and cracks' combination. The strength of the nanocomposites strongly depends on the length scale of the nanostructure and the interlayer distance as well. In addition, slip at the interface releases the stress in graphene layers, leading to the stress distribution on the graphene more uniform. The present results are expected to contribute to the design of the nanolayered graphene/metal composites with high performance.
Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces
NASA Astrophysics Data System (ADS)
Yuan, Hong; Li, Faping
2010-05-01
In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.
Interfacial behavior of alkaline protease at the air-water and oil-water interfaces
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue
2018-03-01
The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.
Computational Modeling of Interfacial Behaviors in Nanocomposite Materials
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2017-01-01
Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123
Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study
Zhang, Hui; Yu, Rena C.
2016-01-01
It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30∘ and 60∘. Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle. PMID:28773921
Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study.
Zhang, Hui; Yu, Rena C
2016-09-26
It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb's friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.
NASA Astrophysics Data System (ADS)
Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.
2018-02-01
ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Liu, Xiang-Yang
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Li, Nan; Liu, Xiang-Yang
2017-11-03
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.
Effect of Interfacial Microstructures on the Bonding Strength of Sn-3.0Ag-0.5Cu Pb-Free Solder Bump
NASA Astrophysics Data System (ADS)
Kim, Jae-Myeong; Jeong, Myeong-Hyeok; Yoo, Sehoon; Park, Young-Bae
2012-05-01
The effect of interfacial microstructures on the bonding strength of Sn-3.0Ag-0.5Cu Pb-free solder bumps with respect to the loading speed, annealing time, and surface finish was investigated. The shear strength increased and the ductility decreased with increasing shear speed, primarily because of the time-independent plastic hardening and time-dependent strain-rate sensitivity of the solder alloy. The shear strength and toughness decreased for all surface finishes under the high-speed shear test of 500 mm/s as a result of increasing intermetallic compound (IMC) growth and pad interface weakness associated with increased annealing time. The immersion Sn and organic solderability preservative (OSP) finishes showed lower shear strength compared to the electroless nickel immersion gold (ENIG) finish. With increasing annealing time, the ENIG finish exhibited the pad open fracture mode, whereas the immersion Sn and OSP finishes exhibited the brittle fracture mode. In addition, the shear strength of the solder joints was correlated with each fracture mode.
Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites
NASA Astrophysics Data System (ADS)
Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo
A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.
An Investigation of Interfacial Fatigue in Fiber Reinforced Composites
NASA Astrophysics Data System (ADS)
Yanhua, Chen; Zhifei, Shi
2005-09-01
Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.
NASA Technical Reports Server (NTRS)
Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.
2015-01-01
The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT composites.
Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal
NASA Astrophysics Data System (ADS)
Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.
2017-02-01
The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.
Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchins, Karen Isabel
2015-07-01
The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order ofmore » magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.« less
Autonomous self-healing structural composites with bio-inspired design
D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo
2016-01-01
Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382
Autonomous self-healing structural composites with bio-inspired design.
D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K; Saiz, Eduardo
2016-05-05
Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.
Autonomous self-healing structural composites with bio-inspired design
NASA Astrophysics Data System (ADS)
D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo
2016-05-01
Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.; ...
2017-04-25
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
NASA Astrophysics Data System (ADS)
Tze, William Tai-Yin
The overall objective of this dissertation was to gain an understanding of the relationship between interfacial chemistry and the micromechanics of the cellulose-fiber/polymer composites. Regenerated cellulose (lyocell) fibers were treated with amine-, phenylamine-, phenyl-, and octadecyl-silanes, and also styrene-maleic anhydride copolymer. Inverse gas chromatography was conducted to evaluate the modified surfaces and to examine the adsorption behavior of ethylbenzene, a model compound for polystyrene, onto the fibers. Micro-composites were formed by depositing micro-droplets of polystyrene onto single fibers. The fiber was subjected to a tensile strain, and Raman spectroscopy was employed to determine the point-to-point variation of the strain- and stress-sensitive 895 cm-1 band of cellulose along the embedded region. Inverse gas chromatography studies reveal that the Ia-b values, calculated by matching the Lewis acid parameter ( KA) and basic parameter (KB) between polystyrene and different fibers, were closely correlated to the acid-base adsorption enthalpies of ethylbenzene onto the corresponding fibers. Hence, Ia-b was subsequently used as a convenient indicator for fiber/matrix acid-base interaction. The Raman micro-spectroscopic studies demonstrate that the interfacial tensile strain and stress are highest at the edge of the droplet, and these values decline from the edge region to the middle region of the embedment. The maximum of these local strains corresponds to a strain-control fracture of the matrix polymer. The minimum of the local tensile stress corresponds to the extent of fiber-to-matrix load transfer. The slope of the tensile stress profile allows for an estimation of the maximum interfacial shear stress, which is indicative of fiber/polymer (practical) adhesion. As such, a novel micro-Raman tensile technique was established for evaluating the ductile-fiber/brittle-polymer system in this study. The micro-Raman tensile technique provided maximum interfacial shear stress values of 8.0 to 13.8 MPa, ranking functional groups according to their practical adhesion to polystyrene: alkyl < untreated < phenyl = phenylamine = styrene copolymer < amine. Overall, interfacial bonding can be increased by increasing the acid-base interactions (Ia-b) or reducing the chemical incompatibility (Deltadelta) between the fibers and matrix. Therefore, interfacial chemistry can be employed to enhance and predict cellulose-fiber/polymer adhesion to better engineer composite properties and ultimately better utilize bio-resources.
Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints
Huang, Ying; Zhang, Zhijie
2017-01-01
Sn-Bi solder with different Bi content can realize a low-to-medium-to-high soldering process. To obtain the effect of Bi content in Sn-Bi solder on the microstructure of solder, interfacial behaviors in solder joints with Cu and the joints strength, five Sn-Bi solders including Sn-5Bi and Sn-15Bi solid solution, Sn-30Bi and Sn-45Bi hypoeutectic and Sn-58Bi eutectic were selected in this work. The microstructure, interfacial reaction under soldering and subsequent aging and the shear properties of Sn-Bi solder joints were studied. Bi content in Sn-Bi solder had an obvious effect on the microstructure and the distribution of Bi phases. Solid solution Sn-Bi solder was composed of the β-Sn phases embedded with fine Bi particles, while hypoeutectic Sn-Bi solder was composed of the primary β-Sn phases and Sn-Bi eutectic structure from networked Sn and Bi phases, and eutectic Sn-Bi solder was mainly composed of a eutectic structure from short striped Sn and Bi phases. During soldering with Cu, the increase on Bi content in Sn-Bi solder slightly increased the interfacial Cu6Sn5 intermetallic compound (IMC)thickness, gradually flattened the IMC morphology, and promoted the accumulation of more Bi atoms to interfacial Cu6Sn5 IMC. During the subsequent aging, the growth rate of the IMC layer at the interface of Sn-Bi solder/Cu rapidly increased from solid solution Sn-Bi solder to hypoeutectic Sn-Bi solder, and then slightly decreased for Sn-58Bi solder joints. The accumulation of Bi atoms at the interface promoted the rapid growth of interfacial Cu6Sn5 IMC layer in hypoeutectic or eutectic Sn-Bi solder through blocking the formation of Cu6Sn5 in solder matrix and the transition from Cu6Sn5 to Cu3Sn. Ball shear tests on Sn-Bi as-soldered joints showed that the increase of Bi content in Sn-Bi deteriorated the shear strength of solder joints. The addition of Bi into Sn solder was also inclined to produce brittle morphology with interfacial fracture, which suggests that the addition of Bi increased the shear resistance strength of Sn-Bi solder. PMID:28792440
Numerical Simulation of Delamination Growth in Composite Materials
NASA Technical Reports Server (NTRS)
Camanho, P. P.; Davila, C. G.; Ambur, D. R.
2001-01-01
The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.
Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang
2016-12-01
The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu
2018-01-01
Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fractography of the interlaminar fracture of carbon-fibre epoxy composites
NASA Technical Reports Server (NTRS)
Bascom, W. D.; Boll, D. J.; Fuller, B.; Phillips, P. J.
1985-01-01
The failed surfaces of interlaminar fracture (mode I) specimens of AS4/3501-6 were examined using scanning electron microscopy. The principal fracture features were fiber pull-out (bundles and single fibers), hackle markings, and regions of smooth resin fracture. Considerable (30 to 50 percent) relaxation of the deformed resin occurred when the specimens were heated above the matrix glass transition temperature. This relaxation was taken as evidence of extensive shear yielding of the resin during the fracture process. Some of the fractography features are discussed in terms of transverse tensile stresses and peeling stresses acting on the fibers. In some instances these localized stresses focus failure close to the resin-fiber interface, which can be mistakenly interpreted as interfacial failure and low fiber-resin adhesion.
Cavelier, S; Dastjerdi, A K; McKee, M D; Barthelat, F
2018-05-01
The most prominent structural components in bone are collagen and mineral. However, bone additionally contains a substantial amount of noncollagenous proteins (most notably of the SIBLING protein family), some of which may act as cohesive/adhesive "binders" for the composite hybrid collagen/mineral scaffolding, whether in the bulk phase of bone, or at its interfaces. One such noncollagenous protein - osteopontin (OPN) - appears to be critical to the deformability and fracture toughness of bone. In the present study, we used a reconstructed synthetic mineral-OPN-mineral interface, and a biogenic (natural tooth dentin) mineral/collagen-OPN-mineral/collagen interface, to measure the fracture toughness of OPN on mineralized substrates. We used this system to test the hypothesis that OPN crosslinking by the enzyme tissue transglutaminase 2 (TG2) that is found in bone enhances interfacial adhesion to increase the fracture toughness of bone. For this, we prepared double-cantilever beam substrates of synthetic pure hydroxyapatite mineral, and of narwhal dentin, and directly apposed them to one another under different intervening OPN/crosslinking conditions, and fracture toughness was tested using a miniaturized loading stage. The work-of-fracture of the OPN interface was measured for different OPN formulations (monomer vs. polymer), crosslinking states, and substrate composition. Noncrosslinked OPN provided negligible adhesion on pure hydroxyapatite, whereas OPN crosslinking (by the chemical crosslinker glutaraldehyde, and TG2 enzyme) provided strong interfacial adhesion for both hydroxyapatite and dentin using monomeric and polymeric OPN. Pre-coating of the substrate beams with monomeric OPN further improved the adhesive performance of the samples, likely by allowing effective binding of this nascent OPN form to mineral/matrix components, with this pre-attachment providing a protein layer for additional crosslinking between the substrates. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Kotula, P. G.
2010-12-01
Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < ~800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock—thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy’s National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Sapphire reinforced alumina matrix composites
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Setlock, John A.
1994-01-01
Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.
Della-Bona, Alvaro
2005-06-01
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. This analysis is designed to identify mechanisms that promote adhesion of these ceramic-resin systems and an appropriate bond test method to yield relevant adhesion performance data.
Multiscale Multiphysics Caprock Seal Analysis: A Case Study of the Farnsworth Unit, Texas, USA
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; Mozley, P.
2015-12-01
Caprock sealing behavior depends on coupled processes that operate over a variety of length and time scales. Capillary sealing behavior depends on nanoscale pore throats and interfacial fluid properties. Larger-scale sedimentary architecture, fractures, and faults may govern properties of potential "seal-bypass" systems. We present the multiscale multiphysics investigation of sealing integrity of the caprock system that overlies the Morrow Sandstone reservoir, Farnsworth Unit, Texas. The Morrow Sandstone is the target injection unit for an on-going combined enhanced oil recovery-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods include small-to-large scale measurement techniques, including: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; core examinations of sedimentary architecture and fractures; geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set is used as part of a performance assessment methodology. The authors gratefully acknowledge the U.S. Department of Energy's (DOE) National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Best practices for the use of siliceous river gravel in concrete paving.
DOT National Transportation Integrated Search
2009-02-01
Fracture toughness (KIC) value at early ages of concrete was used to represent the interfacial bond between : aggregate and mortar of a variety of coarse aggregates types and concrete mixtures. A fractional factorial design based : on Taguchis ort...
Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.
Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae
2002-08-01
In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.
Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W
2016-01-20
The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.
Molecular mechanics of tropocollagen-hydroxyapatite biomaterials
NASA Astrophysics Data System (ADS)
Dubey, Devendra Kumar
Hard biomaterials such as bone, dentin, and nacre show remarkable mechanical performance and serve as inspiration for development of next generation of composite materials with high strength and toughness. Such materials have primarily an organic phase (e.g. tropocollagen (TC) or chitin) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered arrangement at nanoscopic length scales. Interfacial interactions between the organic phases and the mineral phases and structural effects arising due to the staggered and hierarchical arrangements are identified to be the two most important determinants for high mechanical performance of such biomaterials. Effects of these determinants in such biomaterials are further intertwined with factors such as loading configuration, chemical environment, mineral crystal shape, and residue sequences in polymer chains. Atomistic modeling is a desired approach to investigate such sub nanoscale issues as experimental techniques for investigations at such small scale are still in nascent stage. For this purpose, explicit three dimensional (3D) molecular dynamics (MD) and ab initio MD simulations of quasi-static mechanical deformations of idealized Tropocollagen-Hydroxyapatite (TC-HAP) biomaterials with distinct interfacial arrangements and different loading configurations are performed. Focus is on developing insights into the molecular level mechanics of TC-HAP biomaterials at fundamental lengthscale with emphasis on interface phenomenon. Idealized TC-HAP atomistic models are analyzed for their mechanical strength and fracture failure behavior from the viewpoint of interfacial interactions between TC and HAP and associated molecular mechanisms. In particular, study focuses on developing an understanding of factors such as role of interfacial structural arrangement, hierarchical structure design, influence of water, effect of changes in HAP crystal shape, and mutations in TC molecule on the mechanical strength of TC-HAP biomaterials. In conjunction, a continuum level tension-shear-chain (TSC) model is also implemented to analyze fracture resistance characteristics in TC-HAP nanocomposites. Results and analyses shed light on the failure mechanisms in TC-HAP type nanocomposite systems with a chemo-mechanical understanding of the interfacial interaction between TC and HAP. Analyses show that (1) failure of TC-HAP nanocomposites at nanoscale is predominantly peak strain dependent phenomenon, (2) presence of water in most cases strengthens the TC-HAP biomaterial by acting as a bridge via hydrogen bond mediated crosslinks, (3) TC-HAP nanostructures with plate shaped HAP crystals show higher toughness and stability as compared to TC-HAP nanostructures with needle shaped HAP crystals, and (4) mutations in TC are responsible for Osteogenesis Imperfecta bone disorder in an indirect manner, wherein mutations in TC affect the shape and distribution of mineral phase during growth and nucleation period of bone. Overall study emphasizes that interfacial structural arrangement between polymer phase and mineral phase in TC-HAP and similar nanocomposite biomaterials is an important factor in determining their mechanical strength and should be carefully studied and selected for development of high performance nanocomposite biomaterials. Findings and understandings from this research have significant impact on polymer-ceramic nanocomposite mechanics, biomaterial and biomimetic materials development, and bone fragility disorders related medical science development.
Liao, Lingmin; Wang, Xiao; Fang, Pengfei; Liew, Kim Meow; Pan, Chunxu
2011-02-01
Interface enhancement with carbon nanotubes (CNTs) provides a promising approach for improving shock strength and toughness of glass fiber reinforced plastic (GFRP) composites. The effects of incorporating flame-synthesized CNTs (F-CNTs) into GFRP were studied, including on hand lay-up preparation, microstructural characterization, mechanical properties, fracture morphologies, and theoretical calculation. The experimental results showed that: (1) the impact strength of the GFRP modified by F-CNTs increased by more than 15% over that of the GFRP modified by CNTs from chemical vapor deposition; and (2) with the F-CNT enhancement, no interfacial debonding was observed at the interface between the fiber and resin matrix on the GFRP fracture surface, which indicated strong adhesive strength between them. The theoretical calculation revealed that the intrinsic characteristics of the F-CNTs, including lower crystallinity with a large number of defects and chemical functional groups on the surface, promoted their surface activity and dispersibility at the interface, which improved the interfacial bond strength of GFRP.
Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo
2017-10-25
Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.
Atomic and vibrational origins of mechanical toughness in bioactive cement during setting
Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville
2015-01-01
Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials. PMID:26548704
Effects of Transition Metals on the Grain Boundary Cohesion in Tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Kurtz, Richard J.
2012-04-01
We report on the effects of alloying transition metals on the interfacial cohesion of W {Sigma}27<110>{l_brace}525{r_brace} symmetrical tilt grain boundary (GB). Density-functional-theory calculations show that the effects are related to the sensitivity of the d-orbital's occupation with respect to the atomic environments at the GB. Systematic trends of cleavage energy as a function of the electronic valence of the impurities were observed across different interfacial positions. Segregation formation energies were calculated to study the stability of the substitutional sites. All of the energetically preferred sites also correspond to the positions at which the alloying elements increase the GB cleavage energy.more » For each element, the more stable the configuration, the higher the cleavage energy. This finding is crucial in designing polycrystalline W-alloys with improved fracture toughness. Considering the solubility limit, the results suggest that Ta, Nb, Re, Ru, and Os are potential additives against intergranular fracture.« less
Factors influencing the thermally-induced strength degradation of B/Al composites
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1982-01-01
Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed.
Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying
2016-08-02
In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.
Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong
2010-04-01
The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.
Physical simulation study on the hydraulic fracture propagation of coalbed methane well
NASA Astrophysics Data System (ADS)
Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei
2018-03-01
As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.
Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.
2018-04-01
The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.
Pourdeyhimi, B; Robinson, H H; Schwartz, P; Wagner, H D
1986-01-01
A study of the fracture behaviour of Kevlar 29 reinforced dental cement is undertaken using both linear elastic and nonlinear elastic fracture mechanics techniques. Results from both approaches--of which the nonlinear elastic is believed to be more appropriate--indicate that a reinforcing effect is obtained for the fracture toughness even at very low fibre content. The flexural strength and modulus are apparently not improved, however, by the incorporation of Kevlar 29 fibres in the PMMA cement, probably because of the presence of voids, the poor fibre/matrix interfacial bonding and unsatisfying cement mixing practice. When compared to other PMMA composite cements, the present system appears to be probably more effective than carbon/PMMA, for example, in terms of fracture toughness. More experimental and analytical work is needed so as to optimize the mechanical properties with respect to structural parameters and cement preparation technique.
Direct handling of sharp interfacial energy for microstructural evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Direct handling of sharp interfacial energy for microstructural evolution
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; ...
2014-08-24
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Ruan, Changshun; Hu, Nan; Ma, Yufei; Li, Yuxiao; Liu, Juan; Zhang, Xinzhou; Pan, Haobo
2017-07-28
A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.
Paes, P N G; Bastian, F L; Jardim, P M
2017-09-01
Consider the efficacy of glass infiltration etching (SIE) treatment as a procedure to modify the zirconia surface resulting in higher interfacial fracture toughness. Y-TZP was subjected to 5 different surface treatments conditions consisting of no treatment (G1), SIE followed by hydrofluoric acid treatment (G2), heat treated at 750°C (G3), hydrofluoric acid treated (G4) and airborne-particle abrasion with alumina particles (G5). The effect of surface treatment on roughness was evaluated by Atomic Force Microscopy providing three different parameters: R a , R sk and surface area variation. The ceramic/resin cement interface was analyzed by Fracture Mechanics K I test with failure mode determined by fractographic analysis. Weibull's analysis was also performed to evaluate the structural integrity of the adhesion zone. G2 and G4 specimens showed very similar, and high R a values but different surface area variation (33% for G2 and 13% for G4) and they presented the highest fracture toughness (K IC ). Weibull's analysis showed G2 (SIE) tendency to exhibit higher K IC values than the other groups but with more data scatter and a higher early failure probability than G4 specimens. Selective glass infiltration etching surface treatment was effective in modifying the zirconia surface roughness, increasing the bonding area and hence the mechanical imbrications at the zirconia/resin cement interface resulting in higher fracture toughness (K IC ) values with higher K IC values obtained when failure probability above 20% was expected (Weibull's distribution) among all the experimental groups. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Interfacial toughness of bilayer dental ceramics based on a short-bar, chevron-notch test
Anunmana, Chuchai; Anusavice, Kenneth J.; Mecholsky, John J.
2009-01-01
Objective The objective of this study was to test the null hypothesis that the interfacial toughness of each of two types of bonded core-veneer bilayer ceramics is not significantly different from the apparent fracture toughness of the control monolithic glass veneer. Methods T-shaped short bars of a lithia-disilicate glass-ceramic core (LC) and yttria-stabilized polycrystalline zirconia core ceramic (ZC) were prepared according to the manufacturer's recommendations. V-shaped notches were prepared by using 25-μm-thick palladium foil, leaving the chevron notch area exposed, and the bars were veneered with a thermally compatible glass veneer (LC/GV and ZC/GV). Additionally, we also bonded the glass veneer to itself as a control group (GV/GV). Specimens were kept in distilled water for 30 days before testing in tension. Eight glass veneer bars were prepared for the analysis of fracture toughness test using the indentation-strength technique. Results The mean interfacial toughness of the LC/GV group was 0.69 [0.11] MPa·m1/2, and did not significantly differ from that of the GV/GV control group, 0.74 (0.17) MPa·m1/2 (p > 0.05). However, the difference between the mean interfacial toughness of the ZC/GV group, 0.13 (0.07) MPa·m1/2, and the LC/GV and the GV/GV groups was statistically significant (p<0.05). Significance For bilayer all-ceramic restorations with high-strength core materials, the veneering ceramics are the weakest link in the design of the structure. Since all-ceramic restorations often fail from chipping of veneer layers or crack initiation at the interface, the protective effects of thermal mismatch stresses oral prosthesis design should be investigated. PMID:19818486
NASA Astrophysics Data System (ADS)
Wei, Yaochi; Kim, Seokpum; Horie, Yasuyuki; Zhou, Min
2017-06-01
A computational approach is developed to predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs). The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific damage mechanisms considered include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to mimic relevant experiments for statistical variations of material behavior due to inherent material heterogeneities. The ignition thresholds and corresponding ignition probability maps are predicted for PBX 9404 and PBX 9501 for the impact loading regime of Up = 200 --1200 m/s. James and Walker-Wasley relations are utilized to establish explicit analytical expressions for the ignition probability as a function of load intensities. The predicted results are in good agreement with available experimental measurements. The capability to computationally predict the macroscopic response out of material microstructures and basic constituent properties lends itself to the design of new materials and the analysis of existing materials. The authors gratefully acknowledge the support from Air Force Office of Scientific Research (AFOSR) and the Defense Threat Reduction Agency (DTRA).
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System
NASA Astrophysics Data System (ADS)
Bianculli, Steven J.
In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.
NASA Astrophysics Data System (ADS)
Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.
2018-01-01
A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.
Factors influencing the thermally-induced strength degradation of B/Al composites
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1983-01-01
Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed. Previously announced in STAR as N82-24297
Crack problems involving nonhomogeneous interfacial regions in bonded materials
NASA Technical Reports Server (NTRS)
Erdogan, F.
