Science.gov

Sample records for interfacial shear modeling

  1. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  2. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  3. Interfacial shear stress distribution in model composites. I - A Kevlar 49 fibre in an epoxy matrix

    SciTech Connect

    Jahankhani, H.; Galiotis, C. )

    1991-05-01

    The technique of Laser Raman Spectroscopy has been applied in the study of aramid fibers, such as Kevlar 49, and aramid/epoxy interfaces. A linear relationship has been found between Raman frequencies and strain upon loading a single Kevlar 49 filament in air. Model composites of single Kevlar 49 fibers embedded in epoxy resins have been fabricated and subjected to various degrees of mechanical deformation. The transfer lengths for reinforcement have been measured at various levels of applied tensile load and the dependence of transfer length upon applied matrix strain has been established. Finally, by balancing the tensile and the shear forces acting along the interface, the interfacial shear stress (ISS) distribution along the embedded fiber was obtained. 52 refs.

  4. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Bhamji, I.; Withers, P. J.; Wolfe, D. E.; Motta, A. T.; Preuss, M.

    2015-11-01

    This paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr-Nb-Sn-Fe alloy (ZIRLO™) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLO™ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∼3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this.

  5. Interfacial Shear Rheology of Coffee Samples

    NASA Astrophysics Data System (ADS)

    Läuger, Jörg; Heyer, Patrick

    2008-07-01

    Both oscillatory and rotational measurements on the film formation process and on interfacial rheological properties of the final film of coffee samples with different concentrations are presented. As higher the concentration as faster the film formation process is, whereas the concentration does not have a large effect on the visco-elastic properties of the final films. Two geometries, a biconical geometry and a Du Noüy ring have been employed. The presented results show that interfacial shear rheology allows detailed investigations on coffee films. Although with a Du Noüy ring it is possible to measure the qualitative behavior and relative differences only the biconical geometry is sensitive enough to test weak films and to reveal real absolute values for the interfacial shear rheological quantities.

  6. Shear Wave Propagation Across Filled Joints with the Effect of Interfacial Shear Strength

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Liu, T. T.; Li, H. B.; Liu, Y. Q.; Liu, B.; Xia, X.

    2015-07-01

    The thin-layer interface model for filled joints is extended to analyze shear wave propagation across filled rock joints when the interfacial shear strength between the filling material and the rocks is taken into account. During the wave propagation process, the two sides of the filled joint are welded with the adjacent rocks first and slide on each other when the shear stress on the joint is greater than the interfacial shear strength. By back analysis, the relation between the shear stress and the relative tangential deformation of the filled joints is obtained from the present approach, which is shown as a cycle parallelogram. Comparison between the present approach and the existing method based on the zero-thickness interface model indicates that the present approach is efficient to analyze shear wave propagation across rock joints with slippery behavior. The calculation results show that the slippery behavior of joints is related to the interfacial failure. In addition, the interaction between the shear stress wave and the two sides of the filling joint influences not only the wave propagation process but also the dynamic response of the filled joint.

  7. Functionalization enhancement on interfacial shear strength between graphene and polyethylene

    NASA Astrophysics Data System (ADS)

    Jin, Yikuang; Duan, Fangli; Mu, Xiaojing

    2016-11-01

    Pull-out processes were simulated to investigate the interfacial mechanical properties between the functionalized graphene sheet (FGS) and polyethylene (PE) matrix by using molecular dynamics simulation with ReaxFF reactive force field. The interfacial structure of polymer and the interfacial interaction in the equilibrium FGS/PE systems were also analyzed to reveal the enhancement mechanism of interfacial shear strength. We observed the insertion of functional groups into polymer layer in the equilibrium FGS/PE systems. During the pull-out process, some interfacial chains were attached on the FGS and pulled out from the polymer matrix. The behavior of these pulled out chains was further analyzed to clarify the different traction action of functional groups applied on them. The results show that the traction effect of functional groups on the pulled-out chains is agreement with their enhancement influence on the interfacial shear strength of the FGS/PE systems. They both are basically dominated by the size of functional groups, suggesting the enhancement mechanism of mechanical interlocking. However, interfacial binding strength also exhibits an obvious influence on the interfacial shear properties of the hybrid system. Our simulation show that geometric constrains at the interface is the principal contributor to the enhancement of interfacial shear strength in the FGS/PE systems, which could be further strengthened by the wrinkled morphology of graphene in experiments.

  8. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    PubMed

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  9. Interfacial shear strength of endosseous implants.

    PubMed

    Butz, Frank; Ogawa, Takahiro; Nishimura, Ichiro

    2011-01-01

    Surface roughness is known to affect the load-bearing strength of implants. However, the underlying mechanisms are not completely understood. This study sought to investigate the potential effects of bone-to-implant contact (BIC) and mechanical interlocking on the stability of titanium implants using a newly established assessment system that combines nondestructive microcomputed tomography (ΜCT) and the biomechanical push-in test. Cylindric implants with a machined or a dual acid-etched (DAE) surface were placed into the distal femurs of Sprague-Dawley rats. At weeks 2 and 4, the femur-implant specimens were harvested and scanned in a desktop ΜCT device, and the BIC was calculated. The implants were then loaded axially using a universal mechanical testing machine and the breakage force was recorded as a push-in value. Machined and DAE implants were also embedded in histology-quality resin to serve as a nonbiologic reference. Two-way analysis of variance and the Mann-Whitney U test were used for statistical analysis. BIC showed no surface- or time-dependent differences. The mean push-in value of DAE implants was four times greater at week 2 and three times greater at week 4 than that of machined implants. The shear strength at the interface (push-in value/BIC) was greater for DAE surfaces than for machined surfaces in a proportionate manner. When the implants were embedded in the resin with virtually 100% implant-resin contact, DAE implants showed 30% greater push-in values and shear strength than machined implants (P < .05). These findings suggest that the percentage of BIC and mechanical interlocking cannot fully explain the surface roughness-related increase in osseointegration, as opposed to the common understanding of osseointegration. Further studies must include more details to discover the precise understanding of the physiology of osseointegration and the potential biologic mechanisms involved.

  10. Use of self assembled monolayers at variable coverage to control interface bonding in a model study of interfacial fracture: Pure shear loading

    SciTech Connect

    KENT,MICHAEL S.; YIM,HYUN; MATHESON,AARON J.; COGDILL,C.; NELSON,GERALD C.; REEDY JR.,EARL DAVID

    2000-05-16

    The relationships between fundamental interfacial interactions, energy dissipation mechanisms, and fracture stress or fracture toughness in a glassy thermoset/inorganic solid joint are not well understood. This subject is addressed with a model system involving an epoxy adhesive on a polished silicon wafer containing its native oxide. The proportions of physical and chemical interactions at the interface, and the in-plane distribution, are varied using self-assembling monolayers of octadecyltrichlorosilane (ODTS). The epoxy interacts strongly with the bare silicon oxide surface, but forms only a very weak interface with the methylated tails of the ODTS monolayer. The fracture stress is examined as a function of ODTS coverage in the napkin-ring (pure shear) loading geometry. The relationship between fracture stress and ODTS coverage is catastrophic, with a large change in fracture stress occurring over a narrow range of ODTS coverage. This transition in fracture stress does not correspond to a wetting transition of the epoxy. Rather, the transition in fracture stress corresponds to the onset of deformation in the epoxy, or the transition from brittle to ductile fracture. The authors postulate that the transition in fracture stress occurs when the local stress that the interface can support becomes comparable to the yield stress of the epoxy. The fracture results are independent of whether the ODTS deposition occurs by island growth (T{sub dep} = 10 C) or by homogeneous growth (T{sub dep} = 24 C).

  11. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    SciTech Connect

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  12. Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation.

    PubMed

    Nakahara, Ichiro; Takao, Masaki; Goto, Tomoyo; Ohtsuki, Chikara; Hibino, Shigeru; Sugano, Nobuhiko

    2012-10-01

    Despite the excellent osseointegration of carbon-fiber-reinforced polyetheretherketone (CFR/PEEK) with a surface hydroxyapatite (HA) coating, the bone-implant interfacial shear strength of HA-coated CFR/PEEK after osseointegration is unclear. We examined the interfacial shear strength of HA-coated CFR/PEEK implants after in vivo implantation in a rabbit femur-implant pull-out test model. HA coating was performed by a newly developed method. Uncoated CFR/PEEK, HA-coated blasted titanium alloy, and uncoated blasted titanium alloy were used as control implants. The implants were inserted into drilled femoral cortex, and pull-out tests were conducted after 6 and 12 weeks of implantation to determine maximum interfacial shear strength. The HA-coated CFR/PEEK (15.7  ± 4.5 MPa) and HA-coated titanium alloy (14.1  ±  6.0 MPa) exhibited significantly larger interfacial shear strengths than the uncoated CFR/PEEK (7.7 ± 1.8 MPa) and the uncoated titanium alloy (7.8  ±  2.1 MPa) at 6 weeks. At 12 weeks, only the uncoated CFR/PEEK (8.3  ±  3.0 MPa) exhibited a significantly smaller interfacial shear strength, as compared to the HA-coated CFR/PEEK (17.4  ±  3.6 MPa), HA-coated titanium alloy (14.2  ±  4.8 MPa), and uncoated titanium alloy (15.0  ±  2.6 MPa). Surface analysis of the removed implants revealed detachment of the HA layer in both the HA-coated CFR/PEEK and titanium alloy implants. The proposed novel HA coating method of CFR/PEEK significantly increased interfacial shear strength between bone and CFR/PEEK. The achieved interfacial shear strength of the HA-coated CFR/PEEK implant is of the same level as that of grit-blasted titanium alloy with HA. Copyright © 2012 Orthopaedic Research Society.

  13. Fibrillization kinetics of insulin solution in an interfacial shearing flow

    NASA Astrophysics Data System (ADS)

    Balaraj, Vignesh; McBride, Samantha; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Although the association of fibril plaques with neurodegenerative diseases like Alzheimer's and Parkinson's is well established, in-depth understanding of the roles played by various physical factors in seeding and growth of fibrils is far from well known. Of the numerous factors affecting this complex phenomenon, the effect of fluid flow and shear at interfaces is paramount as it is ubiquitous and the most varying factor in vivo. Many amyloidogenic proteins have been found to denature upon contact at hydrophobic interfaces due to the self-assembling nature of protein in its monomeric state. Here, fibrillization kinetics of insulin solution is studied in an interfacial shearing flow. The transient surface rheological response of the insulin solution to the flow and its effect on the bulk fibrillization process has been quantified. Minute differences in hydrophobic characteristics between two variants of insulin- Human recombinant and Bovine insulin are found to result in very different responses. Results presented will be in the form of fibrillization assays, images of fibril plaques formed, and changes in surface rheological properties of the insulin solution. The interfacial velocity field, measured from images (via Brewster Angle Microscopy), is compared with computations. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  14. Interfacial shear rheology of DPPC under physiologically relevant conditions.

    PubMed

    Hermans, Eline; Vermant, Jan

    2014-01-07

    Lipids, and phosphatidylcholines in particular, are major components in cell membranes and in human lung surfactant. Their ability to encapsulate or form stable layers suggests a significant role of the interfacial rheological properties. In the present work we focus on the surface rheological properties of dipalmitoylphosphatidylcholine (DPPC). Literature results are confusing and even contradictory; viscosity values have been reported differ by several orders of magnitude. Moreover, even both purely viscous and gel-like behaviours have been described. Assessing the literature critically, a limited experimental window has been explored correctly, which however does not yet include conditions relevant for the physiological state of DPPC in vivo. A complete temperature and surface pressure analysis of the interfacial shear rheology of DPPC is performed, showing that the monolayer behaves as a viscoelastic liquid with a domain structure. At low frequencies and for a thermally structured monolayer, the interaction of the molecules within the domains can be probed. The low frequency limit of the complex viscosity is measured over a wide range of temperatures and surface pressures. The effects of temperature and surface pressure on the low frequency viscosity can be analysed in terms of the effects of free molecular area. However, at higher frequencies or following a preshear at high shear rates, elasticity becomes important; most probably elasticity due to defects at the edge of the domains in the layer is probed. Preshearing refines the structure and induces more defects. As a result, disagreeing interfacial rheology results in various publications might be due to different pre-treatments of the interface. The obtained dataset and scaling laws enable us to describe the surface viscosity, and its dependence under physiological conditions of DPPC. The implications on functioning of lung surfactants and lung surfactant replacements will be discussed.

  15. Interfacial shear stress for smooth and wavy stratified flow in pipes

    SciTech Connect

    Kowalski, J.E.

    1985-01-01

    This paper describes an experimental study of interfacial shear stress for stratified gas-liquid flow in a 50.8 mm (2'') diameter horizontal pipe. The tests were carried out using air/water and freon gas/water flows at pressures 225 and 420 kPa. A new correlation is developed for the interfacial shear stress.

  16. Two interfacial shear strength calculations based on the single fiber composite test

    NASA Astrophysics Data System (ADS)

    Zhandarov, S. F.; Pisanova, E. V.

    1996-07-01

    The fragmentation of a single fiber embedded in a polymer matrix upon stretching (SFC test) provides valuable information on the fiber-matrix bond strength (τ), which determines stress transfer through the interface and, thus, significantly affects the mechanical properties of the composite material. However, the calculated bond strength appears to depend on data interpretation, i.e., on the applied theoretical model, since the direct result of the SFC test is the fiber fragment length distribution rather than the τ value. Two approaches are used in SFC testing for calculation of the bond strength: 1) the Kelly-Tyson model, in which the matrix is assumed to be totally elastic and 2) the Cox model using the elastic constants of the fiber and the matrix. In this paper, an attempt has been made to compare these two approaches employing theory as well as the experimental data of several authors. The dependence of the tensile stress in the fiber and the interfacial shear stress on various factors has been analyzed. For both models, the mean interfacial shear stress in the fragment of critical length (lc) was shown to satisfy the same formula (τ) = (σcD)/2lc, where D is the fiber diameter and σc is the tensile strength of a fiber at gauge length equal to lc. However, the critical lengths from the Kelly-Tyson approach and Cox model are differently related to the fragment length distribution parameters such as the mean fragment length. This discrepancy results in different (τ) values for the same experimental data set. While the main parameter in the Kelly-Tyson model assumed constant for a given fiber-matrix pair is the interfacial shear strength, the ultimate (local) bond strength τult may be seen as the corresponding parameter in the Cox model. Various τult values were obtained for carbon fiber-epoxy matrix systems by analyzing the data of continuously monitored single fiber composite tests. Whereas the mean value of the interfacial shear stress calculated in

  17. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  18. Effect of viscosity and shear flow on the nonlinear two fluid interfacial structures

    SciTech Connect

    Banerjee, Rahul

    2012-12-15

    A nonlinear formulation is presented to deal with the combined action of Rayleigh-Taylor and Kelvin-Helmholtz instabilities as well as combined Ricthmyer-Meshkov and Kelvin-Helmholtz instabilities at the two fluid interface under the influence of viscosity and consequent shear flow. Using Layzer's model, the development of the interfacial structures like bubbles is investigated analytically and numerically. It is found that the growth and normal velocity of the structures are dependent on the relative velocity shear and the kinematic coefficient of viscosity of both the fluids. Both the bubble growth and growth rate are reduced significantly for fluids of higher viscosity coefficient with small velocity shear difference. It is also observed that, for viscous fluids, the transverse velocity of the perturbed interface becomes slower under certain conditions.

  19. Shear-induced interfacial assembly of Janus particles

    NASA Astrophysics Data System (ADS)

    Rezvantalab, Hossein; Connington, Kevin W.; Shojaei-Zadeh, Shahab

    2016-11-01

    We investigate the hydrodynamics of spherical Janus particles at the interface between two immiscible fluids using a multicomponent lattice-Boltzmann method. The Cahn-Hilliard model is used to evolve the composition for this binary system of incompressible fluids, while the particle-fluid interactions are taken into account by adding a supplemental force to recover the appropriate wettability at solid boundaries. We evaluate the capillary-induced interactions between multiple Janus particles at a sheared interface and demonstrate the possibility of directing their assembly. In response to the flow, all particles approach a steady orientation resulting from the balance between shear-induced torque and the resistance due to preferred wetting. At sufficiently large shear rates leading to strong capillary dipoles, the particles rearrange and form chains normal to the shear direction. For the particle sizes considered, an intermediate window of surface coverage between 32% and 65% is found to give effective alignment with order parameters in the range of 0.7-1.0. An interesting feature of this directed assembly method is that the structure is preserved after removing the flow field: Janus particles only rotate to upright orientation without disintegrating the chains. This approach can enable directing a randomly oriented or distributed cluster of Janus particles into an ordered structure with controllable rheological properties.

  20. On the breakup of a thin liquid film subject to interfacial shear

    NASA Astrophysics Data System (ADS)

    Saber, Hamed H.; El-Genk, Mohamed S.

    2004-02-01

    The breakup of a thin non-evaporating liquid film that is either flowing down or climbing on a vertical or inclined surface and subject to cocurrent or countercurrent interfacial shear (or gas flow) is investigated analytically. Analytical expressions for the dimensionless liquid film thickness, Delta_{scriptsizemin}, and wetting rate, Gamma_{scriptsizemin}, at breakup are derived based on the minimization of the total energy of a stable rivulet, formed following the film breakup. For a downflowing liquid film, increasing the cocurrent interfacial shear (or gas velocity) or decreasing the equilibrium contact angle, theta_{o}, decreases both Delta_{scriptsizemin} and Gamma _{scriptsizemin}, below their values with zero interfacial shear. Conversely, increasing the countercurrent interfacial shear or theta_{o}, increases both Delta_{scriptsizemin} and Gamma_{scriptsizemin}, above their values with zero interfacial shear. The predictions of Delta _{scriptsizemin} and Gamma _{scriptsizemin} for a climbing water film on a vertical surface are in good agreement with reported experimental data for a wide range of cocurrent gas velocities.

  1. Parametric evaluation of shear sensitivity in piezoresistive interfacial force sensors

    NASA Astrophysics Data System (ADS)

    Benfield, David; Lou, Edmond; Moussa, Walied A.

    2011-04-01

    A three-axis load detector has been designed and manufactured utilizing four piezoresistive sensors on a flexible silicon membrane. The detector was prototyped using bulk microfabrication techniques on a single-crystal silicon wafer and was designed to detect normal and shear loadings applied to the membrane. Finite element analysis and experimental calibration methods have been used to determine the shear and normal sensitivity values. Device parameters were modified with emphasis on increasing the absolute shear to normal sensitivity ratio of the sensors without reducing their ultimate strength. It was determined that the shear to normal sensitivity ratio greater than 0.5 would allow detection of shear loads considering experimental error present. For devices with square membranes having 1000 µm edge lengths and 65 µm thicknesses, this amount of shear sensitivity was achievable using a mesa with a height of at least 150 µm.

  2. Prediction of tensile and flexural strength of unidirectional CFRP considering the interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Na, Wonjin; Lee, Geunsung; Sung, Minchang; Yu, Woong-Ryeol

    2016-10-01

    The tensile strength of unidirectional fiber composites is interpreted as an initiation and propagation of crack inside, and the crack propagation is the result of fiber fracture and load transfer to surroundings. After the fiber fracture the load is carried by matrix in shear loading, so the load transfer capacity is expected to increase according to improved interfacial shear strength (IFSS). In theoretical study the extreme IFSS can make enhanced property, reaching to rule of mixture, however experiments have demonstrated that optimum interfacial shear strength exists in tensile strength. This can be explained by the effect of multiple fracture. When a fiber is broken, it induces concurrent breakage of surrounding fibers due to stress concentration. This `multiple fracture' phenomenon is important to determine the tensile strength of fiber composites. In this study, the tensile and flexural strength of unidirectional carbon fiber composites were predicted considering the interfacial shear strength. First, the effect of interfacial shear strength on the load transfer to surrounding fibers (i.e., local stress concentration) when a fiber is broken was analyzed using finite element method, determining the stress concentration factor of each surrounding fiber. Based on the stress concentration factor, the `multiple fracture number' was calculated using statistical prediction approach. Using the multiple fracture number, the tensile strength of unidirectional fiber composites is predicted, the validity of which is investigated using carbon fiber/nylon 6 composites.

  3. Modeling interfacial fracture in Sierra.

    SciTech Connect

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  4. Incorporating interfacial phenomena in solidification models

    NASA Technical Reports Server (NTRS)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  5. Incorporating interfacial phenomena in solidification models

    NASA Technical Reports Server (NTRS)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  6. Design Rules for Enhanced Interfacial Shear Response in Functionalized Carbon Fiber Epoxy Composites.

    PubMed

    Demir, Baris; Henderson, Luke C; Walsh, Tiffany R

    2017-04-05

    Carbon-fiber reinforced composites are ideal light-weighting candidates to replace traditional engineering materials. The mechanical performance of these composites results from a complex interplay of influences operating over several length and time scales. The mechanical performance may therefore be limited by many factors, one of which being the modest interfacial adhesion between the carbon fiber and the polymer. Chemical modification of the fiber, via surface grafting of molecules, is one possible strategy to enhance interactions across the fiber-polymer interface. To achieve systematic improvements in these modified materials, the ability to manipulate and monitor the molecular structure of the polymer interphase and the surface grafted molecules in the composite is essential, but challenging to accomplish from a purely experimental perspective. Alternatively, molecular simulations can bridge this knowledge gap by providing molecular-scale insights into the optimal design of these surface-grafted molecules to deliver superior mechanical properties. Here we use molecular dynamics simulations to predict the interfacial shear response of a typical epoxy/carbon-fiber composite for both pristine fiber and a range of surface graftings. We allow for the dynamic curing of the epoxy in the presence of the functionalized surface, including cross-link formation between the grafted molecules and the polymer matrix. Our predictions agree with recently reported experimental data for these systems and reveal the molecular-scale origins of the enhanced interfacial shear response arising from functionalization. In addition to the presence of interfacial covalent bonds, we find that the interfacial structural complexity, resulting from the presence of the grafted molecules, and a concomitant spatial homogeneity of the interphase polymer density are beneficial factors in conferring high interfacial shear stress. Our approach paves the way for computational screening processes

  7. The effects of excipients on protein aggregation during agitation: an interfacial shear rheology study.

    PubMed

    Liu, Lu; Qi, Wei; Schwartz, Daniel K; Randolph, Theodore W; Carpenter, John F

    2013-08-01

    We investigated the effects of excipients in solutions of keratinocyte growth factor 2 (KGF-2) on protein aggregation during agitation as well as on interfacial shear rheology at the air-water interface. Samples were incubated with or without agitation, and in the presence or absence of the excipients heparin, sucrose, or polysorbate 80 (PS80). The effect of excipients on the extent of protein aggregation was determined by UV-visible spectroscopy and micro-flow imaging. Interfacial shear rheology was used to detect the gelation time and strength of protein gels at the air-water interface. During incubation, protein particles of size ≥1 μm and insoluble aggregates formed faster for KGF-2 solutions subjected to agitation. Addition of either heparin or sucrose promoted protein aggregation during agitation. In contrast, PS80 substantially inhibited agitation-induced KGF-2 aggregation but facilitated protein particulate formation in quiescent solutions. The combination of PS80 and heparin or sucrose completely prevented protein aggregation during both nonagitated and agitated incubations. Interfacial rheological measurements showed that KGF-2 in buffer alone formed an interfacial gel within a few minutes. In the presence of heparin, KGF-2 interfacial gels formed too quickly for gelation time to be determined. KGF-2 formed gels in about 10 min in the presence of sucrose. The presence of PS80 in the formulation inhibited gelation of KGF-2. Furthermore, the interfacial gels formed by the protein in the absence of PS80 were reversible when PS80 was added to the samples after gelation. Therefore, there is a correspondence between formulations that exhibited interfacial gelation and formulations that exhibited agitation-induced aggregation.

  8. The Effects of Excipients on Protein Aggregation During Agitation: An Interfacial Shear Rheology Study

    PubMed Central

    Liu, Lu; Qi, Wei; Schwartz, Daniel K.; Randolph, Theodore W.; Carpenter, John F.

    2014-01-01

    We investigated the effects of excipients in solutions of keratinocyte growth factor 2 (KGF-2) on protein aggregation during agitation as well as on interfacial shear rheology at the air-water interface. Samples were incubated with or without agitation, and in the presence or absence of the excipients heparin, sucrose or polysorbate 80 (PS80). The effect of excipients on the extent of protein aggregation was determined by UV spectroscopy and microflow imaging (MFI). Interfacial shear rheology was used to detect the gelation time and strength of protein gels at the air-water interface. During incubation, protein particles of size ≥ 1 μm and insoluble aggregates formed faster for KGF-2 solutions subjected to agitation. Addition of either heparin or sucrose promoted protein aggregation during agitation. In contrast, PS 80 substantially inhibited agitation-induced KGF-2 aggregation but facilitated protein particulate formation in quiescent solutions. The combination of PS 80 and heparin or sucrose completely prevented protein aggregation during both non-agitated and agitated incubations. Interfacial rheological measurements showed that KGF-2 in buffer alone formed an interfacial gel within a few minutes. In the presence of heparin, KGF-2 interfacial gels formed too quickly for gelation time to be determined. KGF-2 formed gels in about 10 minutes in the presence of sucrose. The presence of PS80 in the formulation inhibited gelation of KGF-2. Furthermore, the interfacial gels formed by the protein in the absence of PS80 were reversible when PS80 was added to the samples after gelation. Therefore, there is a correspondence between formulations that exhibited interfacial gelation and formulations that exhibited agitation-induced aggregation. PMID:23712900

  9. Interfacial pressure and shear sensor system for fingertip contact applications.

    PubMed

    Valero, Maria; Hale, Nick; Tang, Jing; Jiang, Liudi; McGrath, Mike; Gao, Jianliang; Laszczak, Piotr; Moser, David

    2016-12-01

    This Letter presents a capacitive-based sensor system for fingertip contact applications. It is capable of simultaneously measuring normal (pressure) and tangential (shear) stresses at the interface between a fingertip and external objects. This could be potentially exploitable for applications in the fields of upper limb prosthetics, robotics, hand rehabilitation and so on. The system was calibrated and its performance was tested using a test machine. To do so, specific test protocols reproducing typical stress profiles in fingertip contact interactions were designed. Results show the system's capability to measure the applied pressure and stresses, respectively, with high linearity between the measured and applied stresses. Subsequently, as a case study, a 'press-drag-lift' based fingertip contact test was conducted by using a finger of a healthy subject. This was to provide an initial evaluation for real-life applications. The case study results indicate that both interface pressure and shear were indeed measured simultaneously, which aligns well with the designed finger test protocols. The potential applications for the sensor system and corresponding future works are also discussed.

  10. Interfacial Shear Strength of Cast and Directionally Solidified Nial-Sapphire Fiber Composites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-01-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  11. Shear-induced lamellar ordering and interfacial sliding in amorphous carbon films: A superlow friction regime

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Bao; Hu, Yuan-Zhong; Xu, Liang; Wang, Lin-Feng; Wang, Hui

    2011-10-01

    A shear-induced phase transition from disorder to lamellar ordering in amorphous carbon films are investigated by molecular dynamics simulations. Formation of well-separated graphene-like interfacial layers is observed with large interlayer distances, diminishing and ultimately vanishing interlayer bonds, which provides a near-frictionless sliding plane. The steady-state velocity accommodation mode after the running-in stage is interfacial sliding between the graphene-like layers, which explains the experimentally observed graphitization and formation of carbon-rich transfer layers. A superlow friction or superlubricity regime with friction coefficient of approximately 0.01 originates from the extremely large repulsive and low shear interactions across the sliding interface.

  12. Investigation of interfacial shear strength in SiC/Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bhatt, R. T.; Kiser, J. D.

    1991-01-01

    A fiber push-out technique was used to determine fiber/matrix interfacial shear strength (ISS) for silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composites in the as-fabricated condition and after consolidation by hot isostatic pressing (HIPing). In situ video microscopy and acoustic emission detection greatly aided the interpretation of push-out load/displacement curves.

  13. Bulk flow coupled to a viscous interfacial film sheared by a rotating knife edge

    NASA Astrophysics Data System (ADS)

    Raghunandan, Aditya; Rasheed, Fayaz; Hirsa, Amir; Lopez, Juan

    2015-11-01

    The measurement of the interfacial properties of highly viscous biofilms, such as DPPC (the primary component of lung surfactant), present on the surface of liquids (bulk phase) continues to attract significant attention. Most measurement techniques rely on shearing the interfacial film and quantifying its viscous response in terms of a surface (excess) viscosity at the air-liquid interface. The knife edge viscometer offers a significant advantage over other approaches used to study highly viscous films as the film is directly sheared by a rotating knife edge in direct contact with the film. However, accurately quantifying the viscous response is non-trivial and involves accounting for the coupled interfacial and bulk phase flows. Here, we examine the nature of the viscous response of water insoluble DPPC films sheared in a knife edge viscometer over a range of surface packing, and its influence on the strength of the coupled bulk flow. Experimental results, obtained via Particle Image Velocimetry in the bulk and at the surface (via Brewster Angle Microscopy), are compared with numerical flow predictions to quantify the coupling across hydrodynamic flow regimes, from the Stokes flow limit to regimes where flow inertia is significant. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  14. Measurement of interfacial shear strength in SiC-fiber/Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Laughner, James W.; Bhatt, Rham T.

    1989-01-01

    An indentation method for measuring shear strength in brittle matrix composites was applied to SiC-fiber/Si3N4-matrix samples. Three methods were used to manufacture the composites: reaction bonding of a Si/SiC preform, hot-pressing, and nitrogen-overpressure sintering. An indentation technique developed by Marshall for thin specimens was used to measure the shear strength of the interface and the interfacial friction stresses. This was done by inverting the sample after the initial push through and retesting the pushed fibers. SEM observations showed that the shear strength was determined by the degree of reaction between the fiber and the matrix unless the fiber was pushed out of its (well-bonded) sheath.

  15. Sorption and Interfacial Rheology Study of Model Asphaltene Compounds.

    PubMed

    Pradilla, Diego; Simon, Sébastien; Sjöblom, Johan; Samaniuk, Joseph; Skrzypiec, Marta; Vermant, Jan

    2016-03-29

    The sorption and rheological properties of an acidic polyaromatic compound (C5PeC11), which can be used to further our understanding of the behavior of asphaltenes, are determined experimentally. The results show that C5PeC11 exhibits the type of pH-dependent surface activity and interfacial shear rheology observed in C6-asphaltenes with a decrease in the interfacial tension concomitant with the elastic modulus when the pH increases. Surface pressure-area (Π-A) isotherms show evidence of aggregation behavior and π-π stacking at both the air/water and oil/water interfaces. Similarly, interactions between adsorbed C5PeC11 compounds are evidenced through desorption experiments at the oil/water interface. Contrary to indigenous asphaltenes, adsorption is reversible, but desorption is slower than for noninteracting species. The reversibility enables us to create layers reproducibly, whereas the presence of interactions between the compounds enables us to mimic the key aspects of interfacial activity in asphaltenes. Shear and dilatational rheology show that C5PeC11 forms a predominantly elastic film both at the liquid/air and the liquid/liquid interfaces. Furthermore, a soft glassy rheology model (SGR) fits the data obtained at the liquid/liquid interface. However, it is shown that the effective noise temperature determined from the SGR model for C5PeC11 is higher than for indigenous asphaltenes measured under similar conditions. Finally, from a colloidal and rheological standpoint, the results highlight the importance of adequately addressing the distinction between the material functions and true elasticity extracted from a shear measurement and the apparent elasticity measured in dilatational-pendant drop setups.

  16. Probing model tumor interfacial properties using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Yegingil, Hakki; Shih, Wan Y.; Shih, Wei-Heng

    2010-09-01

    Invasive malignant breast cancers are typically branchy and benign breast tumors are typically smooth. It is of interest to characterize tumor branchiness (roughness) to differentiate invasive malignant breast cancer from noninvasive ones. In this study, we examined the shear modulus (G) to elastic modulus (E) ratio, G /E, as a quantity to describe model tumor interfacial roughness using a piezoelectric cantilever capable of measuring both tissue elastic modulus and tissue shear modulus. The piezoelectric cantilever used had two lead zirconate titanate layers to facilitate all-electrical elastic (shear) modulus measurements using one single device. We constructed model tissues with tumors by embedding one-dimensional (1D) corrugated inclusions and three-dimensional (3D) spiky-ball inclusions made of modeling clay in gelatin. We showed that for smooth inclusions, G /E was 0.3 regardless of the shear direction. In contrast, for a 1D corrugated rough inclusion G /E was 0.3 only when the shear was parallel to corrugation and G /E increased with an increasing angle between the shear direction and the corrugation. When the shear was perpendicular to corrugation, G /E became >0.7. For 3D isotropic spiky-ball inclusions we showed that the G /E depended on the degree of the roughness. Using the ratio s /r of the spike length (s) to the overall inclusion radius (r) as a roughness parameter, we showed that for inclusions with s /r larger than or equal to 0.28, the G /E ratio over the inclusions was larger than 0.7 whereas for inclusions with s /r less than 0.28, the G /E decreased with decreasing s /r to around 0.3 at s /r=0. In addition, we showed that the depth limit of the G /E measurement is twice the width of the probe area of the piezoelectric cantilever.

  17. Evaluation of the interfacial shear in a discontinuous carbon fiber/mortar matrix composite

    SciTech Connect

    Zhu, M.; Wetherhold, R.C.; Chung, D.D.L.

    1997-03-01

    The mathematical relationship between fiber-matrix interfacial shear stress and drying shrinkage reduction due to fiber addition was derived for the purpose of estimating this stress from the measured drying shrinkage of short fiber reinforced cement. For short carbon fiber reinforced mortar, this stress increased with curing age, particularly abruptly within the first 2 days and reaching 1.92 MPa at 14 days if slip between fiber and matrix was assumed and 3.46 MPa if no slip between fiber and matrix was assumed.

  18. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites.

    PubMed

    Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A

    2016-10-12

    The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m(2), respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.

  19. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    NASA Astrophysics Data System (ADS)

    Hajlane, A.; Miettinen, A.; Madsen, B.; Beauson, J.; Joffe, R.

    2016-07-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight contents (5wt%, 10wt%, and 15wt% for untreated fibres, and 15wt% for treated fibres). The properties of fibres were measured by an automated single fibre tensile test method. Based on these results, the efficiency of the fibre treatment to improve fibre/matrix adhesion is evaluated, and the applicability of the method to measure the interfacial shear strength is discussed. The results are compared with data from previous work, and with other results from the literature.

  20. A model for inter-laminar shear stress in laminated composites

    NASA Astrophysics Data System (ADS)

    Zaki, W.; Nguyen, V.; Umer, R.

    2017-02-01

    The paper presents an analytical model for the estimation of shear stress at the interface of adhesively bonded layers in laminated composites. For this purpose, a new shear stress function is proposed that accounts for the influence of shear lag in laminates assembled using adhesive layers of different types and thicknesses. In addition to the estimation of interfacial stress, the function can be used to determine the difference in normal strains and axial displacements in adjoining layers.

  1. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  2. Analysis of interfacial error in saturated unsaturated flow models

    NASA Astrophysics Data System (ADS)

    Pei, Yuansheng; Wang, Jinsheng; Tian, Zhaohui; Yu, Jianning

    2006-04-01

    Interfacial error results from estimation of interblock conductivities related to the saturated-unsaturated interface. Both interfacial conductivity error ( IEK) and interfacial pressure error ( IEh) were analyzed under the arithmetic mean scheme while IEK was numerically investigated under the averaging schemes arithmetic, geometric and harmonic. IEK, dependent on the media pore size, is regularly less than zero while IEh, associated with the height of capillary fringe, may be greater than zero. An interfacial discretization technique was developed to add two complementary equations into the saturated-unsaturated model with respect to the interface. The proposed interfacial approach may eliminate interfacial error from the approximations of interblock conductivities. Underestimation of the water-table response to infiltration is related to the negative IEK. The water-table response error reaches -5.13% in our investigation, which is an accumulated result from IEK.

  3. Interfacial slip on a transverse-shear mode acoustic wave device

    NASA Astrophysics Data System (ADS)

    Ellis, Jonathan S.; Hayward, Gordon L.

    2003-12-01

    This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.

  4. Study of Sub-interfacial Quasi-static Crack Propagation Using Shearing Interferometry

    NASA Astrophysics Data System (ADS)

    Lee, Hansuk; Krishnaswamy, Sridhar

    Cracks on the interface between two materials have been extensively studied in view of their applications to failure processes in composite materials [1-3]. In this work, we look at the case of cracks that are off but close to an interface. Some early studies have indicated that under certain circumstances such sub-interfacial cracks tend to grow along a path that is parallel to the interface at a characteristic distance from the interface depending on the loading and material properties of the two materials. In this study, we optically map crack-tip stress fields for cracks that start off the interface, and track them as they subsequently propagate off the interface. The optical technique that was developed in our laboratory and which is used in this study will be explained. This shearing interferometer is used in conjunction with a 1000 frame/sec video camera. The resulting fringe patterns are evaluated to obtain information about the stress-state during initiation and propagation. The conditions for crack propagation parallel to the interface are explained. The experimental results are compared with crack trajectories predicted by finite element simulations.

  5. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; Jin, Zhongmin

    2015-01-01

    Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed. The chondral phase was a PEG hydrogel. The osseous phase was a β-TCP ceramic scaffold. The PEG hydrogel was directly cured on the ceramic interface layer by layer to fabricate osteochondral scaffolds by 3D printing technology. Meanwhile, a series of interface structure were designed with different interface pore area percentages (0/10/20/30/40/50/60%), and interfacial shear test was applied for interface structure optimization (n=6 samples/group). The interfacial shear strength of 30% pore area group was nearly three folds improved compared with that of 0% pore area percentage group, and more than fifty folds improved compared with that of traditional integration (5.91±0.59 kPa). In conclusion, the biomimetic PEG/β-TCP scaffolds with interface structure enhanced integration show promising potential application for osteochondral tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  7. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  8. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    PubMed Central

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  9. Interfacial micromechanics in fibrous composites: design, evaluation, and models.

    PubMed

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given.

  10. Finite element modelling of fabric shear

    NASA Astrophysics Data System (ADS)

    Lin, Hua; Clifford, Mike J.; Long, Andrew C.; Sherburn, Martin

    2009-01-01

    In this study, a finite element model to predict shear force versus shear angle for woven fabrics is developed. The model is based on the TexGen geometric modelling schema, developed at the University of Nottingham and orthotropic constitutive models for yarn behaviour, coupled with a unified displacement-difference periodic boundary condition. A major distinction from prior modelling of fabric shear is that the details of picture frame kinematics are included in the model, which allows the mechanisms of fabric shear to be represented more accurately. Meso- and micro-mechanisms of deformation are modelled to determine their contributions to energy dissipation during shear. The model is evaluated using results obtained for a glass fibre plain woven fabric, and the importance of boundary conditions in the analysis of deformation mechanisms is highlighted. The simulation results show that the simple rotation boundary condition is adequate for predicting shear force at large deformations, with most of the energy being dissipated at higher shear angles due to yarn compaction. For small deformations, a detailed kinematic analysis is needed, enabling the yarn shear and rotation deformation mechanisms to be modelled accurately.

  11. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    SciTech Connect

    Cantrell, John H.

    2015-03-15

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes K{sub N} of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K{sub N} calculations fall in the range (2.01 – 4.67) ×10{sup 17} N m{sup −3}. The average ratio K{sub N}/|τ| is calculated to be (2.59 ± 0.043) × 10{sup 10} m{sup −1} for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of K{sub N} via a technique such as angle beam ultrasonic spectroscopy.

  12. Modeling of shear localization in materials

    SciTech Connect

    Lesuer, D.; LeBlanc, M.; Riddle, B.; Jorgensen, B.

    1998-02-11

    The deformation response of a Ti alloy, Ti-6Al-4V, has been studied during shear localization. The study has involved well-controlled laboratory tests involving a double-notch shear sample. The results have been used to provide a comparison between experiment and the predicted response using DYNA2D and two material models (the Johnson-Cook model and an isotropic elastic-plastic-hydrodynamic model). The work will serve as the basis for the development of a new material model which represents the different deformation mechanisms active during shear localization.

  13. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect

    Yarbro, Stephen Lee

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  14. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled

    2016-02-01

    Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.

  15. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  16. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  17. Combined surface pressure-interfacial shear rheology studies of the interaction of proteins with spread phospholipid monolayers at the air-water interface.

    PubMed

    Roberts, Simon A; Kellaway, Ian W; Taylor, Kevin M G; Warburton, Brian; Peters, Kevin

    2005-08-26

    The adsorption of two model proteins, catalase and lysozyme, to phospholipid monolayers spread at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. Monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and DPPC:DPPG (7:3) were spread on a phosphate buffer air-water interface at pH 7.4. Protein solutions were introduced to the subphase and the resultant changes in surface pressure and interfacial storage and loss moduli were recorded with time. The results show that catalase readily adsorbs to all the phospholipid monolayers investigated, inducing a transition from liquid-like to gel-like rheological behaviour in the process. The changes in surface rheology as a result of the adsorption of catalase increase in the order DPPC

  18. Fundamental studies of interfacial rheology at multilayered model polymers for coextrusion process

    NASA Astrophysics Data System (ADS)

    Zhang, Huagui; Lamnawar, Khalid; Maazouz, Abderrahim

    2015-05-01

    Fundamental studies have been devoted to the interfacial phenomena at multilayered systems based on two model compatible polymers of PVDF and PMMA with varying molar masses. Linear and nonlinear rheology are demonstrated to be sensitive to the presence of diffuse interphase triggered at polymer/polymer interface. Firstly, the interdiffusion kinetics as well as the interphase development have been investigated using SAOS measurements with results analyzed under Doi-Edwards theory. The PMMA/PVDF mixture, has been examined to own close component monomeric friction coefficients. Based on this physics, a new rheological model was developed to quantify the interdiffusion coefficients. Thereby, rheological and geometrical properties of the interphase have been quantified, as validated by SEM-EDX. Secondly, step strain, shear and uniaxial extension startup were carried out to investigate their sensitivity to the diffuse interphase. An original model was proposed for the stress relaxation of multilayer and that of the interphase. Entanglement lack and weak entanglement intensity at the interface/diffuse interphase make them to be subsequently readily to suffer from interfacial yielding under large deformations. Finally, the interphase development coupled to flow in coextrusion has been considered. Net result between negative effect of chain orientation and favorable effect of flow has been shown to broaden the interphase. Its presence during coextrusion process was demonstrated to significantly weaken the interfacial instabilities.

  19. Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.

    2017-04-01

    Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .

  20. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys

    NASA Astrophysics Data System (ADS)

    Park, Jungkyu; Headings, Leon; Dapino, Marcelo; Baur, Jeffery; Tandon, Gyaneshwar

    2015-03-01

    Shape memory composites (SMCs) based on shape memory alloys (SMAs) and shape memory polymers (SMPs) allow many design possibilities due to their controllable temperature-dependent mechanical properties. The complementary characteristics of SMAs and SMPs can be utilized in systems with shape recovery created by the SMA and shape fixity provided by the SMP. In this research, three SMC operating regimes are identified and the behavior of SMC structures is analyzed by focusing on composite shape fixity and interfacial stresses. Analytical models show that SMPs can be used to adequately fix the shape of SMA actuators and springs. COMSOL finite element simulations are in agreement with analytical expressions for shape fixity and interfacial stresses. Analytical models are developed for an end-coupled linear SMP-SMA two-way actuator and the predicted strain is shown to be in good agreement with experimental test results.

  1. Physical models of tissue in shear fields.

    PubMed

    Carstensen, Edwin L; Parker, Kevin J

    2014-04-01

    This review considers three general classes of physical as opposed to phenomenological models of the shear elasticity of tissues. The first is simple viscoelasticity. This model has a special role in elastography because it is the language in which experimental and clinical data are communicated. The second class of models involves acoustic relaxation, in which the medium contains inner time-dependent systems that are driven through the external bulk medium. Hysteresis, the phenomenon characterizing the third class of models, involves losses that are related to strain rather than time rate of change of strain. In contrast to the vast efforts given to tissue characterization through their bulk moduli over the last half-century, similar research using low-frequency shear data is in its infancy. Rather than a neat summary of existing facts, this essay is a framework for hypothesis generation-guessing what physical mechanisms give tissues their shear properties.

  2. Shear-Driven Reconnection in Kinetic Models

    NASA Astrophysics Data System (ADS)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.

    2015-12-01

    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  3. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  4. Interfacial Microstructure Evolution and Shear Behavior of Au-Sn/Ni- xCu Joints at 350°C

    NASA Astrophysics Data System (ADS)

    Peng, J.; Wang, R. C.; Wang, M.; Liu, H. S.

    2017-04-01

    Interfacial reaction and shear behavior of the joints between Au-29Sn (at.%) solder and Ni- xCu ( x = 20 at.%, 40 at.%, 60 at.%, and 80 at.%) substrate alloys soldered at 350°C for various durations were investigated in this study. The results show that α(Au) is the common reaction product at the solder/substrate interfaces after a short-time reaction regardless of Cu content. As soldering goes on, another new Ni3Sn2 layer forms at the interface company with ordering of the α(Au) phase, AuCu I/Ni3Sn2 bi-layers formed at the Au-Sn/Ni-20Cu interface, or with AuCu III/Ni3Sn2 bi-layers at the Au-Sn/Ni-40Cu interface. If the content of Cu in the substrate is higher than 40 at.%, periodic layered structure and discontinuous Ni3Sn2 layers appear. In the couple of Au-Sn/Ni-60Cu, AuCu I + AuCu III/Ni3Sn2/α(Au) can be observed while AuCu3/Ni3Sn2/α(Au) forms in the couple of Au-Sn/Ni-80Cu. Shear fracture always occurs in the region near the Ni-20Cu substrate in Au-Sn/Ni-20Cu joints, whereas it appears in the reaction layer for the joint of higher Cu content. The shear strength of Au-Sn/Ni-60Cu and Au-Sn/Ni-80Cu joints achieves about 55 MPa as α(Au) phase forms but decreases remarkably due to pore formation after soldering for a long duration. Whereas, the shear strength of Au-Sn/Ni-40Cu joints can reach 62 MPa as the α(Au) phase forms at an early stage, and maintains above 52 MPa even soldered for a long duration because of the adequate thick α(Au) and AuCu III layer adjacent to substrate provides good bonding. The reason why the soldering joint of Au-Sn/Ni-40Cu possesses higher strength and a better stability exists is that high Ni concentration in α(Au) and the continuous Ni3Sn2 layer inhibit formation of Kirkendall pores.

  5. Modeling and characterization of interfacial adhesion and fracture

    NASA Astrophysics Data System (ADS)

    Yao, Qizhou

    2000-09-01

    The loss of interfacial adhesion is mostly seen in the failure of polymer adhesive joints. In addition to the intrinsic physical attraction across the interface, the interfacial adhesion strength is believed to highly depend on a number of factors, such as adhesive chemistry/structure, surface topology, fracture pattern, thermal and elastic mismatch across the interface. The fracture failure of an adhesive joint involves basically three aspects, namely, the intrinsic interfacial strength, the driving force for fracture and other energy dissipation. One may define the intrinsic interfacial strength as the maximum value of the intrinsic interfacial adhesion. The total work done by external forces to the component that contains the interface is partitioned into two parts. The first part is consumed by all other energy dissipation mechanisms (plasticity, heat generation, viscosity, etc.). The second part is used to debond the interface. This amount should equal to the intrinsic adhesion of the interface according to the laws of conservation of energy. It is clear that in order to understand the fundamental physics of adhesive joint failure, one must be able to characterize the intrinsic interfacial adhesion and be able to identify all the major energy dissipation mechanisms involved in the debonding process. In this study, both physical and chemical adhesion mechanisms were investigated for an aluminum-epoxy interface. The physical bonding energy was estimated by computing the Van de Waals forces across the interface. A hydration model was proposed and the associated chemical bonding energy was calculated through molecular simulations. Other energy dissipation mechanisms such as plasticity and thermal residual stresses were also identified and investigated for several four-point bend specimens. In particular, a micromechanics based model was developed to estimate the adhesion enhancement due to surface roughness. It is found that for this Al-epoxy system the major

  6. Modeling Interfacial Adsorption of Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    2014-11-01

    Numerous natural and industrial processes demand advances in our fundamental understanding of colloidal adsorption at liquid interfaces. Using dissipative particle dynamics (DPD), we model the interfacial adsorption of core-shell nanoparticles at the water-oil interface. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with polymer chains. The nanoparticles bind to the interface from either phase to minimize total surface energy. With a single nanoparticle, we demonstrate detailed kinetics of different stages in the adsorption process. Prominent effect of grafted polymer chains is characterized by varying molecular weight and polydispersity of the chains. We also preload nanoparticles straddling the interface to reveal the influence of nanoparticle surface density on further adsorption. Importantly, these studies show how surface-grafted polymer chains can alter the interfacial behavior of colloidal particles and provide guidelines for designing on-demand Pickering emulsion.

  7. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  8. Foam rheology: A model of viscous effects in shear flow

    NASA Astrophysics Data System (ADS)

    Kraynik, Andrew M.; Reinelt, Douglas A.

    Foams consisting of gas bubbles dispersed in a continuous network of thin liquid films display a remarkable range of rheological characteristics that include a finite shear modulus, yield stress, non-Newtonian viscosity, and slip at the wall. Progress in developing micromechanical theories to describe foam rheology has depended upon two-dimensional models, which in most cases are assumed to have perfectly ordered structure. Princen accounted for surface tension and geometrical effects, and analyzed the nonlinear elastic response of a spatially periodic foam in simple shear. His analysis has been extended to account for more general deformations. Khan and Armstrong and Kraynik and Hansen have proposed ad hoc models for viscous effects in foam rheology. Their models capture numerous qualitative phenomena but incorporate relaxation mechanisms based upon overly simplified assumptions of liquid flow in the thin films. Mysels, Shinoda, and Frankel considered soap films with interfaces that are inextensible due to the presence of surfactants. They analyzed the primary flow that occurs when such films are slowly withdrawn from or recede into essentially static junction regions such as the Plateau borders in a foam. Adopting this mechanism, Schwartz and Princen considered small periodic deformations of a foam and calculated the energy dissipation due to viscous flow in the thin films. In the following, we also adopt the basic interfacial and viscous mechanisms introduced by Mysels et al. and analyze simple shearing deformations of finite amplitude. The configuration and effective stress of the foam are determined. Under these deformation conditions, the foam is a nonlinear viscoelastic material. Results for the uniform expansion of a foam are also presented.

  9. Modeling shear wave splitting observations from Iceland

    NASA Astrophysics Data System (ADS)

    Fu, Y. V.; Li, A.; Ito, G.; Hung, S.

    2010-12-01

    The goal of this research is to investigate the sources of shear-wave splitting in Iceland using synthetic waveforms generated from a variety of models. We employ a pseudospectral method in waveform modeling that allows 3-D heterogeneity and anisotropy. Several 1-D and 2-D models have been tested for a vertically propagating plane shear wave. For the two-layer models with horizontal symmetry axes, our results show that the apparent fast direction is towards the fast orientation in the upper layer. This experiment may explain why shear wave splitting measurements tend to be correlated with surface geology. We have also tested models with lateral anisotropic variations including a dike and a plume. The anisotropic boundary can be well resolved based on the change of fast directions and delay times. The splitting parameters near the boundary are affected by the laterally varied structure and the affected distance depends on wavelength, which is about 40 km for periods of 4-6 s and 50 km for periods of 8-10 s. We are currently performing experiments on a radial flow model from a plume stem. Synthetic shear-wave splitting measurements will be conducted from two more realistic geodynamic models. The first one is the “radial flow” model with low Rayleigh number. The pounding plume material is much thicker than the lithosphere and therefore does not strongly “feel” the lithosphere thickening away from the axis. Thus the plume spreads as fast away from the axis as it does along it. The other one is the “channel flow” model with high Rayleigh number. In this model the plume stem is much narrower and the thickness of the pounding plume material beneath the lithosphere much thinner. Thus the very low viscosity plume material is channeled more along axis by the thickening lithosphere. Combing the synthetic with the observed splitting results, we expect to determine the best geodynamic models for Iceland that fit seismic constraints.

  10. Modelling interfacial cracking with non-matching cohesive interface elements

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Phu; Nguyen, Chi Thanh; Bordas, Stéphane; Heidarpour, Amin

    2016-11-01

    Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these interfacial cracks usually employs compatible or matching cohesive interface elements. In this paper, incompatible or non-matching cohesive interface elements are proposed for interfacial fracture mechanics problems. They allow non-matching finite element discretisations of the opposite crack faces thus lifting the constraint on the compatible discretisation of the domains sharing the interface. The formulation is based on a discontinuous Galerkin method and works with both initially elastic and rigid cohesive laws. The proposed formulation has the following advantages compared to classical interface elements: (i) non-matching discretisations of the domains and (ii) no high dummy stiffness. Two and three dimensional quasi-static fracture simulations are conducted to demonstrate the method. Our method not only simplifies the meshing process but also it requires less computational demands, compared with standard interface elements, for problems that involve materials/solids having a large mismatch in stiffnesses.

  11. Cytoskeletal transition in patterned cells correlates with interfacial energy model.

    PubMed

    Müller, Andreas; Meyer, Jörg; Paumer, Tina; Pompe, Tilo

    2014-04-14

    A cell's morphology is intricately regulated by microenvironmental cues and intracellular feedback signals. Besides biochemical factors, cell fate can be influenced by the mechanics and geometry of the surrounding matrix. The latter point was addressed herein, by studying cell adhesion on two-dimensional micropatterns. Endothelial cells were grown on maleic acid copolymer surfaces structured with stripes of fibronectin by microcontact printing. Experiments showed a biphasic behaviour of actin stress fibre spacing in dependence on the stripe width with a critical size of approx. 15 μm. In a concurrent modelling effort, cells on stripes were simulated as droplet-like structures, including variations of interfacial energy, total volume and dimensions of the nucleus. A biphasic behaviour with regard to cell morphology and area was found, triggered by the minimum of interfacial energy, with the phase transition occurring at a critical stripe width close to the critical stripe width found in the cell experiment. The correlation of experiment and simulation suggests a possible mechanism of the cytoskeletal rearrangements based on interfacial energy arguments.

  12. Interfacial Microstructure Evolution and Shear Strength of Titanium Sandwich Structures Fabricated by Brazing

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Fan, Minyu; Li, Jinlong; Tao, Jie

    2016-03-01

    The corrugated sandwich structure, consisting of a CP Ti (commercially pure titanium) core between two Ti-6Al-4V face sheets, was brazed using pasty Ti-37.5Zr-15Cu-10Ni as filler alloy, at the temperature of 870°C for 5, 10, 20, and 30 min. The effect of brazing time on the microstructure and elemental distribution of the brazed joints was examined by means of SEM, EDS, and XRD analyses. It was found that various intermetallic phases were formed in the brazed joints, following a brazing time of 5 min, and their contents were decreased by the increment of brazing time, while prolonged brazing time resulted in a fine, acicular Widmanstätten microstructure throughout the entire joint. In addition, shear testing was performed in the brazed corrugated specimens in order to indirectly assess the quality of the joints. The debonding between CP Ti and Ti-6Al-4V was observed in the specimen brazed for 5 min and the fracture of the CP Ti corrugated core occurred after 30 min of brazing time. Additionally, when brazed for 10 min or 20 min, brittle intermetallic compounds in the joints and the grain growth of the base metal were controllable. Therefore, the sandwich structures failed without debonding in the joints or fracture within the base metal, demonstrating a good combination of strength and ductility.

  13. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  14. Simple models for shear flow transition

    NASA Astrophysics Data System (ADS)

    Barkley, Dwight

    2011-11-01

    I will discuss recent developments in modeling transitional shear flows with simple two-variable models. Both pipe flow and plane Couette flow are considered. The essential insight is that most large-scale features of these shear flows can be traced to a change from excitability to bistability in the local dynamics. Models are presented in two variables, turbulence intensity and mean shear. A PDE model of pipe flow captures the essence of the puff-slug transition as a change from excitability to bistability. Extended models with turbulence as deterministic transient chaos or multiplicative noise reproduce almost all large-scale features of transitional pipe flow. In particular they capture metastable localized puffs, puff splitting, slugs, localized edge states, a continuous transition to sustained turbulence via spatiotemporal intermittency (directed percolation), and a subsequent increase in turbulence fraction towards uniform, featureless turbulence. A model that additionally takes into account the symmetries of plane Couette flow reproduces localized turbulence and periodic turbulent-laminar bands.

  15. TDDB modeling depending on interfacial conditions in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Choi, Chul-Min; Sukegawa, Hiroaki; Mitani, Seiji; Song, Yun-Heub

    2017-10-01

    We investigated time-dependent dielectric breakdown (TDDB) modeling for MgO dielectrics with/without Mg insertion of MgO-based magnetic tunnel junctions (MTJs). The number of permanent trap sites at the no-Mg insertion interface was much larger than that at the Mg-inserted interface as determined by interval voltage stress (IVS) tests. The interfacial conditions related to trap sites at MgO dielectrics give rise to the different TDDB modeling. Here, we confirmed that the TDDB curves obtained from the constant voltage stress (CVS) tests for the Mg inserted interface case were well fitted by the power-law voltage V model, while the case of no-Mg inserted interface showed a good correlation to the 1/E model. The difference in the TDDB models related to interfacial conditions was understood based on theoretical and experimental results. Finally, we concluded that it is necessary to select an appropriate reliability model depending upon the presence or absence of the trap sites at dielectric interfaces.

  16. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  17. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    PubMed

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Turbulent structures in Kolmogorovian shear flows: Models

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette S.; Barkley, Dwight

    2015-11-01

    Oblique patterns of turbulence are observed immediately beyond transition in wall-bounded shear flows with two unconstrained directions. Despite the ubiquitous nature of these structures, simple descriptions obtained directly from the Navier-Stokes equations are lacking. To this aim we examine Waleffe flow, a sinusoidal shear flow, Usinπ/2 y , driven by a body force and stress-free boundary conditions at y = +/- 1 . After establishing the ability of Waleffe flow to capture turbulent bands we study a series of models, capturing the shear dependent direction with a small number of Fourier modes. With only one nonzero Fourier wavenumber the fundamentals of bands are already observed. This minimal system offers the perfect testbed to study the emergence of bands. Considering small increases to the number of modes we find the rich behaviour associated with plane Couette flow. These models form a fascinating midpoint between the full Navier-Stokes equations and the minimal SSP model.

  19. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  20. Modeling interfacial charge transport of quantum dots using cyclic voltammetry

    NASA Astrophysics Data System (ADS)

    Tobias, Andrew K.; Jones, Marcus

    2011-10-01

    Quantum dot applications are numerous and range from photovoltaic devices and lasers, to bio labeling. Complexities in the electronic band structure of quantum dots create the necessity for analysis techniques that can accurately and reproducibly provide their absolute band energies. Cyclic voltammetry (CV) is a novel candidate for these studies and has the potential to become a useful tool in engineering new nanocrystal technology, by providing information necessary for predicting and modeling interfacial charge transfer to and from quantum dots. Advancing from previous reports of nanocrystal CV, a carbon paste electrode was utilized in an attempt to increase measured current by ensuring intimate contact between nanocrystals and the electrode. Our goal was to investigate band energies and model nanocrystal-molecule electron transfer systems.

  1. Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes

    NASA Astrophysics Data System (ADS)

    Azaroual, M. M.

    2016-12-01

    The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.

  2. Quasilinear transport modelling at low magnetic shear

    SciTech Connect

    Citrin, J.; Hogeweij, G. M. D.; Bourdelle, C.; Cottier, P.; Escande, D. F.; Guercan, Oe. D.; Hatch, D. R.; Jenko, F.; Pueschel, M. J.

    2012-06-15

    Accurate and computationally inexpensive transport models are vital for routine and robust predictions of tokamak turbulent transport. To this end, the QuaLiKiz [Bourdelle et al., Phys. Plasmas 14, 112501 (2007)] quasilinear gyrokinetic transport model has been recently developed. QuaLiKiz flux predictions have been validated by non-linear simulations over a wide range in parameter space. However, a discrepancy is found at low magnetic shear, where the quasilinear fluxes are significantly larger than the non-linear predictions. This discrepancy is found to stem from two distinct sources: the turbulence correlation length in the mixing length rule and an increase in the ratio between the quasilinear and non-linear transport weights, correlated with increased non-linear frequency broadening. Significantly closer agreement between the quasilinear and non-linear predictions is achieved through the development of an improved mixing length rule, whose assumptions are validated by non-linear simulations.

  3. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  4. Theoretical approaches to modeling interfacial structure and EXAFS data

    SciTech Connect

    Schenter, G.K.; McCarthy, M.I.; Chacon-Taylor, M.R.

    1997-12-31

    Understanding the molecular scale processes that control the fate and transport of contaminant metals through the subsurface is a key goal of molecular environmental research. Extended Xray Absorption Fine Structure (EXAFS) spectra is a powerful experimental technique for determining the structure of solvated metal ions at mineral interfaces. The interpretation of these data is aided by theoretical models of the interfacial chemistry and physics. Using ab initio based potential models and classical mechanics simulations, we are able to predict the structure of (M+)aq/mineral interfaces. We will discuss both the development of the ab initio based classical electrostatic potentials for modeling the interaction between molecules and surfaces and the simulation techniques used to model dynamical processes of ions at water/mineral interfaces. This information is then used as input for calculations of the corresponding EXAFS spectra as a function of temperature and surface topology. Theoretical predicted spectra for Na+(H2O)n clusters on MgO (001) will be presented, emphasizing trends in the observed EXAFS spectra with cluster size, temperature, and surface topology (flat surface, edge and corner MgO sites).

  5. Plasma interfacial mixing layers: Comparisons of fluid and kinetic models

    NASA Astrophysics Data System (ADS)

    Vold, Erik; Yin, Lin; Taitano, William; Albright, B. J.; Chacon, Luis; Simakov, Andrei; Molvig, Kim

    2016-10-01

    We examine plasma transport across an initial discontinuity between two species by comparing fluid and kinetic models. The fluid model employs a kinetic theory approximation for plasma transport in the limit of small Knudsen number. The kinetic simulations include explicit particle-in-cell simulations (VPIC) and a new implicit Vlasov-Fokker-Planck code, iFP. The two kinetic methods are shown to be in close agreement for many aspects of the mixing dynamics at early times (to several hundred collision times). The fluid model captures some of the earliest time dynamic behavior seen in the kinetic results, and also generally agrees with iFP at late times when the total pressure gradient relaxes and the species transport is dominated by slow diffusive processes. The results show three distinct phases of the mixing: a pressure discontinuity forms across the initial interface (on times of a few collisions), the pressure perturbations propagate away from the interfacial mixing region (on time scales of an acoustic transit) and at late times the pressure relaxes in the mix region leaving a non-zero center of mass flow velocity. The center of mass velocity associated with the outward propagating pressure waves is required to conserve momentum in the rest frame. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  6. Interfacial adsorption in two-dimensional pure and random-bond Potts models

    NASA Astrophysics Data System (ADS)

    Fytas, Nikolaos G.; Theodorakis, Panagiotis E.; Malakis, Anastasios

    2017-03-01

    We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q -states Potts model. We consider the pure and random-bond versions of the Potts model for q =3 ,4 ,5 ,8 , and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.

  7. Interfacial adsorption in two-dimensional pure and random-bond Potts models.

    PubMed

    Fytas, Nikolaos G; Theodorakis, Panagiotis E; Malakis, Anastasios

    2017-03-01

    We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.

  8. Modeling shear band interaction in 1D torsion

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda; Hanina, Erez

    2017-01-01

    When two shear bands are being formed at close distance from each other they interact, and further development of one of them may be quenched down. As a result there should be a minimum distance between shear bands. In the literature there are at least three analytical models for this minimum distance. Predictions of these models do not generally agree with each other and with test results. Recently we developed a 1D numerical scheme to predict the formation of shear bands in a torsion test of a thin walled pipe. We validated our code by reproducing results of the pioneering experiments of Marchand and Duffy, and then used it to investigate the mechanics of shear localization and shear band formation. We describe our shear band code in a separate publication, and here we use it only as a tool to investigate the interaction between two neighboring shear bands during the process of their formation. We trigger the formation of shear bands by specifying two perturbations of the initial strength. We vary the perturbations in terms of their amplitude and/or their width. Usually, the stronger perturbation triggers a faster developing shear band, which then prevails and quenches the development of the other shear band. We change the distance between the two shear bands and find, that up to a certain distance one of the shear bands becomes fully developed, and the other stays only partially developed. Beyond this distance the two shear bands are both fully developed. Finally, we check the influence of certain material and loading parameters on the interaction between the two shear bands, and compare the results to predictions of the analytical models from the literature.