1990-01-01
Consideration is given to two classes of fracture-related solid mechanics problems in which the model leads to some physically anomalous results. The first is the interface crack problem associated with the debonding process in which the corresponding elasticity solution predicts severe oscillations of stresses and the crack surface displacements vary near the crack tip. The second deals with crack intersecting the interface. The nature of the solutions around the crack tips arising from these problems is reviewed. The rationale for introducing a new interfacial zone model is discussed, its analytical consequences within the context of the two crack-problem classes are described, and some examples are presented.
NASA Technical Reports Server (NTRS)
Clements, L. L.
1986-01-01
Optical microscopy and SEM have been used to examine the tensile failure surfaces of (0-deg)8 T300/5208 graphite-epoxy specimens, and fractography is employed to determine how moisture content and temperature, together with specimen preparation, affect failure modes. A low energy failure morphology is noted in defective specimens; specimens made from nondefective prepregs appeared to exhibit a decrease in flaw sensitivity and increasing strength with either temperature or moisture, although moisture also seemed to increase interfacial debonding between filament and matrix. The combination of temperature and moisture degraded performance by increasing interfacial debonding, and rendering the epoxy more prone to fracture.
Effect of Substrate Compliance on Measuring Delamination Properties of Elastic Thin Foil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.
Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis done also suggests a way for measuring the so-called foundation modulus, whichmore » characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.« less
Effect of Substrate Compliance on Measuring Delamination Properties of Elastic Thin Foil
Liu, C.
2018-03-20
Through the analysis of a model problem, a thin elastic plate bonded to an elastic foundation, we address several issues related to the miniature bulge test for measuring the energy-release rate associated with the interfacial fracture of a bimaterial system, where one of the constituents is a thin foil. These issues include the effect of the substrate compliance on the interpretation of the energy release rate, interfacial strength, and the identification of the boundary of the deforming bulge or the location of the interfacial crack front. The analysis done also suggests a way for measuring the so-called foundation modulus, whichmore » characterizes the property of the substrate. An experimental example, a stainless steel thin foil bonded to an aluminum substrate through hot-isostatic-pressing (HIP), is used to illustrate and highlight some of the conclusions of the model analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.
2011-02-25
The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated thatmore » treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.« less
Song, Bo; Liu, Guanqing; Xu, Rui; Yin, Shouchun; Wang, Zhiqiang; Zhang, Xi
2008-04-15
This article discusses the relationship between the molecular structure of bolaamphiphiles bearing mesogenic groups and their interfacial self-organized morphology. On the basis of the molecular structures of bolaamphiphiles, we designed and synthesized a series of molecules with different hydrophobic alkyl chain lengths, hydrophilic headgroups, mesogenic groups, and connectors between the alkyl chains and the mesogenic group. Through investigating their interfacial self-organization behavior, some experiential rules are summarized: (1) An appropriate alkyl chain length is necessary to form stable surface micelles; (2) different categories of headgroups have a great effect on the interfacial self-organized morphology; (3) different types of mesogenic groups have little effect on the structure of the interfacial assembly when it is changed from biphenyl to azobenzene or stilbene; (4) the orientation of the ester linker between the mesogenic group and alkyl chain can greatly influence the interfacial self-organization behavior. It is anticipated that this line of research may be helpful for the molecular engineering of bolaamphiphiles to form tailor-made morphologies.
Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ming
Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientationmore » evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.« less
Understanding the interfacial behavior of lysozyme on Au (111) surfaces with multiscale simulations
NASA Astrophysics Data System (ADS)
Samieegohar, Mohammadreza; Ma, Heng; Sha, Feng; Jahan Sajib, Md Symon; Guerrero-García, G. Iván; Wei, Tao
2017-02-01
The understanding of the adsorption and interfacial behavior of proteins is crucial to the development of novel biosensors and biomaterials. By using bottom-up atomistic multiscale simulations, we study here the adsorption of lysozyme on Au(111) surfaces in an aqueous environment. Atomistic simulations are used to calculate the inhomogeneous polarization of the gold surface, which is induced by the protein adsorption, and by the presence of an interfacial layer of water molecules and monovalent salts. The corresponding potential of mean force between the protein and the gold surface including polarization effects is used in Langevin Dynamics simulations to study the time dependent behavior of proteins at finite concentration. These simulations display a rapid adsorption and formation of a first-layer of proteins at the interface. Proteins are initially adsorbed directly on the gold surface due to the strong protein-surface attractive interaction. A subsequent interfacial weak aggregation of proteins leading to multilayer build-up is also observed at long times.
Bonding of contemporary glass ionomer cements to dentin.
Yip, H K; Tay, F R; Ngo, H C; Smales, R J; Pashley, D H
2001-09-01
The objective of this study was to investigate the microtensile bond strength (microTBS) of contemporary glass ionomer cements (GIC) to sound coronal dentin. Three specimen teeth were prepared for each material tested: Fuji IX GP (GC), ChemFlex (Dentsply) and Ketac-Molar Aplicap (ESPE). GIC buildups were made according to the manufacturers' instructions. After being stored at 37 degrees C, 100% humidity for 24h, the teeth were vertically sectioned into 1x1mm beams for microTBS evaluation. Representative fractured beams were prepared for scanning (SEM) and transmission electron microscopic (TEM) examination. Results of the microTBS test were: Fuji IX GP (12.4+/-8.6MPa), ChemFlex (15.0+/-9.3MPa) and Ketac-Molar Aplicap (11.4+/-7.7MPa). One-way ANOVA and a multiple comparison test showed that ChemFlex had a statistically higher microTBS (p<0.05). SEM fractographic analysis showed that the predominant failure modes were interfacial and mixed failures. The GIC side of the fractured beams revealed dehydration cracks, a high level of porosity, and voids with an eggshell-like crust. TEM analysis of the demineralized dentin sides of the fractured beams revealed the presence of an intermediate layer along the GIC-dentin interface. This zone was present on the fractured dentin surface in the case of interfacial failure, and beneath GIC remnants in specimens that exhibited a mixed failure mode. The findings suggest that the bonding of GIC to dentin is not weak and that the microTBS values probably represent the weak yield strengths of GICs under tension.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopoulos, Demetrios; Inghram, Linda; McCorkle, Linda
1997-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and (I) fiber-matrix bonding, (2) Mode II interlaminar fracture toughness, and (3) failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests definitely showed that, for aging times up to 1000 hr, the aging process caused no observable changes in the bulk of the three composite materials that---would degrade the shear properties of the material. Comparisons between the interlaminar shear strength (ILSS) measured by the short beam shear tests and the GII c test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU-4 fiber resulted in weight losses about twice those experienced by the AS-4 reinforced composites, the ones with the best TOS.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopolous, Demetrios S.; Inghram, Linda; Mccorkle, Linda
1995-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and fiber-matrix bonding, Mode 2 interlaminar fracture toughness, and failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests showed that, for times up to 1000 hr, the aging process caused no changes in the bulk of the three composite materials that would degrade the shear properties of the material. Comparisons between the interlaminar shear strengths (ILSS) measured by the short beam shear tests and the GIIC test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU 1 fiber resulted in weight losses about twice those experienced by the AS 1 reinforced composites, the ones with the best TOS.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-30
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-01-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143
Fracture Mechanics Analyses for Interface Crack Problems - A Review
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.
2013-01-01
Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.
Nonequilibrium Interfacial Tension in Simple and Complex Fluids
NASA Astrophysics Data System (ADS)
Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca
2016-10-01
Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
Wang, Yuntao; Li, Jing; Li, Bin
2016-07-20
The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry.
Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking
Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.
2012-01-01
The “soft” (i.e. non-covalent) interactions between molecules and surfaces are complex and highly-varied (e.g. hydrophobic, hydrogen bonding, ionic) often leading to heterogeneous interfacial behavior. Heterogeneity can arise either from spatial variation of the surface/interface itself or from molecular configurations (i.e. conformation, orientation, aggregation state, etc.). By observing adsorption, diffusion, and desorption of individual fluorescent molecules, single-molecule tracking can characterize these types of heterogeneous interfacial behavior in ways that are inaccessible to traditional ensemble-averaged methods. Moreover, the fluorescence intensity or emission wavelength (in resonance energy transfer experiments) can be used to simultaneously track molecular configuration and directly relate this to the resulting interfacial mobility or affinity. In this feature article, we review recent advances involving the use of single-molecule tracking to characterize heterogeneous molecule-surface interactions including: multiple modes of diffusion and desorption associated with both internal and external molecular configuration, Arrhenius activated interfacial transport, spatially dependent interactions, and many more. PMID:22716995
In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries.
Wang, Chengwei; Gong, Yunhui; Dai, Jiaqi; Zhang, Lei; Xie, Hua; Pastel, Glenn; Liu, Boyang; Wachsman, Eric; Wang, Howard; Hu, Liangbing
2017-10-11
The garnet-based solid state electrolyte (SSE) is considered a promising candidate to realize all solid state lithium (Li) metal batteries. However, critical issues require additional investigation before practical applications become possible, among which high interfacial impedance and low interfacial stability remain the most challenging. In this work, neutron depth profiling (NDP), a nondestructive and uniquely Li-sensitive technique, has been used to reveal the interfacial behavior of garnet SSE in contact with metallic Li through in situ monitoring of Li plating-stripping processes. The NDP measurement demonstrates predictive capabilities for diagnosing short-circuits in solid state batteries. Two types of cells, symmetric Li/garnet/Li (LGL) cells and asymmetric Li/garnet/carbon-nanotubes (LGC), are fabricated to emulate the behavior of Li metal and Li-free Li metal anodes, respectively. The data imply the limitation of Li-free Li metal anode in forming reliable interfacial contacts, and strategies of excessive Li and better interfacial engineering need to be investigated.
In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramkrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramakrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands
NASA Astrophysics Data System (ADS)
Daghash, Sherif M.; Ozbulut, Osman E.
2018-06-01
This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.
Chemical demulsification of petroleum emulsions using oil-soluable demulsifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczyk, M.A.; Wasan, D.T.; Shetty, C.S.
1991-02-01
This paper investigates the factors affecting the coalescence and interfacial behavior of water- in-crude-oil emulsions in the presence of oil-soluble demulsifiers. The emulsion-breaking characteristics and interfacial properties of East Texas Crude and a model system were compared. The variation of interfacial tension with demulsifier concentration for the model system was ascertained by measuring the interfacial tensions between the oil and water phase. Interfacial activity, adsorption kinetics, and partitioning were shown to be the most important parameters governing demulsifier performance. A conceptual model of drop-drop coalescence process in demulsification was presented which indicates that the interfacial activity of the demulsifier mustmore » be high enough to suppress the interfacial tension gradient. This accelerates the rate of film drainage, thus promoting coalescence.« less
Modeling the complex shape evolution of sedimenting particle swarms in fractures
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Nitsche, L.; Pyrak-Nolte, L. J.
2016-12-01
The flow of micro- and nano-particles through subsurface systems can occur in several environments, such as hydraulic fracturing or enhanced oil recovery. Computer simulations were performed to advance our understanding of the complexity of subsurface particle swarm transport in fractures. Previous experiments observed that particle swarms in fractures with uniform apertures exhibit enhanced transport speeds and suppressed bifurcations for an optimal range of apertures. Numerical simulations were performed for low Reynolds number, no interfacial tension and uniform viscosity conditions with particulate swarms represented by point-particles that mutually interact through their (regularized) Stokeslet fields. A P3 M technique accelerates the summations for swarms exceeding 105 particles. Fracture wall effects were incorporated using a least-squares variant of the method of fundamental solutions, with grid mapping of the surface force and source elements within the fast-summation scheme. The numerical study was executed on the basis of dimensionless variables and parameters, in the interest of examining the fundamental behavior and relationships of particle swarms in the presence of uniform apertures. Model parameters were representative of particle swarms experiments to enable direct comparison of the results with the experimental observations. The simulations confirmed that the principal phenomena observed in the experiments can be explained within the realm of Stokes flow. The numerical investigation effectively replicated swarm evolution in a uniform fracture and captured the coalescence, torus and tail formation, and ultimate breakup of the particle swarm as it fell under gravity in a quiescent fluid. The rate of swarm evolution depended on the number of particles in a swarm. When an ideal number of particles was used, swarm transport was characterized by an enhanced velocity regime as observed in the laboratory data. Understanding the physics particle swarms in fractured media will improve the ability to perform controlled micro-particulate transport through rock. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
NASA Technical Reports Server (NTRS)
Beck, B.; Widyani, E.; Wightman, J. P.
1983-01-01
Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.
Tunable Interfacial Thermal Conductance by Molecular Dynamics
NASA Astrophysics Data System (ADS)
Shen, Meng
We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1]. To elucidate this behavior we studied a simplified model comprised of an interface between two stacks of graphene ribbons to mimic the contact between multiwalled nanotubes. Our results, in agreement with experiment, show that the interfacial thermal conductance indeed increases with the number of graphene layers, corresponding to larger diameter and larger number of walls in MWCNT. The role of interfacial layer thickness is investigated by modeling a system of a few layers of graphene sandwiched between two silicon slabs. We show, by wave packet simulation and by theoretical calculation of a spring-mass model, that the transmission coefficient of individual vibrational modes is strongly dependent on the frequency and the number of graphene layers due to coherent interference effects; by contrast, the interfacial thermal conductance obtained in NEMD simulation, which represents an integral over all phonons, is essentially independent of the number of graphene layers, in agreement with recent experiments. Furthermore, when we heat one atomic layer of graphene directly, the effective interfacial conductance associated with heat dissipation to the silicon substrate is very small. We attribute this to the resistance associated with heat transfer between high and low frequency phonon modes within graphene. Finally, we also replaced graphene layers by a few WSe2 sheets and observed that interfacial thermal resistance of a Si/n-WSe2/Si structure increases linearly with interface thickness at least for 1 < n <= 20, indicating diffusive heat transfer mechanism, in contrast to ballistic behavior of a few graphene layers. The corresponding thermal conductivity (0.048 W m-1 K-1) of a few WSe2 layers is rather small. By comparing phonon dispersion of graphene layers and WSe2 sheets, we attribute the diffusive behavior of a few WSe2 sheets to abundant optical phonons at low and medium frequencies leading to very short mean free path. Our computational studies of effects of pressure and structural properties on interfacial thermal conductance provide fundamental insights for tunable heat transfer in nanostructures. [1] Professor D. Y. Li from University of Vanderbilt, private communication (Nov. 14, 2011).
Autohesive strength development in polysulfone resin and graphite-polysulfone composites
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1988-01-01
The effects of bonding temperature and contact time on autohesive strength development in thermoplastic polysulfone resin and graphite-polysulfone composites were investigated. Two test methods were examined to measure autohesion in the neat resin samples. These included an interfacial tension test and a compact tension fracture toughness test. Autohesive strength development in fiber-reinforced composites was measured using a double cantilever beam interlaminar fracture toughness test. The results of the tests were compared with current diffusion theories explaining crack healing and welding of glassy polymers. Discrepancies between the results of the present investigation and the diffusion theories are discussed.
Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites
NASA Astrophysics Data System (ADS)
Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.
2017-11-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.
2015-12-01
Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.
de Obaldia, Enrique Escobar; Jeong, Chanhue; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo
2015-08-01
Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate the evolutionary designs of biomineralized microstructures and understand the tolerance to fracture and damage of chiton radular teeth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Time-dependent stress concentration and microcrack nucleation in TiAl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, M.H.
1995-07-01
Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoreticalmore » concepts presented in this paper.« less
Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan
2016-10-01
In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.
2018-01-01
The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.
Intrinsic bond strength of metal films on polymer substrates
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Osaki, Hiroyuki
1990-01-01
A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.
Burn, D M; Hase, T P A; Atkinson, D
2014-06-11
Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.
Mini-interfacial fracture toughness as a new validated enamel-bonding effectiveness test.
Pongprueksa, Pong; De Munck, Jan; Barreto, Bruno C; Karunratanakul, Kavin; Van Meerbeek, Bart
2016-09-01
Today׳s most commonly applied bonding effectiveness tests are criticized for their high variability and low reliability, the latter in particular with regard to measuring the actual strength of the adhesive interface. in continuation of previous research conducted at dentin, we hereby aimed to validate the novel mini-interfacial fracture toughness (mini-iFT) test on its applicability to assess bonding effectiveness of contemporary adhesives when bonded to enamel. The 3-step etch&rinse (E&R) adhesive OptiBond FL (Kerr), the 2-step self-etch (SE) adhesive Clearfil SE Bond (Kuraray Noritake) and the two multi-mode adhesives Clearfil S(3) Bond Plus (Kuraray Noritake) and Scotchbond Universal (3M ESPE), both used following a 2-step E&R and 1-step SE mode, were applied to clinically relevant, flattened enamel surfaces. A composite (Filtek Z100; 3M ESPE) build-up was made in layers. After 1-week water storage at 37°C, all specimens were sectioned perpendicular to the interface to obtain rectangular sticks. A mini-iFT notch was prepared at the adhesive-enamel interface using a thin diamond blade under water cooling. Finally, the specimens were loaded in a 4-point bending test until failure. the mini-iFT onto human enamel was significantly higher for the adhesives applied in E&R mode versus those applied in SE mode. The lowest mini-iFT was found for the adhesives applied following a 1-step SE approach. SEM fracture analysis revealed that all fractures originated at the adhesive-enamel interface and that the induced crack propagated preferentially along this interface. mini-iFT appeared a valid alternative method to assess the mechanical properties of adhesive-enamel interfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai
2018-03-01
Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.
Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.
Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V
2017-09-11
The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.
Molecular dynamics studies of interfacial water at the alumina surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David
2011-01-01
Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior atmore » distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.« less
First-Principles Prediction of Liquid/Liquid Interfacial Tension.
Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S
2014-08-12
The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.
Micro-mechanics modelling of smart materials
NASA Astrophysics Data System (ADS)
Shah, Syed Asim Ali
Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.
Stanton, Kenneth T; O'Flynn, Kevin P; Nakahara, Shohei; Vanhumbeeck, Jean-François; Delucca, John M; Hooghan, Bobby
2009-04-01
Glass of generic composition SiO(2) . Al(2)O(3) . P(2)O(5) . CaO . CaF(2) will crystallise predominantly to apatite and mullite upon heat-treatment. Such ceramics are bioactive, osseoconductive, and have a high resistance to fracture. As a result, they are under investigation for use as biomedical device coatings, and in particular for orthopaedic implants. Previous work has shown that the material can be successfully enamelled to titanium with an interfacial reaction zone produced during heat treatment. The present study uses high angle annular dark field transmission electron microscopy (HAADF-TEM) to conduct a detailed examination of this region. Results show evidence of complex interfacial reactions following the diffusion of titanium into an intermediate layer and the production of titanium silicides and titanium phosphides. These results confirm previously hypothesised mechanisms for the bonding of silicate bioceramics with titanium alloys.
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
Interfacial behavior of polymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, John; Kerr, John B.; Han, Yong Bong
2003-06-03
Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combinedmore » with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.« less
NASA Astrophysics Data System (ADS)
Khajehvand, Milad; Sepehrband, Panthea
2018-07-01
The jump-to-contact (JC) phenomenon for (111)-oriented surfaces in aluminum at room temperature is studied via molecular dynamics simulations. The effect of crystallographic misorientation and interfacial distance on the JC behavior and distribution of the resultant defects at the interface is investigated. The effect of misorientation on the critical distance for JC is found to be negligible. However, when JC occurs, different distribution of defects is observed for various misorientation angles. The density of defects is shown to be a function of interfacial distance for low misorientation angles, but independent of it for misorientation angles of ∼30 ± 10°.
Nanoparticle Decoration of Carbon Nanotubes by Sputtering
2013-02-01
subsequent coalescence as the mechanism of growth, but focused on per- formance of the metallized arrays rather than processing- structure relationships...dictates its wet- ting behavior; if the interfacial energy is comparable to the surface energy, the metal will avoid contact with the sub- strate and...form an isolated island to minimize interfacial en- ergy. Significantly lower interfacial energy values will drive the metal to spread on the surface—for
Fracture behaviors under pure shear loading in bulk metallic glasses
NASA Astrophysics Data System (ADS)
Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang
2016-12-01
Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.
Fracture behaviors under pure shear loading in bulk metallic glasses.
Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang
2016-12-23
Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.
An Irreversible Constitutive Law for Modeling the Delamination Process using Interface Elements
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Ambur, Damodar (Technical Monitor)
2002-01-01
An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.
An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.
Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang
2017-11-30
Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R.; Xu, H. C.; Xia, M.
The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less
NASA Astrophysics Data System (ADS)
Liu, Lei; Li, Yaning
2018-07-01
A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.
Effects of crystal-melt interfacial energy anisotropy on dendritic morphology and growth kinetics
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Singh, N. B.
1989-01-01
Morphological and kinetic studies of succinonitrile, a BCC crystal with a low (0.5 percent) anisotropy and pivalic acid, and FCC crystal with relatively large (5 percent) anisotropy in solid-liquid interfacial energy, show clearly that anisotropy in the solid-liquid interfacial energy does not affect the tip radius-velocity relationship, but has a profound influence on the tip region and the rate of amplification of branching waves. Anisotropy of the solid-liquid interfacial energy may be one of the key factors by which the microstructural characteristics of cast structures reflect individual material behavior, especially crystal symmetry.
Effect of demulsifier partitioning on the destabilization of water-in-oil emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.H.; Wasan, D.T.
1996-04-01
The factors affecting the demulsification and interfacial behavior of water-in-oil emulsions in the presence of oil-soluble demulsifiers were investigated. Using both model water-in-oil and water-in-crude oil emulsion systems with demulsifiers with different chemical structures, the effects of demulsifier partitioning on the interfacial and film rheological properties were studied. The experimental results were compared and related with the demulsifier performance. There is a one-to-one correlation between the performance of demulsifier and the interfacial activity of the partitioned demulsifier; the partitioned demulsifier components exhibit an increase in static and dynamic interfacial activity, low dynamic interfacial and film tension, and a low filmmore » dilational modulus with a high adsorption rate - low interfacial tension gradient (Marangoni-Gibbs stabilizing effect) and have excellent demulsification performance.« less
Interfacial adsorption in two-dimensional pure and random-bond Potts models.
Fytas, Nikolaos G; Theodorakis, Panagiotis E; Malakis, Anastasios
2017-03-01
We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.
Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R
2016-07-01
Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.
Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Shieh, Ian C.
Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films of the various lipid constituents of lung surfactant. Confocal microscopy allows us to use a water-soluble, cationic fluorophore that partitions into the disordered phases of lipid monolayers. By exploiting the properties of this water-soluble fluorophore, we investigate both the phase behavior and electrostatics of the interfacial lipid systems. Overall, we believe the work presented in this dissertation provides the building blocks for establishing confocal microscopy as a ubiquitous characterization technique in the interfacial and surface sciences.
Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; ...
2014-06-09
Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levelsmore » of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd 2Zr 2O 7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.« less
The order-to-disorder transition behavior of PS-b-P2VP thin film system
NASA Astrophysics Data System (ADS)
Ahn, Hyungju; Ryu, Du
2013-03-01
We investigated the transition behavior such as the order-to-disorder transition (ODT) for symmetric poly(styrene)-block-poly(2-vinly pridine) (PS-b-P2VP) using SAXS and GISAXS for block copolymer bulks and films. The bulk transition temperature of PS-b-P2VP was significantly influenced by the interfacial interactions in thin films, leading to the different transition temperature. From these results, we will discuss about the interfacial interaction effects on the phase behaviors in bulks and thin films system of PS-b-P2VP.
MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep
2008-03-26
This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed tomore » capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.« less
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
Differences in interfacial bond strengths of graphite fiber-epoxy resin composites
NASA Technical Reports Server (NTRS)
Needles, H. L.
1985-01-01
The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.
Park, Joung-Man; Kim, Jin-Won; Yoon, Dong-Jin
2002-03-01
Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.
Pseudopotential Computations for Metal/Alumina Interfaces
NASA Astrophysics Data System (ADS)
Zhang, Wenqing
2003-03-01
Metal/alumina interfaces are found, for example, in electronic devices, as thermal barrier coatings in gas turbines, and in coatings to inhibit corrosion and wear. Of particular importance to their performance is their adhesion. Ultrasoft pseudopotentials combined with plane wave methods and density-functional theory have been employed to compute the properties of these relatively complex interfaces, including effects of impurity segregation. Interfacial stoichiometry and impurity content affect interfacial properties importantly. Thermodynamic links between our first principles results and metallurgical variables such as oxygen activity and oxygen partial pressure are established. This allows for a comparison between theoretical predictions and experimental measurements. Good agreement is obtained for predicted interfacial variables such as atomic structure and adhesive bond strengths on comparison with results of sessile drop, fracture, and other experiments on interfaces of Ni, Cu, Al, and Ag with alumina [1-3], including effects of water and sulfur interfacial impurities. Understanding of the nature of the adhesive bonding at the atomic level is obtained by the pseudopotential first principles approach. [1] W.Zhang, and J.R.Smith, and A.G.Evans, Acta Mater., 50,3803(2002). [2] W.Zhang, and J.R.Smith, Phys. Rev. Lett. 85, 3225(2000). [3] W.Zhang, and J.R.Smith, Phys. Rev. B61, 16883(2000).
Long, Weifeng; Hu, Xiaowu; Fu, Yanshu
2018-01-01
In order to accelerate the growth of interfacial intermetallic compound (IMC) layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i) Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii) The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii) The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv) Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time. PMID:29316625
Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength
NASA Technical Reports Server (NTRS)
Atkins, A. G.
1975-01-01
The results of angle-ply investigations for strength and toughness of brittle fiber/brittle filament composites are presented. General results are discussed for both unidirectional and angle-ply intermittently bonded boron/epoxy composites as affected by soaking and freezing water environments. A description of and the operating instructions are included for the modified 230 mm (9 inch) wide intermittent coating tape making apparatus.
Multiscale mechanics of graphene oxide and graphene based composite films
NASA Astrophysics Data System (ADS)
Cao, Changhong
The mechanical behavior of graphene oxide is length scale dependent: orders of magnitude different between the bulk forms and monolayer counterparts. Understanding the underlying mechanisms plays a significant role in their versatile application. A systematic multiscale mechanical study from monolayer to multilayer, including the interactions between layers of GO, can provide fundamental support for material engineering. In this thesis, an experimental coupled with simulation approach was used to study the multiscale mechanics of graphene oxide (GO) and the methods developed for GO study are proved to be applicable also to mechanical study of graphene based composites. GO is a layered nanomaterial comprised of hierarchical units whose characteristic dimension lies between monolayer GO (0.7 nm - 1.2 nm) and bulk GO papers (≥ 1 mum). Mechanical behaviors of monolayer GO and GO nanosheets (10 nm- 100 nm) were comprehensively studied this work. Monolayer GO was measured to have an average strength of 24.7 GPa,, orders of magnitude higher than previously reported values for GO paper and approximately 50% of the 2D intrinsic strength of pristine graphene. The huge discrepancy between the strength of monolayer GO and that of bulk GO paper motivated the study of GO at the intermediate length scale (GO nanosheets). Experimental results showed that GO nanosheets possess high strength in the gigapascal range. Molecular Dynamic simulations showed that the transition in the failure behavior from interplanar fracture to intraplanar fracture was responsible for the huge strength discrepancy between nanometer scale GO and bulk GO papers. Additionally, the interfacial shear strength between GO layers was found to be a key contributing factor to the distinct mechanical behavior among hierarchical units of GO. The understanding of the multiscale mechanics of GO is transferrable in heterogeneous layered nanomaterials, such as graphene-metal oxide based anode materials in Li-ion batteries. The novel methods developed in this work to study GO multilayered structures were also applied to study the mechanics of graphene-TiO 2 composites. It was found that a critical thickness range of TiO2 deposition on graphene is required for the observed stiffness enhancement effect of graphene to influence the mechanical behavior of the composite.
Spreading Dynamics and Interfacial Characteristics of Sn-3.0Ag-0.5Cu- xBi Melting on Cu Substrates
NASA Astrophysics Data System (ADS)
Xu, Bingsheng; Chen, Junwei; Yuan, Zhangfu; Zang, Likun; Zhang, Lina; Wu, Yan
2016-05-01
The effects of Bi addition on the properties of Sn-3.0Ag-0.5Cu molten alloy on Cu substrates are discussed using wettability and interface microstructure analysis. The changes of the contact angles between Sn-3.0Ag-0.5Cu- xBi and Cu substrates with the spreading time are described by Dezellus model. It indicates that the spreading process is governed by the interfacial reaction during the dwelling time. The interface microstructure is observed to clarify the effects of reactions on the spreading behavior. It is found that Cu6Sn5 is formed adjacent to the solder and Cu3Sn appears over the substrate with Bi added at 613K, indicating that Bi exists between the intermetallics and the addition of Bi can hinder the diffusion of copper towards the interior of the solder. Therefore the existence of Bi decreases the agglomeration of Cu-Sn grains. The growth of intermetallics is thus limited and the shape of intermetallics transforms from scallop to zigzag consequently. However, the segregation phenomenon appears when the additive amount of Bi is more than 5.5mass %, which could lead to the occurrence of fracture and degrade the performance of Sn-3.0Ag-0.5Cu- xBi alloy. The results of the present study provide basic physical and chemical data for the application of lead-free solder in the future microgravity space environment.
Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.
Dong, X Neil; Guda, Teja; Millwater, Harry R; Wang, Xiaodu
2009-02-09
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.
Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites
Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu
2009-01-01
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures. PMID:19058806
Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models
Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei
2014-01-01
Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189
Adhesion at the interface in cured graphite fiber epoxy-amine resin composites
NASA Technical Reports Server (NTRS)
Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert
1987-01-01
The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.
Molecular tailoring of interfaces for thin film on substrate systems
NASA Astrophysics Data System (ADS)
Grady, Martha Elizabeth
Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult to use more conventional interfacial fracture testing techniques. Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface in an on-demand fashion. The SAM end-group functionality is systematically varied and the corresponding effect on interfacial adhesion between a transfer printed gold (Au) film and a fused silica substrate is measured. SAMs with four different end groups are investigated: methyl, amine, bromine and thiol. In addition to these four end groups, mixed monolayers of increasing molar ratio of thiol to methyl SAMs in solution are investigated. There is a strong dependence of interfacial chemistry on the adhesion strength of Au films. In addition to the chemical functionality of the SAM, surface roughness of the underlying substrate also has a significant impact on the interfacial strength. Thin films of mechanochemically active polymer are subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produces large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain-rates (ca. 107-108 s -1). The polymer system, spiropyran (SP)- linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP is evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions. In addition to SP-linked polymer films, the activation of spiropyran interfacial molecules with different side groups is characterized as they adsorb onto a SAM platform with preferential amine terminating chemistry. The reactivity of SP monolayers due to UV irradiation is evaluated by water contact angle goniometry and fluorescence spectroscopy. Side groups on the interfacial spiropyran molecule affect the reactivity and the proximity of neighboring spiropyrans can prevent efficient mobility.
Asymmetrical interfacial reactions of Ni/SAC101(NiIn)/Ni solder joint induced by current stressing
NASA Astrophysics Data System (ADS)
Lin, Chen-Yi; Chiu, Tsung-Chieh; Lin, Kwang-Lung
2018-03-01
An electric current can asymmetrically trigger either atomic migration or interfacial reactions between a cathode and an anode. The present study investigated the dissolution of metallization and formation of an interfacial intermetallic compound (IMC) in the Cu/Ni/Sn1.0Ag0.1Cu0.02Ni0.05In/Ni/Cu solder joint at various current densities in the order of 103 A/cm2 at temperatures ranging from 100 °C to 150 °C. The polarization behavior of Ni dissolution and IMC formation under current stressing were systematically investigated. The asymmetrical interfacial reactions of the solder joint were found to be greatly influenced by ambient temperature. The dissolution of Ni and its effect on interfacial IMC formation were also discussed.
Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites
NASA Astrophysics Data System (ADS)
Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng
2015-03-01
This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.
Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.
Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R
2014-12-30
The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.
Encapsulation and backsheet adhesion metrology for photovoltaic modules
Tracy, Jared; Bosco, Nick; Novoa, Fernando; ...
2016-09-26
Photovoltaic modules are designed to operate for decades in terrestrial environments. However, mechanical stress, moisture, and ultraviolet radiation eventually degrade protective materials in modules, particularly their adhesion properties, eventually leading to reduced solar cell performance. Despite the significance of interfacial adhesion to module durability, currently there is no reliable technique for characterizing module adhesion properties. We present a simple and reproducible metrology for characterizing adhesion in photovoltaic modules that is grounded in fundamental concepts of beam and fracture mechanics. Using width-tapered cantilever beam fracture specimens, interfacial adhesion was evaluated on relevant interfaces of encapsulation and backsheet structures of new andmore » 27-year-old historic modules. The adhesion energy, Gc [J/m 2], was calculated from the critical value of the strain energy release rate, G, using G = βP2, where β (a mechanical and geometric parameter of the fracture specimen) and P (the experimentally measured critical load) are constants. Under some circumstances where testing may result in cracking of brittle layers in the test specimen, measurement of the delamination length in addition to the critical load was necessary to determine G. Relative to new module materials, backsheet adhesion was 95% and 98% lower for historic modules that were exposed (operated in the field) and unexposed (stored on-site, but out of direct sunlight), respectively. Encapsulation adhesion was 87-94% lower in the exposed modules and 31% lower in the unexposed module. As a result, the metrology presented here can be used to improve module materials and assess long-term reliability.« less
Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.
Kumar, Sandeep; Parks, David; Kamrin, Ken
2016-07-26
The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.
Mechanical resilience and cementitious processes in Imperial Roman architectural mortar
Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.
2014-01-01
The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521
Kokolis, John; Chakmakchi, Makdad; Theocharopoulos, Antonios; Prombonas, Anthony
2015-01-01
PURPOSE The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a 45° bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (ε) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (α=.05) and Weibull analysis where Weibull modulus m and characteristic strength σο were identified. Fractured surfaces were imaged by a SEM. RESULTS SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ε, m and σο) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability. PMID:25722836
NASA Astrophysics Data System (ADS)
Li, Kun; Gu, Boqin
2017-04-01
Rubber sealants are key components in processing industries. Carbon nanotubes (CNTs), which are randomly dispersed in polymer, are able to generate exciting effects. Focusing on mechanical properties of composites and interface characteristic between the fillers and matrix, carrying out SEM, DMA and uniaxial tensile tests, the tensile strength of the composites with 4 phr (parts by weight per hundred parts of rubber) multiwalled carbon nanotubes (MWNTs) is obviously improved. MWNTs with different functionalization have different influence on the viscoelastic and mechanical properties of the composites. Results indicate that MWNTs-COOH are broken when composites fractured. While MWNTs, MWNTs-OH and MWNTs-NH2 are pulled out from the matrix because interface debonds under the tensile failure. The interfacial shear stress (IFSS) is about 4.7 MPa in composites. The glass transition temperature (T g) shifts higher temperatures compared to pure NBR (Acrylonitrile-butadiene Rubber). The presence of the nanotubes limite the movement of NBR macromolecules.
Interfacial characterization of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott
2018-03-01
Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.
Wang, Xiao-Dong; Jian, Yu-Tao; Guess, Petra C; Swain, Michael V; Zhang, Xin-Ping; Zhao, Ke
2014-11-01
The purpose of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered lithium disilicate glass-ceramic (LDG) under two loading schemes. Interfacial surfaces of sandblasted LDG disks (A) were ground with 220 (B), 500 (C) and 1200 (D) grit silicon carbide (SiC) sandpapers, respectively. Surface roughness and topographic analysis were performed using a profilometer and a scanning electron microscopy (SEM), and then underwent retesting after veneer firing. Biaxial fracture strength (σf) and Weibull modulus (m) were calculated either with core in tension (subgroup t) or in compression (subgroup c). Failure modes were observed by SEM, and loading induced stress distribution was simulated and analyzed by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis, one-way ANOVA, and paired test at a significance level of 0.05. As the grits size of SiC increased, LDG surface roughness decreased from group A to D (p<0.001), which remained unchanged after veneer firing. No difference in σf (p=0.41 for subgroups At-Dt; p=0.11 for subgroups Ac-Dc), m values as well as failure modes was found among four subgroups for both loading schemes. Specimens in subgroup t showed higher σf (p<0.001) and m values than subgroup c. Stress distribution between loading schemes did not differ from each other. Cracks, as the dominant failure mode initiated from bottom tensile surface. No sign of interfacial cracking or delamination was observed for all groups. Technician grinding changed surface topography of LDG ceramic material, but was not detrimental to the bilayered system strength after veneer application. LDG bilayered system was more sensitive to fracture when loaded with veneer porcelain in tension. Within the limitations of the simulated grinding applied, it is concluded that veneer porcelain can be applied directly after technician grinding of LDG ceramic as it has no detrimental effect on the strength of bilayered structures. The connector areas of LDG fixed dental prosthesis are more sensitive to fracture compared with single crowns, and should be fabricated with more caution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanical energy dissipation in natural ceramic composites.
Mayer, George
2017-12-01
Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling effects of thin organic layers have been observed in other natural ceramic composite structures, such as teeth and bones, indicating that a variety of similar energy dissipating mechanisms in natural ceramic composites may operate as means to resist failure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Güell, Carme; Ferrando, Montserrat; Trentin, Alexandre; Schroën, Karin
2017-01-01
Proteins are mostly used to stabilize food emulsions; however, production of protein containing emulsions is notoriously difficult to capture in scaling relations due to the complex behavior of proteins in interfaces, in combination with the dynamic nature of the emulsification process. Here, we investigate premix membrane emulsification and use the Ohnesorge number to derive a scaling relation for emulsions prepared with whey protein, bovine serum albumin (BSA), and a standard emulsifier Tween 20, at various concentrations (0.1%, 0.5%, 1.25% and 2%). In the Ohnesorge number, viscous, inertia, and interfacial tension forces are captured, and most of the parameters can be measured with great accuracy, with the exception of the interfacial tension. We used microfluidic Y-junctions to estimate the apparent interfacial tension at throughputs comparable to those in premix emulsification, and found a unifying relation. We next used this relation to plot the Ohnesorge number versus P-ratio defined as the applied pressure over the Laplace pressure of the premix droplet. The measured values all showed a decreasing Ohnesorge number at increasing P-ratio; the differences between regular surfactants and proteins being systematic. The surfactants were more efficient in droplet size reduction, and it is expected that the differences were caused by the complex behavior of proteins in the interface (visco-elastic film formation). The differences between BSA and whey protein were relatively small, and their behavior coincided with that of low Tween concentration (0.1%), which deviated from the behavior at higher concentrations. PMID:28346335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvakumar, S., E-mail: lathaselvam1963@gmail.com
Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization andmore » pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.« less
[Preliminary analysis about influence of porcelain thickness on interfacial crack of PFM].
Zhu, Ziyuan; Zhang, Baowei; Zhang, Xiuyin; Xu, Kan; Fang, Ruhua; Wang, Dongmei
2002-01-01
This study was about the influence of porcelain thickness on crack at interface. The effect of porcelain thickness on the flaw at the interface between porcelain and metal was studied in three groups with porcelain thickness of 0.5 mm, 1.5 mm and 2.5 mm (metal thickness of 0.5 mm) by means of moire interferometre and interfacial fracture mechanics. The parameter Jc was compared among the three groups and the growing of the flaw was observed. Jc and the extreme strength of group with porcelain thickness of 0.5 mm (2.813 N/m and 9.979 N) were lower than those of the groups with porcelain thickness of 1.5 mm and 2.5 mm (5.395 N/m, 19.134 N and 5.429 N/m, 19.256 N). Flaws extend along the interface in the groups with porcelain thickness of 1.5 mm and 0.5 mm. (1) Fracture resistance of the interface in the groups with porcelain thickness of 1.5 mm and 2.5 mm is similar and it decreases in the group with 0.5 mm thick porcelain. (2) When porcelain is 1.5 mm or 0.5 mm thick, flaws will extend along the interface. When porcelain is 2.5 mm thick, flaws will extend into the porcelain layer.
NASA Astrophysics Data System (ADS)
Rokhforouz, M. R.; Akhlaghi Amiri, H. A.
2017-06-01
Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. This work presents the results of a new pore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with different sizes and initially saturated with oil, and a fracture, adjacent to the matrix, initially saturated with water and supported by low rate water inflow. Through invasion of water into the matrix, oil drops were expelled one by one from the matrix to the fracture, and in the matrix, water progressed by forming capillary fingerings, with characteristics corresponding to the experimental observations. The effects of wettability, viscosity ratio, and interfacial tension were investigated. In strongly water-wet matrix, with grain contact angles of θ < π/8, different micro-scale mechanisms were successfully captured, including oil film thinning and rupture, fluids' contact line movement, water bridging, and oil drop detachment. It was notified that there was a specific grain contact angle for this simulated model, θ = π/4, above it, matrix oil recovery was negligible by imbibition, while below it, the imbibition rate and oil recovery were significantly increased by decreasing the contact angle. In simulated mixed wet models, water, coming from the fracture, just invaded the neighboring water-wet grains; the water front was stopped moving as it met the oil-wet grains or wide pores/throats. Increasing water-oil interfacial tension, in the range of 0.005-0.05 N/m, resulted in both higher rate of imbibition and higher ultimate oil recovery. Changing the water-oil viscosity ratio (M), in the range of 0.1-10, had a negligible effect on the imbibition rate, while due to co-effects of capillary fingering and viscous mobility ratio, the model with M = 1 had relatively higher ultimate oil recovery.
WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.
Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contactmore » angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.« less
NASA Astrophysics Data System (ADS)
Fan, L. L.; Chen, S.; Liao, G. M.; Chen, Y. L.; Ren, H.; Zou, C. W.
2016-06-01
As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.
Fan, L L; Chen, S; Liao, G M; Chen, Y L; Ren, H; Zou, C W
2016-06-29
As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Lin; Zhao, Ning; Ma, Haitao, E-mail: htma@dlut.edu.cn
2014-05-28
Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu{sub 6}Sn{sub 5} IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end aftermore » solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu{sub 6}Sn{sub 5} IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.« less
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys.
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-04-20
Al₃TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al₃Zr and Al₃Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al₃TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al₃Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al₃(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al₃(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al₃Zr-core or Al₃Zr(Sc1-1)-core encircled with an Sc-rich shell forms.
Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad
2017-10-25
Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.
NASA Astrophysics Data System (ADS)
Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Mei, Xuesong; Wang, Wenjun; Yang, Xinju; Xie, Hui; Yang, Lijun; Wang, Yang
2017-03-01
Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO2 substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.
Interfacial profiles in fluid/liquid systems: a description based on the storing of elastic energy.
Castellanos-Suárez, Aly J; Toro-Mendoza, Jhoan; García-Sucre, Máximo
2011-06-01
An analytical expression for the interfacial energy is found by solving a Poisson equation and assuming a Boltzmann distribution of volume elements forming the fluid/liquid system. Interfacial phenomena are treated as a result of the response of a liquid when it makes contact with other fluid phase, in order to reach thermal and mechanical equilibrium. This model gives a quantitative description of the interface, obtaining values for its molar, force and energy density profiles. Also, our model allows the determination of the proportion of the fluids present in the interfacial zone, the values of interfacial tension and thickness. In the case of water+n-alkanes systems, the tensions are in agreement with the behavior shown by the experimental data. Finally, the values for interfacial thickness predicted from molar density profiles are lower than the range of influence of the elastic energy and elastic field. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Van Luong; Kim, Ho-Kyung
2015-07-01
Shear tests with velocities between 0.5 m/s and 2.5 m/s were conducted to investigate the deformation characteristics of 0.76 mm lead-free Sn-3Ag-0.5Cu solder ball joints after thermal aging at 373 K up to 1000 h. A scanning electron microscope equipped with energy dispersive spectroscopy was then used to examine the fracture surfaces and microstructures of the solder joints. The results showed that the main failure mode of the solder joints was the brittle interfacial fracture mode with cleavage failure in the intermetallic compound (IMC). The maximum shear strength and the fracture toughness ( K C) of the solder joint decreased substantially after aging for the initial aging time, after which they decreased gradually with further aging or an increase in the strain rate. The evolution of the IMC layer when it was thicker and had coarser nodules due to thermal aging was the primary cause of the reduction in the shear strength and fracture toughness in this study.
Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.
2016-12-01
Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
Langmuir-Blodgett Films of Supported Polyester Dendrimers
Redón, Rocío; Carreón-Castro, M. Pilar; Mendoza-Martínez, F. J.
2012-01-01
Amphiphiles with a dendritic structure are attractive materials as they combine the features of dendrimers with the self-assembling properties and interfacial behavior of water-air affinities. We have synthesized three generations of polyester dendrimers and studied their interfacial properties on the Langmuir films. The behavior obtained was, as a rule, the lowest generation dendrimers behaving like traditional amphiphiles and the larger molecules presenting complicated isotherms. The Langmuir films of these compounds have been characterized by their surface pressure versus molecular area (π/A) and Brewster angle microscopy (BAM) observations. PMID:24052855
A continuum damage model for delaminations in laminated composites
NASA Astrophysics Data System (ADS)
Zou, Z.; Reid, S. R.; Li, S.
2003-02-01
Delamination, a typical mode of interfacial damage in laminated composites, has been considered in the context of continuum damage mechanics in this paper. Interfaces where delaminations could occur are introduced between the constituent layers. A simple but appropriate continuum damage representation is proposed. A single scalar damage parameter is employed and the degradation of the interface stiffness is established. Use has been made of the concept of a damage surface to derive the damage evolution law. The damage surface is constructed so that it combines the conventional stress-based and fracture-mechanics-based failure criteria which take account of mode interaction in mixed-mode delamination problems. The damage surface shrinks as damage develops and leads to a softening interfacial constitutive law. By adjusting the shrinkage rate of the damage surface, various interfacial constitutive laws found in the literature can be reproduced. An incremental interfacial constitutive law is also derived for use in damage analysis of laminated composites, which is a non-linear problem in nature. Numerical predictions for problems involving a DCB specimen under pure mode I delamination and mixed-mode delamination in a split beam are in good agreement with available experimental data or analytical solutions. The model has also been applied to the prediction of the failure strength of overlap ply-blocking specimens. The results have been compared with available experimental and alternative theoretical ones and discussed fully.