  9. Molecular modeling of nanotube composite materials: Interface formation, interfacial strength, and thermal expansion

    NASA Astrophysics Data System (ADS)

    Marietta-Tondin, Olivier

    present in this resin system, such as molecular wrapping around the SWNTs. Second, existing MD simulation models of nanotube pullout are analyzed and modified to examine the energy of certain material systems more correctly, and to characterize interfacial shear strength in SWNT/polymer composites. The interfacial bonding and load transfer behaviors between the different SWNTs' configurations (open end, capped end, functionalized end) and three different matrices (polystyrene, polyethylene and Epon862) were examined using the modified models. The results of the modified models effectively reveal the effects of different tube configurations and resin matrices on the interfacial strength during a simulated pullout. Finally, we use MD simulation to investigate the coefficient of thermal expansion (CTE) of individual SWNTs, SWNT ropes, as well as SWNT nanocomposites. Experiments were also carried out in order to gain further insight in the results. It is found that, while the CTE of individual nanotubes is of low negative value, the CTE of the same tubes within a rope or a nanocomposite can significantly change. We also find that SWNTs can be utilized to tailor the CTE of the Epon862 resin system, depending on the functionalization of the SWNTs prior to their introduction in the resin. Finally, a new twisting vibration mode was revealed in SWNT ropes that should prove critical in further SWNT rope studies utilizing MD simulation.

  10. Numerical modeling of shear band formation in PBX-9501

    SciTech Connect

    Dey, T.N.; Kamm, J.R.

    1998-12-31

    Adiabatic shear bands in explosives may be a source of ignition and lead to detonation. Three possible mechanisms leading to shear banding are (1) thermal softening, (2) mechanical softening due to microcracking, and (3) quasi-granular constitutive response. The latter two mechanisms can lead to shear band formation in PBXs at nominal strains much smaller than those required for the thermal softening mechanism. The authors study formation of shear bands with models including the latter two mechanisms under unconfined compression. Statistical variation of numerical results is similar to that observed in some experiments. However, the commonly used methods of calibrating constitutive models can be misleading because of effects due to shear band formation. One model currently being used for studies of shear band formation and ignition in PBX 9501 was calibrated in this way and may need re-examination.

  11. Influence of interfacial viscosity on the dielectrophoresis of drops

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Chakraborty, Suman

    2017-05-01

    The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.

  12. The role of protein content on the steady and oscillatory shear rheology of model synovial fluids.

    PubMed

    Zhang, Z; Barman, S; Christopher, G F

    2014-08-28

    Recent studies have debated the role of protein content on the bulk rheology of synovial fluid; in particular, it has been questioned if proteins aggregate or interact with hyaluronic acid in synovial fluid to enhance bulk rheology, or if observed effects were due to systematic measurement error caused by interfacial rheology, stemming from protein adsorption to the interface. Utilizing several techniques to ensure results reflect only bulk rheology, an examination of the role of bovine serum albumin and γ-globulin on model synovial fluid rheology has been undertaken. When interfacial rheology caused by protein adsorption to the interface is abrogated, the bulk rheology of a model synovial fluid composed of bovine serum albumin, γ-globulin, and hyaluronic acid is found to be dominated solely by the hyaluronic acid over a wide range of shear rates, strains and frequencies. These results show that the previously reported enhanced rheological properties of model synovial fluids are solely due to interfacial rheology and not from any type of protein aggregation/interaction in bulk solution.

  13. Interfaces in driven Ising models: shear enhances confinement.

    PubMed

    Smith, Thomas H R; Vasilyev, Oleg; Abraham, Douglas B; Maciołek, Anna; Schmidt, Matthias

    2008-08-08

    We use a phase-separated driven two-dimensional Ising lattice gas to study fluid interfaces exposed to shear flow parallel to the interface. The interface is stabilized by two parallel walls with opposing surface fields, and a driving field parallel to the walls is applied which (i) either acts locally at the walls or (ii) varies linearly with distance across the strip. Using computer simulations with Kawasaki dynamics, we find that the system reaches a steady state in which the magnetization profile is the same as that in equilibrium, but with a rescaled length implying a reduction of the interfacial width. An analogous effect was recently observed in sheared phase-separated colloidal dispersions. Pair correlation functions along the interface decay more rapidly with distance under drive than in equilibrium and for cases of weak drive, can be rescaled to the equilibrium result.

  14. Shear heating in continental strike-slip shear zones:model and field examples

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Ricard, Yannick; Battaglia, Jean; Lacassin, Robin

    1999-01-01

    A two-layer (crust and upper mantle), finite difference steady-state thermomechanical model of a long-lived (several million years) lithospheric strike-slip fault is presented, and its predictions compared with field observations from various major fault zones. In order to estimate the maximum amount of shear heating, all mechanical energy is assumed to be dissipated in heat, in ductile as well as in brittle layers. Deformation follows a friction law in the brittle layer(s), and a power-flow law in the ductile one(s). Variations of several independent parameters and their influence on the thermo-mechanical state of the fault zone and on shear heating are systematically explored. Shear heating is found to be more important in fault zones affecting an initially cold lithosphere, and increases with slip rate, friction coefficient and stiffness of materials. In extreme cases (slip rate of 10 cm yr^-1, stiff lithosphere), shear heating could lead to temperature increases close to 590 degC at the Moho, and 475 degC at 20 km depth. For more common cases, shear heating leads to smaller temperature increases, but can still explain high-grade metamorphic conditions encountered in strike-slip shear zones. However, modelled temperature conditions often fall short of those observed. This could be due to heat transport by mechanisms more efficient than conduction. Common syntectonic emplacement of granitic melts in ductile strike-slip shear zones can be explained by lower crust partial melting induced by shear heating in the upper mantle. Besides slip rate, the possibility of such melting depends mostly on the upper mantle rheology and on the fertility of the lower crust: for hard upper mantle and highly fertile lower crust, partial melting could occur at rates of 1 cm yr^-1, while in most cases it would result from the breakdown of micas for slip rates over 3 cm yr^-1. As a result of shear heating, partial melting of the upper mantle could occur in the presence of small amounts

  15. Modeling and implementation of wind shear data

    NASA Technical Reports Server (NTRS)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  16. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    An evaluation is made of the influence of interfacial microstructure and shear strength on the mechanical properties of a 30 vol pct uniaxially-aligned SiC fiber-reinforced reaction-bonded Si3N4-matrix composite whose interface microstructure was varied through control of fabrication conditions and by heat-treatment in an oxidizing environment. The carbon-rich coating of the as-produced SiC fibers was stable in composites fabricated at 1200 C in an N or N + 4-percent H mixture for 40 hrs. This coating was degraded in composites fabricated at 1350 C in N + 4 percent H for 40 and 72 hrs, as well as after heat-treatment in an oxidizing environment at 600 C for 100 hrs even after fabrication at 1200 C in N. This degradation occurred via carbon removal.

  17. Interfacial instabilities in two immiscible flows in an annular duct: Shear-thinning fluids surrounded with Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Ding, Zijing; Liu, Rong; Liu, Zhou

    2017-05-01

    In this paper, the stability of two co-axial immiscible fluids flowing in an annular duct is investigated. The inner layer consists of a shear-thinning fluid, which is surrounded by a Newtonian liquid annulus in the outer layer. A constant pressure gradient is applied to drive the flow in the annular channel. Linear stability analysis is employed to investigate the shear-thinning effect on the Rayleigh-Plateau instability and the interface wave instability. Results show that the Rayleigh-Plateau mode can be enhanced and the topological structures of the marginal stability curve of the Rayleigh-Plateau mode can be significantly changed by the shear-thinning effect. When the shear-thinning effect is strong, a case study shows that the Rayleigh-Plateau instability can be slightly suppressed by the viscosity stratification in the inner layer. The shear-thinning effect has a dual influence on the interface wave instability. It can either enhance or suppress the interface wave instability, depending on the thickness ratio and viscosity ratio between the outer layer and the inner layer.

  18. A model of Barchan dunes including lateral shear stress.

    PubMed

    Schwämmle, V; Herrmann, H J

    2005-01-01

    Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes.

  19. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate.

    PubMed

    St-Pierre, Jean-Philippe; Gan, Lu; Wang, Jian; Pilliar, Robert M; Grynpas, Marc D; Kandel, Rita A

    2012-04-01

    A major challenge for cartilage tissue engineering remains the proper integration of constructs with surrounding tissues in the joint. Biphasic osteochondral constructs that can be anchored in a joint through bone ingrowth partially address this requirement. In this study, a methodology was devised to generate a cell-mediated zone of calcified cartilage (ZCC) between the in vitro-formed cartilage and a porous calcium polyphosphate (CPP) bone substitute in an attempt to improve the mechanical integrity of that interface. To do so, a calcium phosphate (CaP) film was deposited on CPP by a sol-gel process to prevent the accumulation of polyphosphates and associated inhibition of mineralization as the substrate degrades. Cartilage formed in vitro on the top surface of CaP-coated CPP by deep-zone chondrocytes was histologically and biochemically comparable to that formed on uncoated CPP. Furthermore, the mineral in the ZCC was similar in crystal structure, morphology and length to that formed on uncoated CPP and native articular cartilage. The generation of a ZCC at the cartilage-CPP interface led to a 3.3-fold increase in the interfacial shear strength of biphasic constructs. Improved interfacial strength of these constructs may be critical to their clinical success for the repair of large cartilage defects.

  20. Dynamic Interaction of Interfacial Point Source Loading and Cylinder in an Elastic Quarter with Anti-plane Shear

    NASA Astrophysics Data System (ADS)

    Chun, Gao; Hui, Qi; Nan, Pan Xiang; Bo, Zhao Yuan

    2017-07-01

    Theoretical steady state solution of a semi-circular cylinder impacted by an anti-plane point loading in a vertical bound of an elastic quarter is formulated in this paper through using image method and wave function expansion series. The elastic quarter is extended as a half space, and the semi-circular interfacial cylinder is extended as a circular cylinder. Displacement field is constructed as series of Fourier-Hankel and Fourier-Bessel wave functions. At last, circular boundary is expanded as Fourier series to determine coefficients of wave function. Numerical results show that material parameters have two widely divergent effects on the radial and circumferential dynamic stress distribution.

  1. Two-Fluid Models and Interfacial Area Transport in Microgravity Condition

    NASA Technical Reports Server (NTRS)

    Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp

    2004-01-01

    The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.

  2. Shear Reversibility in Model Granular Systems

    NASA Astrophysics Data System (ADS)

    Schreck, Carl; Hoy, Rob; Shattuck, Mark; O'Hern, Corey

    2013-03-01

    Athermal particulate systems such as foams and granular media are out-of-thermal equilibrium and therefore must be externally driven using shear or vibration to explore different configurations. Of particular interest is being able to predict and control the structural and mechanical properties of athermal systems as a function of the driving mechanism. In this work, we show numerically how particle collisions in cyclically sheared hard sphere systems can lead to microreversibility. We map out the steady-state ``phase diagram'' as a function of packing fraction (ϕ) and strain amplitude (γmax), and identify ``point-reversible'' states at low ϕ and γmax in which particles do not collide over the course of a shear cycle, and ``loop-reversible'' states at intermediate ϕ and γmax in which particles undergo numerous collisions but return to their initial positions at the end of each shear cycle. Loop-reversiblity is a novel form of self organization that gives rise to non-fluctuating dynamical states over a broad range of packing fractions from contact percolation to jamming, i.e. ϕP = 0 . 55 to ϕJ = 0 . 84 in two dimensions.

  3. Laboratory model of flight through wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1985-01-01

    The simulation of an aircraft flying through a downdraft or microburst is presented. The simulation was performed under the conditions of constant takeoff thrust. The resulting wind shear conditions were filmed and examined for possible pilot corrective action in the future.

  4. SHEARING AND WATER RETENTION BEHAVIOR OF UNSATURATED LOAM WITH MODELING

    NASA Astrophysics Data System (ADS)

    Kiyohara, Yukoh; Kazama, Motoki

    Unsaturated triaxial tests were carried out to study deformation behavior, effective stress path and water retention property of consolidated loam during consolidation and shearing processes. Initial matric suction was set as 0, 50, and 90 kPa, and confining pressures (net normal stresses) were set as 100 kPa. Then shearing processes were done under undrained and drained conditions. We clarified the relation between void ratio and Van Genuchten model parameter by using water retention curve. To predict the unsaturated shearing behavior, a modified Cam Clay model considering void ratio dependent Van Genuchten parameter was proposed. Those numerical test results were agreed well with laboratory tests results.

  5. A Deterministic Interfacial Cyclic Oxidation Spalling Model. Part 1; Model Development and Parametric Response

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    An equation has been developed to model the iterative scale growth and spalling process that occurs during cyclic oxidation of high temperature materials. Parabolic scale growth and spalling of a constant surface area fraction have been assumed. Interfacial spallation of the only the thickest segments was also postulated. This simplicity allowed for representation by a simple deterministic summation series. Inputs are the parabolic growth rate constant, the spall area fraction, oxide stoichiometry, and cycle duration. Outputs include the net weight change behavior, as well as the total amount of oxygen and metal consumed, the total amount of oxide spalled, and the mass fraction of oxide spalled. The outputs all follow typical well-behaved trends with the inputs and are in good agreement with previous interfacial models.

  6. Solid solution directionally solidified eutectics: Model systems for structure-property relationships in interfacial fracture

    NASA Astrophysics Data System (ADS)

    Brewer, Luke Nathaniel

    The next generation of high temperature materials for application in aerospace and power generation systems will be required to withstand temperatures well in excess of 1200°C, often in oxidizing atmospheres. Oxide-oxide directionally solidified eutectics (DSE's) have shown promise as high temperature ceramic materials, only to be limited by their lack of fracture toughness at room temperature. In the case of DSE oxide materials, the interfacial fracture behavior has been blamed for the poor performance in the past and is the subject of interest in this work. In this thesis, the solid solution, directionally solidified quaternary eutectic (SS-DSE), Co1-xNixO/ZrO2(CaO), is developed as a model system for the study of interfacial fracture in oxide-oxide DSE's. A variety of structural and mechanical characterization techniques are applied to investigate structure-property relationships for interfacial fracture behavior. The optical floating zone technique was employed for growing both the eutectic crystals and their single crystal counterparts, Co1-x NixO. Co1-xNixO/ZrO2(CaO) was shown to possess the necessary structural elements to serve as a model system for interfacial fracture. Lamellar microstructures were observed for all compositions. The crystallographic relationships between phases evolved as a model solid solution. Interdiffusion of chemical species was minimal, allowing the layers to treated independently. The core of this thesis is dedicated to studying the nature of interfacial fracture behavior in oxide eutectics. This study is motivated by the novel observation of extensive interfacial delamination for the system CoO/ZrO 2(CaO). A transition from interfacial delamination to interfacial penetration is observed for compositions of Co1-xNixO/ZrO 2(CaO) with x > 0.2. The residual stress state in these materials was investigated using X-ray and neutron diffraction-based techniques. The role of plasticity in interfacial fracture was explored using a

  7. Modeling and analysis of electrorheological suspensions in shear flow

    NASA Astrophysics Data System (ADS)

    Seo, Youngwook P.; Chua, Wei Huan; Seo, Yongsok

    2015-05-01

    A new rheological model was applied to the analysis of the electrorheological behavior of a fluid containing silica nanoparticle-decorated polyaniline nanofibers. A model's predictions were compared with the experimental data, revealing that the proposed model correctly predicted the shear stress behavior both quantitatively and qualitatively. The shear stress data of the electrorheological fluid showing aligned fibers' structural reformation as a function of the shear rate agreed well with the new model which required fewer parameters than the CCJ (Cho-Choi-Jhon) model. The static yield stress was found to be quadratically dependent on the field strength, in agreement with the predictions of the polarization model. A scaling function was used to model the yield stress behavior of the electrorheological fluid over a range of electric fields, and it correctly predicted the static yield stress behavior both quantitatively and qualitatively.

  8. Limitations of model-fitting methods for lensing shear estimation

    NASA Astrophysics Data System (ADS)

    Voigt, L. M.; Bridle, S. L.

    2010-05-01

    Gravitational lensing shear has the potential to be the most powerful tool for constraining the nature of dark energy. However, accurate measurement of galaxy shear is crucial and has been shown to be non-trivial by the Shear TEsting Programme. Here, we demonstrate a fundamental limit to the accuracy achievable by model-fitting techniques, if oversimplistic models are used. We show that even if galaxies have elliptical isophotes, model-fitting methods which assume elliptical isophotes can have significant biases if they use the wrong profile. We use noise-free simulations to show that on allowing sufficient flexibility in the profile the biases can be made negligible. This is no longer the case if elliptical isophote models are used to fit galaxies made up of a bulge plus a disc, if these two components have different ellipticities. The limiting accuracy is dependent on the galaxy shape, but we find the most significant biases (~1 per cent of the shear) for simple spiral-like galaxies. The implications for a given cosmic shear survey will depend on the actual distribution of galaxy morphologies in the Universe, taking into account the survey selection function and the point spread function. However, our results suggest that the impact on cosmic shear results from current and near future surveys may be negligible. Meanwhile, these results should encourage the development of existing approaches which are less sensitive to morphology, as well as methods which use priors on galaxy shapes learnt from deep surveys.

  9. Studies of Structure and Modeling in Turbulent Shear Flows.

    DTIC Science & Technology

    1984-12-01

    STRUCTURE AND MODELING IN TURBULENT SHEAR FLOWS by Joel H . Ferziger O.J. McMillan .4. NIELSEN ENGINEERING AND RESEARCH, INC. * OFFICES: 510 CLYDE...SHEAR FLOWS by Joel H . Ferziger O.J. McMillan NEAR TR 335 December 1984 Prepared Under Contract No. N00014-B2-C-067? For OFFICE OF NAVAL RESEARCH...6. PERFORMING ORG. REPORT NUMBER4 ____ ___ ____ ___ ___ ___ ____ ___ ___ NEAR TR 335 7. AUTI4OR(s) S. CONTRACT DOt GRANT NUMBER(%) * Joel H . Ferziger

  10. Direct Numerical Simulation of Surfactant-Stabilized Emulsions Morphology and Shear Viscosity in Starting Shear Flow

    SciTech Connect

    Roar Skartlien; Espen Sollum; Andreas Akselsen; Paul Meakin

    2012-07-01

    A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.

  11. A model for shear response in swimming plankton

    NASA Astrophysics Data System (ADS)

    Shaw, Justin; Stastna, Marek

    2017-02-01

    Observations of zooplankton populations below their preferred light level have been attributed to a shear response. We propose a measure of shear based on the second invariant of the rate of strain tensor. This quantification allows the shear response mechanism to be modelled numerically. The importance of this mechanism is examined by modifying a light-biased stochastic swimming model of the run and tumble type for plankton moving in a velocity field induced by internal waves in a channel. It is found that a model which includes the mechanisms of settling, biased swimming, and a "freeze in shear" response predicts aggregation of plankton populations below their preferred light level, which is consistent with acoustic data observations. Depending on the geometry of the high shear region, the population is either shifted downward, or aggregates as a thin layer along the bottom boundary of the high shear region. A pair of timescales is defined in order to determine which of these two cases will occur.

  12. Shear Model Development of Limestone Joints with Incorporating Variations of Basic Friction Coefficient and Roughness Components During Shearing

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2017-04-01

    In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.

  13. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  14. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  15. Modeling the effects of interfacial characteristics on gas permeation behavior of nanotube- mixed matrix membranes.

    PubMed

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-06

    Theoretical approaches, which accurately predict gas permeation behavior of nanotube containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters: "interfacial thickness" (aint) and "interfacial permeation resistance" (Rint) are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of aint, independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of aint and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without a need to resort to any adjustable parameter. The data includes 10 sets of CO2/CH4 permeation, 12 sets of CO2/N2 permeation, 3 sets of CO2/O2 permeation and 2 sets of CO2/H2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data, presented in the current work, would be a simple alternative to complex approaches, which are usually utilized to estimate interfacial thickness in polymer composites.

  16. A General Shear-Dependent Model for Thrombus Formation

    PubMed Central

    Humphrey, Jay D.

    2017-01-01

    Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates (100<γ˙<28,000s-1). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high. PMID:28095402

  17. A General Shear-Dependent Model for Thrombus Formation.

    PubMed

    Yazdani, Alireza; Li, He; Humphrey, Jay D; Karniadakis, George Em

    2017-01-01

    Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.

  18. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.

  19. A new method for modeling rough membrane surface and calculation of interfacial interactions.

    PubMed

    Zhao, Leihong; Zhang, Meijia; He, Yiming; Chen, Jianrong; Hong, Huachang; Liao, Bao-Qiang; Lin, Hongjun

    2016-01-01

    Membrane fouling control necessitates the establishment of an effective method to assess interfacial interactions between foulants and rough surface membrane. This study proposed a new method which includes a rigorous mathematical equation for modeling membrane surface morphology, and combination of surface element integration (SEI) method and the composite Simpson's approach for assessment of interfacial interactions. The new method provides a complete solution to quantitatively calculate interfacial interactions between foulants and rough surface membrane. Application of this method in a membrane bioreactor (MBR) showed that, high calculation accuracy could be achieved by setting high segment number, and moreover, the strength of three energy components and energy barrier was remarkably impaired by the existence of roughness on the membrane surface, indicating that membrane surface morphology exerted profound effects on membrane fouling in the MBR. Good agreement between calculation prediction and fouling phenomena was found, suggesting the feasibility of this method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Shear Properties at the PyC/SiC Interface of TRISO-Coating

    SciTech Connect

    Nozawa, Takashi; Snead, Lance Lewis; Katoh, Yutai; Miller, James Henry

    2007-01-01

    The fracture behavior of TRISO-coated fuel particles depends significantly on the shear strength at the interface between the inner pyrolytic carbon (PyC) and silicon carbide (SiC) coatings. In this study, a micro-indentation fiber push-out test was applied to evaluate the interfacial shear properties of a model TRISO-coated tube. Specifically, a non-linear shear-lag model for a transversely isotropic composite material was developed because the existing isotropic models often overestimate the results. In the model, the effects of thermal residual stresses and the roughness-induced clamping stress were considered because of a particular importance. The rigorous model proposed in this study provides more reasonable data on two important interfacial shear parameters: an interfacial debond shear strength and an interfacial friction stress. The modified model gives the interfacial debond shear strength of 180 40 MPa. Such an unusually high interfacial strength, even though the value was comparably lower than that obtained by the existing isotropic model (~280 MPa), could allow significant loads to be transferred between the inner PyC and SiC in application, potentially leading to failure of the SiC layer. On the other hand, the interfacial friction stress of 120 30 MPa was measured. The considerably high friction stress is attributed primarily to the roughness at the cracked interface rather than the thermal effect. PACS: 68.35.Ct; 68.35.Gy; 81.05.Je; 81.70.Bt

  1. A model for the interfacial kinetics of phospholipase D activity on long-chain lipids.

    PubMed

    Majd, Sheereen; Yusko, Erik C; Yang, Jerry; Sept, David; Mayer, Michael

    2013-07-02

    The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial catalytic reactions under well-defined experimental conditions with chemical and electrical access to both sides of the lipid membrane. Employing an assay that relies on the conductance of the pore-forming peptide gramicidin A to monitor PLD activity, the work presented here reveals the kinetics of hydrolysis of long-chain phosphatidylcholine lipids in situ. We have developed an extension of a basic kinetic model for interfacial catalysis that includes product activation and substrate depletion. This model describes the kinetic behavior very well and reveals two kinetic parameters, the specificity constant and the interfacial quality constant. This approach results in a simple and general model to account for product accumulation in interfacial enzyme kinetics.

  2. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment.

    PubMed

    Duddu, Ravindra; Chopp, David L; Moran, Brian

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. Copyright 2008 Wiley Periodicals, Inc.

  3. Understanding the Relationship Between Biotherapeutic Protein Stability and Solid–Liquid Interfacial Shear in Constant Region Mutants of IgG1 and IgG4

    PubMed Central

    Tavakoli-Keshe, Roumteen; Phillips, Jonathan J; Turner, Richard; Bracewell, Daniel G

    2014-01-01

    Relative stability of therapeutic antibody candidates is currently evaluated primarily through their response to thermal degradation, yet this technique is not always predictive of stability in manufacture, shipping, and storage. A rotating disk shear device is proposed that produces defined shear conditions at a known solid–liquid interface to measure stability in this environment. Five variants of IgG1 and IgG4 antibodies were created using combinations of two discrete triple amino acid sequence mutations denoted TM and YTE. Antibodies were ranked for stability based on shear device output (protein decay coefficient, PDC), and compared with accelerated thermal stability data and the melting temperature of the CH2 domain (Tm1) from differential scanning calorimetry to investigate technique complimentarity. Results suggest that the techniques are orthogonal, with thermal methods based on intramolecular interaction and shear device stability based on localized unfolding revealing less stable regions that drive aggregation. Molecular modeling shows the modifications’ effects on the antibody structures and indicates a possible role for Fc conformation and Fab-Fc docking in determining suspended protein stability. The data introduce the PDC value as an orthogonal stability indicator, complementary to traditional thermal methods, allowing lead antibody selection based on a more full understanding of process stability. © 2013 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:437–444, 2014 PMID:24357426

  4. Analytical Model of Shear of 4-harness Satin Weave Fabrics

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Chen, Julie; Sherwood, James

    2004-06-01

    Trellis shear is the main deformation mode in the thermo-stamping process of woven fabric composites. To model the shear properties of woven fabrics analytically, the equilibrium equation of the unit cell of a 4-harness satin weave glass/polypropylene woven fabric is studied. Frictional resistance moment and lateral compaction resistance moment are then predicted by studying the geometry of the unit cell. Then the model is used to predict the load versus shear angle curves in the picture frame test to reduce or eliminate the test itself. A parametric study is carried out to determine the sensitivity of the friction coefficient. To validate the model, picture-frame experimental results are presented. A very close correlation is observed between the model predictions and the experimental results. Results of plain weave fabrics are included to show the analytical model's ability to predict the effect of weave pattern. Results from an international benchmark testing are also presented to help establish the test standards for experimental characterization of the shear properties of woven fabrics in the thermo-stamping process.

  5. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Le; Haghmoradi, Amin; Liu, Jinlu; Xi, Shun; Hirasaki, George J.; Miller, Clarence A.; Chapman, Walter G.

    2017-03-01

    Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.

  6. Modeling the behavior of confined colloidal particles under shear flow.

    PubMed

    Mackay, F E; Pastor, K; Karttunen, M; Denniston, C

    2014-11-21

    We investigate the behavior of colloidal suspensions with different volume fractions confined between parallel walls under a range of steady shears. We model the particles using molecular dynamics (MD) with full hydrodynamic interactions implemented through the use of a lattice-Boltzmann (LB) fluid. A quasi-2d ordering occurs in systems characterized by a coexistence of coupled layers with different densities, order, and granular temperature. We present a phase diagram in terms of shear and volume fraction for each layer, and demonstrate that particle exchange between layers is required for entering the disordered phase.

  7. A theoretical model of sheath fold morphology in simple shear

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.

    2013-04-01

    Sheath folds are highly non-cylindrical structures often associated with shear zones. The geometry of sheath folds, especially cross-sections perpendicular to the stretching direction that display eye-patterns, have been used in the field to deduce kinematic information such as shear sense and bulk strain type. However, how sheath folds form and how they evolve with increasing strain is still a matter of debate. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We systematically vary the slip surface orientation and shape and evaluate the impact on the evolving eye-pattern. In addition we compare our results to existing classifications. Based on field observations it has been suggested that the shear sense of a shear zone can be determined by knowing the position of the center of an eye-pattern and the closing direction of the corresponding sheath fold. In our modeled sheath folds we can observe for a given strain that the center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness, questioning the usefulness of sheath folds as shear sense indicators. The location of the center of the eye structure, however, is largely invariant to the initial configurations of the slip surface as well as to strain. It has been suggested that the ratio of the aspect ratio of the innermost and outermost closed contour in eye-patterns could be linked to the bulk strain type based on filed observations. We apply this classification to our modeled sheath folds and we observe that the values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed

  8. Modelling the effect of shear strength on isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary

    2017-01-01

    Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.

  9. Tests Of Shear-Flow Model For Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Parrot, Tony L.; Watson, Willie R.; Jones, Michael G.

    1992-01-01

    Tests described in report conducted to validate two-dimensional shear-flow analytical model for determination of acoustic impedance of acoustic liner in grazing-incidence, grazing-flow environment by use of infinite-waveguide method. Tests successful for both upstream and downstream propagations. Work has potential for utility in testing of engine ducts in commercial aircraft.

  10. Specific shear-dependent viscoelastic third-grade fluid model

    NASA Astrophysics Data System (ADS)

    Carapau, Fernando; Correia, Paulo; Grilo, Luis M.

    2016-12-01

    A specific modified constitutive equation for a third-grade fluid is proposed so that the model be suitable for applications where shear-thinning or shear-thickening may occur. For that, we use the Cosserat theory approach reducing the exact three-dimensional equations to a system depending only on time and on a single spatial variable. This one-dimensional system is obtained by integrating the linear momentum equation over the cross-section of the tube, taking a velocity field approximation provided by the Cosserat theory. From this reduced system, we obtain the unsteady equations for the wall shear stress and mean pressure gradient depending on the volume flow rate, Womersley number, viscoelastic coefficient and flow index over a finite section of the tube geometry with constant circular cross-section.

  11. A stochastic subgrid model for sheared turbulence

    NASA Astrophysics Data System (ADS)

    Bertoglio, J. P.

    A new subgrid model for homogeneous turbulence is proposed. The model is used in a method of Large Eddy Simulation coupled with an E.D.Q.N.M. prediction of the statistical properties of the small scales. The model is stochastic in order to allow a 'disaveraging' of the informations provided by the E.D.Q.N.M. closure. It is based on stochastic amplitude equations for two-point closures. It allows backflow of energy from the small scales, introduces stochasticity into L.E.S., and is well adapted to nonisotropic fields. A few results are presented here.

  12. Effects of oxygen plasma treatment on interfacial shear strength and post-peak residual strength of a PLGA fiber-reinforced brushite cement.

    PubMed

    Maenz, Stefan; Hennig, Max; Mühlstädt, Mike; Kunisch, Elke; Bungartz, Matthias; Brinkmann, Olaf; Bossert, Jörg; Kinne, Raimund W; Jandt, Klaus D

    2016-04-01

    Biodegradable calcium phosphate cements (CPCs) are promising materials for minimally invasive treatment of bone defects. However, CPCs have low mechanical strength and fracture toughness. One approach to overcome these limitations is the modification of the CPC with reinforcing fibers. The matrix-fiber interfacial shear strength (ISS) is pivotal for the biomechanical properties of fiber-reinforced CPCs. The aim of the current study was to control the ISS between a brushite-forming CPC and degradable PLGA fibers by oxygen plasma treatment and to analyze the impact of the ISS alterations on its bulk mechanical properties. The ISS between CPC matrix and PLGA fibers, tested in a single-fiber pull-out test, increased up to 2.3-fold to max. 3.22±0.92MPa after fiber oxygen plasma treatment (100-300W, 1-10min), likely due to altered surface chemistry and morphology of the fibers. This ISS increase led to more efficient crack bridging and a subsequent increase of the post-peak residual strength at biomechanically relevant, moderate strains (up to 1%). At the same time, the work of fracture significantly decreased, possibly due to an increased proportion of fractured fibers unable to further absorb energy by frictional sliding. Flexural strength and flexural modulus were not affected by the oxygen plasma treatment. This study shows for the first time that the matrix-fiber ISS and some of the resulting mechanical properties of fiber-reinforced CPCs can be improved by chemical modifications such as oxygen plasma treatment, generating the possibility of avoiding catastrophic failures at the implant site and thus enhancing the applicability of biodegradable CPCs for the treatment of (load-bearing) bone defects.

  13. Material characterization and modeling with shear ography

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Callahan, Virginia

    1993-01-01

    Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.

  14. Nonlinear Reynolds stress model for turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.

    1991-01-01

    A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.

  15. Characterizing and Modeling Brittle Bi-material Interfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Anyfantis, Konstantinos N.; Berggreen, Christian

    2014-12-01

    This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bi-material interface was subjected to shear with debonding occurring under Mode II conditions. The study of the debonding process and thus failure of the joints was based both on stress and energy considerations. Analytical formulas were utilized for the derivation of the respective shear strength and fracture toughness measures which characterize the bi-material interface, by considering the joint's failure load, geometry and involved materials. The derived stress and toughness magnitudes were further utilized as the parameters of an extrinsic cohesive law, applied in connection with the modeling the bi-material interface in a finite element simulation environment. It was concluded that interfacial fracture in the considered joints was driven by the fracture toughness and not by strength considerations, and that LEFM is well suited to analyze the failure of the joint. Additionally, the double strap joint geometry was identified and utilized as a characterization test for measuring the Mode II fracture toughness of brittle bi-material interfaces.

  16. Modeling and analysis of electrorheological suspensions in shear flow.

    PubMed

    Seo, Youngwook P; Seo, Yongsok

    2012-02-14

    A model capable of describing the flow behavior of electrorheological (ER) suspensions under different electric field strengths and over the full range of shear rates is proposed. Structural reformation in the low shear rate region is investigated where parts of a material are in an undeformed state, while aligned structures reform under the shear force. The model's predictions were compared with the experimental data of some ER fluids as well as the CCJ (Cho-Choi-Jhon) model. This simple model's predictions of suspension flow behavior with subsequent aligned structure reformation agreed well with the experimental data, both quantitatively and qualitatively. The proposed model plausibly predicted the static yield stress, whereas the CCJ model and the Bingham model predicted only the dynamic yield stress. The master curve describing the apparent viscosity was obtained by appropriate scaling both axes, which showed that a combination of dimensional analysis and flow curve analysis using the proposed model yielded a quantitatively and qualitatively precise description of ER fluid rheological behavior based on relatively few experimental measurements.

  17. Transient shear flow of model lithium lubricating greases

    NASA Astrophysics Data System (ADS)

    Delgado, M. A.; Franco, J. M.; Valencia, C.; Kuhn, E.; Gallegos, C.

    2009-03-01

    This paper deals with the analysis of the transient shear flow behavior of lithium lubricating greases differing in soap concentration and base oil viscosity. The shear-induced evolution of grease microstructure has been studied by means of stress-growth experiments. With this aim, different lubricating grease formulations were manufactured by modifying the concentration of lithium 12-hydroxystearate and the viscosity of the base oil, according to a RSM statistical design. Moreover, atomic force microscopy (AFM) observations were carried out. The transient stress response can be successfully described by the generalized Leider-Bird model based on two exponential terms. Different rheological parameters, related to both the elastic response and the structural breakdown of greases, have been analysed. In this sense, it has been found that the elastic properties of lithium lubricating greases were highly influenced by soap concentration and oil viscosity. The stress overshoot, τ max , depends linearly on both variables in the whole shear rate range studied, although the effect of base oil viscosity on this parameter is opposite at low and high shear rates. Special attention has been given to the first part of the stress-growth curve. In this sense, it can be deduced that the “yielding” energy density not only depends on grease composition, but also on shear rate. Moreover, an interesting asymptotic tendency has been found for both the “yielding” energy density and the stress overshoot by increasing shear rate. The asymptotic values of these parameters have been correlated to the friction coefficient obtained in a ball-disc tribometer.

  18. Sinusoidal Forcing of Interfacial Films

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  19. Shear-free anisotropic cosmological models in {f (R)} gravity

    NASA Astrophysics Data System (ADS)

    Abebe, Amare; Momeni, Davood; Myrzakulov, Ratbay

    2016-04-01

    We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f( R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f( R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f( R) gravity. For the Starobinsky model of f( R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.

  20. Pore invasion dynamics during fluid front displacement - an interfacial front model

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2013-12-01

    The dynamics of fluid fronts in porous media shape subsequent phase distribution and the transport properties of the partially saturated region with implications ranging from gaseous transport to plant roots to extraction or injection of fluids to petroleum reservoirs. What macroscopically seems as a smooth and continuous motion of a displacement fluid front, involves numerous rapid pore-scale interfacial jumps often resembling avalanches of invasion events. We present a 2D model for simulating interfacial front displacement that was developed to study details of invasion dynamics at the front and to systematically study effects of boundary conditions on the resulting macroscopic properties after passage of a front. The interfacial front is represented by hydraulically connected sinusoidal capillaries allowing for redistribution and capillary pressure relaxation through exchange with neighboring interfaces. The model focuses on processes at the front and neglects interfacial redistribution left behind the front as well as saturated fluid flow below the front. The description of the dynamics of the rapid non-wetting fluid invasions induced by constant wetting fluid withdrawal includes capillary, viscous and hydrostatic component and inertia. Results show that the additional inertial force (not considered in previous studies) does significantly affect invasion pathways such as the hypothesized 'consecutive jumps'. The menisci jump velocities show a strong relation to geometrical throat dimensions that reflect local capillary gradients. The front model further enables to link boundary conditions (macroscopic Capillary number, throat size distribution) effects on pore invasion sequences and impact on residual wetting phase entrapment and front morphology. A limited comparison of model predictions with experimental results from sintered glass-beads micro-models will be presented.

  1. Modeling of Mesoscale Variability in Biofilm Shear Behavior

    PubMed Central

    Barai, Pallab; Kumar, Aloke; Mukherjee, Partha P.

    2016-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a) initial increase in stiffness due to strain stiffening of polymer matrix, and b) eventual reduction in stiffness because of tear in polymeric substrate. PMID:27806068

  2. Constitutive Modeling for Particle-Dispersed Composites with Degradation Due to Interfacial Damage

    SciTech Connect

    Chang, Huajian

    2002-07-01

    The composite materials are susceptible to interfacial delamination. The overall properties of composites will degrade dramatically if the interface between the particles and the matrix material undertakes interfacial damage. In present paper, the effects of interfacial delamination on the macro properties of composites are evaluated by the Equivalent Inclusion Method (EIM) with some modifications and supplementation on the conventional one, which was originally proposed by Eshelby. The meso-local behaviors of particle, matrix, as well as their interface are theoretically modeled, and the relationships between these behaviors and the macro stress/stress field are established. Upon modeling the damaged interface with spring layers and making equivalent of stress and strain inside a real particle to those inside the corresponding virtual inclusion, a modified Eshelby tensor and the damage-relevant tensor of the inclusions are derived explicitly. These tensors can be conveniently incorporated into the constitutive model, and make it available to assess the effects of delamination. Some numerical calculations are carried out to verify the performance of the present model. (author)

  3. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  4. Elastic response of DNA molecules under the action of interfacial traction and stretching: An elastic thin rod model

    NASA Astrophysics Data System (ADS)

    Xiao, Ye; Huang, Zaixing; Qiang, Lei; Gao, Jun

    2015-11-01

    In a multivalent salt solution, a segment of DNA is modeled as an elastic rod subjected to the interfacial traction. The shooting method is used to calculate the equilibrium configurations of condensed DNA under the action of the longitudinal end-force and interfacial traction simultaneously. The results show that the shapes of DNA are mainly determined by the competition between the interfacial energy and elastic strain energy of stretching. The change of end-to-end distance with the longitudinal end-force is consistent with the worm-like chain (WLC) model. The higher the concentration is, the stronger the condensation of DNA.

  5. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    PubMed Central

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  6. Modeling and database for melt-water interfacial heat transfer

    SciTech Connect

    Farmer, M.T.; Spencer, B.W.; Schneider, J.P.; Bonomo, B.; Theofanous, G.

    1992-04-01

    A mechanistic model is developed to predict the transition superficial gas velocity between bulk cooldown and crust-limited heat transfer regimes in a sparged molten pool with a coolant overlayer. The model has direct applications in the analysis of ex-vessel severe accidents, where molten corium interacts with concrete, thereby producing sparging concrete decomposition gases. The analysis approach embodies thermal, mechanical, and hydrodynamic aspects associated with incipient crust formation at the melt/coolant interface. The model is validated against experiment data obtained with water (melt) and liquid nitrogen (coolant) simulants. Predictions are then made for the critical gas velocity at which crust formation will occur for core material interacting with concrete in the presence of water.

  7. Modeling and database for melt-water interfacial heat transfer

    SciTech Connect

    Farmer, M.T.; Spencer, B.W. ); Schneider, J.P. ); Bonomo, B. ); Theofanous, G. )

    1992-01-01

    A mechanistic model is developed to predict the transition superficial gas velocity between bulk cooldown and crust-limited heat transfer regimes in a sparged molten pool with a coolant overlayer. The model has direct applications in the analysis of ex-vessel severe accidents, where molten corium interacts with concrete, thereby producing sparging concrete decomposition gases. The analysis approach embodies thermal, mechanical, and hydrodynamic aspects associated with incipient crust formation at the melt/coolant interface. The model is validated against experiment data obtained with water (melt) and liquid nitrogen (coolant) simulants. Predictions are then made for the critical gas velocity at which crust formation will occur for core material interacting with concrete in the presence of water.

  8. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  9. Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W.; Jang, Seung Soon; Neidholdt, Evan L.; Goddard, William A.; Heath, James R.; Kanik, Isik; Beauchamp, J. L.

    2010-01-01

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B due to the heterogeneous reaction with O3, field induced droplet ionization (FIDI) mass spectrometry is utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report the structurally specific oxidative changes of SP-B1-25 (a shortened version of human surfactant protein B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B1-25 in a non-ionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where the competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B1-25 at the interface is quite different from that in the solution phase. Compared to the nearly complete homogeneous oxidation of SP-B1-25, only a subset of the amino acids known to react with ozone is oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid monolayer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system when subject to oxidative stress. PMID:20121208

  10. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2006-01-01

    The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.

  11. An air-water interfacial area based variable tortuosity model for unsaturated sands

    SciTech Connect

    Khaleel, Raziuddin; Saripalli, Prasad

    2006-05-01

    Based on Kozeny-Carman equation for saturated media permeability, a new model is developed for the prediction of unsaturated hydraulic conductivity, K as a function of moisture content, ?. The K(???) estimates are obtained using laboratory measurements of moisture retention and saturated hydraulic conductivity, and a saturation-dependent tortuosity based on the immiscible fluid (air-water) interfacial area. Tortuosity (?a) for unsaturated media is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of a real and the corresponding idealized porous medium). A correspondence between the real and idealized media is established by using the laboratory-measured soil moisture retention curve to calculate the interfacial area. The general trend in prediction of ?a as a function water saturation is in agreement with similar recent predictions based on diffusion theory. Unsaturated hydraulic conductivities measured for a number of coarse-textured, repacked Hanford sediments agree well with predictions based on the modified Kozeny-Carman relation. Because of the use of saturated hydraulic conductivity, a slight bias is apparent in measured and predicted K at low ?. While the modified Kozeny-Carman relation was found to be reasonably accurate in predicting K(??) for the repacked, sandy soils considered in this study, a further testing of the new model for undisturbed sediments and other soil textures would be useful.

  12. Microscopic Origin of Shear Relaxation in a Model Viscoelastic Liquid

    NASA Astrophysics Data System (ADS)

    Ashwin, J.; Sen, Abhijit

    2015-02-01

    An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τMex of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γc of the Coulomb coupling strength, the lifetime of local atomic connectivity τLC converges to τMex and is the microscopic origin of the relaxation. At Γ ≫Γc, i.e., in the potential energy dominated regime, τMex→τM (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.

  13. A local eddy viscosity model for turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Ortwerth, P. J.; Rabe, D. C.; Mcerlean, D. P.

    1973-01-01

    In the model described, the eddy viscosity is assumed to be a fluid property dependent on the state of the fluid locally, namely the local density, turbulent kinetic energy, turbulence scale, and Mach number. An empirical law was found which related eddy viscosity to these properties satisfactorily for free jets. This law is used without modification for a set of test cases in free shear layers, free-jet decay, coaxial mixing, and wakes. The scale of turbulence is taken as a constant at any axial location equal to the width of the shear layer. By utilizing the boundary-layer order-of-magnitude analysis, a coupled set of fluid dynamic equations is formulated, which of necessity includes the equation for the production of turbulent kinetic energy.

  14. Effect of tree roots on a shear zone: modeling reinforced shear stress.

    Treesearch

    Kazutoki Abe; Robert R. Ziemer

    1991-01-01

    Tree roots provide important soil reinforcement that impoves the stability of hillslopes. After trees are cut and roots begin to decay, the frequency of slope failures can increase. To more fully understand the mechanics of how tree roots reinforce soil, fine sandy soil containing pine roots was placed in a large shear box in horizontal layers and sheared across a...

  15. Thermodynamic Model for Fluid-Fluid Interfacial Areas in Porous Media for Arbitrary Drainage-Imbibition Sequences

    SciTech Connect

    Schroth, Martin H.; Oostrom, Mart; Dobson, Richard; Zeyer, Josef

    2008-08-01

    Fluid/fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to predict fluid/fluid interfacial areas in porous media for arbitrary drainage/imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs, (2) the wetting fluid completely wets the porous medium’s solid surfaces, and (3) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage/imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBM’s predictions for interfacial area associated with free nonwetting-fluid are identical to those of a previously published geometry-based model (GBM). However, predictions for interfacial area associated with entrapped nonwetting-fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multifluid-flow simulations, the modified TBM may be easily incorporated in numerical codes.

  16. Structural rheological model of two-phase interlayer shear flow

    NASA Astrophysics Data System (ADS)

    Altoiz, B. A.; Aslanov, S. K.; Kiriyan, S. V.

    2011-04-01

    This paper presents a study of an epitropic liquid crystal layer formation at a metal substrate. Such layer structurization leads to non-Newtonian flow of thin interlayer with wall-adjacent orientation-ordered layers. Rheological characteristics of micron interlayers of n-hexadecane and Vaseline oil with surfactant addition are investigated. The features of structural "variable viscosity" layer are defined within the framework of a proposed rheological model. An increase in the rate of shear deformation leads to a reduction in near-surface layer viscosity due to molecular reorientation. Estimation of model parameters, performed on basis of the experimental rheological data, is carried out.

  17. Shear stress transmission model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2008-09-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the characteristic torque-velocity relationship of the flagellar rotation.

  18. Modeling dissociation of hydrate bearing sediments under shear

    NASA Astrophysics Data System (ADS)

    Lin, J. S.; Choi, J. H.; Seol, Y.; Rutqvist, J.

    2015-12-01

    To assess the stability of ground during gas production from hydrate bearing sediments, it is of fundamental importance that the constitutive model employed and the computational procedure adopted are capable and accurate. One way to establish credence is to investigate if observation from laboratory tests could be reproduced in analysis. From this consideration, this study modeled laboratory triaxial tests in which hydrate dissociation was induced when a certain level of shear stress was reached. During the dissociation, however, both the axial and the confining stresses were kept unchanged. There were basically two scenarios observed: If the applied shear stress was higher than the shear strength of the hydrate free host soil, failure would take place during the dissociation; otherwise the sample would remain stable. The dissociation was induced either by a temperature raise or through pore pressure reduction. To model such tests, a coupled procedure was employed: the geomechanical analysis was conducted in FLAC3D, and the multiphase flow was conducted in TOUGH+. In this study, an SMP critical state constitutive model was implemented in the FLAC3D. This study successfully reproduced the observation from the laboratory tests. It showed that if the dissociation was caused by temperature change alone, failure would take place during dissociation. On the other hand, the modeling results also showed that if the dissociation was induced by pressure reduction, a sample could remain stable during dissociation because the effective confining stress was raised, but it would fail afterwards when the pre-association fluid pressure was allowed to return and the pace of hydrate reformation lagged behind.

  19. A review of Reynolds stress models for turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1995-01-01

    A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.

  20. Hard Surface Detergency. Part I. Interfacial Tensions of Candidate Surface Decontaminating Agents in Contact with Model Fluids.

    DTIC Science & Technology

    1982-04-23

    malathion . The effect of surfactant structure and model fluid on the adsorption process were catalogued with the aid of the Szyszkowski equation and the...the interfacial tension to low values by the surfactant when combined with the kinetic energy of the flow process assists in significant erosion of...methyl salicylate, malathion and ortho- dichlorobenzene. The interfacial tension properties of the fluids used are shown in Table 3. The surface tension

  1. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    PubMed Central

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-01-01

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance. PMID:28788364

  2. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    PubMed

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  3. Second order modeling of boundary-free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.; Chen, Y.-Y.; Lumley, J. L.

    1991-01-01

    A set of realizable second order models for boundary-free turbulent flows is presented. The constraints on second order models based on the realizability principle are re-examined. The rapid terms in the pressure correlations for both the Reynolds stress and the passive scalar flux equations are constructed to exactly satisfy the joint realizability. All other model terms (return-to-isotropy, third moments, and terms in the dissipation equations) already satisfy realizability. To correct the spreading rate of the axisymmetric jet, an extra term is added to the dissipation equation which accounts for the effect of mean vortex stretching on dissipation. The test flows used in this study are the mixing shear layer, plane jet, axisymmetric jet, and plane wake. The numerical solutions show that the unified model equations predict all these flows reasonably. It is expected that these models would be suitable for more complex and critical flows.

  4. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    SciTech Connect

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  5. A new energy transfer model for turbulent free shear flow

    NASA Technical Reports Server (NTRS)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  6. MASKED AREAS IN SHEAR PEAK STATISTICS: A FORWARD MODELING APPROACH

    SciTech Connect

    Bard, D.; Kratochvil, J. M.; Dawson, W.

    2016-03-09

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.

  7. MASKED AREAS IN SHEAR PEAK STATISTICS: A FORWARD MODELING APPROACH

    SciTech Connect

    Bard, D.; Kratochvil, J. M.; Dawson, W.

    2016-03-10

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.

  8. Masked areas in shear peak statistics. A forward modeling approach

    SciTech Connect

    Bard, D.; Kratochvil, J. M.; Dawson, W.

    2016-03-09

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.

  9. Masked areas in shear peak statistics. A forward modeling approach

    DOE PAGES

    Bard, D.; Kratochvil, J. M.; Dawson, W.

    2016-03-09

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impactmore » of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.« less

  10. Random shearing direction models for isotropic turbulent diffusion

    NASA Astrophysics Data System (ADS)

    Majda, Andrew J.

    1994-06-01

    Recently, a rigorous renormalization theory for various scalar statistics has been developed for special modes of random advection diffusion involving random shear layer velocity fields with long-range spatiotemporal correlations. New random shearing direction models for isotropic turbulent diffusion are introduced here. In these models the velocity field has the spatial second-order statistics of an arbitrary prescribed stationary incompressible isotropic random field including long-range spatial correlations with infrared divergence, but the temporal correlations have finite range. The explicit theory of renormalization for the mean and second-order statistics is developed here. With ɛ the spectral parameter, for -∞<ɛ<4 and measuring the strength of the infrared divergence of the spatial spectrum, the scalar mean statistics rigorously exhibit a phase transition from mean-field behavior for ɛ<2 to anomalous behavior for ɛ with 2<ɛ<4 as conjectured earlier by Avellaneda and the author. The universal inertial range renormalization for the second-order scalar statistics exhibits a phase transition from a covariance with a Gaussian functional form for ɛ with ɛ<2 to an explicit family with a non-Gaussian covariance for ɛ with 2<ɛ<4. These non-Gaussian distributions have tails that are broader than Gaussian as ɛ varies with 2<ɛ<4 and behave for large values like exp(- C c | x|4-ɛ), with C c an explicit constant. Also, here the attractive general principle is formulated and proved that every steady, stationary, zero-mean, isotropic, incompressible Gaussian random velocity field is well approximated by a suitable superposition of random shear layers.

  11. An improved turbulence model for rotating shear flows*

    NASA Astrophysics Data System (ADS)

    Nagano, Yasutaka; Hattori, Hirofumi

    2002-01-01

    In the present study, we construct a turbulence model based on a low-Reynolds-number non-linear k e model for turbulent flows in a rotating channel. Two-equation models, in particular the non-linear k e model, are very effective for solving various flow problems encountered in technological applications. In channel flows with rotation, however, the explicit effects of rotation only appear in the Reynolds stress components. The exact equations for k and e do not have any explicit terms concerned with the rotation effects. Moreover, the Coriolis force vanishes in the momentum equation for a fully developed channel flow with spanwise rotation. Consequently, in order to predict rotating channel flows, after proper revision the Reynolds stress equation model or the non-linear eddy viscosity model should be used. In this study, we improve the non-linear k e model so as to predict rotating channel flows. In the modelling, the wall-limiting behaviour of turbulence is also considered. First, we evaluated the non-linear k e model using the direct numerical simulation (DNS) database for a fully developed rotating turbulent channel flow. Next, we assessed the non-linear k e model at various rotation numbers. Finally, on the basis of these assessments, we reconstruct the non-linear k e model to calculate rotating shear flows, and the proposed model is tested on various rotation number channel flows. The agreement with DNS and experiment data is quite satisfactory.

  12. On modeling the Reynolds stresses in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Knoell, Jens

    2000-11-01

    The issue of modeling various turbulent shear flows by virtue of Reynolds stress and related models is addressed on the basis of three interrelated methodologies. First, the idea of algebraic Reynolds stress models is utilized for wall-bounded flows. Second, a solution to the modeled Reynolds stress transport equation is presented for three-dimensional flows yielding a more complex model also valid for non-equilibrium flows. Third, the rapid pressure-strain correlation model as one of the crucial terms in full Reynolds stress closures is modeled for homogeneous and non-homogeneous flows. A nonlinear stress-strain model derived as an equilibrium solution to the modeled Reynolds stress transport equation is modified to account for the near-wall effects in wall-bounded turbulent shear flows. The results based on the new model are compared with numerical and experimental data for channel flows and boundary layers. To include non-equilibrium effects, a higher order model only neglecting turbulent transport effects is developed for three-dimensional flows utilizing the Cayley-Hamilton theorem. The solution is cast in terms of five tensors involving the strain and vorticity field and is valid for the whole range of turbulent time scales. The five coefficients multiplying the tensors are determined by a set of nonlinear first order differential equations. Numerical solutions for various homogeneous flow fields are compared with existing nonlinear stress-strain models. Furthermore, tensor representation theory is utilized for the quadratic expansion of the two-point velocity correlation tensor in terms of the Reynolds stress tensor and a separation vector. This model allows the analytical integration of the Poisson equation for the fluctuating pressure and leads to a model for the rapid part of the pressure-strain correlation. The new methodology is developed for homogeneous flow situations yielding pressure-strain coefficients solely based on numerical two

  13. A generic model for transport in turbulent shear flows

    SciTech Connect

    Newton, Andrew P. L.; Kim, Eun-Jin

    2011-05-15

    Turbulence regulation by large-scale shear flows is crucial for a predictive modeling of transport in plasma. In this paper the suppression of turbulent transport by large-scale flows is studied numerically by measuring the turbulent diffusion D{sub t} and scalar amplitude of decaying passive scalar fields n{sup '} advected by various turbulent flows. Both uniform flows and shear flows are shown to suppress turbulence causing the quenching in transport and turbulence amplitude. The uniform flows U{sub 0}={Lambda}y with the advection rate {Lambda} in the case of a finite correlated forcing with {tau}{sub F}=1 gives rise to the advection/sweeping effect which suppresses D{sub t}, and as {proportional_to}{Lambda}{sup -2} for {Lambda}>>{tau}{sub F}{sup -1}. In contrast, no influence of the uniform flow is found in the case of a short correlated forcing {tau}{sub F}{yields}0 due to Galilean invariance. For the shear flow U{sub 0}={Omega}sinxy ({Omega}= constant shearing rate) with the appropriate choice of the forcing ({tau}{sub F}{yields}0) the nature of transport suppression is shown to crucially depend on the properties of the turbulence. Specifically, for prescribed turbulence with a short correlation time {tau}{sub c}={tau}{sub F}<<{Omega}{sup -1}, the turbulence statistics scale as D{sub t{proportional_to}{Omega}}{sup -0.02}, {proportional_to}{Omega}{sup -0.62} and cross-phase cos{theta}{proportional_to}{Omega}{sup 0.29}. For consistently evolved turbulence with a finite correlation time {tau}{sub c{>=}{Omega}}{sup -1}, turbulence statistics are suppressed more strongly as D{sub t{proportional_to}{Omega}}{sup -1.75}, {proportional_to}{Omega}{sup -2.41}, {proportional_to}{Omega}{sup -0.65} and <{omega}{sup '2}>{proportional_to}{Omega}{sup -0.50}. A novel renormalization scheme is then introduced to rescale our results into the regime within which the kinetic energy and enstrophy are unchanged by

  14. Interfacial behavior of simple inorganic salts at the air-water interface investigated with a polarizable model with electrostatic damping.

    PubMed

    Cummings, Oneka T; Wick, Collin D

    2013-08-14

    New molecular models that incorporated polarizable interactions with electrostatic damping were developed to better understand the interfacial properties of aqueous electrolyte systems. The models were parameterized to give free energies of aqueous solvation and the change in activity with respect to concentration in agreement with experiment. Specifically, we investigated NaCl, NaBr, and NaI systems, finding anion propensity for the air-water interface was reduced in comparison with previously developed polarizable models. This coincided with a more negative surface excess than that given by previously developed polarizable models. Furthermore, we investigated the interfacial properties of SrCl2 aqueous systems, finding that strontium had a moderate enhancement in interfacial density in comparison with bulk, while still having a fairly large negative surface excess, in agreement with experimental results.

  15. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes.

    PubMed

    Gardea, Frank; Glaz, Bryan; Riddick, Jaret; Lagoudas, Dimitris C; Naraghi, Mohammad

    2015-05-13

    Interfacial slip mechanisms of strain energy dissipation and vibration damping of highly aligned carbon nanotube (CNT) reinforced polymer composites were studied through experimentation and complementary micromechanics modeling. Experimentally, we have developed CNT-polystyrene (PS) composites with a high degree of CNT alignment via a combination of twin-screw extrusion and hot-drawing. The aligned nanocomposites enabled a focused study of the interfacial slip mechanics associated with shear stress concentrations along the CNT-PS interface induced by the elastic mismatch between the filler and matrix. The variation of storage and loss modulus suggests the initiation of the interfacial slip occurs at axial strains as low as 0.028%, primarily due to shear stress concentration along the CNT-PS interface. Through micromechanics modeling and by matching the model with the experimental results at the onset of slip, the interfacial shear strength was evaluated. The model was then used to provide additional insight into the experimental observations by showing that the nonlinear variation of damping with dynamic strain can be attributed to slip-stick behavior. The dependence of the interfacial load-transfer reversibility on the dynamic strain history and characteristic time scale was experimentally investigated to demonstrate the relative contribution of van der Waals (vdW) interactions, mechanical interlocking, and covalent bonding to shear interactions.

  16. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate

    PubMed Central

    Huang, M. L.; Yang, F.

    2014-01-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359

  17. Physical Explanation of Coupled Cell-Cell Rotational Behavior and Interfacial Morphology: A Particle Dynamics Model

    PubMed Central

    Leong, Fong Yew

    2013-01-01

    Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author’s knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin. PMID:24268142

  18. Physical explanation of coupled cell-cell rotational behavior and interfacial morphology: a particle dynamics model.

    PubMed

    Leong, Fong Yew

    2013-11-19

    Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author's knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin.

  19. The microchannel flow model under shear stress and higher frequencies.

    PubMed

    Parker, Kevin J

    2017-02-24

    The microchannel flow model provides a framework for considering the effect of the vascular bed on the time domain and frequency domain response of soft tissues. The derivation originates with a single small fluid filled vessel in an elastic medium under uniaxial compression. A fractal branching vasculature is also assumed to be present in the tissue under consideration. This short technical note considers two closely related issues. First, the response of the element under compression or shear as a function of the orientation of the fluid-filled vessel is considered. Second, the transition from quasistatic (Poiseuille's Law) to dynamic (Womersley equations) fluid flow is examined to better predict the evolution of behavior at higher frequencies. These considerations expand the conceptual framework of the microchannel flow model, particularly the range and limits of validity.

  20. The microchannel flow model under shear stress and higher frequencies

    NASA Astrophysics Data System (ADS)

    Parker, K. J.

    2017-04-01

    The microchannel flow model provides a framework for considering the effect of the vascular bed on the time domain and frequency domain response of soft tissues. The derivation originates with a single small fluid-filled vessel in an elastic medium under uniaxial compression. A fractal branching vasculature is also assumed to be present in the tissue under consideration. This note considers two closely related issues. First, the response of the element under compression or shear as a function of the orientation of the fluid-filled vessel is considered. Second, the transition from quasistatic (Poiseuille’s Law) to dynamic (Womersley equations) fluid flow is examined to better predict the evolution of behavior at higher frequencies. These considerations expand the conceptual framework of the microchannel flow model, particularly the range and limits of validity.

  1. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  2. Critical transition for the edge shear layer formation: Comparison of model and experiment

    SciTech Connect

    Carreras, B. A.; Garcia, L.; Pedrosa, M. A.; Hidalgo, C.

    2006-12-15

    The experimental results for the emergence of the plasma edge shear flow layer in TJ-II [C. Alehaldre et al.Fusion Technol. 17, 131 (1990)] can be explained using a simple model for a second-order transition based on the sheared flow amplification by Reynolds stress and turbulence suppression by shearing. In the dynamics of the model, the resistive interchange instability is used. This model gives power dependence on density gradients before and after the transition, consistent with experiment.

  3. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  4. Multiscale model for predicting shear zone structure and permeability in deforming rock

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Pereira, Gerald G.; Lemiale, Vincent; Piane, Claudio Delle; Clennell, M. Ben

    2016-04-01

    A novel multiscale model is proposed for the evolution of faults in rocks, which predicts their internal properties and permeability as strain increases. The macroscale model, based on smoothed particle hydrodynamics (SPH), predicts system scale deformation by a pressure-dependent elastoplastic representation of the rock and shear zone. Being a continuum method, SPH contains no intrinsic information on the grain scale structure or behaviour of the shear zone, so a series of discrete element method microscale shear cell models are embedded into the macroscale model at specific locations. In the example used here, the overall geometry and kinematics of a direct shear test on a block of intact rock is simulated. Deformation is imposed by a macroscale model where stresses and displacement rates are applied at the shear cell walls in contact with the rock. Since the microscale models within the macroscale block of deforming rock now include representations of the grains, the structure of the shear zone, the evolution of the size and shape distribution of these grains, and the dilatancy of the shear zone can all be predicted. The microscale dilatancy can be used to vary the macroscale model dilatancy both spatially and temporally to give a full two-way coupling between the spatial scales. The ability of this model to predict shear zone structure then allows the prediction of the shear zone permeability using the Lattice-Boltzmann method.

  5. Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model

    NASA Technical Reports Server (NTRS)

    Bair, S.; Winer, W. O.

    1980-01-01

    Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.

  6. Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model

    PubMed Central

    Paul, Shirshendu; Katiyar, Amit; Sarkar, Kausik; Chatterjee, Dhiman; Shi, William T.; Forsberg, Flemming

    2010-01-01

    Two nonlinear interfacial elasticity models—interfacial elasticity decreasing linearly and exponentially with area fraction—are developed for the encapsulation of contrast microbubbles. The strain softening (decreasing elasticity) results from the decreasing association between the constitutive molecules of the encapsulation. The models are used to find the characteristic properties (surface tension, interfacial elasticity, interfacial viscosity and nonlinear elasticity parameters) for a commercial contrast agent. Properties are found using the ultrasound attenuation measured through a suspension of contrast agent. Dynamics of the resulting models are simulated, compared with other existing models and discussed. Imposing non-negativity on the effective surface tension (the encapsulation experiences no net compressive stress) shows “compression-only” behavior. The exponential and the quadratic (linearly varying elasticity) models result in similar behaviors. The validity of the models is investigated by comparing their predictions of the scattered nonlinear response for the contrast agent at higher excitations against experimental measurement. All models predict well the scattered fundamental response. The nonlinear strain softening included in the proposed elastic models of the encapsulation improves their ability to predict subharmonic response. They predict the threshold excitation for the initiation of subharmonic response and its subsequent saturation. PMID:20550283

  7. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    PubMed

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis.

  8. Interfacial Shish-kebabs Lengthened by Coupling Effect of In-situ Flexible Nanofibrils and Intense Shear Flow: Achieving Hierarchy to Conquer the Conflicts between Strength and Toughness of Polylactide.

    PubMed

    Zhou, Sheng-Yang; Niu, Ben; Xie, Xu-Long; Ji, Xu; Zhong, Gan-Ji; Hsiao, Benjamin S; Li, Zhong-Ming

    2017-03-02

    The challenge of hitherto elaborating a feasible pathway to overcome the conflicts between strength and toughness of polylactide (PLA) still remains among academia and industry. In the current work, a unique hierarchal structure of flexible poly(butylene adipate-co-terephthalate) (PBAT) in-situ nanofibrils integrating with abundant PLA shish-kebabs as strong building block was disclosed and expresses its capability to availably conquer this dilemma. Substantially simultaneous enhancement on tensile strength, impact strength and elongation at break could be achieved up to 91.2 MPa, 14.9 KJ/m(2) and 15.7 % respectively compared with pure PLA (61.5 MPa, 4.3 KJ/m(2), and 6.2 %). Through investigating the phase (and crystalline) morphology and molecular chain behavior in PLA/PBAT system, the formation mechanism of this structure facilitated by a coupling effect of PBAT flexible phase and shear flow was definitely elucidated. The dispersed phase of PBAT would be more inclined to existing as a fibrillar form within PLA matrix benefiting from low interfacial tension. Interestingly, this phase morphology with large specific surface area changes the crystallization behavior of PLA significantly, once introducing an intense shear flow (~10(3) s(-1)), in-situ shear-formed nanofibrils of PBAT would show strong coupling effect with shear flow on PLA crystallization: they can not only induce abundant shish-kebabs of PLA at its interfaces, which possesses lengthened shish and more densely arranged kebabs; its hysteretic relaxation of PBAT phase can further retard the relaxation of PLA chains, which can well prevent the collapse of established shish. Of immense significance is this particular hierarchical-architecture composed by flexible nanofibers (PBAT) and rigid shish-kebabs (PLA) provides significant guidance for the simultaneous reinforcement and toughness of polymer materials.