Fracture toughness of dentin/resin-composite adhesive interfaces.
Tam, L E; Pilliar, R M
1993-05-01
The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p < 0.05) between the dental adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.
NASA Astrophysics Data System (ADS)
Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.
2017-12-01
A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.
Wishart, D.N.; Slater, L.D.; Schnell, D.L.; Herman, G.C.
2009-01-01
The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N2 gas pressure gradient (??PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1) pneumatic fracturing and (2) defining likely flow directions of remedial treatments in unconsolidated sediments and rock. ?? 2008 Elsevier B.V. All rights reserved.
Viscoelastic Properties of Advanced Polymer Composites for Ballistic Protective Applications
1994-09-01
ofthe Damaged Sample 78 Figure 69: Fracture Surface of Damage Area Near the Point of Penetration 79 Figure 70. Closer View ofthe Damaged Area...LIST OF TABLES Table 1. Basic Mechanical Properties of the Materials 6 Table 2. Initial DMA Test Results 23 Table 3. Flexural Three Point Bend... point bend testing was conducted using an Instron 1127 Universal Tester to verify the DMA test method and specimen clamping configuration. Interfacial
Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; ...
2014-09-24
Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid–fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. Moreover, the application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air–water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured propertiesmore » is quantified and compared to other scaling relationships in the literature. Our results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.« less
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Davis, J P; Foegeding, E A
2007-02-15
Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (tau(0)), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest tau(0) and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased tau(0) and drainage resistance of the EWP-based ingredients, whereas it decreased tau(0) of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between tau(0) and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified beta-lactoglobulin (beta-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of beta-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.
Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.
Meriç, Gökçe; Ruyter, I Eystein
2007-09-01
To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.
Mechanical resilience and cementitious processes in Imperial Roman architectural mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Marie D.; Landis, Eric N.; Brune, Philip F.
The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈more » 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900 year old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.« less
Mechanical resilience and cementitious processes in Imperial Roman architectural mortar
Jackson, Marie D.; Landis, Eric N.; Brune, Philip F.; ...
2014-12-15
The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈more » 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900 year old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.« less
Microfluidic ultralow interfacial tensiometry with magnetic particles.
Tsai, Scott S H; Wexler, Jason S; Wan, Jiandi; Stone, Howard A
2013-01-07
We describe a technique that measures ultralow interfacial tensions using paramagnetic spheres in a co-flow microfluidic device designed with a magnetic section. Our method involves tuning the distance between the co-flowing interface and the magnet's center, and observing the behavior of the spheres as they approach the liquid-liquid interface-the particles either pass through or are trapped by the interface. Using threshold values of the magnet-to-interface distance, we make estimates of the two-fluid interfacial tension. We demonstrate the effectiveness of this technique for measuring very low interfacial tensions, O(10(-6)-10(-5)) N m(-1), by testing solutions of different surfactant concentrations, and we show that our results are comparable with measurements made using a spinning drop tensiometer.
Rana, Malay Kumar; Chandra, Amalendu
2013-05-28
The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.
Cheng, Shiwang; Carroll, Bobby; Bocharova, Vera; ...
2017-03-30
In recent years it has become clear that the interfacial layer formed around nanoparticles in polymer nanocomposites (PNCs) is critical for controlling their macroscopic properties. The interfacial layer occupies a significant volume fraction of the polymer matrix in PNCs and creates strong intrinsic heterogeneity in their structure and dynamics. In this paper, we focus on analysis of the structure and dynamics of the interfacial region in model PNCs with well-dispersed, spherical nanoparticles with attractive interactions. First, we discuss several experimental techniques that provide structural and dynamic information on the interfacial region in PNCs. Then, we discuss the role of variousmore » microscopic parameters in controlling structure and dynamics of the interfacial layer. The analysis presented emphasizes the importance of the polymer-nanoparticle interactions for the slowing down dynamics in the interfacial region, while the thickness of the interfacial layer appears to be dependent on chain rigidity, and has been shown to increase with cooling upon approaching the glass transition. Aside from chain rigidity and polymer-nanoparticle interactions, the interfacial layer properties are also affected by the molecular weight of the polymer and the size of the nanoparticles. Finally, in the last part of this focus article, we emphasize the important challenges in the field of polymer nanocomposites and a potential analogy with the behavior observed in thin films.« less
Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco
2016-06-01
Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50 ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.
Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E
2011-07-01
Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.
Molecular Simulations of the Diffusion of Uranyl Carbonate Species in Nanosized Mineral Fractures
NASA Astrophysics Data System (ADS)
Kerisit, S.; Liu, C.
2010-12-01
Uranium is a major groundwater contaminant at uranium processing and mining sites as a result of intentional and accidental discharges of uranium-containing waste products into subsurface environments. Recent characterization has shown that uranium preferentially associates with intragrain and intra-aggregate domains in some of the uranium-contaminated sediments collected from the US Department of Energy Hanford Site [1, 2]. In these sediments, uranium existed as precipitated and/or adsorbed phases in grain micropores with nano- to microscale sizes. Desorption and diffusion characterization studies and continuum-scale modeling indicated that ion diffusion in the microfractures is a major mechanism that led to preferential uranium concentration in the microfracture regions and will control the future mobility of uranium in the subsurface sediments [1, 3-4]. However, the diffusion properties of uranyl species in the intragrain regions, especially at the solid-liquid interface, are still poorly understood. Therefore, a general aim of this work is to provide atomic-level insights into the contribution of microscopic surface effects to the slow diffusion process of uranyl species in porous media with nano- to microsized fractures. In this presentation, we will first present molecular dynamics (MD) simulations of feldspar-water interfaces to investigate their interfacial structure and dynamics and establish a theoretical framework for subsequent simulations of water and ion diffusion at these interfaces [5]. We will then report on MD simulations carried out to probe the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nanosized feldspar fractures [6]. Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge. Our calculations reveal a 2.0-2.5 nm interfacial region within which the diffusion properties of water and that of the electrolyte ions differ significantly from those in bulk aqueous solutions. We will then present MD simulations of the diffusion of a series of alkaline-earth uranyl carbonate species in aqueous solutions [7]. The MD simulations show that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which could lead to different reactivities. Finally, we will present recent results on the diffusion and adsorption of uranyl carbonate species in intragrain micropores, modeled with the feldspar-water interfaces mentioned in the above, to help interpret the diffusion behavior of uranium in contaminated sediments. [1] Liu C. et al. Geochim. Cosmochim. Acta 68 4519 (2004) [2] McKinley J. P. et al. Geochim. Cosmochim. Acta 70 1873 (2006) [3] Liu C. et al. Water Resour. Res. 42 W12420 (2006) [4] Ilton E. S. et al. Environ. Sci. Technol. 42 1565 (2009) [5] Kerisit S. et al. Geochim. Cosmochim. Acta 72 1481 (2008) [6] Kerisit S. and Liu C. Environ. Sci. Technol. 43 777 (2009) [7] Kerisit S. and Liu C. Geochim. Cosmochim. Acta 74 4937 (2010)
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya
In this study, proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based onmore » representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell.« less
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya; ...
2016-09-30
In this study, proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based onmore » representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell.« less
Fracture Behavior of Zr-BASED Bulk Metallic Glass Under Impact Loading
NASA Astrophysics Data System (ADS)
Shin, Hyung-Seop; Kim, Ki-Hyun; Oh, Sang-Yeob
The fracture behavior of a Zr-based bulk amorphous metal under impact loading using subsize V-shaped Charpy specimens was investigated. Influences of loading rate on the fracture behavior of amorphous Zr-Al-Ni-Cu alloy were examined. As a result, the maximum load and absorbed fracture energy under impact loading were lower than those under quasi-static loading. A large part of the absorbed fracture energy in the Zr-based BMG was consumed in the process for crack initiation and not for crack propagation. In addition, fractographic characteristics of BMGs, especially the initiation and development of shear bands at the notch tip were investigated. Fractured surfaces under impact loading are smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the appearance of the shear bands developed. It can be found that the fracture energy and fracture toughness of Zr-based BMG are closely related with the extent of shear bands developed during fracture.
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-01-01
Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155
Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas
2015-10-19
A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less
Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission
NASA Technical Reports Server (NTRS)
Smialek, James L.; Morscher, Gregory N.
2001-01-01
The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.
Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong
2017-01-01
Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Haiyan; Wang, Rongguo; Hu, Honglin; Liu, Wenbo
2008-12-01
Poly(urea-formaldehyde) (PUF) microcapsules, which are used as self-healing component of fibre reinforced resin matrix composites, were prepared by in situ polymerization method. The surface of PUF microcapsules was modified by using 3-aminopropyltriethoxy silane-coupling agent (KH550), and the interfacial interactions between PUF microcapsules and KH550 was also studied. Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectra (XPS) analyses showed that the silane-coupling agent molecular binds strongly to PUF microcapsules surface. Chemical bond (Si-O-C) was formed by the reaction between Si-OH and the hydroxyl group of PUF microcapsules, also there have chemical adsorption effect in the interface simultaneously because of the existence of hydrogen bond between Si-OH and the hydroxyl group of PUF microcapsules. Scanning electronic microscopy (SEM) observation showed that a thin layer was formed on the surface of modified PUF microcapsules. Additionally, fractured surface were observed under SEM to investigate the interfacial adhesion effect between PUF microcapsules and epoxy matrix. The result indicted that the silane-coupling agent play an important role in improving the interfacial performance between microcapsules and resin matrix.
NASA Astrophysics Data System (ADS)
Myriounis, Dimitrios
Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.
Wang, Russell; Tao, Junliang; Yu, Bill; Dai, Liming
2014-04-01
Most fractures of dentures occur during function, primarily because of the flexural fatigue of denture resins. The purpose of this study was to evaluate a polymethyl methacrylate denture base material modified with multiwalled carbon nanotubes in terms of fatigue resistance, flexural strength, and resilience. Denture resin specimens were fabricated: control, 0.5 wt%, 1 wt%, and 2 wt% of multiwalled carbon nanotubes. Multiwalled carbon nanotubes were dispersed by sonication. Thermogravimetric analysis was used to determine quantitative dispersions of multiwalled carbon nanotubes in polymethyl methacrylate. Raman spectroscopic analyses were used to evaluate interfacial reactions between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Groups with and without multiwalled carbon nanotubes were subjected to a 3-point-bending test for flexural strength. Resilience was derived from a stress and/or strain curve. Fatigue resistance was conducted by a 4-point bending test. Fractured surfaces were analyzed by scanning electron microscopy. One-way ANOVA and the Duncan tests were used to identify any statistical differences (α=.05). Thermogravimetric analysis verified the accurate amounts of multiwalled carbon nanotubes dispersed in the polymethyl methacrylate resin. Raman spectroscopy showed an interfacial reaction between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Statistical analyses revealed significant differences in static and dynamic loadings among the groups. The worst mechanical properties were in the 2 wt% multiwalled carbon nanotubes (P<.05), and 0.5 wt% and 1 wt% multiwalled carbon nanotubes significantly improved flexural strength and resilience. All multiwalled carbon nanotubes-polymethyl methacrylate groups showed poor fatigue resistance. The scanning electron microscopy results indicated more agglomerations in the 2% multiwalled carbon nanotubes. Multiwalled carbon nanotubes-polymethyl methacrylate groups (0.5% and 1%) performed better than the control group during the static flexural test. The results indicated that 2 wt% multiwalled carbon nanotubes were not beneficial because of the inadequate dispersion of multiwalled carbon nanotubes in the polymethyl methacrylate matrix. Scanning electron microscopy analysis showed agglomerations on the fracture surface of 2 wt% multiwalled carbon nanotubes. The interfacial bonding between multiwalled carbon nanotubes and polymethyl methacrylate was weak based on the Raman data and dynamic loading results. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.
1992-01-01
The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.
Weak interfaces for UV cure nanoimprint lithography
NASA Astrophysics Data System (ADS)
Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa
2008-03-01
Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.
Stress Concentration and Fracture at Inter-variant Boundaries in an Al-Li Alloy
NASA Technical Reports Server (NTRS)
Crooks, Roy; Tayon, Wes; Domack, Marcia; Wagner, John; Beaudoin, Armand
2009-01-01
Delamination fracture has limited the use of lightweight Al-Li alloys. Studies of secondary, delamination cracks in alloy 2090, L-T fracture toughness samples showed grain boundary failure between variants of the brass texture component. Although the adjacent texture variants, designated B(sub s1) and B(sub s2), behave similarly during rolling, their plastic responses to mechanical tests can be quite different. EBSD data from through-thickness scans were used to generate Taylor factor maps. When a combined boundary normal and shear tensor was used in the calculation, the delaminating grains showed the greatest Taylor Factor differences of any grain pairs. Kernel Average Misorientation (KAM) maps also showed damage accumulation on one side of the interface. Both of these are consistent with poor slip accommodation from a crystallographically softer grain to a harder one. Transmission electron microscopy was used to confirm the EBSD observations and to show the role of slip bands in the development of large, interfacial stress concentrations. A viewgraph presentation accompanies the provided abstract.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2003-01-01
The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dongming; Miller, Robert A.
2003-01-01
The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
NASA Astrophysics Data System (ADS)
Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.
2018-02-01
In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
NASA Astrophysics Data System (ADS)
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya; Walsh, Stuart D. C.
2016-11-01
Proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based on representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell. By recreating the surface in clear plastic resin, proppant movement within the fracture can be tracked directly in real time without the need for X-ray imaging. Particle tracking is further enhanced through the use of mixtures of transparent and opaque proppant analogues. The accompanying numerical studies employ a high-fidelity three-dimensional particle-flow model, capable of explicitly representing the particles, the fracture surface and the interstitial fluid flow. Both studies reveal large-scale vortex motion during particle settling. For the most part, this behavior is independent of the fracture topology, instead driven by interactions between the sinking particles and the upwelling interstitial fluid. This motion results in large amounts of particle dispersion, significantly greater than might be expected from traditional slurry models. The competition between the particles and the fluid also results in a redistribution of particles toward the fracture walls, which has significant implications for the transport of proppant along the fracture.
Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang
2010-06-01
This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.
Modeling interfacial fracture in Sierra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang
2013-09-01
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conductedmore » with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.« less
Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges
Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus
2015-01-01
In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033
NASA Astrophysics Data System (ADS)
Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.
2017-06-01
In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Ping; Mu, Jujie; Yu, Qi; Lu, Chun
2011-05-01
The improved interfacial adhesion of PBO fiber-reinforced bismaleimide composite by oxygen plasma processing was investigated in this paper. After treatment, the maximum value of interlaminar shear strength was 57.5 MPa, with an increase of 28.9%. The oxygen concentration of the fiber surface increased, as did the surface roughness, resulting in improvement of the surface wettability. The cleavage and rearrangement of surface bonds created new functional groups O dbnd C sbnd O, N sbnd C dbnd O and N sbnd O, thereby activating the fiber surface. And long-time treatment increased the reaction degree of surface groups while destroyed the newly-created physical structures. The enhancement of adhesion relied primarily on the strengthening of chemical bonding and mechanical interlocking between the fiber and the matrix. The composite rupture planes indicated that the fracture failure shifted from the interface to the matrix or the fiber.
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
[In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].
Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei
2015-08-01
In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.
NASA Astrophysics Data System (ADS)
Li, L. B.
2017-01-01
The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.
NASA Astrophysics Data System (ADS)
Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.
2016-01-01
The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.
Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C
NASA Astrophysics Data System (ADS)
Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun
2018-04-01
In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.
Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao Hua; Zheng, He; Zhong, Li
2011-08-10
We report direct observation of an unexpected anisotropic swelling of Si nanowires during lithiation against either a solid electrolyte with a lithium counter-electrode or a liquid electrolyte with a LiCoO2 counter-electrode. Such anisotropic expansion is attributed to the interfacial processes of accommodating large volumetric strains at the lithiation reaction front that depend sensitively on the crystallographic orientation. This anisotropic swelling results in lithiated Si nanowires with a remarkable dumbbell-shaped cross section, which develops due to plastic flow and an ensuing necking instability that is induced by the tensile hoop stress buildup in the lithiated shell. The plasticity-driven morphological instabilities oftenmore » lead to fracture in lithiated nanowires, now captured in video. These results provide important insight into the battery degradation mechanisms.« less
Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah
2015-01-05
To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p < 0.001) fracture load compared to fused CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.
2014-12-01
Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
NASA Astrophysics Data System (ADS)
Nie, Shihua
The main aim of this dissertation was to characterize the damage mechanism and fatigue behavior of the acrylic particulate composite. This dissertation also investigated how the failure mechanism is influenced by changes in certain parameters including the volume fraction of particle, the interfacial bonding strength, the stiffness and thickness of the interphase, and the CTE mismatch between the particle and the matrix. Monotonic uniaxial tensile and compressive testing under various temperatures and strain rates, isothermal low-cycle mechanical testing and thermal cycling of a plate with a cutout were performed. The influence of the interfacial bonding strength between the particle and the matrix on the failure mechanism of the ATH filled PMMA was investigated using in situ observations under uniaxial loading conditions. For composites with weak interfacial bonding, the debonding is the major damage mode. For composites with strong interfacial bonding, the breakage of the agglomerate of particles is the major damage mode. Experimental studies also demonstrated the significant influence of interfacial bonding strength on the fatigue life of the ATH filled PMMA. The damage was characterized in terms of the elastic modulus degradation, the load-drop parameter, the plastic strain range and the hysteresis dissipation. Identifying the internal state variables that quantify material degradation under thermomechanical loading is an active research field. In this dissertation, the entropy production, which is a measure of the irreversibility of the thermodynamic system, is used as the metric for damage. The close correlation between the damage measured in terms of elastic modulus degradation and that obtained from the finite element simulation results validates the entropy based damage evolution function. A micromechanical model for acrylic particulate composites with imperfect interfacial bonds was proposed. Acrylic particulate composites are treated as three-phase composites consisting of agglomerated particles, bulk matrix and an interfacial transition zone around the agglomerate. The influence of the interfacial bonding and the CTE mismatch between the matrix and the filler on the overall thermomechanical behavior of composites is studied analytically and experimentally. The comparison of analytical simulation with experimental data demonstrated the validity of the proposed micromechanical model for acrylic particulate composites with an imperfect interface. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
Fracture mechanics analysis of the dentine-luting cement interface.
Ryan, A K; Mitchell, C A; Orr, J F
2002-01-01
The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji 1), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 microm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial K(IC) results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p <0.05) than those of FP or D, and all were significantly lower than values for monolithic cement specimens. Scanning electron microscopy of the specimens suggested crack propagation along the interface. However, energy dispersive X-ray analysis indicated that failure was cohesive within the cement. It is concluded that the fracture toughness of luting cement was lowered by cement-dentine interactions.
Yu, Kejing; Wang, Menglei; Wu, Junqing; Qian, Kun; Sun, Jie; Lu, Xuefeng
2016-01-01
The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF) composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM) and optical microscopy (OM). The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA) indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials. PMID:28335217
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Bonding to CAD-CAM Composites: An Interfacial Fracture Toughness Approach.
Eldafrawy, M; Ebroin, M G; Gailly, P A; Nguyen, J-F; Sadoun, M J; Mainjot, A K
2018-01-01
The objective of this study was to evaluate the interfacial fracture toughness (IFT) of composite cement with dispersed filler (DF) versus polymer-infiltrated ceramic network (PICN) computer-aided design and computer-aided manufacturing (CAD-CAM) composite blocks after 2 different surface pretreatments using the notchless triangular prism (NTP) test. Two DFs (Cerasmart [CRT] and Lava Ultimate [LVA]), 2 PICNs (Enamic [ENA] and experimental PICN [EXP]), and e.max CAD lithium disilicate glass-ceramic (EMX, control) prism samples were bonded to their counterparts with Variolink Esthetic DC composite cement after either hydrofluoric acid etching (HF) or gritblasting (GR). Both procedures were followed by silanization. All samples ( n = 30 per group) were thermocycled (10,000 cycles) and tested for their IFT in a water bath at 36°C. Moreover, representative samples from each group were subjected to a developed interfacial area ratio (Sdr) measurement by profilometry and scanning electron microscopy (SEM) characterization. EXP-HF gave the highest IFT (1.85 ± 0.39 MPa·m 1/2 ), followed by EMX-HF and ENA-HF, while CRT-HF gave the lowest (0.15 ± 0.22 MPa·m 1/2 ). PICNs gave significantly better results with HF, and DF showed better results with GR. A 2-way analysis of variance indicated that there were significantly higher IFT and Sdr for PICNs than for DF. A positive correlation ( r² = 0.872) was found between IFT and Sdr. SEM characterization showed the specific microstructure of the surface of etched PICNs, indicating the presence of a retentive polymer-based honeycomb structure. Etching of the typical double-network microstructure of PICNs causes an important increase in the Sdr and IFT, while DF should be gritblasted. DF exhibited significantly lower Sdr and IFT values than PICNs. The present results show the important influence of the material class and surface texture, and consequently the micromechanical bond, on the adhesive interface performance of CAD-CAM composites.
Meteorite fractures and the behavior of meteoroids in the atmosphere
NASA Astrophysics Data System (ADS)
Bryson, K.; Ostrowski, D. R.; Sears, D. W. G.
2015-12-01
Arguably the major difficulty faced to model the atmospheric behavior of objects entering the atmosphere is that we know very little about the internal structure of these objects and their methods of fragmentation during fall. In a study of over a thousand meteorite fragments (mostly hand-sized, some 40 or 50 cm across) in the collections of the Natural History Museums in Vienna and London, we identified six kinds of fracturing behavior. (1) Chondrites usually showed random fractures with no particular sensitivity to meteorite texture. (2) Coarse irons fractured along kamacite grain boundaries, while (3) fine irons fragmented randomly, c.f. chondrites. (4) Fine irons with large crystal boundaries (e.g. Arispe) fragmented along the crystal boundaries. (5) A few chondrites, three in the present study, have a distinct and strong network of fractures making a brickwork or chicken-wire structure. The Chelyabinsk meteorite has the chicken-wire structure of fractures, which explains the very large number of centimeter-sized fragments that showered the Earth. Finally, (6) previous work on Sutter's Mill showed that water-rich meteorites fracture around clasts. To scale the meteorite fractures to the fragmentation behavior of near-Earth asteroids, it has been suggested that the fracturing behavior follows a statistical prediction made in the 1930s, the Weibull distribution, where fractures are assumed to be randomly distributed through the target and the likelihood of encountering a fracture increases with distance. This results in a relationship: σl = σs(ns/nl)α, where σs and σl refers to stress in the small and large object and ns and nl refer to the number of cracks per unit volume of the small and large object. The value for α, the Weibull coefficient, is unclear. Ames meteorite laboratory is working to measure the density and length of fractures observed in these six types of fracture to determine values for the Weibull coefficient for each type of object.