  9. An examination of the differential constitutive models under large amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Pivokonsky, Radek; Filip, Petr; Zelenkova, Jana; Ledvinkova, Blanka

    2017-05-01

    The exponential Phan-Tien and Tanner, Giesekus, Leonov, and modified eXtended Pom-Pom models are examined under large amplitude oscillatory shear flows using poly(ethylene oxide) solution. Optimization of the nonlinear adjustable parameters of the individual models is based on Fourier transform coefficients of the largest amplitude oscillatory shear characteristics where both magnitude and phase are taken into account. An efficiency of the individual models is shown for large amplitude oscillatory shear characteristics as well as for steady shear characteristics.

  10. Empirical models of the eddy heat flux and vertical shear on short time scales

    NASA Technical Reports Server (NTRS)

    Ghan, S. J.

    1984-01-01

    An intimate relation exists between the vertical shear and the horizontal eddy heat flux within the atmosphere. In the present investigation empirical means are employed to provide clues concerning the relationship between the shear and eddy heat flux. In particular, linear regression models are applied to individual and joint time series of the shear and eddy heat flux. These discrete models are used as a basis to infer continuous models. A description is provided of the observed relationship between the flux and the shear, taking into account means, standard deviations, and lag correction functions.

  11. Empirical models of the eddy heat flux and vertical shear on short time scales

    NASA Technical Reports Server (NTRS)

    Ghan, S. J.

    1984-01-01

    An intimate relation exists between the vertical shear and the horizontal eddy heat flux within the atmosphere. In the present investigation empirical means are employed to provide clues concerning the relationship between the shear and eddy heat flux. In particular, linear regression models are applied to individual and joint time series of the shear and eddy heat flux. These discrete models are used as a basis to infer continuous models. A description is provided of the observed relationship between the flux and the shear, taking into account means, standard deviations, and lag correction functions.

  12. Using the pseudophase kinetic model to interpret chemical reactivity in ionic emulsions: determining antioxidant partition constants and interfacial rate constants.

    PubMed

    Gu, Qing; Bravo-Díaz, Carlos; Romsted, Laurence S

    2013-06-15

    Kinetic results obtained in cationic and anionic emulsions show for the first time that pseudophase kinetic models give reasonable estimates of the partition constants of reactants, here t-butylhydroquinone (TBHQ) between the oil and interfacial region, P(O)(I), and the water and interfacial region, P(W)(I), and of the interfacial rate constant, k(I), for the reaction with an arenediazonium ion in emulsions containing a 1:1 volume ratio of a medium chain length triglyceride, MCT, and aqueous acid or buffer. The results provide: (a) an explanation for the large difference in pH, >4 pH units, required to run the reaction in CTAB (pH 1.54, added HBr) and SDS (pH 5.71, acetate buffer) emulsions; (b) reasonable estimates of PO(I) and k(I) in the CTAB emulsions; (c) a sensible interpretation of added counterion effects based on ion exchange in SDS emulsions (Na(+)/H3O(+) ion exchange in the interfacial region) and Donnan equilibrium in CTAB emulsions (Br(-) increasing the interfacial H3O(+)); and (d) the significance of the effect of the much greater solubility of TBHQ in MCT versus octane, 1000/1, as the oil. These results should aid in interpreting the effects of ionic surfactants on chemical reactivity in emulsions in general and in selecting the most efficient antioxidant for particular food applications.

  13. A Model for Shear Layer Effects on Engine Noise Radiation

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Farassat, F.; Pope, D. Stuart; Vatsa, V.

    2004-01-01

    Prediction of aircraft engine noise is an important aspect of addressing the issues of community noise and cabin noise control. The development of physics based methodologies for performing such predictions has been a focus of Computational Aeroacoustics (CAA). A recent example of code development in this area is the ducted fan noise propagation and radiation code CDUCT-LaRC. Included within the code is a duct radiation model that is based on the solution of FfowcsWilliams-Hawkings (FW-H) equation with a penetrable data surface. Testing of this equation for many acoustic problems has shown it to provide generally better results than the Kirchhoff formula for moving surfaces. Currently, the data surface is taken to be the inlet or exhaust plane for inlet or aft-fan cases, respectively. While this provides reasonable results in many situations, these choices of data surface location lead to a few limitations. For example, the shear layer between the bypass ow and external stream can refract the sound waves radiated to the far field. Radiation results can be improved by including this effect, as well as the rejection of the sound in the bypass region from the solid surface external to the bypass duct surrounding the core ow. This work describes the implementation, and possible approximation, of a shear layer boundary condition within CDUCT-LaRC. An example application also illustrates the improvements that this extension offers for predicting noise radiation from complex inlet and bypass duct geometries, thereby providing a means to evaluate external treatments in the vicinity of the bypass duct exhaust plane.

  14. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation.

    PubMed

    Garrido, J M; Algaba, J; Míguez, J M; Mendiboure, B; Moreno-Ventas Bravo, A I; Piñeiro, M M; Blas, F J

    2016-04-14

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with

  15. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Garrido, J. M.; Algaba, J.; Míguez, J. M.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.; Piñeiro, M. M.; Blas, F. J.

    2016-04-01

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with

  16. Parametric links among Monte Carlo, phase-field, and sharp-interface models of interfacial motion.

    PubMed

    Liu, Pu; Lusk, Mark T

    2002-12-01

    Parametric links are made among three mesoscale simulation paradigms: phase-field, sharp-interface, and Monte Carlo. A two-dimensional, square lattice, 1/2 Ising model is considered for the Monte Carlo method, where an exact solution for the interfacial free energy is known. The Monte Carlo mobility is calibrated as a function of temperature using Glauber kinetics. A standard asymptotic analysis relates the phase-field and sharp-interface parameters, and this allows the phase-field and Monte Carlo parameters to be linked. The result is derived without bulk effects but is then applied to a set of simulations with the bulk driving force included. An error analysis identifies the domain over which the parametric relationships are accurate.

  17. A multiscale model for nanoparticle binding dynamics under shear flow

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Tan, Jifu; Nguyen, Kytai

    2011-03-01

    Nanomedicine poses a new frontier in medical technology with the advantages of targeted delivery and patient specific design. In applications of nanoparticle targeted drug delivery, the delivery efficiency is controlled by the physical properties of the nanoparticle such as its size, shape, ligand density, as well as external environmental conditions such as blood flow rate, blood vessel diameter. Proper drug dosage choice relies on determination of the attachment and detachment rates of the nanoparticles at the active region and the understanding of the complex process of targeted drug delivery. A few particulate models have been proposed to study the adhesion probability of individual spherical or non-spherical nanoparticles. Meanwhile, continuum convection-diffusion-reaction models have been widely used to calculate the drug concentration, which usually assumes specific binding and de-binding constants. However, there has not been any study that links the particulate level nanoparticle size and shape information to the system level bounded particle concentration. A hybrid particle binding dynamics and continuum convection-diffusion-reaction model is presented to study the effect of shear flow rate and particle size on binding efficiency. The simulated concentration of bounded nanoparticles agrees well with experimental results in flow chamber studies.

  18. Fiber bundle models for stress release and energy bursts during granular shearing

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani; Cohen, Denis

    2012-12-01

    Fiber bundle models (FBMs) offer a versatile framework for representing transitions from progressive to abrupt failure in disordered material. We report a FBM-based description of mechanical interactions and associated energy bursts during shear deformation of granular materials. For strain-controlled shearing, where elements fail in a sequential order, we present analytical expressions for strain energy release and failure statistics. Results suggest that frequency-magnitude characteristics of fiber failure vary considerably throughout progressive shearing. Predicted failure distributions were in good agreement with experimentally observed shear stress fluctuations and associated bursts of acoustic emissions. Experiments also confirm a delayed release of acoustic emission energy relative to shear stress buildup, as anticipated by the model. Combined with data-rich acoustic emission measurements, the modified FBM offers highly resolved contact-scale insights into granular media dynamics of shearing processes.

  19. Dividing phases in two-phase flow and modeling of interfacial drag

    SciTech Connect

    Narumo, T.; Rajamaeki, M.

    1997-07-01

    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.

  20. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  1. On Markov modelling of near-wall turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    1999-11-01

    The role of Reynolds number in determining particle trajectories in near-wall turbulent shear flow is investigated in numerical simulations using a second-order Lagrangian stochastic (LS) model (Reynolds, A.M. 1999: A second-order Lagrangian stochastic model for particle trajectories in inhomogeneous turbulence. Quart. J. Roy. Meteorol. Soc. (In Press)). In such models, it is the acceleration, velocity and position of a particle rather than just its velocity and position which are assumed to evolve jointly as a continuous Markov process. It is found that Reynolds number effects are significant in determining simulated particle trajectories in the viscous sub-layer and the buffer zone. These effects are due almost entirely to the change in the Lagrangian integral timescale and are shown to be well represented in a first-order LS model by Sawford's correction footnote Sawford, B.L. 1991: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys Fluids, 3, 1577-1586). This is found to remain true even when the Taylor-Reynolds number R_λ ~ O(0.1). This is somewhat surprising because the assumption of a Markovian evolution for velocity and position is strictly applicable only in the large Reynolds number limit because then the Lagrangian acceleration autocorrelation function approaches a delta function at the origin, corresponding to an uncorrelated component in the acceleration, and hence a Markov process footnote Borgas, M.S. and Sawford, B.L. 1991: The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech. 288, 295-320.

  2. Shear versus micro-shear bond strength test: a finite element stress analysis.

    PubMed

    Placido, Eliane; Meira, Josete B C; Lima, Raul González; Muench, Antonio; de Souza, Roberto Martins; Ballester, Rafael Yagüe

    2007-09-01

    This study aimed at comparing the stress distribution in shear and micro-shear test set-ups using finite element analysis, and suggesting some parameter standardization that might have important influence on the results. Two-dimensional plane strain finite element analysis was performed using MSCPatran and MSCMarc softwares. Model configurations were based on published experimental shear and micro-shear test set-ups and material properties were assumed to be isotropic, homogeneous and linear-elastic. Typical values of elastic modulus and Poisson's ratios were assigned to composite, dentin and adhesive. Loading conditions considered a single-node concentrated load at different distances from the dentin-adhesive interface, and proportional geometry (1:5 scale, but fixed adhesive layer thickness in 50microm) with similar calculated nominal strength. The maximum tensile and shear stresses, and stress distribution along dentin-adhesive interfacial nodes were analyzed. Stress distribution was always non-uniform and greatly differed between shear and micro-shear models. A pronounced stress concentration was observed at the interfacial edges due to the geometric change: stress values farther exceeded the nominal strength and tensile stresses were much higher than shear stresses. For micro-shear test, the relatively thicker adhesive layer and use of low modulus composites may lead to relevant stress intensification. An appropriate loading distance was established for each test (1mm for shear and 0.1mm for micro-shear) in which stress concentration would be minimal, and should be standardized for experimental assays. The elastic modulus of bonded composites, relative adhesive layer thickness and load application distance are important parameters to be standardized, once they influence stress concentration.

  3. Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.

    2008-01-01

    An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.

  4. A test of the double-shearing model of flow for granular materials

    USGS Publications Warehouse

    Savage, J.C.; Lockner, D.A.

    1997-01-01

    The double-shearing model of flow attributes plastic deformation in granular materials to cooperative slip on conjugate Coulomb shears (surfaces upon which the Coulomb yield condition is satisfied). The strict formulation of the double-shearing model then requires that the slip lines in the material coincide with the Coulomb shears. Three different experiments that approximate simple shear deformation in granular media appear to be inconsistent with this strict formulation. For example, the orientation of the principal stress axes in a layer of sand driven in steady, simple shear was measured subject to the assumption that the Coulomb failure criterion was satisfied on some surfaces (orientation unspecified) within the sand layer. The orientation of the inferred principal compressive axis was then compared with the orientations predicted by the double-shearing model. The strict formulation of the model [Spencer, 1982] predicts that the principal stress axes should rotate in a sense opposite to that inferred from the experiments. A less restrictive formulation of the double-shearing model by de Josselin de Jong [1971] does not completely specify the solution but does prescribe limits on the possible orientations of the principal stress axes. The orientations of the principal compression axis inferred from the experiments are probably within those limits. An elastoplastic formulation of the double-shearing model [de Josselin de Jong, 1988] is reasonably consistent with the experiments, although quantitative agreement was not attained. Thus we conclude that the double-shearing model may be a viable law to describe deformation of granular materials, but the macroscopic slip surfaces will not in general coincide with the Coulomb shears.

  5. Computational modeling and simulation of spall fracture in polycrystalline solids by an atomistic-based interfacial zone model

    PubMed Central

    Lin, Liqiang; Zeng, Xiaowei

    2015-01-01

    The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546

  6. Ductile fracture model in the shearing process of zircaloy sheet for nuclear fuel spacer grids

    NASA Astrophysics Data System (ADS)

    Wang, Jaeyoon; Kim, Naksoo; Lee, Hyungyil

    2012-04-01

    Features of sheared edges are predicted based on material properties of Zircaloy obtained from the tensile test and ductile fracture model such as the Gurson-Tvergaard-Needleman (GTN) and Johnson-Cook models. The sheared edges formations are numerically analyzed in each ductile model. An appropriate ductile fracture model is selected to study the relative depth of sheared edges with respect to process parameters. The tendency of failure parameters that are affected by sheared edges and fracture duration is investigated. We applied changes on parameters of failure models to show that the punch force curve and the ratio of characteristic lengths could be coincided, which led us to conclude that the GTN and Johnson-Cook models are equivalent. In the Johnson-Cook model, however, the characteristic length of the sheared edges does not change as each failure parameter reaches a critical value. Hence, the FE prediction model for forming defects is developed using the GTN failure model. Finally, the characteristic length of sheared edges have been measured using the FE prediction model for shearing process parameters such as punch velocities, clearance, and tool wear. Our results showed that the punch-die clearance is the most significant factor that affects forming defects when compared to other factors.

  7. Modelling shear wave splitting observations from Wellington, New Zealand

    NASA Astrophysics Data System (ADS)

    Marson-Pidgeon, Katrina; Savage, Martha K.

    2004-05-01

    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  8. Fourth Order Nonlinear Evolution Equation For Interfacial Gravity Waves In The Presence Of Air Flowing Over Water And A Basic Current Shear

    NASA Astrophysics Data System (ADS)

    Majumder, D. P.; Dhar, A. K.

    2015-08-01

    A fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water waves as first pointed out by Dysthe (1979) is derived for gravity waves propagating at the interface of two superposed fluids of infinite depth in the presence of air flowing over water and a basic current shear. A stability analysis is then made for a uniform Stokes gravity wave train. Graphs are plotted for the maximum growth rate of instability and for wave number at marginal stability against wave steepness for different values of air flow velocity and basic current shears. Significant deviations are noticed from the results obtained from the third order evolution equation, which is the nonlinear Schrödinger equation.

  9. A Global Upper-Mantle Tomographic Model of Shear Attenuation

    NASA Astrophysics Data System (ADS)

    Karaoglu, H.; Romanowicz, B. A.

    2016-12-01

    Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency

  10. Modelling shear bands in a volcanic conduit: Implications for over-pressures and extrusion-rates

    NASA Astrophysics Data System (ADS)

    Hale, Alina J.; Mühlhaus, Hans-B.

    2007-11-01

    Shear bands in a volcanic conduit are modelled for crystal-rich magma flow using simplified conditions to capture the fundamental behaviour of a natural system. Our simulations begin with magma crystallinity in equilibrium with an applied pressure field and isothermal conditions. The viscosity of the magma is derived using existing empirical equations and is dependent upon temperature, water content and crystallinity. From these initial conduit conditions we utilize the Finite Element Method, using axi-symmetric coordinates, to simulate shear bands via shear localisation. We use the von Mises visco-plasticity model with constant magma shear strength for a first look into the effects of plasticity. The extent of shear bands in the conduit is explored with a numerical model parameterized with values appropriate for Soufrière Hills Volcano, Montserrat, although the model is generic in nature. Our model simulates shallow (up to approximately 700 m) shear bands that occur within the upper conduit and probably govern the lava extrusion style due to shear boundaries. We also model the change in the over-pressure field within the conduit for flow with and without shear bands. The pressure change can be as large as several MPa at shallow depths in the conduit, which generates a maximum change in the pressure gradient of 10's of kPa/m. The formation of shear bands could therefore provide an alternative or additional mechanism for the inflation/deflation of the volcano flanks as measured by tilt-metres. Shear bands are found to have a significant effect upon the magma ascent rate due to shear-induced flow reducing conduit friction and altering the over-pressure in the upper conduit. Since we do not model frictional controlled slip, only plastic flow, our model calculates the minimum change in extrusion rate due to shear bands. However, extrusion rates can almost double due to the formation of shear bands, which may help suppress volatile loss. Due to the paucity of data and

  11. Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model

    NASA Astrophysics Data System (ADS)

    Torabi, Solmaz; Lowengrub, John

    2012-04-01

    We present an extended Cahn-Hilliard model for simulating interfacial anisotropy in thin-film dynamics by incorporating high-order terms in the energy from an expansion of the energy about an equilibrium state, following earlier work by Abinandanan and Haider [Philos. Mag. Sect. APMAADG0141-861010.1080/01418610110038420 81, 2457 (2001)]. For example, to simulate SiGe/Si thin films, where diamond cubic symmetry is needed, fourth order derivatives are included in the energy. This results in a sixth order evolution equation for the order parameter. For less symmetric crystals, one needs to add terms of higher order than fourth order. One advantage of this approach is its intrinsic regularized behavior. In particular, even for strongly anisotropic surface energy, sharp corners will not form and the extended anisotropic Cahn-Hilliard equations are well-posed. For this system we develop an energy-stable numerical scheme in which the energy decreases for any time step. We present two-dimensional (2D) and three-dimensional (3D) numerical results using an adaptive, nonlinear multigrid finite-difference method. We find excellent agreement between the computed equilibrium shapes using the new model and results from an analysis associated with a Wulff construction for energy minimization. The model predictions also compare well with experimental results for silicon voids. In the context of thin films, we observe the formation of interconnected ridges, wires, and fortresses similar to those observed in SiGe/Si thin films.

  12. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Aluru, N. R.

    2016-08-01

    We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the confinement are modeled using the van der Waals one fluid approximation and the local average density method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to capture the species wall slip effects. The value of this friction coefficient is computed using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures confined between graphene slit shaped nanochannels are considered as examples. The proposed model yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with the interfacial friction displaying linear dependence on molar composition of the mixture. The results also indicate that the different species have different slip lengths, which remain unchanged with the channel width.

  13. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction.

    PubMed

    Bhadauria, Ravi; Aluru, N R

    2016-08-21

    We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the confinement are modeled using the van der Waals one fluid approximation and the local average density method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to capture the species wall slip effects. The value of this friction coefficient is computed using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures confined between graphene slit shaped nanochannels are considered as examples. The proposed model yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with the interfacial friction displaying linear dependence on molar composition of the mixture. The results also indicate that the different species have different slip lengths, which remain unchanged with the channel width.

  14. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact-angle hysteresis

    NASA Astrophysics Data System (ADS)

    Colosqui, Carlos E.; Kavousanakis, Michail E.; Papathanasiou, Athanasios G.; Kevrekidis, Ioannis G.

    2013-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo-potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled fluid-solid interface is diffuse, represented by a wall probability function that ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e., a given static contact angle) of the solid substrate.

  15. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.

    PubMed

    Colosqui, Carlos E; Kavousanakis, Michail E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2013-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo-potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled fluid-solid interface is diffuse, represented by a wall probability function that ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e., a given static contact angle) of the solid substrate.

  16. Gusts and Shear in an Idealized LES-modeled Hurricane

    NASA Astrophysics Data System (ADS)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  17. Novel Quantitative Biosystem for Modeling Physiological Fluid Shear Stress on Cells▿

    PubMed Central

    Nauman, Eric A.; Ott, C. Mark; Sander, Ed; Tucker, Don L.; Pierson, Duane; Wilson, James W.; Nickerson, Cheryl A.

    2007-01-01

    The response of microbes to changes in the mechanical force of fluid shear has important implications for pathogens, which experience wide fluctuations in fluid shear in vivo during infection. However, the majority of studies have not cultured microbes under physiological fluid shear conditions within a range commonly encountered by microbes during host-pathogen interactions. Here we describe a convenient batch culture biosystem in which (i) the levels of fluid shear force can be varied within physiologically relevant ranges and quantified via mathematical models and (ii) large numbers of cells can be planktonically grown and harvested to examine the effect of fluid shear levels on microbial genomic and phenotypic responses. A quantitative model based on numerical simulations and in situ imaging analysis was developed to calculate the fluid shear imparted by spherical beads of different sizes on bacterial cell cultures grown in a rotating wall vessel (RWV) bioreactor. To demonstrate the application of this model, we subjected cultures of the bacterial pathogen Salmonella enterica serovar Typhimurium to three physiologically-relevant fluid shear ranges during growth in the RVW and demonstrated a progressive relationship between the applied fluid shear and the bacterial genetic and phenotypic responses. By applying this model to different cell types, including other bacterial pathogens, entire classes of genes and proteins involved in cellular interactions may be discovered that have not previously been identified during growth under conventional culture conditions, leading to new targets for vaccine and therapeutic development. PMID:17142365

  18. Surfactant chain length and concentration influence on the interfacial tension of two immiscible model liquids: a coarse-grained approach.

    PubMed

    Catarino Centeno, R; Bustamante-Rendón, R A; Hernández-Fragoso, J S; Arroyo-Ordoñez, I; Pérez, E; Alas, S J; Gama Goicochea, A

    2017-10-06

    The interfacial tension between immiscible liquids is studied as a function of a model linear surfactant length and concentration using coarse-grained, dissipative particle dynamics numerical simulations. The adsorption isotherms obtained from the simulations are found to be in agreement with Langmuir's model. The reduction of the interfacial tension with increasing surfactant concentration is found to display some common characteristics for all the values of chain length modeled, with our predictions being in agreement with Szyszkowski's equation. Lastly, the critical micelle concentration is predicted for all surfactant lengths, finding exponentially decaying behavior, in agreement with Kleven's model. It is argued that these findings can be helpful guiding tools in the interpretation of available experiments and in the design of new ones with new surfactants and polymers.

  19. Modeling aeolian sediment transport thresholds on physically rough Martian surfaces: A shear stress partitioning approach

    NASA Astrophysics Data System (ADS)

    Gillies, John A.; Nickling, William G.; King, James; Lancaster, Nicholas

    2010-09-01

    This paper explores the effect that large roughness elements (0.30 m × 0.26 m × 0.36 m) may have on entrainment of sediment by Martian winds using a shear stress partitioning approach based on a model developed by Raupach et al. (Raupach, M.R., Gillette, D.A., Leys, J.F., 1993. The effect of roughness elements on wind erosion threshold. Journal of Geophysical Research 98(D2), 3023-3029). This model predicts the shear stress partitioning ratio defined as the percent reduction in shear stress on the intervening surface between the roughness elements as compared to the surface in the absence of those elements. This ratio is based on knowledge of the geometric properties of the roughness elements, the characteristic drag coefficients of the elements and the surface, and the assumed effect these elements have on the spatial distribution of the mean and maximum shear stresses. On Mars, unlike on Earth, the shear stress partitioning caused by roughness can be non-linear in that the drag coefficients for the surface as well as for the roughness itself show Reynolds number dependencies for the reported range of Martian wind speeds. The shear stress partitioning model of Raupach et al. is used to evaluate how conditions of the Martian atmosphere will affect the threshold shear stress ratio for Martian surfaces over a range of values of roughness density. Using, as an example, a 125 µm diameter particle with an estimated threshold shear stress on Mars of ≈ 0.06 N m - 2 (shear velocity, u* ≈ 2 m s - 1 on a smooth surface), we evaluate the effect of roughness density on the threshold shear stress ratio for this diameter particle. In general, on Mars higher regional shear stresses are required to initiate particle entrainment for surfaces that have the same physical roughness as defined by the roughness density term ( λ) compared with terrestrial surfaces mainly because of the low Martian atmospheric density.

  20. Numerical model for the shear rheology of two-dimensional wet foams with deformable bubbles.

    PubMed

    Kähärä, T; Tallinen, T; Timonen, J

    2014-09-01

    Shearing of two-dimensional wet foam is simulated using an introduced numerical model, and results are compared to those of experiments. This model features realistically deformable bubbles, which distinguishes it from previously used models for wet foam. The internal bubble dynamics and their contact interactions are also separated in the model, making it possible to investigate the effects of the related microscale properties of the model on the macroscale phenomena. Validity of model assumptions was proved here by agreement between the simulated and measured Herschel-Bulkley rheology, and shear-induced relaxation times. This model also suggests a relationship between the shear stress and normal stress as well as between the average degree of bubble deformation and applied shear stress. It can also be used to analyze suspensions of bubbles and solid particles, an extension not considered in this work.

  1. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  2. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-12-31

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  3. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.

    PubMed

    Tiwari, Abhishek Kumar; Prasad, Jitendra

    2017-04-01

    Bone loss is a serious health problem. In vivo studies have found that mechanical stimulation may inhibit bone loss as elevated strain in bone induces osteogenesis, i.e. new bone formation. However, the exact relationship between mechanical environment and osteogenesis is less clear. Normal strain is considered as a prime stimulus of osteogenic activity; however, there are some instances in the literature where osteogenesis is observed in the vicinity of minimal normal strain, specifically near the neutral axis of bending in long bones. It suggests that osteogenesis may also be induced by other or secondary components of mechanical environment such as shear strain or canalicular fluid flow. As it is evident from the literature, shear strain and fluid flow can be potent stimuli of osteogenesis. This study presents a computational model to investigate the roles of these stimuli in bone adaptation. The model assumes that bone formation rate is roughly proportional to the normal, shear and fluid shear strain energy density above their osteogenic thresholds. In vivo osteogenesis due to cyclic cantilever bending of a murine tibia has been simulated. The model predicts results close to experimental findings when normal strain, and shear strain or fluid shear were combined. This study also gives a new perspective on the relation between osteogenic potential of micro-level fluid shear and that of macro-level bending shear. Attempts to establish such relations among the components of mechanical environment and corresponding osteogenesis may ultimately aid in the development of effective approaches to mitigating bone loss.

  4. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. I. Mathematical modeling.

    PubMed

    Zhu, Liwen; Attard, Phil; Neto, Chiara

    2011-06-07

    We developed a stable spread-sheet algorithm for the calculation of the hydrodynamic forces measured by colloid probe atomic force microscopy to be used in investigations of interfacial slip. The algorithm quantifies the effect on the slip hydrodynamic force for factors commonly encountered in experimental measurements such as nanoparticle contamination, nonconstant drag force due to cantilever bending that varies with different cantilevers, flattening of the microsphere, and calibration at large separations. We found that all of these experimental factors significantly affect the fitted slip length, approximately in the order listed. Our modeling is applied to fit new experimental data reproducibly. Using this new algorithm, it is shown that the fitting of hydrodynamic theories to experimental data is reliable and the fitted slip length is accurate. A "blind test" protocol was developed that produces a reliable estimate of the fitting error in the determination of both the slip length and spring constant. By this blind test, we estimate that our modeling determines the fitted slip length with an average systematic error of 2 nm and the fitted spring constant with a 3% error. Our exact calculation of the drag force may explain previous reports that the fitted slip length depends upon the shape and spring constant of the cantilever used to perform the measurements.

  5. Transient Shear Flow of Model Lithium Lubricating Greases

    NASA Astrophysics Data System (ADS)

    Delgado, M. A.; Franco, J. M.; Valencia, C.; Kuhn, E.; Gallegos, C.

    2008-07-01

    This work deals with the analysis of the transient shear flow behaviour of lithium lubricating greases differing in soap concentration and base oil viscosity. The shear-induced evolution of lithium grease microstructure has been studied by means of stress-growth experiments. With this aim, different lubricating grease formulations were manufactured by modifying lithium 12-hydroxystearate concentration and base oil viscosity. Different rheological parameters, related to both the elastic response and the structural breakdown of greases, have been analysed. In this sense, it has been found that the elastic properties of lithium lubricating greases were highly influenced by soap concentration and oil viscosity. Moreover, an asymptotic tendency has been found for the stress overshoot by increasing shear rate. The asymptotic values of this parameter have been correlated to the friction coefficient obtained in a ball-disc tribometer.

  6. Multiple Size Group Modeling of Polydispersed Bubbly Flow in the Mold: An Analysis of Turbulence and Interfacial Force Models

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa

    2015-04-01

    An inhomogeneous Multiple Size Group (MUSIG) model based on the Eulerian-Eulerian approach has been developed to describe the polydispersed bubbly flow inside the continuous-casting mold. A laboratory scale mold has been simulated using four different turbulence closure models (modified k - ɛ, RNG k - ɛ, k - ω, and SST) with the purpose of critically comparing their predictions of bubble Sauter mean diameter distribution with previous experimental data. Furthermore, the influences of all the interfacial momentum transfer terms including drag force, lift force, virtual mass force, wall lubrication force, and turbulent dispersion force are investigated. The breakup and coalescence effects of the bubbles are modeled according to the bubble breakup by the impact of turbulent eddies while for bubble coalescence by the random collisions driven by turbulence and wake entrainment. It has been found that the modified k - ɛ model shows better agreement than other models in predicting the bubble Sauter mean diameter profiles. Further, simulations have also been performed to understand the sensitivity of different interfacial forces. The appropriate drag force coefficient, lift force coefficient, virtual mass force coefficient, and turbulent dispersion force coefficient are chosen in accordance with measurements of water model experiments. However, the wall lubrication force does not have much effect on the current polydispersed bubbly flow system. Finally, the MUSIG model is then used to estimate the argon bubble diameter in the molten steel of the mold. The argon bubble Sauter mean diameter generated in molten steel is predicted to be larger than air bubbles in water for the similar conditions.

  7. Modelling the Shear Behaviour of Rock Joints with Asperity Damage Under Constant Normal Stiffness

    NASA Astrophysics Data System (ADS)

    Indraratna, Buddhima; Thirukumaran, Sivanathan; Brown, E. T.; Zhu, Song-Ping

    2015-01-01

    The shear behaviour of a rough rock joint depends largely on the surface properties of the joint, as well as the boundary conditions applied across the joint interface. This paper proposes a new analytical model to describe the complete shear behaviour of rough joints under constant normal stiffness (CNS) boundary conditions by incorporating the effect of damage to asperities. In particular, the effects of initial normal stress levels and joint surface roughness on the shear behaviour of joints under CNS conditions were studied, and the analytical model was validated through experimental results. Finally, the practical application of the model to a jointed rock slope stability analysis is presented.

  8. An alternative assessment of second-order closure models in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Gatski, Thomas B.

    1994-01-01

    The performance of three recently proposed second-order closure models is tested in benchmark turbulent shear flows. Both homogeneous shear flow and the log-layer of an equilibrium turbulent boundary layer are considered for this purpose. An objective analysis of the results leads to an assessment of these models that stands in contrast to that recently published by other authors. A variety of pitfalls in the formulation and testing of second-order closure models are uncovered by this analysis.

  9. Probing the role of interfacial waters in protein-DNA recognition using a hybrid implicit/explicit solvation model.

    PubMed

    Li, Shen; Bradley, Philip

    2013-08-01

    When proteins bind to their DNA target sites, ordered water molecules are often present at the protein-DNA interface bridging protein and DNA through hydrogen bonds. What is the role of these ordered interfacial waters? Are they important determinants of the specificity of DNA sequence recognition, or do they act in binding in a primarily nonspecific manner, by improving packing of the interface, shielding unfavorable electrostatic interactions, and solvating unsatisfied polar groups that are inaccessible to bulk solvent? When modeling details of structure and binding preferences, can fully implicit solvent models be fruitfully applied to protein-DNA interfaces, or must the individualistic properties of these interfacial waters be accounted for? To address these questions, we have developed a hybrid implicit/explicit solvation model that specifically accounts for the locations and orientations of small numbers of DNA-bound water molecules, while treating the majority of the solvent implicitly. Comparing the performance of this model with that of its fully implicit counterpart, we find that explicit treatment of interfacial waters results in a modest but significant improvement in protein side-chain placement and DNA sequence recovery. Base-by-base comparison of the performance of the two models highlights DNA sequence positions whose recognition may be dependent on interfacial water. Our study offers large-scale statistical evidence for the role of ordered water for protein-DNA recognition, together with detailed examination of several well-characterized systems. In addition, our approach provides a template for modeling explicit water molecules at interfaces that should be extensible to other systems.

  10. Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter

    NASA Astrophysics Data System (ADS)

    Martens, Kirsten; Bocquet, Lydéric; Barrat, Jean-Louis

    2012-02-01

    In this presentation we propose a coherent scenario of the formation of permanent shear bands in the flow of yield stress materials. Within a minimalistic mesoscopic model we investigate the spatial organisation of plasticity. The most important parameter is the typical time needed to regain the original structure after a local rearrangement. In agreement with a recent mean field study [Coussot et al., Eur. Phys. J. E, 2010, 33, 183] we observe a spontaneous formation of permanent shear bands, when this restructuring time is large compared to the typical stress release time in a rearrangement. This heterogeneous flow behaviour is different in nature from the transient dynamical heterogeneities that one observes in the small shear rate limit in flow without shear-banding [Martens et al., Phys. Rev. Lett., 2011, 106, 156001]. We analyse the dependence of the shear bands on system size, shear rate and restructuring time. Further we rationalise the scenario within a mean field version of the model, that explains the instability of the homogeneous flow below a critical shear rate. Our study therefore strongly supports the idea that the characteristic time scales involved in the local dynamics are at the physical origin of permanent shear bands.

  11. An unload-induced direct-shear model for granular gouge friction in rock discontinuities.

    PubMed

    Wu, Wei; Zou, Yang; Li, Xing; Zhao, Jian

    2014-09-01

    The experimental study introduces an unload-induced direct-shear model to investigate the frictional slip of a layer of simulated granular gouges induced by the combination of a decreasing normal stress and a constant shear stress. A frictional equilibrium state of the gouge layer is initially established under fixed normal and shear stresses. The normal stress is proposed to decrease at a constant unloading rate to induce the frictional slip of the gouge layer, and the shear stress is proposed to keep a constant value during the test. A displacement meter and load cells synchronously measure the slip displacement and the applied normal and shear stresses, respectively. The normal and shear stresses sharply decrease with the frictional slip, owing to damage of gouge contacts. The frictional slip is then gradually arrested with new formation of gouge contacts. A greater initial shear stress induces larger normal and shear stress reductions and a smaller slip displacement. The strain energy stored in the discontinuous system before the frictional slip is found to affect the slip displacement. The advantages and the limitations of this model are discussed at the end.

  12. Solution of the complete Curtiss-Bird model for polymeric liquids subjected to simple shear flow.

    PubMed

    Stephanou, Pavlos S; Kröger, Martin

    2016-03-28

    The complete kinetic theory model for concentrated polymer solutions and melts proposed by Curtiss and Bird is solved for shear flow: (a) analytically by providing a solution for the single-link (or configurational) distribution function as a real basis spherical harmonics expansion and then calculating the materials functions in shear flow up to second order in the dimensionless shear rate and, (b) numerically via the execution of Brownian dynamics simulations. These two methods are actually complementary to each other as the former is accurate only for small dimensionless shear rates where the latter produces results with increasingly large uncertainties. The analytical expansions of the material functions with respect to the dimensionless shear rate reduce to those of the extensively studied, simplified Curtiss-Bird model when ε' = 0, and to the rigid rod when ε' = 1. It is known that the power-law behavior at high shear rates is very different for these two extremal cases. We employ Brownian dynamics simulation to not only recover the limiting cases but to find a gradual variation of the power-law behaviors at large dimensionless shear rates upon varying ε'. The fact that experimental data are usually located between these two extremes strongly advocates the significance of studying the solution of the Curtiss-Bird model. This is exemplified in this work by comparing the solution of this model with available rheological data for semiflexible biological systems that are clearly not captured by the original Doi-Edwards or simplified Curtiss-Bird models.

  13. Solution of the complete Curtiss-Bird model for polymeric liquids subjected to simple shear flow

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Kröger, Martin

    2016-03-01

    The complete kinetic theory model for concentrated polymer solutions and melts proposed by Curtiss and Bird is solved for shear flow: (a) analytically by providing a solution for the single-link (or configurational) distribution function as a real basis spherical harmonics expansion and then calculating the materials functions in shear flow up to second order in the dimensionless shear rate and, (b) numerically via the execution of Brownian dynamics simulations. These two methods are actually complementary to each other as the former is accurate only for small dimensionless shear rates where the latter produces results with increasingly large uncertainties. The analytical expansions of the material functions with respect to the dimensionless shear rate reduce to those of the extensively studied, simplified Curtiss-Bird model when ɛ' = 0, and to the rigid rod when ɛ' = 1. It is known that the power-law behavior at high shear rates is very different for these two extremal cases. We employ Brownian dynamics simulation to not only recover the limiting cases but to find a gradual variation of the power-law behaviors at large dimensionless shear rates upon varying ɛ'. The fact that experimental data are usually located between these two extremes strongly advocates the significance of studying the solution of the Curtiss-Bird model. This is exemplified in this work by comparing the solution of this model with available rheological data for semiflexible biological systems that are clearly not captured by the original Doi-Edwards or simplified Curtiss-Bird models.

  14. Flow properties of particles in a model annular shear cell

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhu, H. P.; Yu, A. B.

    2012-05-01

    In order to quantitatively investigate the mechanical and rheological properties of solid flow in a shear cell under conditions relevant to those in an annular cell, we performed a series of discrete particle simulations of slightly polydispersed spheres from quasi-static to intermediate flow regimes. It is shown that the average values of stress tensor components are uniformly distributed in the cell space away from the stationary walls; however, some degree of inhomogeneity in their spatial distributions does exist. A linear relationship between the (internal/external) shear and normal stresses prevails in the shear cell and the internal and external friction coefficients can compare well with each other. It is confirmed that annular shear cells are reasonably effective as a method of measuring particle flow properties. The so-called I-rheology proposed by Jop et al. [Nature (London) 441, 727 (2006)] is rigorously tested in this cell system. The results unambiguously display that the I-rheology can effectively describe the intermediate flow regime with a high correlation coefficient. However, significant deviations take place when it is applied to the quasi-static regime, which corresponds to very small values of inertial number.

  15. A constitutive model for layer development in shear zones near the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Montési, Laurent G. J.

    2007-04-01

    The microstructure of ductile shear zones differs from that of surrounding wall rocks. In particular, compositional layering is a hallmark of shear zones. As layered rocks are weaker than their isotropic protolith when loaded in simple shear, layering may hold the key to explain localization of ductile deformation onto ductile shear zones. I propose here a constitutive model for layer development. A two-level mixing theory allows the strength of the aggregate to be estimated at intermediate degrees of layering. A probabilistic failure model is introduced to control how layers develop in a deforming aggregate. This model captures one of the initial mechanism of phase interconnection identified experimentally by Holyoke and Tullis (2006a, 2006b), fracturing of load bearing grains. This model reproduces the strength evolution of these experiments and can now be applied to tectonic modeling.

  16. Interfacial tension of CO2 + brine systems: Experiments and predictive modelling

    NASA Astrophysics Data System (ADS)

    Pereira, Luís M. C.; Chapoy, Antonin; Burgass, Rod; Tohidi, Bahman

    2017-05-01

    In this study the interfacial tension (IFT) between CO2 and brines, in the context of geological storage of CO2, was investigated. Investigations covered both experimental and theoretical aspects of this property over a broad range of conditions, including those found in subsurface formations. Measurements for CO2 + NaCl(aq) systems, of salt molalities 0.98 and 1.98 mol.kg-1, were performed for temperatures and pressures up to 423 K and 69.51 MPa, respectively. Results clearly showed an increase from CO2 + H2O IFT upon the addition of the salt, helping to resolve some discrepancies observed in literature data. Furthermore, a predictive method, based on the Density Gradient Theory, was extended to CO2 + brine systems, with modelled IFT values yielding a good agreement with experiments from this work and literature for brines of single and mixed salts, including NaCl, KCl and CaCl2, and ionic strength up to 2.7 mol.kg-1.

  17. Influence of interfacial interactions on deformation mechanism and interface viscosity in α-chitin-calcite interfaces.

    PubMed

    Qu, Tao; Verma, Devendra; Alucozai, Milad; Tomar, Vikas

    2015-10-01

    The interfaces between organic and inorganic phases in natural materials have a significant effect on their mechanical properties. This work presents a quantification of the interface stress as a function of interface chemical changes (water, organic molecules) in chitin-calcite (CHI-CAL) interfaces using classical non-equilibrium molecular dynamics (NEMD) simulations and steered molecular dynamics (SMD) simulations. NEMD is used to investigate interface stress as a function of applied strain based on the virial stress formulation. SMD is used to understand interface separation mechanism and to calculate interfacial shear stress based on a viscoplastic interfacial sliding model. Analyses indicate that interfacial shear stress combined with shear viscosity can result in variations to the mechanical properties of the examined interfacial material systems. It is further verified with Kelvin-Voigt and Maxwell viscoelastic analytical models representing viscous interfaces and outer matrix. Further analyses show that overall mechanical deformation depends on maximization of interface shear strength in such materials. This work establishes lower and upper bounds of interface strength in the interfaces examined.

  18. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.

    PubMed

    Verruto, Vincent J; Kilpatrick, Peter K

    2008-11-18

    The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film

  19. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    PubMed Central

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  20. Theoretical investigations of the interfacial sliding and buckling of graphene on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Guo, Jian-Gang

    2016-12-01

    Two interfacial failure modes, shear sliding and buckling, of graphene on a flexible substrate subjected to uniaxial compression are investigated. The shear sliding starts at the edge region, and buckling starts at the middle region of graphene. Using shear-lag cohesive zone models and finite element (FE) simulations, the critical strain and maximum strain of graphene are predicted for the interfacial sliding failure. Then, the critical strain for the onset of buckling is derived via the theory of continuum mechanics with the van der Waals (vdW) interaction between graphene and the substrate surface taken into consideration. By comparison of the two critical failure strains and maximum strain of graphene, it is found that there exists a critical length of graphene. As the graphene length is larger than it, interfacial failure goes through four stages of development with increasing loading, including sliding and buckling. Conversely, the buckling of graphene will not occur. Finally, the influence of the interfacial adhesion energy and geometric size of graphene on the critical strains for interfacial sliding and buckling are discussed.

  1. Application of a macroscopic model to predict the band segregation induced by shear deformation of semisolid

    NASA Astrophysics Data System (ADS)

    Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Morishita, K.; Yoshiya, M.; Sugiyama, A.

    2015-06-01

    Semisolid deformation during solicitation can cause some casting defects such as the band segregation. Since the defect formation originates in nature of semisolid, it is of interest to build a model including the nature and to predict the defect formation. In-situ and time- resolve X-ray imaging has proved that rearrangement of solid grains in semisolid dominantly controls deformation and localization of shear strain leads to the band segregation. On the basis of the observations, a macroscopic model, which explicitly includes the rearrangement, is proposed. The model uses two-phase flow model and introduces hydrostatic stresses to express the rearrangement. The model was applied to simple shear of semisolid to confirm instability against shear. Fluctuation of solid fraction gradually increased and consequently shear deformation was localized. The model is also applied to pseudo 2D deformation in a shear cell, of which dimension was the same as that used in the X-ray imaging. The calculation result qualitatively agreed with the experimental results. It was concluded that the model has a potential to simulate the localization of shear and the band segregation. For further improvement, to measure some physical properties, which are closely related to the rearrangement, is required.

  2. Numerical models of fluid-filled fault zones: the effect of fluid flow on shear localization

    NASA Astrophysics Data System (ADS)

    Bianco, R. L.; Sparks, D. W.; Aharonov, E.; Goren, L.; Toussaint, R.

    2013-12-01

    Slip on fault zones occurs within a gouge layer, which consists of a granular material of finely-ground rock that has worn off of the sliding surfaces. Within the gouge layer, the majority of shear is often further localized within narrow bands of grains. The development of this gouge layer and the forces that generate the deformation of the granular medium under constant shear has been extensively studied through both field studies and numerical models. However, there is still no comprehensive set of continuum governing laws to explain and predict where shearing patterns within the gouge material will occur, nor how the localization of shear bands will vary with the inclusion of pore fluids under differing boundary conditions. Since shear in granular materials is always accompanied by dilation and compaction, local pore fluid pressure perturbations are created in shearing regions that drive fluid flow and, in turn, affect grain motions. We use a combined 2-D discrete element/ finite difference numerical model numerical model of a coupled solid and liquid phase matrix governed by the mass conservation laws of a two-phase continuum (Goren et al., JGR, 2011). We model a set of non-cohesive grains that are confined between rough-walled, rigid, porous fault blocks with an independent internal permeability. In a set of models runs, we have independently varied the permeabilities of the gouge layer and the overlying fault blocks and the applied shear velocity and confining stress conditions. We will present results exploring the relationships between compaction/dilation, fluid pressure, and slip localization. In our models, at a given instant, shear is localized in a layer 5-10 grains thick, while the rest of the gouge behaves as an elastic block. These shear bands may occur at one or both boundaries between the gouge and fault blocks, or may 'wander' between the interior and boundaries. In the latter case, the time-integrated shear strain will appear uniform, as if the

  3. Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration.

    PubMed

    Jian, Cuiying; Poopari, Mohammad Reza; Liu, Qingxia; Zerpa, Nestor; Zeng, Hongbo; Tang, Tian

    2016-06-30

    In this work, pendant drop techniques and molecular dynamics (MD) simulations were employed to investigate the effect of asphaltene concentrations on the interfacial tension (IFT) of the oil/water interface. Here, oil and asphaltene were represented by, respectively, common organic solvents and Violanthrone-79, and two types of concentration, i.e., bulk concentration and surface concentration, were examined. Correlations between the IFTs from experiments and MD simulations revealed that surface concentration, rather than the commonly used bulk concentration, determines the reduction of oil/water IFTs. Through analyzing the hydrogen bonding, the underlying mechanism for the IFT reduction was proposed. Our discussions here not only enable the direct comparison between experiments and MD simulations on the IFTs but also help with future interfacial studies using combined experimental and simulation approaches. The methodologies used in this work can be extended to many other oil/water interfaces in the presence of interfacially active compounds.

  4. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Dynamics of model blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Callens, Natacha; Minetti, Christophe; Coupier, Gwennou; Dubois, Frank; Misbah, Chaouqi

    The dynamics of a vesicle suspension in shear flow was investigated by digital holographic microscopy [1] in parabolic flights and in the MASER 11 sounding rocket. Vesicles are lipid membranes which mimic the mechanical behaviour of cells, such as red blood cells in flow. In a simple shear flow between parallel walls, a lift force of purely viscous origin pushes vesicles away from walls. Our parabolic flight experiments [2] reveal that the lift velocity in a dilute suspen-sion is well described by theoretical predictions by Olla. As vesicles gather near the center of the flow chamber due to lift forces from both walls, one expects hydrodynamic interactions of pairs of vesicles to result in shear induced diffusion in the suspension. The BIOMICS experi-ment in the MASER 11 sounding rocket revealed a complex spatial structure of a polydisperse vesicle suspension due to the interplay between lift forces from the walls and hydrodynamic interactions. These phenomena have a strong impact on the structure and rheology of blood in small vessels, and a precise knowledge of the dynamics of migration and diffusion of soft particles in flow can lead to alternative ways to separate and sort blood cells. 1. Dubois, F., Schockaert, C., Callens, N., Yourrassowsky, C., "Focus plane detection criteria in digital holography microscopy by amplitude analysis", Opt. Express, Vol. 14, pp 5895-5908, 2006 2. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C., Podgorski, T., "Hydrodynamics lift of vesicles under shear flow in microgravity", Europhys. Lett., Vol. 83, p. 24002, 2008

  6. Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior

    SciTech Connect

    Binder, Kurt; Virnau, Peter; Statt, Antonia

    2014-10-14

    In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of “inverted swan neck”-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

  7. Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior

    NASA Astrophysics Data System (ADS)

    Binder, Kurt; Virnau, Peter; Statt, Antonia

    2014-10-01

    In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

  8. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  9. Performance comparison of optical flow and block matching methods in shearing and rotating models

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Luo, Jianwen

    2017-03-01

    Accurate estimation of myocardial motion based on ultrasound imaging is of great value for evaluation of cardiac function. Typically, myocardium undergoes complex motion and deformation including shear deformation and rotation. Thus a compression model is insufficient for investigating the performance of different algorithms. In this study, simulated shearing and rotating models are used to study the performance of optical flow (OF) and block matching (BM) methods based on ultrasound radio-frequency (RF) data. A deforming model was simulated with applied axial shear strains of 2- 6%, respectively. In addition, a rotating model was simulated with rotation angles of 0.5°-4°, respectively. Axial strains of 0%, 1% and 2% were also applied to these two models to study the influence of applied strain on the estimation of axial shear strain and rotation. To quantify the estimation performance, the root mean square error (RMSE) was used as the evaluation criterion. The results show that OF has lower RMSEs of the estimated displacement, strain and rotation angle than BM, especially at large axial shear strains and rotation angles. For the shearing model, the RMSEs of axial strains, lateral strains, and axial shear strains are reduced by up to 95.5%, 70.3% and 90.0%, respectively. For the rotating model, the RMSEs of axial strains, lateral strains, and rotation angles are reduced by up to 96.9%, 93.4% and 89.7%, respectively. OF is proved to outperform BM and thus is recommended to be used for shear strain and rotation estimation. The validations of phantom and in-vivo experiments are still required.

  10. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    PubMed

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Forward modeling of ice topography on Mars to infer basal shear stress conditions

    NASA Astrophysics Data System (ADS)

    Banks, M. E.; Pelletier, J. D.

    2008-01-01

    Understanding the history of ice caps on Mars could reveal important information about Martian geologic and climatic history. To do this, an ice reconstruction model is needed that operates over complex topography and can be constrained with a limited number of free parameters. In this study we developed a threshold-sliding model for ice cap morphology based on the classic model of Nye later incorporated into the models of Reeh and colleagues. We have updated the Nye-Reeh model with a new numerical algorithm. Although the model was originally developed to model perfectly plastic deformation, it is applicable to any ice body that deforms when a threshold basal shear stress is exceeded. The model requires three inputs: a digital elevation model of bed topography, a ``mask'' grid that defines the position of the ice terminus, and a function defining the threshold basal shear stress. To test the robustness of the model, the morphology of the Greenland ice sheet is reconstructed using an empirical equation between threshold basal shear stress and ice surface slope. The model is then used to reconstruct the morphology of ice draping impact craters on the margins of the south polar layered deposits using an inferred constant basal shear stress of ~0.6 bar for the majority of the examples. This inferred basal shear stress value is almost 1/3 of the average basal shear stress calculated for the Greenland ice sheet. What causes this lower basal shear stress value on Mars is unclear but could involve the strain-weakening behavior of ice.

  12. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method

    NASA Astrophysics Data System (ADS)

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P.; Quigley, David

    2017-02-01

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  13. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method.

    PubMed

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David

    2017-02-21

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  14. Asymmetric magnetic reconnection with out-of-plane shear flows in a two dimensional hybrid model

    SciTech Connect

    Wang, Lin; Wang, Xiao-Gang; Wang, Xian-Qu; Liu, Yue

    2015-05-15

    Effects of out-of-plane shear flows on asymmetric magnetic reconnect are investigated in a two-dimensional (2D) hybrid model with an initial Harris sheet equilibrium. It is found that the out-of-plane flow with an in-plane shear can significantly change the asymmetric reconnection process as well as the related geometry. The magnetic flux, out-of-plane magnetic field, in-plane flow vorticity, plasma density, and the reconnection rate are discussed in detail. The results are in comparison with the cases without the shear flows to further understand the effect.

  15. Interfacial Processes in Model Lithium Ion Systems Probed with Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicolau, Bruno G.; Garcia Rey, Natalia; Dlott, Dana

    2014-06-01

    Vibrational sum frequency generation (SFG) spectroscopy was used to probe electrochemical processes taking place at the interface between metal anodes and the liquid phase in model lithium ion systems. Lithium ion batteries have been extensively studied and characterized by numerous techniques. However, the mechanisms behind many properties are still unclear due to the lack of techniques that can directly probe them in situ. The formation of the electrode passivating layer known as solid-electrolyte interphase (SEI) is one such example. During the first charging cycle of a battery, some of the electrolyte undergoes reduction at the electrode surface forming an electrically isolating barrier that prevents the subsequent reduction of more electrolyte molecules. The SFG selection rules suppress signals from molecules in centrosymmetric environments such as electrolyte layers, so SFG is a selective probe of interfacial environments such as the SEI. In this study, ethylene carbonate's (EC) response to potential cycling was observed. EC is commonly used as a high permittivity solvent in batteries and is widely believed to be the main component of the SEI in its reduced form, lithium ethylene dicarbonyl. EC's carbonyl stretch (1850 cm-1) was measured in conjunction with cyclic voltammetry experiments. The SFG intensity showed remarkable agreement with the changing potential, as seen in the figure below. The shoulders on each side of the peaks in (a) are especially interesting, as they correspond to the potentials where lithium metal is oxidized and reduced. Vibrational modes found at 1300-1400 cm-1, usually assigned to the reduced form of EC, are also being studied in order to provide more information on the nature of the SEI.

  16. Modeling phase transitions during the crystallization of a multicomponent fat under shear

    SciTech Connect

    Mazzanti, Gianfranco; Marangoni, Alejandro G.; Idziak, Stefan H.J.

    2005-04-01

    The crystallization of multicomponent systems involves several competing physicochemical processes that depend on composition, temperature profiles, and shear rates applied. Research on these mechanisms is necessary in order to understand how natural materials form crystalline structures. Palm oil was crystallized in a Couette cell at 17 and 22 deg. C under shear rates ranging from 0 to 2880 s{sup -1} at a synchrotron beamline. Two-dimensional x-ray diffraction patterns were captured at short time intervals during the crystallization process. Radial analysis of these patterns showed shear-induced acceleration of the phase transition from {alpha} to {beta}{sup '}. This effect can be explained by a simple model where the {alpha} phase nucleates from the melt, a process which occurs independently of shear rate. The {alpha} phase grows according to an Avrami growth model. The {beta}{sup '} phase nucleates on the {alpha} crystallites, with the amount of {beta}{sup '} crystal formation dependent on the rate of transformation of {alpha} to {beta}{sup '} as well as the growth rate of the {beta}{sup '} phase from the melt. The shear induced {alpha}-{beta}{sup '} phase transition acceleration occurs because under shear, the {alpha} nuclei form many distinct small crystallites which can easily transform to the {beta}{sup '} form, while at lower shear rates, the {alpha} nuclei tend to aggregate, thus retarding the nucleation of the {beta}{sup '} crystals. The displacement of the diffraction peak positions revealed that increased shear rate promotes the crystallization of the higher melting fraction, affecting the composition of the crystallites. Crystalline orientation was observed only at shear rates above 180 s{sup -1} at 17 deg. C and 720 s{sup -1} at 22 deg. C.

  17. Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport

    NASA Astrophysics Data System (ADS)

    Ong, Zhun-Yong; Zhang, Gang

    2015-05-01

    The Kapitza or interfacial thermal resistance at the boundary of two different insulating solids depends on the transmission of phonons across the interface and the phonon dispersion of either material. We extend the existing atomistic Green's function (AGF) method to compute the probability for individual phonon modes to be transmitted across the interface. The extended method is based on the concept of the Bloch matrix and allows us to determine the wavelength and polarization dependence of the phonon transmission as well as to analyze efficiently the contribution of individual acoustic and optical phonon modes to interfacial thermal transport. The relationship between the phonon transmission probability and dispersion is explicitly established. A detailed description of the method is given and key formulas are provided. To illustrate the role of the phonon dispersion in interfacial thermal conduction, we apply the method to study phonon transmission and thermal transport at the armchair interface between monolayer graphene and hexagonal boron nitride. We find that the phonon transmission probability is high for longitudinal (LA) and flexural (ZA) acoustic phonons at normal and oblique incidence to the interface. At room temperature, the dominant contribution to interfacial thermal transport comes from the transverse-polarized phonons in graphene (45.5%) and longitudinal-polarized phonons in boron nitride (47.4%).

  18. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.

    PubMed

    Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F

    2011-07-01

    A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

  19. Modelling flow and heat transfer in two-fluid interfacial flows, with applications to drops and jets

    NASA Astrophysics Data System (ADS)

    Mehdi-Nejad, Vala

    2003-10-01

    A two-dimensional, axi-symmetric model is developed to calculate flow and heat transfer in a two-fluid system. The model uses one set of the governing equations combined with a volume tracking method on a fixed structured mesh to model the simultaneous movement of mass, momentum and energy across cell boundaries. Both first and second-order methods are used to approximate temperature fields with sharp gradients that exist near a fluid-fluid interface. The model is first used to simulate the effect of surrounding air during a droplet impact. Bubble entrapment is observed in both numerical simulation and experimental photographs. The impact of water, n-heptane and molten nickel droplets on a solid surface is simulated. When a droplet approaches another surface, air in the gap between them was forced out. Increased air pressure below the droplet creates a depression in its surface, in which air is trapped. Different behaviors observed for water and n-heptane simulations are attributed to differences in wetting behavior. Next, to demonstrate the capabilities of the model, the interfacial heat transfer from molten tin droplets falling in an oil bath is modelled. The development of vortices behind droplets is simulated and the effect of fluid recirculation and oil thermal conductivity on heat dissipation is studied. The thesis concludes with application of the model to a study of interfacial heat transfer during jet break up. It is demonstrated that the change of fluid properties associated with interfacial heat transfer affects the jet break up and the resulting droplet size. It is also shown that obtaining a desirable droplet size during jet break up not only depends on hydrodynamic conditions such as nozzle diameter, jet initial velocity, and pressure, but also on thermal conditions such as the initial jet temperature and the surrounding fluid thermal properties.

  20. Tomography from the next generation of cosmic shear experiments for viable f(R) models

    SciTech Connect

    Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F. E-mail: diaferio@ph.unito.it

    2011-07-01

    We present the cosmic shear signal predicted by two viable cosmological models in the framework of modified-action f(R) theories. We use f(R) models where the current accelerated expansion of the Universe is a direct consequence of the modified gravitational Lagrangian rather than Dark Energy (DE), either in the form of vacuum energy/cosmological constant or of a dynamical scalar field (e.g. quintessence). We choose Starobinsky's (St) and Hu and Sawicki's (HS) f(R) models, which are carefully designed to pass the Solar System gravity tests. In order to further support — or rule out — f(R) theories as alternative candidates to the DE hypothesis, we exploit the power of weak gravitational lensing, specifically of cosmic shear. We calculate the tomographic shear matrix as it would be measured by the upcoming ESA Cosmic Vision Euclid satellite. We find that in the St model the cosmic shear signal is almost completely degenerate with ΛCDM, but it is easily distinguishable in the HS model. Moreover, we compute the corresponding Fisher matrix for both the St and HS models, thus obtaining forecasts for their cosmological parameters. Finally, we show that the Bayes factor for cosmic shear will definitely favour the HS model over ΛCDM if Euclid measures a value larger than ∼ 0.02 for the extra HS parameter n{sub HS}.

  1. Modelling the Shear Behaviour of Clean Rock Discontinuities Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Dantas Neto, Silvrano Adonias; Indraratna, Buddhima; Oliveira, David Américo Fortuna; de Assis, André Pacheco

    2017-07-01

    Since the mechanical behaviour of rock masses is influenced by the shear behaviour of their discontinuities, analytical models are being developed to describe the shear behaviour of rock discontinuities. The aim of this paper is to present a model to predict the shear behaviour of clean rock discontinuities developed by using artificial neural networks (ANN), as an alternative to the existing analytical models which sometimes require certain parameters obtained from large-scale laboratory tests which are not always available. Results from direct shear tests on different boundary conditions and types of discontinuities have been used to develop this ANN model, whose input parameters contain the boundary normal stiffness, the initial normal stress, the joint roughness coefficient, the compressive strength of the intact rock, the basic friction angle and the horizontal displacement of a joint. This proposed ANN model fits the experimental data better than some existing analytical models, and it can satisfactorily describe how governing parameters influence the shear behaviour of clean rock discontinuities. This paper also presents a practical application where the proposed ANN model is used to analyse the stability of a rock slope.

  2. Prediction of rheology of shear thickening fluids using phenomenological and artificial neural network models

    NASA Astrophysics Data System (ADS)

    Arora, Sanchi; Laha, Animesh; Majumdar, Abhijit; Butola, Bhupendra Singh

    2017-08-01

    Prediction models for the viscosity curve of a shear thickening fluid (STF) over a wide range of shear rate at different temperatures were developed using phenomenological and artificial neural network (ANN) models. STF containing 65% (w/w) silica nanoparticles was prepared using polyethylene glycol (PEG) as dispersion medium, and tested for rheological behavior at different temperatures. The experimental data set was divided into training data and testing data for the model development and validation, respectively. For both the models, the viscosity of STF was estimated for all the zones with good fit between experimental and predicted viscosity, for both training and testing data sets.

  3. Lagrangian statistics in uniform shear flow: Direct numerical simulation and Lagrangian stochastic models

    NASA Astrophysics Data System (ADS)

    Sawford, B. L.; Yeung, P. K.

    2001-09-01

    Direct numerical simulation calculations of Lagrangian statistics for homogeneous turbulence in uniform shear flow are used to test the performance of two different Lagrangian stochastic models of turbulent dispersion. These two models differ in their representation of Eulerian acceleration statistics. In particular one of the models imparts an excessively large mean rotation to the trajectories in the plane of the shear, while the other is nonrotational. We show that this rotation degrades the model's prediction of Lagrangian statistics such as the velocity correlation function and the dispersion. Compared with the predictions of the nonrotational model, the excessive rotation reduces dispersion in the shear plane by up to a factor of 2 and introduces spurious oscillations into the velocity covariance. These differences are typical of those for shear flows at equilibrium, and may be even greater for flows not at equilibrium. The Eulerian differences thus also serve as a useful indication of the performance of these models in predicting Lagrangian statistics. We also show that for the present shear flow the behavior of the Lagrangian velocity structure function for time lags between the Kolmogorov and energy-containing time scales is consistent with corresponding analyses of forced isotropic turbulence. The present results are consistent with a revised value C0≈6 for the universal constant in the inertial subrange of the Lagrangian velocity structure function. This finding suggests that the artificial forcing of the isotropic turbulence simulations does not distort estimates of C0.

  4. Application of a Reynolds stress turbulence model to the compressible shear layer

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Balakrishnan, L.

    1990-01-01

    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.

  5. Application of a Reynolds stress turbulence model to the compressible shear layer

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Balakrishnan, L.

    1990-01-01

    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.

  6. Variable aspect ratio method in the Xu-White model for shear-wave velocity estimation

    NASA Astrophysics Data System (ADS)

    Bai, Jun-Yu; Yue, Cheng-Qi; Liang, Yi-Qiang; Song, Zhi-Xiang; Ling, Su; Zhang, Yang; Wu, Wei

    2013-06-01

    Shear-wave velocity logs are useful for various seismic interpretation applications, including bright spot analyses, amplitude-versus-offset analyses and multicomponent seismic interpretations. This paper presents a method for predicting the shear-wave velocity of argillaceous sandstone from conventional log data and experimental data, based on Gassmann's equations and the Xu-White model. This variable aspect ratio method takes into account all the influences of the matrix nature, shale content, porosity size and pore geometry, and the properties of pore fluid of argillaceous sandstone, replacing the fixed aspect ratio assumption in the conventional Xu-White model. To achieve this, we first use the Xu-White model to derive the bulk and shear modulus of dry rock in a sand-clay mixture. Secondly, we use Gassmann's equations to calculate the fluid-saturated elastic properties, including compressional and shear-wave velocities. Finally, we use the variable aspect ratio method to estimate the shear-wave velocity. The numerical results indicate that the variable aspect ratio method provides an important improvement in the application of the Xu-White model for sand-clay mixtures and allows for a variable aspect ratio log to be introduced into the Xu-White model instead of the constant aspect ratio assumption. This method shows a significant improvement in predicting velocities over the conventional Xu-White model.

  7. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations.