Mechanical exfoliation of two-dimensional materials
NASA Astrophysics Data System (ADS)
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Dou, Qiang; Cai, Jun
2016-01-01
Polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)/bark flour of plane tree (PF) eco-composites were prepared via melt blending. The morphologies, mechanical properties, crystal structures and melting and crystallization behaviors of the eco-composites were investigated by means of scanning electron microscopy (SEM), mechanical tests, polarized light microscopy (PLM), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. It is shown that the interfacial adhesion between PLA matrix and PF is weak and the mechanical properties of PLA/PF eco-composites are poor. The titanate treatment improves the adhesion between the matrix and the filler and enhances the stiffness of the eco-composites. The toughness is improved by PBAT and ductile fractured surfaces can be found. The spherulitic size of PLA is decreased by the addition of PF. The α crystalline form of PLA remains in the composites. Compared with PF, T-PF (PF treated by a titanate coupling agent) and PBAT have negative effects on the crystallization of PLA. PMID:28773515
Scanning and Transmission Electron Microscopy of High Temperature Materials
NASA Technical Reports Server (NTRS)
1994-01-01
Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.
NASA Astrophysics Data System (ADS)
Gandhi, D. D.; Singh, A. P.; Lane, M.; Eizenberg, M.; Ramanath, G.
2007-04-01
We demonstrate the use of polyallylamine hydrochloride (PAH)-polystyrene sulfonate (PSS) nanolayers to block Cu transport into silica. Cu/PSS-PAH/SiO2 structures show fourfold enhancement in device failure times during bias thermal annealing at 200 °C at an applied electric field of 2 MV/cm, when compared with structures with pristine Cu-SiO2 interfaces. Although the bonding at both Cu-PSS and PAH-SiO2 interfaces are strong, the interfacial toughness measured by the four-point bend tests is ˜2 Jm-2. Spectroscopic analysis of fracture surfaces reveals that weak electrostatic bonding at the PSS-PAH interface is responsible for the low toughness. Similar behavior is observed for Cu-SiO2 interfaces modified with other polyelectrolyte bilayers that inhibit Cu diffusion. Thus, while strong bonding at Cu-barrier and barrier-dielectric interfaces may be sufficient for blocking copper transport across polyelectrolyte bilayers, strong interlayer molecular bonding is a necessary condition for interface toughening. These findings are of importance for harnessing MNLs for use in future device wiring applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Millett, P.C.; Tonks, M.R.
2013-07-01
In this study, the intergranular fracture behavior of UO{sub 2} was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt Σ5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at themore » propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior. (authors)« less
Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongfeng Zhang; Paul C Millett; Michael R Tonks
2013-10-01
In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagatingmore » crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.« less
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1992-01-01
Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.
Interfacial adhesion of dental ceramic-resin systems
NASA Astrophysics Data System (ADS)
Della Bona, Alvaro
The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses provide important a more comprehensive assessment of mechanisms that control the survival times of dental adhesive systems. Thus, the quality of the bond should not be assessed based on bond strength data alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu
Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopymore » (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.« less
Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength.
Chai, Yu; Lukito, Alysia; Jiang, Yufeng; Ashby, Paul D; Russell, Thomas P
2017-10-11
Nanoparticle-surfactants (NPSs) assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Knowing the formation and assembly and actively tuning the packing of these NPSs is of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we demonstrate by means of interfacial tension measurements the high ionic strength helps the adsorption of NPSs to the water-oil interface leading to a denser packing of NPSs at the interface. With the reduction of interfacial area, the phase transitions from a "gas"-like to "liquid" to "solid" states of NPSs in two dimensions are observed. Finally, we provide the first in situ real-space imaging of NPSs at the water-oil interface by atomic force microcopy.
A finite element analysis of the freeze/thaw behavior of external artery heat pipes
NASA Technical Reports Server (NTRS)
Lu, X. J.; Peterson, G. P.
1993-01-01
A two-dimensional finite element model was used to determine the freeze/thaw characteristics of an external artery heat pipe. During startup, the working fluid, which was located in the liquid channel and the circumferential wall grooves, experienced a phase transformation from a solid to a liquid state. The transient heat conduction equations with moving interfacial conditions were solved using the appropriate initial boundary conditions. The modelling results include the cross-sectional temperature distribution and the interfacial or melt front position as a function of time. A fixed grid approach was adopted in the model for the phase-change process during thawing of frozen working fluid. The interfacial position between the liquid and solid regions was found by balancing the latent heat caused by interfacial movement with the heat addition or extraction at the related grid points.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.
2008-01-01
The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
Interfacial behavior of confined mesogens at smectic-C*-water boundary.
Chandran, Achu; Khanna, P K; Haranath, D; Biradar, Ashok M
2018-02-01
In this paper, we have investigated the behavior of mesogens at smectic-C*-water interface confined in a liquid crystal (LC) cell with interfacial geometry. Polarized optical microscopy was used to probe the appearance of various smectic-C* domain patterns at water interface owing to the reorientation of mesogens. The undulated stripe domains observed at the air interface of smectic-C* meniscus vanished as the water entered into the smectic layers and focal conical domain patterns appeared at smectic-C*-water boundary. A spatially variable electro-optical switching of LC molecules was also observed outside the electrode area of the interfacial cell. The electrode region at the interface, as well as on the water side, was damaged upon application of an electric field of magnitude more than 150 kV/m. The change in dielectric parameters of mesogens was extensively studied at interface after evaporating the water. These studies give fundamental insights into smectic-C*-water interface and also will be helpful in fabricating better LC devices for electro-optical and sensing applications.
Model colloid system for interfacial sorption kinetics
NASA Astrophysics Data System (ADS)
Salipante, Paul; Hudson, Steven
2014-11-01
Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.
Interfacial behavior of confined mesogens at smectic-C*-water boundary
NASA Astrophysics Data System (ADS)
Chandran, Achu; Khanna, P. K.; Haranath, D.; Biradar, Ashok M.
2018-02-01
In this paper, we have investigated the behavior of mesogens at smectic-C*-water interface confined in a liquid crystal (LC) cell with interfacial geometry. Polarized optical microscopy was used to probe the appearance of various smectic-C* domain patterns at water interface owing to the reorientation of mesogens. The undulated stripe domains observed at the air interface of smectic-C* meniscus vanished as the water entered into the smectic layers and focal conical domain patterns appeared at smectic-C*-water boundary. A spatially variable electro-optical switching of LC molecules was also observed outside the electrode area of the interfacial cell. The electrode region at the interface, as well as on the water side, was damaged upon application of an electric field of magnitude more than 150 kV/m. The change in dielectric parameters of mesogens was extensively studied at interface after evaporating the water. These studies give fundamental insights into smectic-C*-water interface and also will be helpful in fabricating better LC devices for electro-optical and sensing applications.
Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G
2011-08-28
The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics
Ghadar, Yasaman; Clark, Aurora E
2014-06-28
Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.
Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites
NASA Astrophysics Data System (ADS)
Ren, Liyun
The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network within the composite. The resulting silica nanofiber filled epoxy would be widely applicable as underfill and encapsulant in advanced electronic packaging industry because of its electrically insulating, low cost and ease of processability.
Aging and loading rate effects on the mechanical behavior of equine bone
NASA Astrophysics Data System (ADS)
Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.
2008-06-01
Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.
NASA Technical Reports Server (NTRS)
Sinclair, J. H.; Chamis, C. C.
1977-01-01
The mechanical behavior, fracture surfaces, and fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated experimentally. The investigation included the generation of stress-strain-to-fracture data and scanning electron microscope studies of the fractured surfaces. The results led to the identification of fracture modes and distinct fracture surface characteristics for off-axis tensile loading. The results also led to the formulation of critical for identifying and characterizing these fracture modes and their associated fracture surfaces. The results presented and discussed herein were used in the theoretical investigation and comparisons described in Part 2. These results should also provide a good foundation for identifying, characterizing, and quantifying fracture modes in both off-axis and angle-plied laminates.
Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A
2017-03-01
The aim of this work was to examine foaming and interfacial behavior of three milk protein mixtures, bovine α-lactalbumin-β-casein (M1), camel α-lactalbumin-β-casein (M2) and β-lactoglobulin-β-casein (M3), alone and in binary mixtures, at the air/water interface in order to better understand the foaming properties of bovine and camel milks. Different mixture ratios (100:0; 75:25; 50:50; 25:75; 0:100) were used during foaming tests and interfacial protein interactions were studied with a pendant drop tensiometer. Experimental results evidenced that the greatest foam was obtained with a higher β-casein amount in all camel and bovine mixtures. Good correlation was observed with the adsorption and the interfacial rheological properties of camel and bovine protein mixtures. The proteins adsorbed layers are mainly affected by the presence of β-casein molecules, which are probably the most abundant protein at interface and the most efficient in reducing the interfacial properties. In contrast of, the globular proteins, α-lactalbumin and β-lactoglobulin that are involved in the protein layer composition, but could not compact well at the interface to ensure foams creation and stabilization because of their rigid molecular structure. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Jici; Wei, Yujie; Cheng, Yang-Tse
2018-07-01
Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.
NASA Astrophysics Data System (ADS)
Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram
2017-02-01
A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.
Carbon nanotubes on carbon fibers: Synthesis, structures and properties
NASA Astrophysics Data System (ADS)
Zhang, Qiuhong
The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed localized transverse compression at low loads (muN to mN) and small displacements (nm to a few mum). Force, strain, stiffness, and electrical resistance were monitored simultaneously during compression experiments. The results showed that CNT/CF possess a high sensing capability between force and resistance. Hysteresis in both force-displacement and resistance-displacement curves was observed with CNT/CF, but was more evident as maximum strain increased and did not depend on strain rate. Force was higher and resistance was lower during compression as compared to decompression. A model is proposed to explain hysteresis where van der Waals forces between deformed and entangled nanotubes hinder decompression of some of the compressed tubes that are in contact with each other. This study provides a new understanding of the mechanical and electrical behavior of CNT/CF that will facilitate usage as stress and strain sensors in both stand-alone and composite materials applications. A novel method for in situ observation of nano-micro scale CNT/CF mechanical behavior by SEM has been developed in this study. The results indicated that deformation of vertical aligned CNT (VACNT) forest followed a column-like bending mechanism under localized radial (axial) compression. No fracture was observed even at very high compression strain on a VACNT forest. In order to fully understand CNT forest properties, the viscous creep behavior of VACNT arrays grown on flat Si substrate has also been characterized using a nanoindentation method. Resulting creep response was observed to consist of a short transient stage and a steady state stage in which the rate of displacement was constant. The strain rate sensitivity depended on the density of the nanotube arrays, but it was independent of the ramping (compression) rate of the indenter.
NASA Astrophysics Data System (ADS)
Schöpfer, Martin; Lehner, Florian; Grasemann, Bernhard; Kaserer, Klemens; Hinsch, Ralph
2017-04-01
John G. Ramsay's sketch of structures developed in a layer progressively folded and deformed by tangential longitudinal strain (Figure 7-65 in Folding and Fracturing of Rocks) and the associated strain pattern analysis have been reproduced in many monographs on Structural Geology and are referred to in numerous publications. Although the origin of outer-arc extension fractures is well-understood and documented in many natural examples, geomechanical factors controlling their (finite or saturation) spacing are hitherto unexplored. This study investigates the formation of bending-induced fractures during constant-curvature forced folding using Distinct Element Method (DEM) numerical modelling. The DEM model comprises a central brittle layer embedded within weaker (low modulus) elastic layers; the layer interfaces are frictionless (free slip). Folding of this three-layer system is enforced by a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The models illustrate several key stages of fracture array development: (i) Prior to the onset of fracture, the neutral surface is located midway between the layer boundaries; (ii) A first set of regularly spaced fractures develops once the tensile stress in the outer-arc equals the tensile strength of the layer. Since the layer boundaries are frictionless, these bending-induced fractures propagate through the entire layer; (iii) After the appearance of the first fracture set, the rate of fracture formation decreases rapidly and so-called infill fractures develop approximately midway between two existing fractures (sequential infilling); (iv) Eventually no new fractures form, irrespective of any further increase in fold curvature (fracture saturation). Analysis of the interfacial normal stress distributions suggests that at saturation the fracture-bound blocks are subjected to a loading condition similar to three-point bending. Using classical beam theory an analytical solution is derived for the critical fracture spacing, i.e. the spacing below which the maximum tensile stress cannot reach the layer strength. The model results are consistent with an approximate analytical solution, and illustrate that the spacing of bending-induced fractures is proportional to layer thickness and a square root function of the ratio of layer tensile strength to confining pressure. Although highly idealised, models and analysis presented in this study offer an explanation for fracture saturation during folding and point towards certain key factors that may control fracture spacing in natural systems.
Two-Fluid Models and Interfacial Area Transport in Microgravity Condition
NASA Technical Reports Server (NTRS)
Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp
2004-01-01
The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.
Dynamic Fracture Behavior of Plastic-Bonded Explosives
NASA Astrophysics Data System (ADS)
Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team
2011-06-01
Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.
NASA Astrophysics Data System (ADS)
Wu, Chenglin
Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (< 6% error) and crack spacing (< 6% error). The validated bond model is applied to derive various interrelations among concrete crushing, concrete splitting, interfacial behavior, and the rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.
NASA Astrophysics Data System (ADS)
Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.
2013-12-01
High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.
Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects
NASA Technical Reports Server (NTRS)
Skinner, A.; Koczak, M. J.; Lawley, A.
1982-01-01
Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.
The effect of the interaction of cracks in orthotropic layered materials under compressive loading.
Winiarski, B; Guz, I A
2008-05-28
The non-classical problem of fracture mechanics of composites compressed along the layers with interfacial cracks is analysed. The statement of the problem is based on the model of piecewise homogeneous medium, the most accurate within the framework of the mechanics of deformable bodies as applied to composites. The condition of plane strain state is examined. The layers are modelled by a transversally isotropic material (a matrix reinforced by continuous parallel fibres). The frictionless Hertzian contact of the crack faces is considered. The complex fracture mechanics problem is solved using the finite-element analysis. The shear mode of stability loss is studied. The results are obtained for the typical dispositions of cracks. It was found that the interacting crack faces, the crack length and the mutual position of cracks influence the critical strain in the composite.
Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong
2003-08-15
Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.
Mechanical behavior of polycrystalline ceramics: Brittle fracture of SiC-Si3N4 materials
NASA Technical Reports Server (NTRS)
Ceipold, M. H.; Kapadia, C. M.; Kelkar, A. H.
1972-01-01
Research on the fracture behavior of silicon nitride and silicon carbide is reported along with the role of anion impurities in the fabrication and behavior of magnesium oxide. The results of a survey of crack propagation in SiC and Si3N4 are presented. Studies in the following areas are reported: development of a fracture toughness testing technique, constant moment beam, microcrack examination, and etching techniques.
Fracture Characteristics of Two High-Strength, Low-Alloy and Two Stainless Steels
1977-01-01
conditions. The effects of hydrogen. and temper. embrittlement on the materials’ behavior when fractured under tensile and fatigue fonditions were... effects of hydrogen- and tomper-embrittlement have a bet, crystal structure, this plane has the type on the materials’ behavior when fractured under...A. Troiano, "The Role of lydrogen and Other Intersiftials high-strength, low-alloy structural steels generally used in the Mechanical Behavior ot
Mineback Stimulation Research Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
The Mineback Stimulation Research Program is a systematic study of hydraulic fracturing and the parameters which influence or control fracture geometry or behavior. Fractures are created near a tunnel complex at DOE's Nevada Test Site and are monitored, instrumented, and mined back to observe the effect of treatment, rock and reservoir properties on the fractures. An initial experiment to measure width and pressure in a hydraulic fracture was completed in FY 1983. The test showed that pressure drops along fractures are much larger than predicted, with the result that fractures are shorter, higher, and wider than present models estimate. Themore » cause of this is the complex morphology of hydraulic fractures, including a hierarchy of roughnesses, multiple stranding, and corners, such as the offsets which occur when natural fractures are intersected. A test to study flow behavior in hydraulic fractures with proppant is proposed for FY 1984. 7 figures.« less
Multiwell fracturing experiments. [Nitrogen foam fracture treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.
The objective of the Multiwell fracturing experiments is to test and develop the technology for the efficient stimulation of tight, lenticular gas sands. This requires basic understanding of: (1) fracture behavior and geometry in this complex lithologic environment, and (2) subsequent production into the created fracture. The intricate interplay of the hydraulic fracture with the lens geometry, the internal reservoir characteristics (fractures, reservoir breaks, etc.), the in situ stresses, and the mechanical defects (fracture, bedding, etc.) need to be defined in order to develop a successful stimulation program. The stimulation phase of the Multiwell Experiment is concerned with: (1) determiningmore » important rock/reservoir properties that influence or control fracture geometry and behavior, (2) designing fracture treatments to achieve a desired size and objectives, and (3) conducting post-treatment analyses to evaluate the effectiveness of the treatment. Background statement, project description, results and evaluation of future plans are presented. 5 refs., 2 figs., 2 tabs.« less
Permafrost and Subsurface Ice in the Solar System
NASA Technical Reports Server (NTRS)
Anderson, D. M.
1985-01-01
The properties and behavior of planetary permafrost are discussed with reference to the ability of such surfaces to sustain loads characteristics of spacecraft landing and planetary bases. In most occurrences, water ice is in close proximity to, or in contact with, finely divided silicate mineral matter. When ice contacts silicate mineral surfaces, a liquid-like, transition zone is created. Its thickness ranges from several hundred Angstron units at temperatures near 0 degrees C to about three Angstrom units at -150 degrees C. When soluble substances are present, the resulting brine enlarges the interfacial zone. When clays are involved, although the interfacial zone may be small, its extent is large. The unfrozen, interfacial water may amount to 100% or more weight at a temperature of -5 degrees C. The presence of this interfacial unfrozen water acts to confer plasticity to permafrost, enabling it to exhibit creep at all imposed levels of stress. Nucleation processes and load-bearing capacity are examined.
Understanding the liquid-liquid (water-hexane) interface
NASA Astrophysics Data System (ADS)
Murad, Sohail; Puri, Ishwar K.
2017-10-01
Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.
Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M
2016-04-12
The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers.
Role of interfacial transition layers in VO2/Al2O3 heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Honghui; Chisholm, Matthew F; Yang, Tsung-Han
2011-01-01
Epitaxial VO2 films grown by pulsed laser deposition (PLD) on c-cut sapphire substrates ((0001) Al2O3) were studied by aberration-corrected scanning transmission electron microscopy (STEM). A number of film/substrate orientation relationships were found and are discussed in the context of the semiconductor-metal transition (SMT) characteristics. A structurally and electronically modified buffer layer was revealed on the interface and was attributed to the interface free-energy minimization process of accommodating the symmetry mismatch between the substrate and the film. This interfacial transition layer is expected to affect the SMT behavior when the interfacial region is a significant fraction of the VO2 film thickness.
The evaluation of the interfacial behavior of LaRC-TPI/Graphite Composites
NASA Technical Reports Server (NTRS)
Ogden, A. L.; Wilkes, G. L.; Hyer, M. W.; Loos, A. C.; Muellerleile, J. T.
1992-01-01
Discussed are the results of several approaches recently considered for improving the interfacial adhesion of LaRC-TPI/graphite composites. Two approaches were investigated, namely altering the matrix and altering the fiber. As a result, three types of LaRC-TPI laminates were produced: amorphous/AS-4, amorphous/XAS, and semicrystalline/AS-4. The laminates were characterized using the transverse tensile test, scanning electron microscopy, optical microscopy, and thermal analysis.
NASA Astrophysics Data System (ADS)
Böttger, U.; Waser, R.
2017-07-01
The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.
SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Hirasaki; Clarence A. Miller; Gary A. Pope
2004-07-01
Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less
Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.
Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo
2015-04-07
In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.
Exchange bias mediated by interfacial nanoparticles (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, A. E., E-mail: aberk@ucsd.edu; Center for Magnetic Recording Research, University of California, California 92093; Sinha, S. K.
2015-05-07
The objective of this study on the iconic exchange-bias bilayer Permalloy/CoO has been to identify those elements of the interfacial microstructure and accompanying magnetic properties that are responsible for the exchange-bias and hysteretic properties of this bilayer. Both epitaxial and polycrystalline samples were examined. X-ray and neutron reflectometry established that there existed an interfacial region, of width ∼1 nm, whose magnetic properties differed from those of Py or CoO. A model was developed for the interfacial microstructure that predicts all the relevant properties of this system; namely; the temperature and Permalloy thickness dependence of the exchange-bias, H{sub EX}, and coercivity, H{submore » C}; the much smaller measured values of H{sub EX} from what was nominally expected; the different behavior of H{sub EX} and H{sub C} in epitaxial and polycrystalline bilayers. A surprising result is that the exchange-bias does not involve direct exchange-coupling between Permalloy and CoO, but rather is mediated by CoFe{sub 2}O{sub 4} nanoparticles in the interfacial region.« less
Lohbauer, Ulrich; Belli, Renan; Cune, Marco S; Schepke, Ulf
2017-01-01
Today, a substantial part of the dental crown production uses computer-aided design and computer-aided manufacturing (CAD/CAM) technology. A recent step in restorative dentistry is the replacement of natural tooth structure with pre-polymerized and machined resin-based methacrylic polymers. Recently, a new CAD/CAM composite was launched for the crown indication in the load-bearing area, but the clinical reality forced the manufacturer to withdraw this specific indication. In parallel, a randomized clinical trial of CAD/CAM composite crowns luted on zirconia implant abutments revealed a high incidence of failure within the first year of service. Fractured crowns of this clinical trial were retrieved and submitted to a fractographic examination. The aim of the case series presented in this article was to identify failure reasons for a new type of CAD/CAM composite crown material (Lava Ultimate; 3M Oral Care, St. Paul, Minnesota, USA) via fractographic examinations and analytical assessment of luting surfaces and water absorption behavior. As a result, the debonding of the composite crowns from the zirconia implant abutments was identified as the central reason for failure. The adhesive interface was found the weakest link. A lack of silica at the zirconia surface certainly has compromised the bonding potential of the adhesive system from the beginning. Additionally, the hydrolytic stress released from swelling of the resin-based crown (water absorption) and transfer to the luting interface further added to the interfacial stress and most probably contributed to a great extend to the debonding failure. PMID:29204275
Lohbauer, Ulrich; Belli, Renan; Cune, Marco S; Schepke, Ulf
2017-01-01
Today, a substantial part of the dental crown production uses computer-aided design and computer-aided manufacturing (CAD/CAM) technology. A recent step in restorative dentistry is the replacement of natural tooth structure with pre-polymerized and machined resin-based methacrylic polymers. Recently, a new CAD/CAM composite was launched for the crown indication in the load-bearing area, but the clinical reality forced the manufacturer to withdraw this specific indication. In parallel, a randomized clinical trial of CAD/CAM composite crowns luted on zirconia implant abutments revealed a high incidence of failure within the first year of service. Fractured crowns of this clinical trial were retrieved and submitted to a fractographic examination. The aim of the case series presented in this article was to identify failure reasons for a new type of CAD/CAM composite crown material (Lava Ultimate; 3M Oral Care, St. Paul, Minnesota, USA) via fractographic examinations and analytical assessment of luting surfaces and water absorption behavior. As a result, the debonding of the composite crowns from the zirconia implant abutments was identified as the central reason for failure. The adhesive interface was found the weakest link. A lack of silica at the zirconia surface certainly has compromised the bonding potential of the adhesive system from the beginning. Additionally, the hydrolytic stress released from swelling of the resin-based crown (water absorption) and transfer to the luting interface further added to the interfacial stress and most probably contributed to a great extend to the debonding failure.
Haughie, David W; Buckley, C Paul; Wu, Junjie
2006-07-01
In Part 2 of a study of welding of ultra-high molecular weight polyethylene (UHMWPE), experiments were conducted to measure the interfacial fracture energy of butt welds, for various welding times and temperatures above the melting point. Their toughness was investigated at 37 degrees C in terms of their fracture energy, obtained by adapting the essential work of fracture (EWF) method. However, a proportion of the welded samples (generally decreasing with increasing welding time or temperature) failed in dual ductile/brittle mode, hence invalidating the EWF test. Even those failing in purely ductile mode showed a measurable interface work of fracture only for the highest weld temperature and time: 188 degrees C and 90 min. Results from the model presented in Part 1 show that this corresponds to the maximum reptated molecular weight reaching close to the peak in the molar mass distribution. Hence this work provides the first experimental evidence that the slow rate of self-diffusion in UHMWPE leads to welded interfaces acting as low-toughness crack paths. Since such interfaces exist around every powder particle in processed UHMWPE this problem cannot be avoided, and it must be accommodated in design of hip and knee bearing surfaces made from this polymer.
Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics
Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.
2017-01-01
Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518
Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik
2011-03-15
The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, J. Q.; Zhou, M. B.; Zhang, X. P.
2017-03-01
In this work, the melting characteristics and interfacial reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu (Sn/SAC305-paste/Cu) structure joints were studied using differential scanning calorimetry, in order to gain a deeper and broader understanding of the interfacial behavior and metallurgical combination among the substrate (under-bump metallization), solder ball and solder paste in a board-level ball grid array (BGA) assembly process, which is often seen as a mixed assembly using solder balls and solder pastes. Results show that at the SAC305 melting temperature of 217°C, neither the SAC305-paste nor the Sn-ball coalesce, while an interfacial reaction occurs between the SAC305-paste and Cu. A slight increase in reflow temperature (from 217°C to 218°C) results in the coalescence of the SAC305-paste with the Sn-ball. The Sn-ball exhibits premelting behavior at reflow temperatures below its melting temperature, and the premelting direction is from the bottom to the top of the Sn-ball. Remarkably, at 227°C, which is nearly 5°C lower than the melting point of pure Sn, the Sn-ball melts completely, resulting from two eutectic reactions, i.e., the reaction between Sn and Cu and that between Sn and Ag. Furthermore, a large amount of bulk Cu6Sn5 phase forms in the solder due to the quick dissolution of Cu substrate when the reflow temperature is increased to 245°C. In addition, the growth of the interfacial Cu6Sn5 layer at the SAC305-paste/Cu interface is controlled mainly by grain boundary diffusion, while the growth of the interfacial Cu3Sn layer is controlled mainly by bulk diffusion.
Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.
Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R
2016-05-03
The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.
A sophisticated simulation for the fracture behavior of concrete material using XFEM
NASA Astrophysics Data System (ADS)
Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili
2017-10-01
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kyoungsoo, E-mail: kpark16@illinois.ed; Paulino, Glaucio H.; Roesler, Jeffery
A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. Inmore » addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.« less
Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu
2015-10-01
A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Vinyl-polysiloxane impressions of 12 zirconia-ceramic and 6 metal-ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3±2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Among the 12 zirconia-ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal-ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Zirconia-ceramic and metal-ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia-ceramic FDPs relative to their metal-ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia-ceramic FDPs. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu
2015-01-01
Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
2015-12-07
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun
2015-01-01
The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.
The evaluation of the interfacial behavior of LaRC-TPI/Graphite Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, A.L.; Wilkes, G.L.; Hyer, M.W.
1992-07-01
Discussed are the results of several approaches recently considered for improving the interfacial adhesion of LaRC-TPI/graphite composites. Two approaches were investigated, namely altering the matrix and altering the fiber. As a result, three types of LaRC-TPI laminates were produced: amorphous/AS-4, amorphous/XAS, and semicrystalline/AS-4. The laminates were characterized using the transverse tensile test, scanning electron microscopy, optical microscopy, and thermal analysis. 17 refs.
Fracture and Failure in Micro- and Nano-Scale
NASA Astrophysics Data System (ADS)
Charitidis, Costas A.
Indentation and scratch in micro- and nano-scale are the most commonly used techniques for quantifying thin film and systems properties. Among them are different failure modes such as deformation, friction, fracture toughness, fatigue. Failure modes can be activated either by a cycle of indentation or by scratching of the samples to provide an estimation of the fracture toughness and interfacial fracture energies. In the present study, we report on the failure and fracture modes in two cases of engineering materials; that is transparent SiOx thin films onto poly(ethylene terephthalate) (PET) membranes and glass-ceramic materials. The SiOx/PET system meets the demands regarding scratch-resistance, wettability, biocompatibility, gas transmission, or friction, while maintaining the bulk characteristics of PET (such as easy processing, good mechanical properties, reasonably low permeability to oxygen and carbon dioxide gases (barrier properties), and good chemical coupling with antibacterial coatings). Glass-ceramic materials, since their first accidental production in the mid fifties by S.D. Stookey, have been used in a vast area of applications, from household cooktops and stoves, to missile nose cones and mirror mounts of orbital telescopes and from decorative wall coverings to medical applications. The fracture modes, namely transgranular and intergranular modes in glass-ceramic materials have paid less attention in literature comparing with ceramic materials. In the former case the crack paves its way irrespectively of the direction of the grain boundaries, i.e., the interfaces between the different phases. In the latter case the crack preferentially follows them, i.e., debonds the interfaces.
Intergranular fracture of lithium fluoride-22 percent calcium fluoride hypereutectic salt at 800 K
NASA Technical Reports Server (NTRS)
Raj, Subramanium V.; Whittenberger, J. Daniel
1990-01-01
Substantial strain-hardening was noted during the initial stages of deformation in constant-velocity compression tests conducted on as-cast samples of the LiF-22 mol pct CaF2 hypereutectic salt at 800 K. The deformed specimens exhibited extensive grain-boundary cracking and cavitation, suggesting that such cracking, in conjunction with interfacial sliding, is important for cavity nucleation at grain boundaries and at the LiF-CaF2 interfaces. Cavity growth and interlinkage occur through the preferential failure of the weaker LiF phase.
Interfacial Studies of Chemical Vapor Infiltrated (CVI) Ceramic Matrix Composites
1988-10-01
carbon layer exists at the fiber/matrix interface. From Fig. 6, it can also be seen that a small amount of Cl exists at the interface and in the CVD SiC...matrix interface, most of which stayed on the fiber surface upon fracture. A small amount of oxygen (3-5 at*/) was found to be present in the CVI SiC. The... small amount of oxygen (1-2%). The results of MTS precursor coatings applied to Nextel 440 and Nicalon fibers preceded by an argon flush of the reactor
A critical study of the role of the surface oxide layer in titanium bonding
NASA Technical Reports Server (NTRS)
Dias, S.; Wightman, J. P.
1983-01-01
Scanning electron microscope/X-ray photoelectron spectroscopy (SEM/XPS) analysis of fractured adhesively bonded Ti 6-4 samples is discussed. The text adhesives incuded NR 056X polyimide, polypheylquinoxaline (PPQ), and LARC-13 polyimide. Differentiation between cohesive and interfacial failure was based on the absence of presence of a Ti 2p XPS photopeak. In addition, the surface oxide layer on Ti-(6A1-4V) adherends is characterized and bond strength and durability are addressed. Bond durability in various environmental conditions is discussed.
NASA Astrophysics Data System (ADS)
Luo, Guoqiang; Zhang, Jian; Li, Meijuan; Wei, Qinqin; Shen, Qiang; Zhang, Lianmeng
2013-02-01
93W alloy and Ta metal were successfully diffusion bonded using a Ni interlayer. Ni4W was found at the W-Ni interface, and Ni3Ta and Ni2Ta were formed at the Ni-Ta interface. The shear strength of the joints increases with increasing holding time, reaching a value of 202 MPa for a joint prepared using a 90-minute holding time at 1103 K (830 °C) and 20 MPa. The fracture of this joint occurred within the Ni/Ta interface.
Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses.
Svitova, Tatyana F; Lin, Meng C
2013-12-01
To explore interfacial behaviors and effects of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and white subjects. Interfacial properties of lipids extracted from Focus N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolyte (MTE) solution to form 100 ± 20-nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures of 22 to 45°C for their viscoelastic property assessment. Isocycles for Asian and white lipids were similar at low surface pressures but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and white. The elastic modulus E∞ for white lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and white lipids when temperature increased from 22.0 to 36.5°C. However, for white lipids, E∞ reduced considerably at temperatures higher than 42.0°C, whereas t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38°C and higher. Higher elastic modulus of white lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and white lipids may be associated with the differences in their chemical compositions.
NASA Astrophysics Data System (ADS)
Shan, Hangying; Xiao, Jun; Chu, Qiyi
2018-05-01
The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2000-01-01
A new, widely applicable model for local interfacial debonding in composite materials is presented. Unlike its direct predecessors, the new model allows debonding to progress via unloading of interfacial stresses even as global loading of the composite continues. Previous debonding models employed for analysis of titanium matrix composites are surpassed by the accuracy, simplicity, and efficiency demonstrated by the new model. The new model was designed to operate seamlessly within NASA Glenn's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), which was employed to simulate the time- and rate-dependent (viscoplastic) transverse tensile and creep behavior of SiC/Ti composites. MAC/GMC's ability to simulate the transverse behavior of titanium matrix composites has been significantly improved by the new debonding model. Further, results indicate the need for a more accurate constitutive representation of the titanium matrix behavior in order to enable predictions of the composite transverse response, without resorting to recalibration of the debonding model parameters.
Over-Aging Effect on Fracture Toughness of Beryllium Copper Alloy C17200
NASA Astrophysics Data System (ADS)
Jen, Kei-Peng; Xu, Liqun; Hylinski, Steven; Gildersleeve, Nate
2008-10-01
This study experimentally increased the fracture toughness of Beryllium Copper (CuBe) UNS C17200 alloy using three different age hardening processes. At the same time, the micro- and macro-fracture behavior of this alloy were comprehensively studied. ASTM E399 fracture toughness, tensile, and Charpy impact tests were conducted for all three heat-treated rods. The fracture surfaces were examined under both an optical microscope and a scanning electron microscope to investigate the failure mechanisms. Multiple test orientations were considered to explore isotropy. Increasing the temperature and duration at which age hardening was performed increased fracture toughness while decreasing ultimate tensile strength. The maximum fracture toughness was reached on the most overaged specimen, while retaining a serviceable tensile strength. The specimen test data allowed a relationship to be established among Charpy impact toughness, fracture toughness, and yield strength. Analysis of fracture behavior revealed an interesting relationship between fracture toughness and pre-cracking fatigue propagation rate.
Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation
Fu, Pengcheng; Carrigan, Charles R.
2012-01-01
Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine the geomechanical and hydraulic behaviors of natural fracture systems subjected to hydro-shearing stimulation and develop a coupled numerical model within the framework of discrete fracture network modeling. We found that in the low pressure hydro-shearing regime, the coupling between the fluid phase and the rock solid phase is relatively simple, and the numerical model is computationally efficient. Using this modified model, we study the behavior of a random fracture network subjected to hydro-shearing stimulation.
Charging and discharging of single colloidal particles at oil/water interfaces
Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan
2014-01-01
The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negrutiu, Meda; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Mihai; Laissue, Philippe L.; Podoleanu, Adrian Gh.
2008-04-01
Metal ceramic and integral ceramic fixed partial prostheses are mainly used in the frontal part of the dental arch because for esthetics reasons. The masticatory stress may induce fractures of the bridges. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The fractures of these bridges lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of optical coherence tomography (OCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures.
NASA Astrophysics Data System (ADS)
Song, Jun; Liu, Juanfang; Chen, Qinghua
For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.
Assessment of a novel biomechanical fracture model for distal radius fractures
2012-01-01
Background Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N ± 232 N vs. 1250 N ± 341 N; p = 0.001). Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard. PMID:23244634
NASA Astrophysics Data System (ADS)
Irfan, Mohammad Abdulaziz
Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.
Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques
NASA Technical Reports Server (NTRS)
Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan
1985-01-01
A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.
2010-01-01
Mechanical analysis of idealized shallow hydraulic fracture, / Geotech . Geoenviron. Eng., 128, 488-495, doi:10.1061/ (ASCE) 1090-0241 (2002) 128:6(488...F. Chiu, and H.-J. Chai (2007), Experimental study on fracture behavior of a silty clay, Geotech . Test. J., 30, 1-9, doi: I0.1520/GTJI00715
Effects of age and loading rate on equine cortical bone failure.
Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S
2011-01-01
Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raziperchikolaee, Samin
The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.
Interface Engineering of Garnet Solid Electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Lei
Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low interfacial resistances. This opens new opportunities for garnet solid electrolyte in practical applications.
Han, Xianghui; Chen, Sheng; Lv, Xuguang; Luo, Hang; Zhang, Dou; Bowen, Chris R
2018-01-24
Polymer nanocomposites based on conductive fillers for high performance dielectrics have attracted increasing attention in recent years. However, a number of physical issues are unclear, such as the effect of interfacial thickness on the dielectric properties of the polymer nanocomposites, which limits the enhancement of permittivity. In this research, two core-shell structured reduced graphene oxide (rGO)@rigid-fluoro-polymer conducting fillers with different shell thicknesses are prepared using a surface-initiated reversible-addition-fragmentation chain transfer polymerization method, which are denoted as rGO@PTFMS-1 with a thin shell and rGO@PTFMS-2 with a thick shell. A rigid liquid crystalline fluoride-polymer poly{5-bis[(4-trifluoro-methoxyphenyl)oxycarbonyl]styrene} (PTFMS) is chosen for the first time to tailor the shell thicknesses of rGO via tailoring the degree of polymerization. The effect of interfacial thickness on the dielectric behavior of the P(VDF-TrFE-CTFE) nanocomposites with rGO and modified rGO is studied in detail. The results demonstrate that the percolation threshold of the nanocomposites increased from 0.68 vol% to 1.69 vol% with an increase in shell thickness. Compared to the rGO@PTFMS-1/P(VDF-TrFE-CTFE) composites, the rGO@PTFMS-2/P(VDF-TrFE-CTFE) composites exhibited a higher breakdown strength and a lower dielectric constant, which can be interpreted by interfacial polarization and the micro-capacitor model, resulting from the insulating nature of the rigid-polymer shell and the change of rGO's morphology. The findings provide an innovative approach to tailor dielectric composites, and promote a deeper understanding of the influence of interfacial region thickness on the dielectric performance.
Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.
Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi
2017-11-22
We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.
Majuta, Lisa A.; Longo, Geraldine; Fealk, Michelle N.; McCaffrey, Gwen; Mantyh, Patrick W.
2015-01-01
The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain–related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti–nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains. PMID:25599311
NASA Astrophysics Data System (ADS)
Immanuel, Susan; Aparna T., K.; Sivasubramanian, R.
2018-04-01
In this paper the interfacial behavior of graphene oxide and 2-aminothiophenol functionalized graphene oxide was investigated by electrochemical method. The GO was prepared by modified Hummers method and the 2-aminothiophenol was covalently attached on the surface of GO sheets. The electrochemical properties were investigated using a redox couple and the electrokinetic parameter was inferred. It was found that the ATP-GO exhibited slow kinetics compared to GO due to the increased deformation of GO sheets after ATP functionalization.
Interfacial welding of dynamic covalent network polymers
NASA Astrophysics Data System (ADS)
Yu, Kai; Shi, Qian; Li, Hao; Jabour, John; Yang, Hua; Dunn, Martin L.; Wang, Tiejun; Qi, H. Jerry
2016-09-01
Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.
2018-01-01
The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138
NASA Astrophysics Data System (ADS)
Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.
1998-12-01
Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.
Low cycle fatigue behavior of a ferritic reactor pressure vessel steel
NASA Astrophysics Data System (ADS)
Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.
2015-07-01
The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.
Mechanical and hydraulic properties of rocks related to induced seismicity
Witherspoon, P.A.; Gale, J.E.
1977-01-01
Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable. ?? 1977.
A review on mechanical properties of magnesium based nano composites
NASA Astrophysics Data System (ADS)
Tarafder, Nilanjan; Prasad, M. Lakshmi Vara
2018-04-01
A review was done on Magnesium (Mg) based composite materials reinforced with different nano particles such as TiO2, Cu, Y2O3, SiC, ZrO2 and Al2O3. TiO2 and Al2O3 nanoparticles were synthesised by melt deposition process. Cu, Y2O3, SiC and ZrO2 nanoparticles were synthesised by powder metallurgy process. Composite microstructural characteristics shows that the nano-size reinforcements are uniformly distributed in the composite matrix and also minimum porosity with solid interfacial integrity. The mechanical properties showed yield strength improvement by 0.2 percentage and Ultimate tensile strength (UTS) was also improved for all the nano-particles. But UTS was adversely affected with TiO2 reinforcement while ductility was increased. With Cu reinforcement elastic modulus, hardness and fracture resistance increased and improved the co-efficient of thermal expansion (CTE) of Mg based matrix. By Y2O3 reinforcement hardness, fracture resistance was improved and ductility reached maximum by 0.22 volume percentage of Y2O3 and decreased with succeeding increase in Y2O3 reinforcement. The readings exposed that mechanical properties were gathered from the composite comprising 2.0 weight percentage of Y2O3. Ductility and fracture resistance increased with ZrO2 reinforcement in Mg matrix. Using Al2O3 as reinforcement in Mg composite matrix hardness, elastic modulus and ductility was increased but porosity reduced with well interfacial integrity. Dissipation of energy in the form of damping capacity was resolved by classical vibration theory. The result showed that an increasing up to 0.4 volume percentage alumina content increases the damping capacity up to 34 percent. In another sample, addition of 2 weight percentage nano-Al2O3 particles showed big possibility in reducing CTE from 27.9-25.9×10-6 K-1 in Magnesium, tensile and yield strength amplified by 40MPa. In another test, Mg/1.1Al2O3 nanocomposite was manufactured by solidification process followed by hot extrusion. Results showed that strengthening effect was maintained up to 150°C and fracture characteristics of Mg composite transformed from brittle to mixed ductile mode and fully ductile in attendance of nano-Al2O3 particulates.
A theoretical and experimental technique to measure fracture properties in viscoelastic solids
NASA Astrophysics Data System (ADS)
Freitas, Felipe Araujo Colares De
Prediction of crack growth in engineering structures is necessary for better analysis and design. However, this prediction becomes quite complex for certain materials in which the fracture behavior is both rate and path dependent. Asphaltic materials used in pavements have that intrinsic complexity in their behavior. A lot of research effort has been devoted to better understanding viscoelastic behavior and fracture in such materials. This dissertation presents a further refinement of an experimental test setup, which is significantly different from standard testing protocols, to measure viscoelastic and fracture properties of nonlinear viscoelastic solids, such as asphaltic materials. The results presented herein are primarily for experiments with asphalt, but the test procedure can be used for other viscoelastic materials as well. Even though the test is designed as a fracture test, experiments on the investigated materials have uncovered very complex phenomena prior to fracture. Viscoelasticity and micromechanics are used to explain some of the physical phenomena observed in the tests. The material behavior prior to fracture includes both viscoelastic behavior and a necking effect, which is further discussed in the appendix of the present study. The dissertation outlines a theoretical model for the prediction of tractions ahead of the crack tip. The major contribution herein lies in the development of the experimental procedure for evaluating the material parameters necessary for deploying the model in the prediction of ductile crack growth. Finally, predictions of crack growth in a double cantilever beam specimens and asphalt concrete samples are presented in order to demonstrate the power of this approach for predicting crack growth in viscoelastic media.
High Temperature Fracture Characteristics of a Nanostructured Ferritic Alloy (NFA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Kim, Jeoung H; Ji Hyun, Yoon
2010-01-01
High temperature fracture behavior has been investigated for the nanostructured ferritic alloy 14YWT (SM10). The fracture toughness of the alloy was above 140 MPa m at low temperatures, room temperature (RT) and 200 C, but decreased to a low fracture toughness range of 52 82 MPa m at higher temperatures up to 700 C. This behavior was explained by the fractography results indicating that the unique nanostructure of 14YWT alloy produced shallow plasticity layers at high temperatures and a low-ductility grain boundary debonding occurred at 700 C.
Fingering and Intermittent Flow in Unsaturated Fractured Porous Media
NASA Astrophysics Data System (ADS)
Or, D.; Ghezzehei, T. A.
2003-12-01
Because of the dominance of gravitational forces over capillary and viscous forces in relatively large fracture apertures, flow processes in unsaturated fractures are considerably different from flow in rock matrix or in unsaturated soils. Additionally, variations in fracture geometry and properties perturb the delicate balance between gravitational, capillary, and viscous forces, leading to liquid fragmentation, fingering and intermittent flows. We developed a quantitative framework for modeling fluid fragmentation and the subsequent flow behavior of discrete fluid elements (slugs). The transition from a slowly growing but stationary liquid cluster to a finger-forming mobile slug in a non horizontal fracture is estimated from the force balance between retarding capillary forces dominated by contact angle hysteresis, and the weight and shape of the cluster. For a steady flux we developed a model for liquid fragmentation within the fracture plane that gives rise to intermittent discharge, as has been observed experimentally. Intermittency is shown to be a result of interplay between capillary, viscous, and gravitational forces, much like internal dripping. Liquid slug size, detachment interval, and travel velocity are dependent primarily on the local fracture-aperture geometry shaping the seed cluster, rock-surface roughness and wetness, and liquid flux feeding the bridge (either by film flow or from the rock matrix). We show that the presence of even a few irregularities in a vertical fracture surface could affect liquid cluster formation and growth, resulting in complicated flux patterns at the fracture bottom. Such chaotic-like behavior has been observed in previous studies involving gravity-driven unsaturated flow. Inferences based on statistical description of fracture-aperture variations and simplified representation of the fragmentation processes yield insights regarding magnitude and frequency of liquid avalanches. The study illustrates that attempts at describing intermittent and preferential flow behavior by adjustment of macroscopic continuum approaches are destined to failure at most local scales. In accordance with recent observations, flow behavior in partially saturated fractures tends to produce highly localize pathways that focus otherwise diffusive fluxes (film flow or matrix seepage).
C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali
2001-01-01
A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.
Fracture mechanics of cellular glass
NASA Technical Reports Server (NTRS)
Zwissler, J. G.; Adams, M. A.
1981-01-01
The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.
Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin
2018-06-06
Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.
Interfacial and emulsifying properties of designed β-strand peptides.