    PubMed

    Daneshmand, Farhang; Ghavanloo, Esmaeal; Amabili, Marco

    2011-07-07

    Wave propagation along the microtubules is one of the issues of major concern in various microtubule cellular functions. In this study, the general wave propagation behavior in protein microtubules is investigated based on a first-order shear deformation shell theory for orthotropic materials, with particular emphasis on the role of strongly anisotropic elastic properties of microtubules. According to experimental observation, the first-order shear deformation theory is used for the modeling of microtubule walls. A general displacement representation is introduced and a type of coupled polynomial eigenvalue problem is developed. Numerical examples describe the effects of shear deformation and rotary inertia on wave velocities in orthotropic microtubules. Finally, the influences of the microtubule shear modulus, axial external force, effective thickness and material temperature dependency on wave velocities along the microtubule protofilaments, helical pathway and radial directions are elucidated. Most results presented in the present investigation have been absent from the literature for the wave propagation in microtubules.

  8. Modeling Force Transfer around Openings in Wood-Frame Shear Walls

    Treesearch

    Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker

    2012-01-01

    This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...

  9. Effect of nanoscale patterned interfacial roughness on interfacial toughness.

    SciTech Connect

    Zimmerman, Jonathan A.; Moody, Neville Reid; Mook, William M.; Kennedy, Marian S.; Bahr, David F.; Zhou, Xiao Wang; Reedy, Earl David, Jr.

    2007-09-01

    The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

  10. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  11. A method for three-dimensional modeling of wind-shear environments for flight simulator applications

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1984-01-01

    A computational method for modeling severe wind shears of the type that have been documented during severe convective atmospheric conditions is offered for use in research and training flight simulation. The procedure was developed with the objectives of operational flexibility and minimum computer load. From one to five, simple down burst wind models can be configured and located to produce the wind field desired for specific simulated flight scenarios. A definition of related turbulence parameters is offered as an additional product of the computations. The use of the method to model several documented examples of severe wind shear is demonstrated.

  12. A model for the generation of strongly nonlinear, weakly nonhydrostatic interfacial waves in a rotating ocean

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Gerkema, Theo

    2015-04-01

    We derive a new two-fluid layer model consisting of a set of forced rotation-modified Boussinesq equations for studying the generation and evolution of strongly nonlinear weakly nonhydrostatic dispersive interfacial waves in a rotating ocean. The forcing for internal tide generation is due to tide-topography interaction (an oscillating non-flat bottom mimicking a barotropic tidal flow over topography). The resulting model forms a generalization of the Miyata-Choi-Camassa (MCC) equations, to which we add topography, tidal forcing and Coriolis dispersion due to Earth's rotation. Solitons are generated by disintegration of the first-mode of the internal tide. Because of strong non-linearity, they can attain a table-shaped form. Our moving (accelerating) topography is not an inertial frame and, hence, the transformation to a frame at rest is not simply a Galilean transformation. The effect of this transformation is discussed and is shown to be slight for the parameters under consideration. The set of equations is solved numerically using finite-difference methods. Numerical experiments using these equations are a useful tool for exploring and interpreting the conditions under which full nonlinearity becomes important for soliton generation. In particular, this is the case for table-top solitons when approaching the theoretical maximum amplitude and the appearance of nonlinearities when the two-layer system consists of two layers of equal thickness. At the early stage of the strongly nonlinear disintegration of an internal tide into table-top solitons, we observe that the low mode internal tide splits up into two different groups of rank-ordered solitons: a train of depressions on the leading edge and a train of elevations, after the former packet, with initially smaller amplitudes. Evolving in time, the largest elevations reach the smaller depressions in the train ahead, and three leading solitons at the front attain almost equal amplitudes. The table-top soliton

  13. A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites

    SciTech Connect

    Wang, Yang; Weng, George J.; Meguid, Shaker A.; Hamouda, Abdel Magid

    2014-05-21

    A continuum model that possesses several desirable features of the electrical conduction process in carbon-nanotube (CNT) based nanocomposites is developed. Three basic elements are included: (i) percolation threshold, (ii) interface effects, and (iii) tunneling-assisted interfacial conductivity. We approach the first one through the selection of an effective medium theory. We approach the second one by the introduction of a diminishing layer of interface with an interfacial conductivity to build a 'thinly coated' CNT. The third one is introduced through the observation that interface conductivity can be enhanced by electron tunneling which in turn can be facilitated with the formation of CNT networks. We treat this last issue in a continuum fashion by taking the network formation as a statistical process that can be represented by Cauchy's probability density function. The outcome is a simple and yet widely useful model that can simultaneously capture all these fundamental characteristics. It is demonstrated that, without considering the interface effect, the predicted conductivity would be too high, and that, without accounting for the additional contribution from the tunneling-assisted interfacial conductivity, the predicted conductivity beyond the percolation threshold would be too low. It is with the consideration of all three elements that the theory can fully account for the experimentally measured data. We further use the developed model to demonstrate that, despite the anisotropy of the intrinsic CNT conductivity, it is its axial component along the CNT direction that dominates the overall conductivity. This theory is also proved that, even with a totally insulating matrix, it is still capable of delivering non-zero conductivity beyond the percolation threshold.

  14. Modeling Transversely Isotropic, Viscoelastic, Incompressible Tissue-like Materials with Application in Ultrasound Shear Wave Elastography

    PubMed Central

    Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.

    2015-01-01

    In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions. PMID:25591921

  15. Ray-tracing model of IBW generated sheared flow for plasma transport control

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    1996-02-01

    A sheared flow generation model based on ion Bernstein wave (IBW) ray-tracing code is developed to improve the sheared flow prediction capability over the previous more analytical calculations. The model provides the momentum drive profile for each ion species for each ray. The calculated driven flow momentum is summed over all ions and all rays in each flux surface. A strong sheared flow is generated near the wave power absorption region since d/dr≊-2 Im kr. The combination of high wave electric fields, large ion response functions, high wave number (which is enhanced near the absorption region), and strong local wave absorption all contribute to make the poloidal sheared flow significant. The model calculation appears to agree well with the induced transport barrier observed during the CH-mode in PBX-M. The model predicts high efficiency for poloidal sheared flow generation in reactor-grade plasmas (e.g. for ITER parameters, PIBW≊10 MW≪Pα.) A simple device/plasma scaling based on the IBW wave behavior near the ion cyclotron absorption layer is also obtained. This technique provides a promising tool for active plasma pressure and bootstrap current profile control, which is essential for advance tokamaks such as TPX and DEMO. The peaking of density and pressure profiles could also benefit TFTR and ITER by enhancing fusion reactivity.

  16. Strain localization in a shear transformation zone model for amorphous solids.

    PubMed

    Manning, M L; Langer, J S; Carlson, J M

    2007-11-01

    We model a sheared disordered solid using the theory of shear transformation zones (STZs). In this mean-field continuum model the density of zones is governed by an effective temperature that approaches a steady state value as energy is dissipated. We compare the STZ model to simulations by Shi [Phys. Rev. Lett. 98, 185505 (2007)], finding that the model generates solutions that fit the data, exhibit strain localization, and capture important features of the localization process. We show that perturbations to the effective temperature grow due to an instability in the transient dynamics, but unstable systems do not always develop shear bands. Nonlinear energy dissipation processes interact with perturbation growth to determine whether a material exhibits strain localization. By estimating the effects of these interactions, we derive a criterion that determines which materials exhibit shear bands based on the initial conditions alone. We also show that the shear band width is not set by an inherent diffusion length scale but instead by a dynamical scale that depends on the imposed strain rate.

  17. Interfacial Area Transport Equation Models and Validation against High Resolution Experimental Data for Small and Large Diameter Vertical Pipes

    NASA Astrophysics Data System (ADS)

    Dave, Akshay J.

    For analyses of Nuclear Power Plants, the current state-of-the-art model for predicting the behavior of two-phase flows is the two-fluid model. In the two-fluid model, balance equations are coupled together through transfer terms that depend on the area of the interface between liquid and gas. Efforts in the past have been focused on the development of an interfacial area transport equation model (IATE) in order to eliminate the drawbacks of static flow regime maps currently used in best-estimate thermal-hydraulic system codes. The IATE attempts to model the dynamic evolution of the gas/liquid interface by accounting for the different interaction mechanisms (i.e. bubble break-up and coalescence). The further development and validation of IATE models has been hindered by the lack of adequate experimental databases in regions beyond the bubbly flow regime. At the TOPFLOW test facility, experiments utilizing wire-mesh sensors have been performed over a wide range of flow conditions, establishing a database of high resolution (in space and time) data. The objective of the dissertation is to evaluate and improve current IATE models using the TOPFLOW database and to assess the uncertainty in the reconstructed interfacial area measured using wire-mesh sensors. The small-diameter Fu-Ishii model was assessed against the TOPFLOW 52 mm data. The model was found to perform well (within the experimental uncertainty of +/-10%) for low void fractions. At high void fractions, the bubble interaction mechanism responsible for poor performance of the model was identified. A genetic algorithm was then used to quantify the correct incidence of this mechanism on the overall evolution of the interfacial area concentration along the pipe vertical axis. The large-diameter Smith-Schlegel model was assessed against the TOPFLOW 198 mm data. This model was also found to perform well at low void fractions. At high void fractions, the good agreement between the model predictions and the

  18. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    PubMed

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-08-08

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction  (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with  but significantly with Ca. Under moderate shear rate (Ca=0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as  increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For  =0.61, the structure maintains layered HCP for Ca=0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on  and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with  but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions. © 2017 IOP Publishing Ltd.

  19. The role of interfacial layers in the enhanced thermal conductivity of nanofluids : a renovated Hamilton-Crosser model.

    SciTech Connect

    Yu, W.; Choi, S. U.-S.; Energy Technology

    2004-08-01

    We previously developed a renovated Maxwell model for the effective thermal conductivity of nanofluids and determined that the solid/liquid interfacial layers play an important role in the enhanced thermal conductivity of nanofluids. However, this renovated Maxwell model is limited to suspensions with spherical particles. Here, we extend the Hamilton--Crosser model for suspensions of nonspherical particles to include the effect of a solid/liquid interface. The solid/liquid interface is described as a confocal ellipsoid with a solid particle. The new model for the three-phase suspensions is mathematically expressed in terms of the equivalent thermal conductivity and equivalent volume fraction of anisotropic complex ellipsoids, as well as an empirical shape factor. With a generalized empirical shape factor, the renovated Hamilton-Crosser model correctly predicts the magnitude of the thermal conductivity of nanotube-in-oil nanofluids. At present, this new model is not able to predict the nonlinear behavior of the nanofluid thermal conductivity.

  20. Modeling of the blood rheology in steady-state shear flows

    SciTech Connect

    Apostolidis, Alex J.; Beris, Antony N.

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  1. Dynamic interfacial behavior of viscoelastic aqueous hyaluronic acid: effects of molecular weight, concentration and interfacial velocity.

    PubMed

    Vorvolakos, Katherine; Coburn, James C; Saylor, David M

    2014-04-07

    An aqueous hyaluronic acid (HA(aq)) pericellular coat, when mediating the tactile aspect of cellular contact inhibition, has three tasks: interface formation, mechanical signal transmission and interface separation. To quantify the interfacial adhesive behavior of HA(aq), we induce simultaneous interface formation and separation between HA(aq) and a model hydrophobic, hysteretic Si-SAM surface. While surface tension γ remains essentially constant, interface formation and separation depend greatly on concentration (5 ≤ C ≤ 30 mg mL(-1)), molecular weight (6 ≤ MW ≤ 2000 kDa) and interfacial velocity (0 ≤ V ≤ 3 mm s(-1)), each of which affect shear elastic and loss moduli G′ and G′′, respectively. Viscoelasticity dictates the mode of interfacial motion: wetting-dewetting, capillary necking, or rolling. Wetting-dewetting is quantified using advancing and receding contact angles θ(A) and θ(R), and the hysteresis between them, yielding data landscapes for each C above the [MW, V] plane. The landscape sizes, shapes, and curvatures disclose the interplay, between surface tension and viscoelasticity, which governs interfacial dynamics. Gel point coordinates modulus G and angular frequency ω appear to predict wetting-dewetting (G < 75 ω0.2), capillary necking (75 ω0.2 < G < 200 ω0.075) or rolling (G > 200ω0.075). Dominantly dissipative HA(aq) sticks to itself and distorts irreversibly before separating, while dominantly elastic HA(aq) makes contact and separates with only minor, reversible distortion. We propose the dimensionless number (G′V)/(ω(r)γ), varying from 10(-5) to 10(3) in this work, as a tool to predict the mode of interface formation-separation by relating interfacial kinetics with bulk viscoelasticity. Cellular contact inhibition may be thus aided or compromised by physiological or interventional shifts in [C, MW, V], and thus in (G′V)/(ω(r)γ), which affect both mechanotransduction and interfacial dynamics. These observations

  2. Modeling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors.

    PubMed

    López-Rosales, Lorenzo; García-Camacho, Francisco; Sánchez-Mirón, Asterio; Contreras-Gómez, Antonio; Molina-Grima, Emilio

    2017-08-31

    The shear-sensitive dinoflagellate microalga Karlodinium veneficum was grown in a sparged bubble column photobioreactor. The influence of mass transfer and shear stress on cell growth and physiology (concentration of reactive oxygen species, membrane fluidity and photosynthetic efficiency) was studied, and a model describing cell growth in term of mass transfer and culture parameters (nozzle sparger diameter, air flow rate, and culture height) was developed. The results show that mass transfer limits cell growth at low air-flow rates, whereas the shear stress produced by the presence of bubbles is critically detrimental for air flow rates above 0.1vvm. The model developed in this paper adequately represents the growth of K. veneficum. Moreover, the parameters of the model indicate that bubble rupture is much more harmful for cells than bubble formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Application of a shear-modified GTN model to incremental sheet forming

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Malhotra, Rajiv; Liu, W. K.; Cao, Jian

    2013-12-01

    This paper investigates the effects of using a shear-modified Gurson-Tvergaard-Needleman model, which is based on the mechanics of voids, for simulating material behavior in the incremental forming process. The problem chosen for analysis is a simplified version of the NUMISHEET 2014 incremental forming benchmark test. The implications of the shear-modification of the model specifically for incremental sheet forming processes are confirmed using finite element analysis. It is shown that including the shear term has a significant effect on fracture timing in incremental forming, which is not well reflected in the observed tensile test simulations for calibration. The numerical implementation and the need for comprehensive calibration of the model are briefly discussed.

  4. Modelling Force Transfer Around Openings of Full-Scale Shear Walls

    Treesearch

    Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker

    2011-01-01

    Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...

  5. Magnetorotational dynamo instability in statistical models of shearing box turbulence

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Bhattacharjee, Amitava

    2014-10-01

    A large scale dynamo generating a strong azimuthal field is a fundamental component of the turbulence induced by the magnetorotational instability (MRI). The dynamo appears to be inherently time-dependent, producing well-defined butterfly diagrams, and is never kinematic even in its earliest stages, since without the magnetic field the MRI does not exist. In this talk we consider the dynamo in MRI turbulence in its simplest possible form, studying the zero net-flux unstratified shearing box. With the aim of isolating the core dynamo process, we remove as much of the nonlinearity as possible from the system, studying the statistics of driven linear fluctuations in a vertically dependent mean-field that evolves self-consistently due to Reynolds and Maxwell stresses. We find that homogeneous background turbulence becomes unstable above some critical parameter to a mean-field dynamo instability with a strong dependence on magnetic Prandtl number. This instability saturates to either time-independent or time-periodic states with characteristics that strongly resemble features of fully developed MRI turbulence. We discuss the driving and saturation terms in this MRI dynamo and the relation of these to the underlying nonmodal linear dynamics. This work was supported by Max Planck/Princeton Center for Plasma Physics and U.S. DOE (DE-AC02- 09CH11466).

  6. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  7. Magnetic Field Shear in Kinetic Models Steps Toward Understanding Magnetic Reconnection Drivers

    NASA Astrophysics Data System (ADS)

    Black, Carrie; Antiochos, Spiro; DeVore, Rick; Karpen, Judith

    2015-11-01

    In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the eruptive event resides in a strongly sheared magnetic. A pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field and a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. Here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  8. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.

    PubMed

    Soto-Aquino, D; Rosso, D; Rinaldi, C

    2011-11-01

    Ferrofluids are colloidal suspensions of magnetic nanoparticles that exhibit normal liquid behavior in the absence of magnetic fields but respond to imposed magnetic fields by changing their viscosity without loss of fluidity. The response of ferrofluids to constant shear and magnetic fields has received a lot of attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the present work we used rotational Brownian dynamics to study the dynamic properties of ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations were also made. Simulation results show that, for small rotational Péclet number, the in-phase and out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field and frequency of the shear, following a Maxwell-like model with field-dependent viscosity and characteristic time equal to the field-dependent transverse magnetic relaxation time of the nanoparticles. Comparison between simulations and the numerical solution of the ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively agrees with simulations for a wide range of Péclet number and Langevin parameter but has quantitative deviations from the simulations at high values of the Langevin parameter. These predictions indicate an apparent elastic character to the rheology of these suspensions, even though we are considering the infinitely dilute limit in which there are negligible particle-particle interactions and, as such, chains do not form. Additionally, an asymptotic analytical solution of the ferrohydrodynamics equations, valid for Pe<2, was used to demonstrate that the Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates. At higher shear

  9. Modeling of seismic isolation bearings including shear deformation and stability effects

    SciTech Connect

    Chan Ghee Koh ); Kelly, J.M. )

    1989-11-01

    Elastomeric bearings designed for aseismic base isolation typically have a low shear rigidity in order to achieve a low isolation frequency and are thus modeled by a flexural-shear column on the basis of Haringx's theory. The buckling load of a flexural-shear column is considerably reduced by the shear effect. It is therefore essential to account for the stability effect due to a compressive load on the dynamic performance of these bearings. In this paper, an exact viscoelastic model consistent with Haringx's theory is first reviewed. A simplified symmetric model consisting of springs and rigid plates is then discussed. Experimental results for four different sets of natural rubber bearings are presented. It is shown that both models can describe with good accuracy the stability effects on the dynamic stiffness, damping factor and height reduction of bearings. In spite of its simplicity, the simplified model is found to agree very well with the exact model. Lastly, using the simplified model, the applicability of the Southwell plot to predict the buckling load of elastomeric isolation bearings is examined.

  10. Modelling of shear lag effect for piezo-elstodynamic structure for electro-mechanical imedance technique

    NASA Astrophysics Data System (ADS)

    Moharana, Sumedha; Bhalla, Suresh

    2015-03-01

    The impedance based structural health monitoring (SHM) techniques have utilized the electro-mechanical coupling property of piezoelectric materials (piezo-impedance transducers), due to their self-sensing nature (ability to act both as actuators and sensors), and its diminutive in shape and size, cost effectiveness and ease of installation. The adhesive bond acts as an elastic medium which facilitates the transfer of stresses and strains developed due to piezo displacement and also couples the impedance of PZT patch with that of the host structure. The sensitivity of the electro-mechanical impedance (EMI) technique can be enhanced by understanding shear mechanism phenomena of the adhesive layer. This paper reviews the existing shear lag models and discuss the recent advances in impedance based coupled piezo-structural model duly considering the shear lag effect with all responsible piezo-mechanical parameters.

  11. A finite element method for shear stresses calculation in composite blade models

    NASA Astrophysics Data System (ADS)

    Paluch, B.

    1991-09-01

    A finite-element method is developed for accurately calculating shear stresses in helicopter blade models, induced by torsion and shearing forces. The method can also be used to compute the equivalent torsional stiffness of the section, their transverse shear coefficient, and the position of their center of torsion. A grid generator method which is a part of the calculation program is also described and used to discretize the sections quickly and to condition the grid data reliably. The finite-element method was validated on a few sections composed of isotropic materials and was then applied to a blade model sections made of composite materials. Good agreement was obtained between the calculated and experimental data.

  12. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2017-08-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  13. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    SciTech Connect

    Mazzanti,G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 {sup o}C under shear rates from 45 to 1440 s{sup -1} and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material.

  14. Wide shear zones and the spot model: implications from the split-bottom geometry.

    PubMed

    Woldhuis, E; Tighe, B P; van Saarloos, W

    2009-01-01

    The spot model has been developed by Bazant and co-workers to describe quasistatic granular flows. It assumes that granular flow is caused by the opposing flow of so-called spots of excess free volume, with spots moving along the slip lines of Mohr-Coulomb plasticity. The model is two-dimensional and has been successfully applied to a number of different geometries. In this paper we investigate whether the spot model in its simplest form can describe the wide shear zones observed in experiments and simulations of a Couette cell with split bottom.We give a general argument that is independent of the particular description of the stresses, but which shows that the present formulation of the spot model in which diffusion and drift terms are postulated to balance on length scales of order of the spot diameter, i.e. of order 3-5 grain diameters, is difficult to reconcile with the observed wide shear zones. We also discuss the implications for the spot model of co-axiality of the stress and strain rate tensors found in these wide shear flows, and point to possible extensions of the model that might allow one to account for the existence of wide shear zones.

  15. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    SciTech Connect

    Nazemnezhad, Reza E-mail: rnazemnezhad@du.ac.ir; Shokrollahi, Hassan; Hosseini-Hashemi, Shahrokh

    2014-05-07

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E-LJ term in AIREBO potential, epsilon-CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus.

  16. Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    NASA Astrophysics Data System (ADS)

    Nazemnezhad, Reza; Shokrollahi, Hassan; Hosseini-Hashemi, Shahrokh

    2014-05-01

    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6 GPa. These two interlayer shear moduli, 0.25 and 4.6 GPa, can be obtained by sliding a small flake of graphene on a large graphene substrate when the parameter of E_LJ term in AIREBO potential, epsilon_CC, is set to be 2.84 and 45.44 meV, respectively. The SM results for a wide range of bending rigidity values show that the proposed model, i.e., the SM, predicts much better than the previous beam model in which the intralayer stretch is ignored. In addition, it is observed that the model can properly predict the natural frequencies of BLGNRs for various values of the bending rigidity and the interlayer shear modulus.

  17. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning.

    PubMed

    Pelipenko, Jan; Kristl, Julijana; Rošic, Romana; Baumgartner, Saša; Kocbek, Petra

    2012-06-01

    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

  18. Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya

    2016-11-01

    We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.

  19. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  20. Dynamics of interfacial pattern formation

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1983-01-01

    A phenomenological model of dendritic solidification incorporating interfacial kinetics, crystalline anisotropy, and a local approximation for the dynamics of the thermal diffusion field is proposed. The preliminary results are in qualitative agreement with natural dendrite-like pattern formation.

  1. Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal-mechanical approaches

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Yuen, D. A.

    2003-11-01

    Shear zones are the most ubiquitous features observed in planetary surfaces. They appear as a jagged network of faults at the observable brittle surface of planets and, in geological exposures of deeper rocks, they turn into smoothly braided networks of localized shear displacement leaving centimeter wide bands of "mylonitized", reduced grain sizes behind. The overall size of the entire shear network rarely exceeds kilometer scale at depth. Although mylonitic shear zones are only visible to the observer, when uplifted and exposed at the surface, they govern the mechanical behavior of the strongest part of the lithosphere below 10-15 km depth. Mylonitic shear zones dissect plates, thus allowing plate tectonics to develop on the Earth. We review the basic multiscale physics underlying mylonitic, ductile shear zone nucleation, growth and longevity and show that grain size reduction is a symptomatic cause but not necessarily the main reason for localization. We also discuss a framework for analytic and numerical modeling including the effects of thermal-mechanical couplings, thermal-elasticity, the influence of water and void-volatile feedback. The physics of ductile shear zones relies on feedback processes that turn a macroscopically homogenously deforming body into a heterogeneously slipping solid medium. Positive feedback can amplify strength heterogeneities by cascading through different scales. We define basic, intrinsic length scales of strength heterogeneity such as those associated with plasticity, grain size, fluid-inclusion and thermal diffusion length scale. For an understanding ductile shear zones we need to consider the energetics of deformation. Shear heating introduces a jerky flow phenomenon potentially accompanied by ductile earthquakes. Additional focusing due to grain size reduction only operates for a narrow parameter range of cooling rates. For the long time scale, deformational energy stored inside the shear zone through plastic dilation or

  2. Modeling and calculation of turbulent transport in free-shear flows

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Abdol-Hamid, K.

    1987-01-01

    In this work the applicability of the combined bulk convection and gradient transport hypotheses for modeling turbulent diffusion is investigated. The resulting model equation, namely the one-equation model, is solved for free-shear flows by an implicit finite-difference method. Results indicate that significant improvements over previous models can be achieved with this new formulation of turbulent diffusion for both heat and momentum transport.

  3. A Deterministic Interfacial Cyclic Oxidation Spalling Model. Part 2; Algebraic Approximation, Descriptive Parameters, and Normalized Universal Curve

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    A cyclic oxidation interfacial spalling model has been developed in Part 1. The governing equations have been simplified here by substituting a new algebraic expression for the series (Good-Smialek approximation). This produced a direct relationship between cyclic oxidation weight change and model input parameters. It also allowed for the mathematical derivation of various descriptive parameters as a function of the inputs. It is shown that the maximum in weight change varies directly with the parabolic rate constant and cycle duration and inversely with the spall fraction, all to the 1/2 power. The number of cycles to reach maximum and zero weight change vary inversely with the spall fraction, and the ratio of these cycles is exactly 1:3 for most oxides. By suitably normalizing the weight change and cycle number, it is shown that all cyclic oxidation weight change model curves can be represented by one universal expression for a given oxide scale.

  4. Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ)

    SciTech Connect

    Ke, Y.; Ortola, S.; Beaucour, A.L.; Dumontet, H.

    2010-11-15

    An approach which combines both experimental techniques and micromechanical modelling is developed in order to characterise the elastic behaviour of lightweight aggregate concretes (LWAC). More than three hundred LWAC specimens with various lightweight aggregate types (5) of several volume ratios and three different mortar matrices (normal, HP, VHP) are tested. The modelling is based on iterative homogenisation process and includes the ITZ specificities experimentally observed with scanning electron microscopy (SEM). In agreement with experimental measurements, the effects of mix design parameters as well as of the interfacial transition zone (ITZ) on concrete mechanical performances are quantitatively analysed. Confrontations with experimental results allow identifying the elastic moduli of LWA which are difficult to determine experimentally. Whereas the traditional empirical formulas are not sufficiently precise, predictions of LWAC elastic behaviours computed with the micromechanical models appear in good agreement with experimental measurements.

  5. Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria

    PubMed Central

    2014-01-01

    Introduction A mouse model of progeria derived by insertion of the human mutant LMNA gene (mLMNA), producing mutant lamin A, shows loss of smooth muscle cells in the media of the ascending aorta. We hypothesized that high shear stress, in the presence of mutant lamin A, induces this vasculopathy and tried to define the molecular and cellular basis for aortic vasculopathy. Methods Ascending and descending aortas from wild type (WT) and mLMNA+ mice were compared using proteomics, Western blots, PCR and immunostaining. To determine whether high fluidic shear stress, known to occur in the ascending aorta, contributed to the vasculopathy, we exposed descending aortas of mLMNA+ mice, with no apparent vasculopathy, to 75 dynes/cm2 shear stress for 30 minutes using a microfluidic system. Results When the mice were one year of age, expression of several mechanotransduction proteins in the ascending aorta, including vimentin, decreased in mLMNA+ mice but no decrease occurred in the descending aorta. High fluidic shear stress produced a significant reduction in vimentin of mLMNA+ mice but not in similarly treated WT mice. Conclusions The occurrence of mutant lamin A and high shear stress correlate with a reduction in the level of mechanotransduction proteins in smooth muscle cells of the media. Reduction of these proteins may contribute over time to development of vasculopathy in the ascending aorta in progeria syndrome. PMID:24661531

  6. On modeling pressure diffusion in non-homogeneous shear flows

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Rogers, M. M.; Durbin, P.; Lele, S. K.

    1996-01-01

    New models are proposed for the 'slow and 'rapid' parts of the pressure diffusive transport based on the examination of DNS databases for plane mixing layers and wakes. The model for the 'slow' part is non-local, but requires the distribution of the triple-velocity correlation as a local source. The latter can be computed accurately for the normal component from standard gradient diffusion models, but such models are inadequate for the cross component. More work is required to remedy this situation.

  7. A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.

    2011-01-01

    In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is

  8. Interfacial Instabilities on a Droplet

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Mehravaran, Kian

    2013-11-01

    The fragmentation of droplets is an essential stage of several natural and industrial applications such as fuel atomization and rain phenomena. In spite of its relatively long history, the mechanism of fragmentation is not clear yet. This is mainly due to small length and time scales as well as the non-linearity of the process. In the present study, two and three-dimensional numerical simulations have been performed to understand the early stages of the fragmentation of an initially spherical droplet. Simulations are performed for high Reynolds and a range of relatively high Weber numbers (shear breakup). To resolve the small-scale instabilities generated over the droplet, a second-order adaptive finite volume/volume of fluids (FV/VOF) method is employed, where the grid resolution is increased with the curvature of the gas-liquid interface as well as the vorticity magnitude. The study is focused on the onset and growth of interfacial instabilities. The role of Kelvin-Helmholtz instability (in surface wave formation) and Rayleigh-Taylor instability (in azimuthal transverse modulation) are shown and the obtained results are compared with the linear instability theories for zero and non-zero vorticity layers. Moreover, the analogy between the fragmentation of a single drop and a co-axial liquid jet is discussed. The current results can be used for the further development of the current secondary atomization models.

  9. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  10. Modeling the phase separation in binary lipid membrane under externally imposed oscillatory shear flow.

    PubMed

    Chen, Xiao-Bo; Niu, Li-Sha; Shi, Hui-Ji

    2008-09-01

    By adding external velocity terms, the two-dimensional time-dependent Ginzburg-Landau (TDGL) equations are modified. Based on this, the phase separation in binary lipid membrane under externally imposed oscillatory shear flow is numerically modeled employing the Cell Dynamical System (CDS) approach. Considering shear flows with different frequencies and amplitudes, several aspects of such a phase evolving process are studied. Firstly, visualized results are shown via snapshot figures of the membrane shape. And then, the simulated scattering patterns at typical moments are presented. Furthermore, in order to more quantitatively discuss this phase-separation process, the time growth laws of the characteristic domain sizes in both directions parallel and perpendicular to the flow are investigated for each case. Finally, the peculiar rheological properties of such binary lipid membrane system have been discussed, mainly the normal stress difference and the viscoelastic complex shear moduli.

  11. Shear-driven particle size segregation: Models, analysis, numerical solutions, and experiments

    NASA Astrophysics Data System (ADS)

    May, Lindsay Bard Hilbert

    Granular materials segregate by particle size when subject to shear, as in avalanches. Particles roll and slide across one another, and other particles fall into the voids that form, with smaller particles more likely to fit than larger particles. Small particles segregate to the bottom of the sample, and larger particles are levered upward. These processes are known as kinetic sieving and squeeze expulsion. The evolution of the volume fraction of small particles (ratio of the volume of small particles to the total volume of the system) corresponds to the evolution of segregation in a binary mixture of particles and can be modeled by a nonlinear first order partial differential equation, provided the velocity or shear is a known function of position. In an avalanche, shear is approximately uniform in depth, however, in boundary driven shear, the velocity is nonlinear and a shear band forms adjacent to the boundary. We explore size segregation with a laboratory experiment and by analyzing a model. We classify solutions to a fundamental initial boundary value problem for avalanche flow in two space dimensions akin to a two dimensional Riemann problem. We describe three solution types; the initial condition determines which solution occurs. We also modify the partial differential equation to model segregation in a system experiencing nonuniform shear. We experimentally investigate size segregation using an annular Couette cell, which is constructed of concentric cylinders and has a moving lower boundary that imparts shear to the system and an upper confining boundary that is free to move vertically to accommodate changes in the volume of the system. Initially, the Couette cell contains a layer of large particles below a layer of small particles. The system dilates as shear begins, then contracts as the sample mixes, and again expands as the sample resegregates; the height of the system is prescribed by the amount of mixing or segregation. At the end of the experiment

  12. Prediction of free shear flows: A comparison of the performance of six turbulence models

    NASA Technical Reports Server (NTRS)

    Launder, B. E.; Morse, A.; Rodi, W.; Spalding, D. B.

    1973-01-01

    The performance is evaluated of three distinct classes of turbulence model. These classes are: (1) Turbulent-viscosity models in which the length scale of turbulence is found by way of algebraic formulas, (2) turbulent-viscosity models in which the length scale of turbulence is found from a partial differential equation of transport, and (3) models in which the shear stress itself is the dependent variable of a partial differential conservation equation. Two models were examined in each class; thus, six different models were tested. A complete mathematical statement of these models is provided and a brief commentary on the models is included.

  13. Component-Based Model for Single-Plate Shear Connections with Pretension and Pinched Hysteresis

    PubMed Central

    Weigand, Jonathan M.