Dexter, Annette F
2010-12-07
The structural and surfactant properties of a series of amphipathic β-strand peptides have been studied as a function of pH. Each nine-residue peptide has a framework of hydrophobic proline and phenylalanine amino acid residues, alternating with acidic or basic amino acids to give a sequence closely related to known β-sheet formers. Surface activity, interfacial mechanical properties, electronic circular dichroism (ECD), droplet sizing and zeta potential measurements were used to gain an overview of the peptide behavior as the molecular charge varied from ±4 to 0 with pH. ECD data suggest that the peptides form polyproline-type helices in bulk aqueous solution when highly charged, but may fold to β-hairpins rather than β-sheets when uncharged. In the uncharged state, the peptides adsorb readily at a macroscopic fluid interface to form mechanically strong interfacial films, but tend to give large droplet sizes on emulsification, apparently due to flocculation at a low droplet zeta potential. In contrast, highly charged peptide states gave a low interfacial coverage, but retained good emulsifying activity as judged by droplet size. Best emulsification was generally seen for intermediate charged states of the peptides, possibly representing a compromise between droplet zeta potential and interfacial binding affinity. The emulsifying properties of β-strand peptides have not been previously reported. Understanding the interfacial properties of such peptides is important to their potential development as biosurfactants.
Fracture-permeability behavior of shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, J. William; Lei, Zhou; Rougier, Esteban
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
Fracture-permeability behavior of shale
Carey, J. William; Lei, Zhou; Rougier, Esteban; ...
2015-05-08
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.
The development of in situ fracture toughness evaluation techniques in hydrogen environment
Wang, John Jy-An; Ren, Fei; Tan, Tin; ...
2014-12-19
Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed in the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to many catastrophic failures. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, special testing apparatus were designed to facilitate in situ fracture testing in H 2. A torsional fixture was developed tomore » utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H 2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.« less
NASA Astrophysics Data System (ADS)
Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.
2017-11-01
In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.
Dynamic Behavior and Optimization of Advanced Armor Ceramics: January-December 2011 Annual Report
2015-03-01
however, under conventional methods of processing. To develop plasticity in ceramic like SiC, new fracture mechanisms and interesting behaviors need...and new fracture mechanisms . These improvements, in turn, could offer the potential for improved ballistic performance. Co-precipitation has been...experiments, the following deformed fragments were recovered for extensive SEM and TEM study. A fracture mechanism map has been constructed in
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
An equation has been developed to model the iterative scale growth and spalling process that occurs during cyclic oxidation of high temperature materials. Parabolic scale growth and spalling of a constant surface area fraction have been assumed. Interfacial spallation of the only the thickest segments was also postulated. This simplicity allowed for representation by a simple deterministic summation series. Inputs are the parabolic growth rate constant, the spall area fraction, oxide stoichiometry, and cycle duration. Outputs include the net weight change behavior, as well as the total amount of oxygen and metal consumed, the total amount of oxide spalled, and the mass fraction of oxide spalled. The outputs all follow typical well-behaved trends with the inputs and are in good agreement with previous interfacial models.
Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy.
Lei, Zhenkun; Wang, Quan; Qiu, Wei
2013-06-01
The interfacial stress transfer behavior of a Kevlar 49 aramid fiber-epoxy matrix was studied with fiber pullout tests, the fibers of which were stretched by a homemade microloading device. Raman spectra on the embedded fiber were recorded by micro-Raman spectroscopy, under different strain levels. Then, the fiber axial stress was obtained by the relationship between the stress and Raman shift of the aramid fiber. Experimental results revealed that the fiber axial stress increased significantly with the load. The shear stress concentration occurred at the fiber entry to the epoxy resin. Thus, interfacial friction stages exist in the debonded fiber segment, and the interfacial friction shear stress is constant within one stage. The experimental results are consistent with the theoretical model predictions.
Muscle Fiber Orientation Angle Dependence of the Tensile Fracture Behavior of Frozen Fish Muscle
NASA Astrophysics Data System (ADS)
Hagura, Yoshio; Okamoto, Kiyoshi; Suzuki, Kanichi; Kubota, Kiyoshi
We have proposed a new cutting method for frozen fish named "cryo-cutting". This method applied tensile fracture force or bending fracture force to the frozen fish at appropriate low temperatures. In this paper, to clarify cryo-cutting mechanism, we analyzed tensile fracture behavior of the frozen fish muscle. In the analysis, the frozen fish muscle was considered unidirectionally fiber-reinforced composite material which consisted of fiber (muscle fiber) and matrix (connective tissue). Fracture criteria (maximum stress criterion, Tsai-Hill criterion) for the unidirectionally fiber-reinforced composite material were used. The following results were obtained: (1) By using Tsai-Hill criterion, muscle fiber orientation angle dependence of the tensile fracture stress could be calculated. (2) By using the maximum stress theory jointly with Tsai-Hill criterion, muscle fiber orientation angle dependence of the fracture mode of the frozen fish muscle could be estimated.
Fracture toughness and the effects of stress state on fracture of nickel aluminides
NASA Technical Reports Server (NTRS)
Lewandowski, John J.; Michal, Gary M.; Locci, Ivan; Rigney, Joseph D.
1991-01-01
The effects of stress state on the fracture behavior of Ni3Al, Ni3Al + B, and NiAl were determined using either notched or fatigue-precracked bend bars tested to failure at room temperature, in addition to testing specimens in tension under superposed hydrostatic pressure. Although Ni3Al is observed to fail in a macroscopically brittle intergranular manner in tension tests conducted at room temperature, the fracture toughnesses presently obtained on Ni3Al exceeded 20 MPam, and R-curve behavior was exhibited. In situ monitoring of the fracture experiments was utilized to aid in interpreting the source(s) of the high toughness in Ni3Al, while SEM fractography was utilized to determine the operative fracture modes. The superposition by hydrostatic pressure during tensile testing of NiAl specimens was observed to produce increased ductility without changing the fracture mode.
Fatigue crack growth and fracture behavior of bainitic rail steels.
DOT National Transportation Integrated Search
2011-08-01
"The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...
Fatigue crack growth and fracture behavior of bainitic rail steels.
DOT National Transportation Integrated Search
2011-09-01
"The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...
Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao
2016-01-01
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349
Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao
2016-11-07
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.
In situ measurements of hydraulic fracture behavior, PTE-3. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE`s Nevada Test Site. This was accomplished by creating an "instrumented fracture" at a tunnel complex (at a depth of 1400 ft) where realistic in situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiple fracturemore » strands, roughness, and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated. The width and pressure profiles near the crack tip have been investigated in some detail, including the length of the unwetted region and the tapering of the crack tip. The overall fracture behavior has been compared with published fracture models. Mineback of the fracture provided evidence of the geometry of the fracture and details of surface features. 35 refs., 89 figs., 30 tabs.« less
NASA Astrophysics Data System (ADS)
Zhao, Xiaoye; Tan, Caiwang; Meng, Shenghao; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2018-03-01
Fiber laser welding-brazing of 1-mm-thick AZ31B Mg alloys to 1.5-mm-thick copper (T2) with Mg-based filler was performed in a lap configuration. The weld appearance, interfacial microstructure and mechanical properties were investigated with different heat inputs. The results indicated that processing windows for optimizing appropriate welding parameters were relatively narrow in this case. Visually acceptable joints with certain strength were achieved at appropriate welding parameters. The maximum tensile-shear fracture load of laser-welded-brazed Mg/Cu joint could reach 1730 N at the laser power of 1200 W, representing 64.1% joint efficiency relative to AZ31Mg base metal. The eutectic structure (α-Mg + Mg2Cu) and Mg-Cu intermetallic compound was observed at the Mg/Cu interface, and Mg-Al-Cu ternary intermetallic compound were identified between intermetallics and eutectic structure at high heat input. All the joints fractured at the Mg-Cu interface. However, the fracture mode was found to differ. For laser power of 1200 W, the surface was characterized by tearing edge, while that with poor joint strength was almost dominated by smooth surface or flat tear pattern.
Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys
NASA Astrophysics Data System (ADS)
Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.
Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.
Liquid behavior of cross-linked actin bundles.
Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L
2017-02-28
The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.
NASA Astrophysics Data System (ADS)
Feraoun, A.; Zaim, A.; Kerouad, M.
2016-09-01
By using the Quantum Monte Carlo simulation; the electric properties of a nanowire, consisting of a ferroelectric core of spin-1/2 surrounded by a ferroelectric shell of spin-1/2 with ferro- or anti-ferroelectric interfacial coupling have been studied within the framework of the Transverse Ising Model (TIM). We have examined the effects of the shell coupling Js, the interfacial coupling JInt, the transverse field Ω, and the temperature T on the hysteresis behavior and on the electric properties of the system. The remanent polarization and the coercive field as a function of the transverse field and the temperature are examined. A number of characteristic behavior have been found such as the appearance of triple hysteresis loops for appropriate values of the system parameters.
Composites with improved fiber-resin interfacial adhesion
NASA Technical Reports Server (NTRS)
Cizmecioglu, Muzaffer (Inventor)
1989-01-01
The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.
Brittle fracture in viscoelastic materials as a pattern-formation process
NASA Astrophysics Data System (ADS)
Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.
2011-04-01
A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin
Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less
Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; ...
2016-04-01
Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less
Fatigue and fracture mechanical behavior for Chinese A508-3 steel at room temperature
NASA Astrophysics Data System (ADS)
Shi, K. K.; Xie, H.; Zheng, B.; Fu, X. L.
2018-06-01
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material’s mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.
2003-01-01
Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.
Thermostructural responses of carbon phenolics in a restrained thermal growth test
NASA Technical Reports Server (NTRS)
Wang, C. Jeff
1992-01-01
The thermostructural response of carbon phenolic components in a solid rocket motor (SRM) is a complex process. It involves simultaneous heat and mass transfer along with chemical reactions in a multiphase system with time-dependent material properties and boundary conditions. In contrast to metals, the fracture of fiber-reinforced composites is characterized by the initiation and progression of multiple failures of different modes such as matrix cracks, interfacial debonding, fiber breaks, and delamination. The investigation of thermostructural responses of SRM carbon phenolics is further complicated by different failure modes under static and dynamic load applications. Historically, there have been several types of post-firing anomalies found in the carbon phenolic composites of the Space Shuttle SRM nozzle. Three major failure modes which have been observed on SRM nozzles are pocketing (spallation), ply-lift, and wedge-out. In order to efficiently control these anomalous phenomena, an investigation of fracture mechanisms under NASA/MSFC RSRM (Redesigned Solid Rocket Motor) and SPIP (Solid Propulsion Integrity Program) programs have been conducted following each anomaly. This report reviews the current progress in understanding the effects of the thermostructural behavior of carbon phenolics on the failure mechanisms of the SRM nozzle. A literature search was conducted and a technical bibliography was developed to support consolidation and assimilation of learning from the RSRM and SPIP investigation efforts. Another important objective of this report is to present a knowledge-based design basis for carbon phenolics that combines the analyses of thermochemical decomposition, pore pressure stresses, and thermostructural properties. Possible areas of application of the knowledge-based design include critical material properties development, nozzle component design, and SRM materials control.
Fracture-tough, corrosion-resistant bearing steels
NASA Technical Reports Server (NTRS)
Olson, Gregory B.
1990-01-01
The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during cryogenic forming, thus removing the high martensitic constraint, may permit alloy compositions offering higher fracture roughness.
Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping
2010-03-01
Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.
Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation
Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran
2015-01-01
Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics. PMID:25598161
Drop impact on liquid film: dynamics of interfacial gas layer
NASA Astrophysics Data System (ADS)
Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao
2016-11-01
Drop impacting liquid film is commonly observed in many processes including inkjet printing and thermal sprays. Owing to the resistance from the interfacial gas layer trapped between the drop and film surface, impact may not always result in coalescence; and as such investigating the behavior of the interfacial gas layer is important to understand the transition between bouncing and merging outcomes. The gas layer is, however, not easily optically accessible due to its microscopic scale and curved interfaces. We report the measurement of this critical gas layer thickness between two liquid surfaces using high-speed color interferometry capable of measuring micron and submicron thicknesses. The complete gas layer dynamics for the bouncing cases can be divided into two stages: the approaching stage when the drop squeezes the gas layer at the beginning of the impact, and the rebounding stage when the drop retracts and rebounds from the liquid film. The approaching stage is found to be similar across wide range of conditions studied. However, for the rebounding stage, with increase of liquid film thickness, the evolution of gas layer changes dramatically, displaying a non-monotonic behavior. Such dynamics is analyzed in lights of various competing timescales.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1978-01-01
The mechanical behavior and stresses inducing fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated theoretically. The investigation included the use of composite mechanics, combined-stress failure criteria, and finite-element stress analysis. The results are compared with experimental data and led to the formulation of criteria and convenient plotting procedures for identifying, characterizing, and quantifying these fracture modes.
Roy, Shibayan; Basu, Bikramjit
2010-01-01
In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass-ceramics having different crystal morphologies with SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass-ceramics containing plate like mica crystals. Scratch tests at a high load of 50 Nin artificial saliva were carried out in order to simulate the crack-microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel "spherulitic-dendritic shaped "crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the 'spherulitic-dendritic' crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent.While modest damage tolerant behavior is observed in case of 'spherulitic-dendritic' crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.
1988-06-03
ersitx. for ins aluiable assistance before. during and after the conference. WVe are also gratefutl to Mis. Cheryl Hackett and other staff members at...p. 19 1. P’roperties and Design, Materials Research Society, Vol. 19 J. F. Knott , in R. M. Latanision and J. Pickens (eds.), 122, 1988, in press...Atomnistics of Fracture, Plenum. New York, 1983, p. 209. 46 S. Suzuki, M. Obata. K. Abiko and H. Kamura, Tranis. 20 J. F. Knott , in R. M. Latanision and
Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models
NASA Technical Reports Server (NTRS)
Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.
2006-01-01
A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599
Impact extractive fracture of jointed steel plates of a bolted joint
NASA Astrophysics Data System (ADS)
Daimaruya, M.; Fujiki, H.; Ambarita, H.
2012-08-01
This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping
2017-01-01
This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617
Agustín-Panadero, Rubén; Román-Rodriguez, Juan L.; Solá-Ruíz, María F.; Granell-Ruíz, María; Fons-Font, Antonio
2013-01-01
Objectives: To observe porcelain veneer behavior of zirconia and metal-ceramic full coverage crowns when subjected to compression testing, comparing zirconia cores to metal cores. Study Design: The porcelain fracture surfaces of 120 full coverage crowns (60 with a metal core and 60 with a zirconia core) subjected to static load (compression) testing were analyzed. Image analysis was performed using macroscopic processing with 8x and 12x enlargement. Five samples from each group were prepared and underwent scanning electron microscope (SEM) analysis in order to make a fractographic study of fracture propagation in the contact area and composition analysis in the most significant areas of the specimen. Results: Statistically significant differences in fracture type (cohesive or adhesive) were found between the metal-ceramic and zirconia groups: the incidence of adhesive fracture was seen to be greater in metal-ceramic groups (92%) and cohesive fracture was more frequent in zirconium oxide groups (72%). The fracture propagation pattern was on the periphery of the contact area in the full coverage crown restorations selected for fractographic study. Conclusions: The greater frequency of cohesive fracture in restorations with zirconia cores indicates that their behavior is inadequate compared to metal-ceramic restorations and that further research is needed to improve their clinical performance. Key words:Zirconia, zirconium oxide, fractography, composition, porcelain veneers, fracture, cohesive, adhesive. PMID:24455092
Fracture behavior of human molars.
Keown, Amanda J; Lee, James J-W; Bush, Mark B
2012-12-01
Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure.
Size-dependent fracture behavior of silver nanowires.
Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang
2018-07-20
Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.
Size-dependent fracture behavior of silver nanowires
NASA Astrophysics Data System (ADS)
Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang
2018-07-01
Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.
Quasi-static analysis of elastic behavior for some systems having higher fracture densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.; Aydin, A.
2009-10-15
Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less
Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaran, Prof. P.
2002-03-04
The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.
Fiber pushout and interfacial shear in metal-matrix composites
NASA Technical Reports Server (NTRS)
Koss, Donald A.; Hellmann, John R.; Kallas, M. N.
1993-01-01
Recent thin-slice pushout tests have suggested that MMC matrix-fiber interface failure processes depend not only on such intrinsic factors as bond strength and toughness, and matrix plasticity, but such extrinsic factors as specimen configuration, thermally-induced residual stresses, and the mechanics associated with a given test. After detailing the contrasts in fiber-pullout and fiber-pushout mechanics, attention is given to selected aspects of thin-slice fiber pushout behavior illustrative of the physical nature of interfacial shear response and its dependence on both intrinsic and extrinsic factors.
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garg, A.; Ishai, O.
1985-01-01
The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination, and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Garg, A.; Ishai, O.
1984-01-01
The hygrothermal effect on the fracture behavior of graphite-epoxy laminates was investigated to develop a methodology for damage tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations to evaluate the effects of temperature and humidity on delamination fracture toughness under mode 1 and mode 2 loading. It is indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during mode 1 delamination, but has a slightly deleterious effect on mode 2 delamination and mode 1 transverse cracking. The failed specimens are examined by SEM and topographical differences due to fracture modes are identified. It is concluded that the effect of moisture on fracture topography can not be distinguished.
Fractography of a bis-GMA resin.
Davis, D M; Waters, N E
1989-07-01
The fracture behavior of a bis-GMA resin was studied by means of the double-torsion test. The fracture parameter measured was the stress-intensity factor. Fracture occurred in either a stick-slip (unstable) or continuous (stable) manner, depending upon the test conditions. When stick-slip propagation occurred, the fracture surfaces showed characteristic crack-arrest lines. The fracture surfaces were examined by use of a reflected-light optical microscope. The stress-intensity factor for crack initiation was found to be related to the size of the crack-arrest line which, in turn, could be related to the Dugdale model for plastic zone size. The evidence supported the concept that the behavior of the crack during propagation was controlled by the amount of plastic deformation occurring at the crack tip.
Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion
NASA Astrophysics Data System (ADS)
Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian
2014-11-01
A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.
Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process
NASA Astrophysics Data System (ADS)
Chen, Zhiqiang; Wang, Moran
2017-05-01
Hydrofracturing is an important technique in petroleum industry to stimulate well production. Yet the mechanism of induced fracture growth is still not fully understood, which results in some unsatisfactory wells even with hydrofracturing treatments. In this work we establish a more accurate numerical framework for hydromechanical coupling, where the solid deformation and fracturing are modeled by discrete element method and the fluid flow is simulated directly by lattice Boltzmann method at pore scale. After validations, hydrofracturing is simulated with consideration on the strength heterogeneity effects on fracture geometry and microfailure mechanism. A modified topological index is proposed to quantify the complexity of fracture geometry. The results show that strength heterogeneity has a significant influence on hydrofracturing. In heterogeneous samples, the fracturing behavior is crack nucleation around the tip of fracture and connection of it to the main fracture, which is usually accompanied by shear failure. However, in homogeneous ones the fracture growth is achieved by the continuous expansion of the crack, where the tensile failure often dominates. It is the fracturing behavior that makes the fracture geometry in heterogeneous samples much more complex than that in homogeneous ones. In addition, higher pore pressure leads to more shear failure events for both heterogeneous and homogeneous samples.
NASA Astrophysics Data System (ADS)
Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu
2012-09-01
SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.
Shen, Xiao; Pennycook, Timothy J.; Hernandez-Martin, David; ...
2016-05-27
Memristive switching serves as the basis for a new generation of electronic devices. Conventional memristors are two-terminal devices in which the current is turned on and off by redistributing point defects, e.g., vacancies. Memristors based on alternative mechanisms have been explored, but achieving both high on/off ratio and low switching energy, as needed in applications, remains a challenge. This paper reports memristive switching in La 0.7Ca 0.3MnO 3/PrBa 2Cu 3O 7 bilayers with an on/off ratio greater than 103 and results of density functional theory calculations in terms of which it is concluded that the phenomenon is likely the resultmore » of a new type of interfacial magnetoelectricity. More specifically, this study shows that an external electric field induces subtle displacements of the interfacial Mn ions, which switches on/off an interfacial magnetic “dead layer”, resulting in memristive behavior for spin-polarized electron transport across the bilayer. The interfacial nature of the switching entails low energy cost, about of a tenth of atto Joule for writing/erasing a “bit”. To conclude, the results indicate new opportunities for manganite/cuprate systems and other transition metal oxide junctions in memristive applications.« less
Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter
2014-04-01
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Smith, R. J.; Sherry, A. H.
2017-05-01
Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.
2017-12-01
Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer.
NASA Technical Reports Server (NTRS)
Davis, J. B.; Hay, R. S.; Marshall, D. B.; Morgan, P. E. D.; Sayir, A.; Gray, Hugh R. (Technical Monitor); Farmer, Serene C. (Technical Monitor)
2002-01-01
Room temperature debonding and sliding of La-Monazite coated fibers is assessed using a composite with a polycrystalline alumina matrix and fibers of several different single crystal (mullite, sapphire) and directionally solidified eutectic (Al2O3/Y3Al5O12 and Al2O3/Y-ZrO2) compositions. These fibers provide a range of residual stresses and interfacial roughnesses. Sliding occurred over a debond crack at the fiber-coating interface when the sliding displacement and surface roughness were relatively small. At large sliding displacements with relatively rough interfaces, the monazite coatings were deformed extensively by fracture, dislocations and occasional twinning, whereas the fibers were undamaged. Dense, fine-grained (10 nm) microstructures suggestive of dynamic recrystallization were also observed in the coatings. Frictional heating during sliding is assessed. The possibility of low temperature recrystallization is discussed in the light of the known resistance of monazite to radiation damage. The ability of La-Monazite to undergo plastic deformation relatively easily at low temperatures may be enabling for its use as a composite interface.
NASA Astrophysics Data System (ADS)
Balle, Frank; Magin, Jens
Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.
Youssefian, Sina; Liu, Pingsheng; Askarinejad, Sina; Shalchy, Faezeh; Song, Jie; Rahbar, Nima
2015-07-16
Synthetic orthopaedic materials consisting of a single bioinert polymeric material do not meet the complex biological and physical requirements of scaffold-guided bone tissue repair and regeneration. Of particular interest is the design of biocompatible hydrogel-hydroxyapatite composite bone substitutes with outstanding interfacial adhesion that would warranty the ability for the composite to withstand functional loadings without exhibiting brittle fractures during the dynamic guided tissue regeneration. For this purpose, the hydroxylated side chain of chemically cross-linked poly (2-hydroxyethyl methacrylate) (pHEMA) is substitute with a carboxylated side chain to make poly (glycerol methacrylate) (pGLYMA). Here, we carry out atomistic simulations and atomic force microscopy to predict and experimentally determine the interfacial adhesion energies of pHEMA and pGLYMA with the surface of single-crystalline hydroxyapatite (HA) whiskers. Both experimental and numerical results showed that pGLYMA has stronger adhesion forces with HA and may be used for preparing a high-affinity polymer-HA composite. The high adhesive interactions between pGLYMA and HA were found to be due to strong electrostatic energies.
Tisdale, Jeremy T.; Muckley, Eric; Ahmadi, Mahshid; ...
2018-06-19
One of the current challenges in methylammonium lead halide (MAPbX 3) perovskite application research is understanding contact formation and interfacial phenomena for highly efficient and stable device performance. For semiconductors, development of contact formation is inseparable from device performance and stability. Single–crystalline MAPbX3 has become of great interest for perovskite devices in photodetectors, light–emitting diodes, and more recently in high–energy radiation detection. Deeper research is required to understand interfacial interactions in single–crystalline MAPbX 3. This article focuses on the dynamic impact of electrode metal (Au and Cr) on methylammonium lead bromide (MAPbBr 3) single crystals. It is studied how chargemore » transport properties of single crystal MAPbBr 3 can be tuned via electrode material selection at the metal/MAPbBr 3 interface to improve device performance with proper contact formation. The ability to create an ohmic–like or nonohmic contact by switching the electrode metal from Cr to Au, respectively, is demonstrated. It is observed that the interfacial charge transfer resistance (recombination resistance) of the Cr/MAPbBr 3 interface is 1.79 × 10 9 Ω, compared to 1.32 × 10 7 Ω for the Au/MAPbBr 3. Cr contacts can reduce hysteretic behavior by reducing interfacial recombination and interfacial polarization. Furthermore, these studies provide insight to metal/MAPbX 3 interfacial interactions toward device engineering for hole transport layer–free MAPbX 3 device structures.« less
NASA Astrophysics Data System (ADS)
Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian
2018-04-01
We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.
In Situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries
Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; ...
2016-05-03
Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situmore » conditions. Using a LiCoO 2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO 2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO 2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tisdale, Jeremy T.; Muckley, Eric; Ahmadi, Mahshid
One of the current challenges in methylammonium lead halide (MAPbX 3) perovskite application research is understanding contact formation and interfacial phenomena for highly efficient and stable device performance. For semiconductors, development of contact formation is inseparable from device performance and stability. Single–crystalline MAPbX3 has become of great interest for perovskite devices in photodetectors, light–emitting diodes, and more recently in high–energy radiation detection. Deeper research is required to understand interfacial interactions in single–crystalline MAPbX 3. This article focuses on the dynamic impact of electrode metal (Au and Cr) on methylammonium lead bromide (MAPbBr 3) single crystals. It is studied how chargemore » transport properties of single crystal MAPbBr 3 can be tuned via electrode material selection at the metal/MAPbBr 3 interface to improve device performance with proper contact formation. The ability to create an ohmic–like or nonohmic contact by switching the electrode metal from Cr to Au, respectively, is demonstrated. It is observed that the interfacial charge transfer resistance (recombination resistance) of the Cr/MAPbBr 3 interface is 1.79 × 10 9 Ω, compared to 1.32 × 10 7 Ω for the Au/MAPbBr 3. Cr contacts can reduce hysteretic behavior by reducing interfacial recombination and interfacial polarization. Furthermore, these studies provide insight to metal/MAPbX 3 interfacial interactions toward device engineering for hole transport layer–free MAPbX 3 device structures.« less
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.
1994-01-01
An investigation of the effect of various metallurgical parameters such as interfaces, allowing additions, test temperature, and strain rate on the flow and fracture behavior of polycrystalline NiAl is summarized. From this study, a more complete understanding of the deformation and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition temperature has been developed. A mechanism for the BDTT is proposed that is based on the operation of localized dislocation climb processes that operate within the vicinity of the grain boundaries and provide the additional deformation mechanisms necessary for grain-to-grain compatibility during plastic deformation. Finally, methods for improving the low temperature mechanical behavior of NiAl were considered and reviewed within the context of the present knowledge of NiAl-based materials and the operative deformation and fracture mechanisms determined in this study. Special emphasis was placed on the use of second phases for improving low temperature properties.
NASA Astrophysics Data System (ADS)
Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang
2018-01-01
Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung
2015-08-26
Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including themore » Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.« less
Experiment 2033. Injection Test of Upper EE-3 Fracture Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigsby, Charles O.
1983-09-12
This experiment is designed to investigate the apparent lithologic boundary between the low-opening-pressure fracture system (upper EE-3 fracture and Phase I system) and the high-opening-pressure fracture system (lower fracture in EE-3 and in EE-2). The experiment will test for resistence to breakthrough into the lower EE-2 fracture system at relatively low pressure and will define the veting behavior of the low pressure system.
Erni, Philipp; Windhab, Erich J; Gunde, Rok; Graber, Muriel; Pfister, Bruno; Parker, Alan; Fischer, Peter
2007-11-01
Acacia gum is a hybrid polyelectrolyte containing both protein and polysaccharide subunits. We study the interfacial rheology of its adsorption layers at the oil/water interface and compare it with adsorbed layers of hydrophobically modified starch, which for economic and political reasons is often used as a substitute for Acacia gum in technological applications. Both the shear and the dilatational rheological responses of the interfaces are considered. In dilatational experiments, the viscoelastic response of the starch derivative is just slightly weaker than that for Acacia gum, whereas we found pronounced differences in shear flow: The interfaces covered with the plant gum flow like a rigid, solidlike material with large storage moduli and a linear viscoelastic regime limited to small shear deformations, above which we observe apparent yielding behavior. In contrast, the films formed by hydrophobically modified starch are predominantly viscous, and the shear moduli are only weakly dependent on the deformation. Concerning their most important technological use as emulsion stabilizers, the dynamic interfacial responses imply not only distinct interfacial dynamics but also different stabilizing mechanisms for these two biopolymers.
Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei
2017-02-08
The presence of the PbI 2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH 3 NH 3 PbI 3 perovskite crystals and PbI 2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI 2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.
Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke
2016-12-01
The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (p<0.001). Thermal veneering treatment reversed the transformation of monoclinic phase observed after initial grinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its application on rough zirconia cores may be preferred to enhance bond strength. Copyright © 2016. Published by Elsevier Ltd.
Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures.
Ryan Williams, R; Sandigo, Gustavo
2017-10-01
Rapid eye movement (REM) sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD) can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.
Racial Variations in Interfacial Behavior of Lipids Extracted from Worn Soft Contact Lenses
Svitova, Tatyana F.; Lin, Meng C.
2014-01-01
Purpose To explore interfacial behaviors and effect of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and Caucasian subjects. Methods Interfacial properties of lipids extracted from Focus® N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolytes (MTE) solution to form 100 ± 20 nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures 22°–45° C for their visco-elastic properties assessment. Results Iso-cycles for Asian and Caucasian lipids were similar at low surface pressures, but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and Caucasian. The elastic modulusE∞ for Caucasian lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and Caucasian lipids when temperature increased from 22.0° to 36.5° C. However, for Caucasian lipids, E∞ reduced considerably at temperatures above 42.0° C, while t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38° C and higher. Conclusions Higher elastic modulus of Caucasian lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and Caucasian lipids may be associated with the differences in their chemical compositions. PMID:24270592
NASA Astrophysics Data System (ADS)
Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun
2017-08-01
We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of interfacial interaction with a substrate in such multicomponent nanocolloidal systems.
Assessment of Surrogate Fractured Rock Networks for Evidence of Complex Behavior
NASA Astrophysics Data System (ADS)
Wood, T. R.; McJunkin, T. R.; Podgorney, R. K.; Glass, R. J.; Starr, R. C.; Stoner, D. L.; Noah, K. S.; LaViolette, R. A.; Fairley, J.
2001-12-01
A complex system or complex process is -"one whose properties are not fully explained by an understanding of its component parts". Results from field experiments conducted at the Hell's Half-Acre field site (Arco, Idaho) suggest that the flow of water in an unsaturated, fractured medium exhibits characteristics of a complex process. A series of laboratory studies is underway with sufficient rigor to determine if complex behavior observed in the field is in fact a fundamental characteristic of water flow in unsaturated, fractured media. As an initial step, a series of four duplicate experiments has been performed using an array of bricks to simulate fractured, unsaturated media. The array consisted of 12 limestone blocks cut to uniform size (5cm x 7 cm x 30 cm) stacked on end 4 blocks wide and 3 blocks high with the interfaces between adjacent blocks representing 3 vertical fractures intersecting 2 horizontal fractures. Water was introduced at three point sources on the upper boundary of the model at the top of the vertical fractures. Water was applied under constant flux at a rate below the infiltration capacity of the system, thus maintaining unsaturated flow conditions. Water was collected from the lower boundary via fiberglass wicks at the bottom of each fracture. An automated system acquired and processed water inflow and outflow data and time-lapse photographic data during each of the 72-hour tests. From these experiments, we see that a few general statements can be made on the overall advance of the wetting front in the surrogate fracture networks. For instance, flow generally converged with depth to the center fracture in the bottom row of bricks. Another observation is that fracture intersections integrate the steady flow in overlying vertical fractures and allow or cause short duration high discharge pulses or "avalanches" of flow to quickly traverse the fracture network below. Smaller scale tests of single fracture and fracture intersections are underway to evaluate a wide array of unit processes that are believed to contribute to complex behavior. Examples of these smaller scale experiments include the role of fracture intersections in integrating a steady inflow to generate giant fluctuations in network discharge; the influence of microbe growth on flow; and the role of geochemistry in alterations of flow paths. Experiments are planned at the meso and field scale to document and understand the controls on self-organized behavior. Modeling is being conducted in parallel with the experiments to understand how simulations can be improved to capture the complexity of fluid flow in fractured rock vadose zones and to make better predictions of contaminant transport.
Optical method of caustics applied in viscoelastic fracture analysis
NASA Astrophysics Data System (ADS)
Gao, Guiyun; Li, Zheng; Xu, Jie
2011-05-01
The optical method of caustics is developed here to study the fracture of viscoelastic materials. By adopting a distribution of viscoelastic stress fields near the crack tip, the method of caustics is used to determine the viscoelastic fracture parameters from the caustic patterns near the crack tip. Two viscoelastic materials are studied. These are PMMA and ternary composites of HDPE/POE-g-MA/CaCO 3. The transmitted and reflective methods of caustics are performed separately to investigate viscoelastic fracture behaviors. The stress intensity factors (SIFs) versus time is determined by a series of shadow spot patterns combined with viscoelastic parameters evaluated by creep tests. In order to understand the viscoelastic fracture mechanisms of HDPE/POE-g-MA/CaCO 3 composites, their fracture surfaces are observed by a Scanning Electron Microscope (SEM). The results indicate that the method of caustics can be used to characterize the fracture behaviors of viscoelastic materials and further to optimize the design of polymer composites.
Progressive fracture of polymer matrix composite structures: A new approach
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.
1992-01-01
A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.
NASA Astrophysics Data System (ADS)
Xing, Pengju; Yoshioka, Keita; Adachi, Jose; El-Fayoumi, Amr; Bunger, Andrew P.
2017-07-01
The tip behavior of hydraulic fractures is characterized by a rich nesting of asymptotic solutions, comprising a formidable challenge for the development of efficient and accurate numerical simulators. We present experimental validation of several theoretically-predicted asymptotic behaviors, namely for hydraulic fracture growth under conditions of negligible fracture toughness, with growth progressing from early-time radial geometry to large-time blade-like (PKN) geometry. Our experimental results demonstrate: 1) existence of a asymptotic solution of the form w ∼ s3/2 (LEFM) in the near tip region, where w is the crack opening and s is the distance from the crack tip, 2) transition to an asymptotic solution of the form w ∼ s2/3 away from the near-tip region, with the transition length scale also consistent with theory, 3) transition to an asymptotic solution of the form w ∼ s1/3 after the fracture attains blade-like (PKN) geometry, and 4) existence of a region near the tip of a blade-like (PKN) hydraulic fracture in which plane strain conditions persist, with the thickness of this region of the same order as the crack height.
Photophysical Behaviors of Single Fluorophores Localized on Zinc Oxide Nanostructures
Fu, Yi; Zhang, Jian; Lakowicz, Joseph R.
2012-01-01
Single-molecule fluorescence spectroscopy has now been widely used to investigate complex dynamic processes which would normally be obscured in an ensemble-averaged measurement. In this report we studied photophysical behaviors of single fluorophores in proximity to zinc oxide nanostructures by single-molecule fluorescence spectroscopy and time-correlated single-photon counting (TCSPC). Single fluorophores on ZnO surfaces showed enhanced fluorescence brightness to various extents compared with those on glass; the single-molecule time trajectories also illustrated pronounced fluctuations of emission intensities, with time periods distributed from milliseconds to seconds. We attribute fluorescence fluctuations to the interfacial electron transfer (ET) events. The fluorescence fluctuation dynamics were found to be inhomogeneous from molecule to molecule and from time to time, showing significant static and dynamic disorders in the interfacial electron transfer reaction processes. PMID:23109903
Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices
NASA Astrophysics Data System (ADS)
Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.
2013-07-01
Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.
NASA Astrophysics Data System (ADS)
Singh, Umesh; Anapagaddi, Ravikiran; Mangal, Saurabh; Padmanabhan, Kuppuswamy Anantha; Singh, Amarendra Kumar
2016-06-01
Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag-steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).
Rane, Jayant P; Pauchard, Vincent; Couzis, Alexander; Banerjee, Sanjoy
2013-04-16
In an earlier study, oil-water interfacial tension was measured by the pendant drop technique for a range of oil-phase asphaltene concentrations and viscosities. The interfacial tension was found to be related to the relative surface coverage during droplet expansion. The relationship was independent of aging time and bulk asphaltenes concentration, suggesting that cross-linking did not occur at the interface and that only asphaltene monomers were adsorbed. The present study extends this work to measurements of interfacial rheology with the same fluids. Dilatation moduli have been measured using the pulsating droplet technique at different frequencies, different concentrations (below and above CNAC), and different aging times. Care was taken to apply the technique in conditions where viscous and inertial effects are small. The elastic modulus increases with frequency and then plateaus to an asymptotic value. The asymptotic or instantaneous elasticity has been plotted against the interfacial tension, indicating the existence of a unique relationship, between them, independent of adsorption conditions. The relationship between interfacial tension and surface coverage is analyzed with a Langmuir equation of state. The equation of state also enabled the prediction of the observed relationship between the instantaneous elasticity and interfacial tension. The fit by a simple Langmuir equation of state (EOS) suggests minimal effects of aging and of nanoaggregates or gel formation at the interface. Only one parameter is involved in the fit, which is the surface excess coverage Γ∞ = 3.2 molecules/nm(2) (31.25 Å(2)/molecule). This value appears to agree with flat-on adsorption of monomeric asphaltene structures consisting of aromatic cores composed of an average of six fused rings and supports the hypothesis that nanoaggregates do not adsorb on the interface. The observed interfacial effects of the adsorbed asphaltenes, correlated by the Langmuir EOS, are consistent with the asphaltene aggregation behavior in the bulk fluid expected from the Yen-Mullins model.
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.
Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W
2017-02-17
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale
NASA Astrophysics Data System (ADS)
Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.
2017-02-01
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
A novel dentin bond strength measurement technique using a composite disk in diametral compression.
Huang, Shih-Hao; Lin, Lian-Shan; Rudney, Joel; Jones, Rob; Aparicio, Conrado; Lin, Chun-Pin; Fok, Alex
2012-04-01
New methods are needed that can predict the clinical failure of dental restorations that primarily rely on dentin bonding. Existing methods have shortcomings, e.g. severe deviation in the actual stress distribution from theory and a large standard deviation in the measured bond strength. We introduce here a novel test specimen by examining an endodontic model for dentin bonding. Specifically, we evaluated the feasibility of using the modified Brazilian disk test to measure the post-dentin interfacial bond strength. Four groups of resin composite disks which contained a slice of dentin with or without an intracanal post in the center were tested under diametral compression until fracture. Advanced nondestructive examination and imaging techniques in the form of acoustic emission (AE) and digital image correlation (DIC) were used innovatively to capture the fracture process in real time. DIC showed strain concentration first appearing at one of the lateral sides of the post-dentin interface. The appearance of the interfacial strain concentration also coincided with the first AE signal detected. Utilizing both the experimental data and finite-element analysis, the bond/tensile strengths were calculated to be: 11.2 MPa (fiber posts), 12.9 MPa (metal posts), 8.9 MPa (direct resin fillings) and 82.6 MPa for dentin. We have thus established the feasibility of using the composite disk in diametral compression to measure the bond strength between intracanal posts and dentin. The new method has the advantages of simpler specimen preparation, no premature failure, more consistent failure mode and smaller variations in the calculated bond strength. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mini-interfacial Fracture Toughness of a Multimode Adhesive Bonded to Plasma-treated Dentin.
Ayres, Ana Paula Almeida; Pongprueksa, Pong; De Munck, Jan; Gré, Cristina Parise; Nascimento, Fábio Dupart; Giannini, Marcelo; Van Meerbeek, Bart
2017-01-01
To investigate the bonding efficacy of a multimode adhesive to plasma-treated and -untreated (control) dentin using a mini-interfacial fracture toughness (mini-iFT) test. Twenty human molars were used in a split-tooth design (n = 10). The adhesive Scotchbond Universal (SBU; 3M ESPE) was applied in etch-and-rinse (E&R) and self-etch (SE) modes. Mid-coronal dentin was exposed and covered with a standardized smear layer ground to 320 grit. One half of each dentin surface received 15 s of non-thermal atmospheric plasma (NTAP), while the other half was covered with a metallic barrier and kept untreated. Following the E&R mode, dentin was plasma treated immediately after phosphoric acid etching. SBU and a resin-based composite were applied to dentin following the manufacturer's instructions. Six mini-iFT specimens were prepared per tooth (1.5 x 2.0 x 16 to 18 mm), and a single notch was prepared at the adhesive-dentin interface using a 150-μm diamond blade under water cooling. Half of the mini-iFT specimens were immediately loaded until failure in a 4-point bending test, while the other half were first stored in distilled water for 6 months. After testing, the exact dimensions of the notch were measured with a measuring optical microscope, from which ΚIc was determined. Three-way ANOVA revealed higher mini-iFT for SBU applied in E&R than SE mode for both storage times, irrespective of NTAP treatment. Overall, mini-iFT did not decrease for any of the experimental groups upon 6-month aging, while plasma treatment did not show a direct beneficial effect on mini-iFT of SBU applied in either E&R or SE mode.
Herkendell, Katharina; Shukla, Vishnu Raj; Patel, Anup Kumar; Balani, Kantesh
2014-01-01
In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E. coli bacteria (~8.5% more adhesion than pure HA); but showed a strong decrease of Gram positive S. epidermidis bacteria (~diminished to 66%) compared to that of pure HA. Small amounts of silver (2-5wt.%) already show a severe bactericidal effect when compared to that of HA-CNT (by 30% and ~60% respectively). MTT assay confirmed enhanced biocompatibility of L929 cells on HA-4wt.% CNT (~121%), HA-4wt.% CNT-1wt.% Ag (~124%) sample and HA-4wt.% CNT-2wt.% Ag (~100%) when compared to that of pure HA. The samples with higher silver content showed decreased biocompatibility (77% for HA-4wt.% CNT-5wt.% Ag sample and 73% for HA-4wt.% CNT-10wt.% Ag). Though reinforcement of 4wt.% CNT has shown an increase of fracture toughness by ~62%, silver reinforcement has shown enhancement of up to 244% (i.e. 3.43 times). Accordingly, isolation of toughening contribution indicates that volumetric toughening by silver dominates over interfacial strengthening contributed by CNTs towards enhanced fracture toughness of potential HA-Ag-CNT biocomposites. © 2013.
Proposed framework for thermomechanical life modeling of metal matrix composites
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.
1993-01-01
The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.
De Cicco, Davide; Asaee, Zohreh; Taheri, Farid
2017-01-01
This review paper aims at reporting some of the notable works carried out concerning the use of nanoparticles (NPs) as a means of improving the resistance of fiber-reinforced polymer composite materials (FRPs) and adhesively bonded joints (ABJs) to delamination initiation and propagation. Applications of various nanoparticles, such as carbon-based, ceramic-based and mineral-based are discussed. The main properties that have been considered for improving the delamination and fatigue resistance of FRPs are the interlaminar shear strength, fracture toughness, and fracture energy. On the other hand, cohesive and interfacial strengths have been the focused parameters in the works that considered enhancement of ABJs. The reported results indicate that inclusion of NPs in polymeric matrices leads to improvement of various material properties, even though some discrepancies in the results have been noted. Notwithstanding, additional research is required to address some of the issues that have not yet been tackled, some of which will be identified throughout this review article. PMID:29104278
Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy
NASA Astrophysics Data System (ADS)
Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.
2016-05-01
The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.
Microstructure and interfacial reactions of soldering magnesium alloy AZ31B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Liming, E-mail: liulm@dlut.edu.cn; Wu Zhonghui
2010-01-15
In this paper, economic and innoxious solder alloys with low melting temperature were designed for AZ31B. Their chemical composition and relevant parameters were investigated for a high-performance structure of bonding region. Results of microstructure observation showed that Zn-enriched phases disappeared and {alpha}-Mg existed in the joints in the form of coarse dendrites by increasing the concentration of Mg in the solder alloys. Water cooling with a high cooling rate was adopted in experiments. Experimental research showed that high cooling rate restricted the grains of {alpha}-Mg as the equiaxed dendrites, which was about 1/5 of the coarse dendrite but their numbermore » was more than 40-50 times. Both morphology with typical fracture and the analysis on X-ray diffraction fracture indicated that equiaxed dendrites significantly improved the mechanical property of the joints. Necking phenomenon occurred in the bonding region was in favor of the improvement of joint shear strength.« less
NASA Astrophysics Data System (ADS)
Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo
2012-08-01
Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.
Crack blunting and the strength of soft elastic solids
NASA Astrophysics Data System (ADS)
Hui, C.-Y.; Jagota, A.; Bennison, S. J.; Londono, J. D.
2003-06-01
When a material is so soft that the cohesive strength (or adhesive strength, in the case of interfacial fracture) exceeds the elastic modulus of the material, we show that a crack will blunt instead of propagating. Large-deformation finite-element model (FEM) simulations of crack initiation, in which the debonding processes are quantified using a cohesive zone model, are used to support this hypothesis. An approximate analytic solution, which agrees well with the FEM simulation, gives additional insight into the blunting process. The consequence of this result on the strength of soft, rubbery materials is the main topic of this paper. We propose two mechanisms by which crack growth can occur in such blunted regions. We have also performed experiments on two different elastomers to demonstrate elastic blunting. In one system, we present some details on a void growth mechanism for ultimate failure, post-blunting. Finally, we demonstrate how crack blunting can shed light on some long-standing problems in the area of adhesion and fracture of elastomers.
Numerical Investigation of Fracture Propagation in Geomaterials
NASA Astrophysics Data System (ADS)
Newell, P.; Borowski, E.; Major, J. R.; Eichhubl, P.
2015-12-01
Fracture in geomaterials is a critical behavior that affects the long-term structural response of geosystems. The processes involving fracture initiation and growth in rocks often span broad time scales and size scales, contributing to the complexity of these problems. To better understand fracture behavior, the authors propose an initial investigation comparing the fracture testing techniques of notched three-point bending (N3PB), short rod (SR), and double torsion (DT) on geomaterials using computational analysis. Linear softening cohesive fracture modeling (LCFM) was applied using ABAQUS to computationally simulate the three experimental set-ups. By applying material properties obtained experimentally, these simulations are intended to predict single-trace fracture growth. The advantages and limitations of the three testing techniques were considered for application to subcritical fracture propagation taking into account the accuracy of constraints, load applications, and modes of fracture. This work is supported as part of the Geomechanics of CO2 Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.