    2016-01-01

    Component-based connection models provide a natural framework for modeling the complex behaviors of connections under extreme loads by capturing both the individual behaviors of the connection components, such as the bolt, shear plate, and beam web, and the complex interactions between those components. Component-based models also provide automatic coupling between the in-plane flexural and axial connection behaviors, a feature that is essential for modeling the behavior of connections under column removal. This paper presents a new component-based model for single-plate shear connections that includes the effects of pre-tension in the bolts and provides the capability to model standard and slotted holes. The component-based models are exercised under component-level deformations calculated from the connection demands via a practical rigid-body displacement model, so that the results of the presented modeling approach remains hand-calculable. Validation cases are presented for connections subjected to both seismic and column removal loading. These validation cases show that the component-based model is capable of predicting the response of single-plate shear connections for both seismic and column removal loads. PMID:28133413

  14. Component-Based Model for Single-Plate Shear Connections with Pretension and Pinched Hysteresis.

    PubMed

    Weigand, Jonathan M

    2017-02-01

    Component-based connection models provide a natural framework for modeling the complex behaviors of connections under extreme loads by capturing both the individual behaviors of the connection components, such as the bolt, shear plate, and beam web, and the complex interactions between those components. Component-based models also provide automatic coupling between the in-plane flexural and axial connection behaviors, a feature that is essential for modeling the behavior of connections under column removal. This paper presents a new component-based model for single-plate shear connections that includes the effects of pre-tension in the bolts and provides the capability to model standard and slotted holes. The component-based models are exercised under component-level deformations calculated from the connection demands via a practical rigid-body displacement model, so that the results of the presented modeling approach remains hand-calculable. Validation cases are presented for connections subjected to both seismic and column removal loading. These validation cases show that the component-based model is capable of predicting the response of single-plate shear connections for both seismic and column removal loads.

  15. Mechanisms of shear failure in artificial fractures of sandstone and their implication for models of hydromechanical coupling

    NASA Astrophysics Data System (ADS)

    Pereira, J. P.; de Freitas, M. H.

    1993-07-01

    Direct shear tests, in which the behaviour of the rock surfaces during shear could be continuously observed, were used to study the shear failure of a profiled and clean discontinuity artificially prepared from natural sandstone. Displacement transducers were used to measure the normal and shear displacements. A series of strain gauges glued on the sides of the upper block provided information on the change of the stress field occurring close to the discontinuities whilst shear displacement increased, and these changes were then compared with the behaviour of the profiled surface. The results of the laboratory tests, the sequence of photographs taken for most of them, and the results conducted with a sample of similar shape made from the same rock material and tested in a rotary shear machine, allowed several stages and mechanisms of failure to be defined: static friction and mobilization of initial shear stiffness; mobilization of sliding; mobilization of brittle fracture; post-peak failure of the teeth; descent of the teeth; gliding and ploughing; commencement of second cycle of shearing. In many respects these stages are similar to those occurring between sliding surfaces of metal and suggest that the analyses developed in tribology may be relevant to the development of constitutive models for predicting the hydromechanical coupled behaviour of a discontinuity with shear displacement. Such models will have to consider these different stages of shear, because the original discontinuity changes its geometry with displacement and is filled with gouge which changes its grain size with displacement.

  16. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.

  17. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault

  18. Development of turbulence models for shear flows by a double expansion technique

    NASA Technical Reports Server (NTRS)

    Yakhot, V.; Orszag, S. A.; Thangam, S.; Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Turbulence models are developed by supplementing the renormalization group (RNG) approach of Yakhot and Orszag with scale expansions for the Reynolds stress and production of dissipation terms. The additional expansion parameter (eta) is the ratio of the turbulent to mean strain time scale. While low-order expansions appear to provide an adequate description of the Reynolds stress, no finite truncation of the expansion for the production of dissipation term in powers of eta suffices - terms of all orders must be retained. Based on these ideas, a new two-equation model and Reynolds stress transport model are developed for turbulent shear flows. The models are tested for homogeneous shear flow and flow over a backward facing step. Comparisons between the model predictions and experimental data are excellent.

  19. Development of turbulence models for shear flows by a double expansion technique

    NASA Technical Reports Server (NTRS)

    Yakhot, V.; Thangam, S.; Gatski, T. B.; Orszag, S. A.; Speziale, C. G.

    1991-01-01

    Turbulence models are developed by supplementing the renormalization group (RNG) approach of Yakhot and Orszag with scale expansions for the Reynolds stress and production of dissipation terms. The additional expansion parameter (eta) is the ratio of the turbulent to mean strain time scale. While low-order expansions appear to provide an adequate description of the Reynolds stress, no finite truncation of the expansion for the production of dissipation term in powers of eta suffices - terms of all orders must be retained. Based on these ideas, a new two-equation model and Reynolds stress transport model are developed for turbulent shear flows. The models are tested for homogeneous shear flow and flow over a backward facing step. Comparisons between the model predictions and experimental data are excellent.

  20. Simultaneous determination of interfacial molarities of amide bonds, carboxylate groups, and water by chemical trapping in micelles of amphiphiles containing peptide bond models.

    PubMed

    Zhang, Yongliang; Romsted, Laurence S; Zhuang, Lanzhen; de Jong, Sander

    2013-01-15

    Chemical trapping is a powerful approach for obtaining experimental estimates of interfacial molarities of weakly basic nucleophiles in the interfacial regions of amphiphile aggregates. Here, we demonstrate that the chemical probe 4-hexadecyl-2,6-dimethylbenzenediazonium ion (16-ArN(2)(+)) reacts competitively with interfacial water, with the amide carbonyl followed by cleavage of the headgroups from the tail at the amide oxygen, and with the terminal carboxylate groups in micelles of two N-acyl amino-acid amphiphiles, sodium N-lauroylsarcosinate (SLS) and sodium N-lauroylglycinate (SLG), simple peptide bond model amphiphiles. Interfacial molarities (in moles per liter of interfacial volume) of these three groups were obtained from product yields, assuming that selectivity toward a particular nucleophile compared to water is the same in an aqueous reference solution and in the interfacial region. Interfacial carboxylate group molarities are ~1.5 M in both SLS and SLG micelles, but the concentration of the amide carbonyl for SLS micelles is ~4.6-5 times less (ca. 0.7 M) than that of SLG micelles (~3 M). The proton on the secondary N of SLG helps solubilize the amide bond in the aqueous region, but the methyl on the tertiary N of SLS helps solubilize the amide bond in the micellar core, reducing its reaction with 16-ArN(2)(+). Application of chemical trapping to proteins in membrane mimetic interfaces should provide insight into the topology of the protein within the interface because trapping of the amide carbonyl and cleavage at the C-N bond occurs only within the interface, and fragment characterization marks those peptide bonds located within the interface.

  1. Extensions of the Ferry shear wave model for active linear and nonlinear microrheology

    PubMed Central

    Mitran, Sorin M.; Forest, M. Gregory; Yao, Lingxing; Lindley, Brandon; Hill, David B.

    2009-01-01

    The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior. PMID:20011614

  2. A spatial model of wind shear and turbulence

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.; Sanborn, V. A.

    1984-01-01

    The purpose of the spatial model considered in the present investigation is to generate the wind environment for use by others for flight simulation. Winds and gusts are provided over any finite area (e.g., aircraft body) from which aircraft loads and moments may be calculated. Three-dimensional autospectral information and correlation are contained in the data. It is pointed out that the three-dimensionality as contained in the spatial model affords much greater realism than widely used one-dimensional models. The resulting simulated wind is a nonlinear, non-Gaussian combination of real atmospheric winds and Gaussian, three-dimensional turbulence modulated by gust intensities which may vary freely as desired over space. The turbulence as represented by a product of a varying gust intensity and simulated turbulence is nonlinear and non-Gaussian.

  3. Edge formation in low-dimensional models of shear transition

    NASA Astrophysics Data System (ADS)

    Lebovitz, Norman

    2010-11-01

    Low dimensional models are used to illustrate the nature of an edge state. In these models the edge is the stable manifold of a lower-branch equilibrium point. It comes into existence in connection with the birth of a periodic orbit via a homoclinic bifurcation as a parameter (the Reynolds number) increases beyond a critical value. Even for values of the Reynolds number less than this critical value, the structure of the basin boundary is such that edge-like behavior occurs in parts of phase space. It is possible to manufacture dynamical systems for which the edge state disappears for sufficiently large parameter values.

  4. An analysis of a joint shear model for jointed media with orthogonal joint sets; Yucca Mountain Site Characterization Project

    SciTech Connect

    Koteras, J.R.

    1991-10-01

    This report describes a joint shear model used in conjunction with a computational model for jointed media with orthogonal joint sets. The joint shear model allows nonlinear behavior for both joint sets. Because nonlinear behavior is allowed for both joint sets, a great many cases must be considered to fully describe the joint shear behavior of the jointed medium. An extensive set of equations is required to describe the joint shear stress and slip displacements that can occur for all the various cases. This report examines possible methods for simplifying this set of equations so that the model can be implemented efficiently form a computational standpoint. The shear model must be examined carefully to obtain a computationally efficient implementation that does not lead to numerical problems. The application to fractures in rock is discussed. 5 refs., 4 figs.

  5. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow.

    PubMed

    Fedosov, Dmitry A; Karniadakis, George Em; Caswell, Bruce

    2010-04-14

    Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees-Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method.

  6. Brittle to ductile transition in a model of sheared granular materials

    NASA Astrophysics Data System (ADS)

    Ma, X.; Elbanna, A. E.

    2016-12-01

    Understanding the fundamental mechanisms of deformation and failure in sheared fault gouge is critical for the development of physics-based earthquake rupture simulations that are becoming an essential ingredient in next generation hazard and risk models. To that end, we use the shear transformation zone (STZ) theory, a non-equilibrium statistical thermodynamics framework to describe viscoplastic deformation and localization in gouge materials as a first step towards developing multiscale models for earthquake source processes that are informed by high-resolution fault zone physics. The primary ingredient of the STZ theory is that inelastic deformation occurs at rare and local non-interacting soft zones known as the shear transformation zones. The larger the number of these STZs the more disordered (the more loose) the layer is. We will describe an implementation of this theory in a 2D/3D finite element framework, accounting for finite deformation, under both axial and shear loading and for dry and saturated conditions. We examine conditions under which a localized shear band may form and show that the initial value of disorder (or the initial porosity) plays an important role. In particular, our simulations suggest that if the material is more compact initially, the behavior is more brittle and the plastic deformation localizes with generating large strength drop. On the other hand, an initially loose material will show a more ductile response and the plastic deformations will be distributed more broadly. We will further show that incorporation of pore fluids alters the localization pattern and changes the stress slip response due to coupling between gouge volume changes (compaction and dilation) and pore pressure build up. We validate the model predictions by comparing them to available experimental observations on strain localization and fault gouge strength evolution. Finally, we discuss the implications of our model for gouge friction and dynamic weakening.

  7. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates.

    PubMed

    Abbas, Fazal; Sudarsan, Rangarajan; Eberl, Hermann J

    2012-04-01

    We investigate the role of non shear stress and shear stressed based detachment rate functions for the longterm behavior of one-dimensional biofilm models. We find that the particular choice of a detachment rate function can affect the model prediction of persistence or washout of the biofilm. Moreover, by comparing biofilms in three settings: (i) Couette flow reactors, (ii) Poiseuille flow with fixed flow rate and (iii) Poiseuille flow with fixed pressure drop, we find that not only the bulk flow Reynolds number but also the particular mechanism driving the flow can play a crucial role for longterm behavior. We treat primarily the single species-case that can be analyzed with elementary ODE techniques. But we show also how the results, to some extent, can be carried over to multi-species biofilm models, and to biofilm models that are embedded in reactor mass balances.

  8. Turbulent transport modelling of separating and reattaching shear flows

    NASA Technical Reports Server (NTRS)

    Launder, B. E.

    1982-01-01

    The improvement of capabilities for computer simulation of turbulent recirculating flows was investigated. Attention has been limited to two dimensional flows and principally to statistically stationary motion. Improvement of turbulence modeling explored the treatment of the near wall sublayer and of the exterior fully turbulent region, working within the framework of turbulence closures requiring the solution of transport equations for the turbulence energy and its dissipation rate. The work on the numerical procedure, based on the Gosman-Pun program TEACH, addressed the problems of incorporating the turbulence model as well as the extension to time dependent flows, the incorporation of a third order approximation of convective transport, and the treatment of non-orthogonal boundaries.

  9. Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Vajdova, Veronika; Wong, Teng-Fong

    2006-12-01

    We studied the mechanics of compactant failure in four sandstones associated with a broad range of failure modes in the brittle-ductile transition. While Berea and Bentheim sandstones can fail by compaction localization, homogeneous cataclastic flow dominates failure modes in Adamswiller and Darley Dale sandstones at high effective pressures. We acquired new experimental data to complement previous studies, focusing on the strain hardening behavior in samples under drained conditions. The initial yield stresses were identified as the critical stresses at the onset of shear-enhanced compaction, subsequent yield stresses were considered to depend on hardening given by plastic volumetric strain. The yield stresses were described by elliptical yield caps in the stress space, and we compared the cap evolution with two constitutive models: the critical state model and the cap model. Bentheim sandstone showed the best agreement with both models to relatively large strains. Darley Dale sandstone showed the best agreement with the associated flow rule as prescribed by the normality condition, which is implicitly assumed in both constitutive models. Shear-enhanced compaction in Bentheim and Berea sandstones was appreciably more than that predicted for an associative flow rule, with the implication that a nonassociative model is necessary for capturing the inelastic and failure behavior of these sandstones over a broad range of effective pressures. With reference to the nonassociative model formulated by Rudnicki and Rice, bifurcation analysis would predict the transition of failure mode from shear band to compaction band and ultimately to cataclastic flow, in qualitative agreement with the experimental observations.

  10. Shear-free axial model in massive Brans-Dicke gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Manzoor, Rubab

    2017-01-01

    This paper explores the influences of dark energy on the shear-free axially symmetric evolution by considering self-interacting Brans-Dicke gravity as a dark energy candidate. We describe energy source of the model and derive all the effective dynamical variables as well as effective structure scalars. It is found that scalar field is one of the sources of anisotropy and dissipation. The resulting effective structure scalars help to study the dynamics associated with dark energy in any axial configuration. In order to investigate shear-free evolution, we formulate a set of governing equations along with heat transport equation. We discuss consequences of shear-free condition upon different SBD fluid models like dissipative non-geodesic and geodesic models. For dissipative non-geodesic case, the rotational distribution turns out to be the necessary and sufficient condition for radiating model. The dissipation depends upon inhomogeneous expansion. The geodesic model is found to be irrotational and non-radiating. The non-dissipative geodesic model leads to FRW model for positive values of the expansion parameter.

  11. A model for a propagating shear band on the basis of a tilt wall dislocation array

    SciTech Connect

    Hirth, J.P.

    1992-03-01

    Microstructural parameters influencing shear band propagation and, ultimately, fracture in steels are reviewed for two types of test. These are the plane strain tension characteristics of spheroidized steels and the mixed mode I/III J-resistance behavior of a rotor steel. In the former case, shear band propagation is associated with voids forming at carbide particles because of incompatibility effects. In the latter case, the mixed mode I/III toughness is less than that in either pure mode I or pure mode III because local plastic flow in the path of the crack produces damage in the form of voids by a process analogous to the first case. A model for the interaction of a shear band and particles, suggested by these results, is proposed in the form of a discontinuous tilt wall of dislocations that breaks away and propagates past the particles. The model is shown to be consistent with several experimental observations, both of shear band characteristics and of the stress required to propagate the band. 35 refs., 4 figs.

  12. Effect of fluid shear stress on portal vein remodeling in a rat model of portal hypertension.

    PubMed

    Wen, Bin; Liang, Jian; Deng, Xin; Chen, Ran; Peng, Peichun

    2015-01-01

    Aims. To explore the effects and mechanisms of fluid shear stress on portal vein remodeling in a rat model of portal hypertension. Methods. Subcutaneous injections of CCl4 were given to establish a rat model of liver cirrhosis and portal hypertension. Biomechanical technology was adopted to determine the dynamic changes of haemodynamic indices and fluid shear stress. Nitric oxide (NO), synthase (NOS), and endothelin-1 (ET-1) of the portal vein blood were measured. Changes in geometric structure and ultrastructure of the portal vein were observed using optical and electron microscopy. Results. After the CC14 injections, rat haemodynamics were notably altered. From week 4 onwards, PVP, PVF, and PVR gradually and significantly increased (P < 0.05 versus baseline). The fluid shear stress declined from week 4 onwards (P < 0.01 versus control group). NO, NOS, and ET-1 increased after repeated CCI4 injections. Hematoxylin and eosin staining showed thickened portal vein walls, with increased inside and outside diameters. Electron microscopy revealed different degrees of endothelial cell degeneration, destruction of basement membrane integrity, proliferating, and hypertrophic smooth muscle cells. Conclusions. Fluid shear stress not only influenced the biomechanical environment of the portal vein but also participated in vascular remodeling.

  13. Fragmentation dynamics within shear bands-a model for aging tectonic faults?

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Herrmann, H. J.; Timonen, J.

    2001-03-01

    A numerical model for packing of fragmenting blocks in a shear band is introduced, and its dynamics is compared with that of a tectonic fault. The shear band undergoes a slow aging process in which the blocks are being grinded by the shear motion and the compression. The dynamics of the model have the same statistical characteristics as the seismic activity in faults. The characteristic magnitude distribution of earthquakes appears to result from frictional slips at small and medium magnitudes, and from fragmentation of blocks at the largest magnitudes. Aftershocks to large-magnitude earthquakes are local recombinations of the fragments before they reach a new quasi-static equilibrium. The aftershocks satisfy Omori's law. Local precursor activity at a few times the normal background level appears at a short time before a major earthquake. Seismic gaps appear as a natural consequence of the aging process of a fault. Explanation of the heat flux and principal stress direction anomalies at the faults both involve the value of fracture stress of the blocks in the gouge. The final form of a tectonic fault is predicted to involve a gouge dominated by fine-grained and rather rounded blocks so that it cannot withstand large shear stresses.

  14. In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation

    PubMed Central

    Wittkowske, Claudia; Reilly, Gwendolen C.; Lacroix, Damien; Perrault, Cecile M.

    2016-01-01

    This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodeling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g., due to extended periods of bed rest or microgravity in space are associated with altered bone remodeling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signaling factors, such as nitric oxide, and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signaling, collagen deposition, and matrix mineralization. Particular attention is given to in vitro set-ups, which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibers, which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models. PMID:27896266

  15. Modeling the relaxation of polymer glasses under shear and elongational loads

    NASA Astrophysics Data System (ADS)

    Fielding, S. M.; Moorcroft, R. L.; Larson, R. G.; Cates, M. E.

    2013-03-01

    Glassy polymers show "strain hardening": at constant extensional load, their flow first accelerates, then arrests. Recent experiments under such loading have found this to be accompanied by a striking dip in the segmental relaxation time. This can be explained by a minimal nonfactorable model combining flow-induced melting of a glass with the buildup of stress carried by strained polymers. Within this model, liquefaction of segmental motion permits strong flow that creates polymer-borne stress, slowing the deformation enough for the segmental (or solvent) modes then to re-vitrify. Here, we present new results for the corresponding behavior under step-stress shear loading, to which very similar physics applies. To explain the unloading behavior in the extensional case requires introduction of a "crinkle factor" describing a rapid loss of segmental ordering. We discuss in more detail here the physics of this, which we argue involves non-entropic contributions to the polymer stress, and which might lead to some important differences between shear and elongation. We also discuss some fundamental and possibly testable issues concerning the physical meaning of entropic elasticity in vitrified polymers. Finally, we present new results for the startup of steady shear flow, addressing the possible role of transient shear banding.

  16. In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation.

    PubMed

    Wittkowske, Claudia; Reilly, Gwendolen C; Lacroix, Damien; Perrault, Cecile M

    2016-01-01

    This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodeling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g., due to extended periods of bed rest or microgravity in space are associated with altered bone remodeling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signaling factors, such as nitric oxide, and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signaling, collagen deposition, and matrix mineralization. Particular attention is given to in vitro set-ups, which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibers, which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models.

  17. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    SciTech Connect

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  18. Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer

    DTIC Science & Technology

    1990-02-01

    source vector containing the terms causing production, destruc- tion and redistribution of the Reynolds stresses . To numerically obtain the solution...OTIC FiLE Copy W. . NASA Contractor Report 182002 ICASE Report No. 90-18 0 ZICASE APPLICATION OF A REYNOLDS STRESS TURBULENCE MODEL TO THE...Virginia 23665-5225 k L APPLICATION OF A REYNOLDS STRESS TURBULENCE . MODEL TO THE COMPRESSIBLE SHEAR LAYER S. Sarkar1 .1’eSo For Institute for

  19. Modeling explosion generated Scholte waves in sandy sediments with power law dependent shear wave speed.

    PubMed

    Soloway, Alexander G; Dahl, Peter H; Odom, Robert I

    2015-10-01

    Experimental measurements of Scholte waves from underwater explosions collected off the coast of Virginia Beach, VA in shallow water are presented. It is shown here that the dispersion of these explosion-generated Scholte waves traveling in the sandy seabed can be modeled using a power-law dependent shear wave speed profile and an empirical source model that determines the pressure time-series at 1 m from the source as a function of TNT-equivalent charge weight.

  20. Shear-free spherically symmetric inhomogeneous cosmological model with heat flow and bulk viscosity

    SciTech Connect

    Deng, Y.; Mannheim, P.D. )

    1990-07-15

    An exact solution to the Einstein equations with a shear-free imperfect-fluid source is obtained. The solution approaches a locally flat Robertson-Walker one in the large-{ital t} limit and thus serves as a viable candidate for a realistic cosmological model. The model built out of this solution is found to be free of horizon, entropy, and flatness problems.

  1. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  2. Assessment of pulsatile wall shear stress in compliant arteries: numerical model, validation and experimental data.

    PubMed

    Salvucci, Fernando P; Perazzo, Carlos A; Barra, Juan G; Armentano, Ricardo L

    2009-01-01

    There is evidence that wall shear stress (WSS) is associated with vascular disease. In particular, it is widely accepted that vascular segments with low or oscillatory values of WSS are more probable to develop vascular disease. It is then necessary to establish a realistic model of the blood flow in blood vessels in order to determine precisely WSS. We proposed a numerical 1D model which takes into account the pulsatile nature of blood flow, the elasticity of the vessel, and its geometry. The model allows the calculation of shear stress. It was validated for stationary situations. Then, we computed the time-dependent WSS distribution from experimental data in the sheep thoracic aorta. Results showed that mean WSS calculated through steady flow and rigid walls models is overestimated. Peak WSS values for pulsatile flow must be considered since they resulted to be at least one order higher than mean values. Oscillations in shear stress in a period showed to be approximately of 40%. These findings show that the proposed model is suitable for estimating time-dependent WSS distributions, and confirm the need of using this kind of model when trying to evaluate realistic WSS in blood vessels.

  3. Impact of blood rheology on wall shear stress in a model of the middle cerebral artery

    PubMed Central

    Bernabeu, Miguel O.; Nash, Rupert W.; Groen, Derek; Carver, Hywel B.; Hetherington, James; Krüger, Timm; Coveney, Peter V.

    2013-01-01

    Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83, 031902. (doi:10.1103/PhysRevE.83.031902)) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences. PMID:24427534

  4. Dynamic hysteresis modelling of entangled cross-linked fibres in shear

    NASA Astrophysics Data System (ADS)

    Piollet, Elsa; Poquillon, Dominique; Michon, Guilhem

    2016-11-01

    The objective of this paper is to characterize and model the vibration behaviour of entangled carbon fibres cross-linked with epoxy resin. The material is tested in shear, in a double lap configuration. Experimental testing is carried out for frequencies varying from 1 Hz to 80 Hz and for shear strain amplitudes ranging from 5 ·10-4 to 1 ·10-2. Measured shear stress-strain hysteresis loops show a nonlinear behaviour with a low frequency dependency. The hysteresis loops are decomposed in a linear part and three nonlinear parts: a dry friction hysteresis, a stiffening term and a stiction-like overshoot term. The Generalized Dahl Model is used in conjunction with other hysteresis models to develop an appropriate description of the measured hysteresis loops, based on the three nonlinear parts. In particular, a new one-state formulation of the Bliman-Sorine model is developed. A new identification procedure is also introduced for the Dahl model, based on the so-called backbone curve. The model is shown to capture well the complex shapes of the measured hysteresis loops at all amplitudes.

  5. The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.

  6. The mode III crack problem in bonded materials with a nonhomogeneous interfacial zone

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.

  7. Development and Experimental Validation of Morphology Predictive Model for Compatibilized Ternary Polymer Blends I. Effect of Interfacial Tension

    NASA Astrophysics Data System (ADS)

    Shokoohi, Shirin; Naderi, Ghasem

    2016-01-01

    To evaluate the prediction reliability of conventional morphology predicting models, polypropylene (PP)/polyamide6 (PA6)/ethylene propylene diene monomer (EPDM) (70/15/15) ternary polymer blends compatibilized with Maleic-anhydride grafted EPDM (EPDM-g-MA) were prepared through melt blending using a twin screw extruder (TSE). Different EPDM/EPDM-g-MA ratios i.e. 100/0, 75/25, 50/50, 25/75 and 0/100 were used to prepare the ternery blend PP/(EPDM-g-MA + EPDM)/PA6 samples. The effects of compatibilizer content on the microstructures and consequently mechanical properties of prepared ternary blends were studied. Direct microstructural observations were compared to the predictions of conventional phenomenological models including spreading coefficient, minimum relative free energy, and dynamic interfacial energy. A comparison depicted the relative inaccuracy of the existing models in predicting the morphology of the present ternary system due to the ignorance of some effective parameters and/or discomfit of model assumptions. A novel predictive model was developed considering parameters ignored in conventional models. A thorough investigation of the model's validation results showed a reasonable agreement between model predictions and direct microstructural observations.

  8. Turbulence Model Comparisons for Shear Layers and Axisymmetric Jets.

    DTIC Science & Technology

    1979-10-01

    ieatr p)Cifeet at tills, amxal location. Ihle kf2 model prediction show., s a reduced eClocii\\ cor pa red %kithI c ’peinelnt indicating that mnixing is...It\\ OftI hie’\\() ()I rectioI.A lil aC amlounlt Of hecat if od tced 11 rm mnu te tClifIilIt tIeC oll reetalI It". Com pa I solns \\kere Iltadc for thle...STREAMLINE y=y*(2) Figure A-2. Plane mixing layer fluid element (top half). 99 * - l~lgN aw G PA = a ma DIJ iOn flhlD -T x+ P6(x) max + 2 sine Z pdy y

  9. Modeling Particle Concentration In Slurry Flows Using Shear-Induced Migration: Theory vs. Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Kanhui; Latterman, Paul; Koch, Trystan; Hu, Vincent; Ho, Joyce; Mata, Matthew; Murisic, Nebojsa; Bertozzi, Andrea

    2009-11-01

    Different flow regimes observed in our experimental study of particle-laden thin film flows are characterized by differing particle concentration profiles. We develop a theoretical model for particle concentration in order to capture our experimental observations. Our model is based on equilibrium assumption and it incorporates all relevant physical mechanisms, including shear-induced particle migration and settling due to gravity. It leads to a coupled system of ordinary differential equations for particle volume fraction and shear, which are solved numerically for various parameter sets. We find excellent agreement between our numerical results and experimental data. Our model is not only successful in reproducing the experimentally observed regimes, but also in capturing the connection between these regimes and the experimental parameters.

  10. Effect of Cerebrospinal Fluid Modelling on Spherically Convergent Shear Waves during Blunt Head Trauma.

    PubMed

    Madhukar, Amit; Chen, Ying; Ostoja-Starzewski, Martin

    2017-03-14

    The MRI-based computational model, previously validated by tagged MRI and HARP imaging analysis technique on in vivo human brain deformation, is employed to study transient wave dynamics during blunt head trauma. Three different constitutive models are used for the cerebrospinal fluid (CSF): incompressible solid elastic, viscoelastic and fluid-like elastic using an equation of state model. Three impact cases are simulated which indicate that the blunt impacts give rise not only to a fast pressure wave but also to a slow, and potentially much more damaging, shear (distortional) wave that converges spherically towards the brain center. The wave amplification due to spherical geometry is balanced by damping due to tissues' viscoelasticity and the heterogeneous brain structure, suggesting a stochastic competition of these two opposite effects. It is observed that this convergent shear wave is dependent on the constitutive property of the CSF whereas the peak pressure is not as significantly affected.

  11. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  12. Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Adnan Elshafei, M.; Alraiess, Fuzy

    2013-03-01

    In the current work, a finite element formulation is developed for modeling and analysis of isotropic as well as orthotropic composite beams with distributed piezoelectric actuators subjected to both mechanical and electrical loads. The proposed model is developed based on a simple higher order shear deformation theory where the displacement field equations in the model account for a parabolic distribution of the shear strain and the nonlinearity of in-plane displacements across the thickness and subsequently the shear correction factor is not involved. The virtual displacement method is used to formulate the equations of motion of the structure system. The model is valid for both segmented and continuous piezoelectric elements, which can be either surface bonded or embedded in the laminated beams. A two-node element with four mechanical degrees of freedom in addition to one electrical degree of freedom for each node is used in the finite element formulation. The electric potential is considered as a function of the thickness and the length of the beam element. A MATLAB code is developed to compute the static deformation and free vibration parameters of the beams with distributed piezoelectric actuators. The obtained results from the proposed model are compared with the available analytical results and the finite element results of other researchers.

  13. A Pian-Sumihara type element for modeling shear bands at finite deformation

    NASA Astrophysics Data System (ADS)

    McAuliffe, Colin; Waisman, Haim

    2014-05-01

    A monolithic numerical solution of a partial differential equation (PDE) model for shear bands, which includes a thermal softening rate dependent plastic flow rule and finite thermal conductivity, is presented. The formulation accounts for large deformation kinematics and includes incrementally objective treatment of the hypoplastic constitutive relations. Regularization is achieved by including finite thermal conductivity, which informs the PDE system of a length scale, governed by competition between shear heating and thermal diffusion. The monolithic solution scheme is then used to eliminate splitting errors during the solution of the discretized system. The scheme is presented in a general, mixed formulation, which allows for many choices of shape functions. We study and compare two elements, which have been implemented with the monolithic nonlinear solver: the Irreducible Shear Band Quad (ISBQ) and the Pian Sumihara Shear Band Quad (PSSBQ). ISBQ employs the same interpolation as an irreducible four node quad while PSSBQ is a mixed, assumed stress element. The algorithmic approximations to the Lie derivative and Jaumann rate of Kirchhoff stress are available in the literature for ISBQ type elements, and are derived in this paper for the PSSBQ. These expressions are used to achieve an incrementally objective formulation. It is found that the PSSBQ converges faster than the ISBQ with mesh refinement, and that the convergence of the ISBQ can be improved with a remeshing procedure.

  14. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.

    2016-07-01

    The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation

  15. A model for calculating polymer injectivity including the effects of shear degradation

    SciTech Connect

    Sorbie, K.S.; Roberts, L.J.

    1984-04-01

    Polymers are frequently injected into oil reservoirs in order to improve recovery. As they reduce the in-situ mobility of the aqueous phase (either by viscosity increase or permeability reduction), the fluid injectivity generally drops. It is very useful to be able to estimate in advance from a few laboratory measured quantities the injectivity of the polymer and whether the polymer is likely to be seriously degraded by the high shear experienced in the near-wellbore region. It is difficult to calculate the injectivity of the polymer solutions due to their complex rheological behaviour within porous media, especially when the polymer mechanically degrades. In this paper, the authors investigate one approach to calculating the injectivity of polymers in the general case where mechanical degradation occurs. A kinetic model for polymer degradation is proposed which is used to obtain the radial viscosity profile of the degrading polymer. This may in turn be used to calculate the steady-state pressure drops associated with the degrading polymer. The model is based on a discrete multicomponent representation of the polymer molecular weight distribution (MWD). During mechanical degradation, the MWD changes as higher components degrade into lower molecular weight fragments. The degradation rate of a given component of the MWD is related to the local shear/elongational stress within the porous medium and the concentration of the component (C /SUB i/ ). The model is used to match the results of experiments studying the shear degradation of polyacrylamide (PAM) in radial sandstone cores. The quantitative predictions of the model are very satisfactory. In addition, the model gives insight into the mechanism of shear degradation of polymers in porous media.

  16. Model benchmarking and reference signals for angled-beam shear wave ultrasonic nondestructive evaluation (NDE) inspections

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.

    2017-02-01

    For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.

  17. A model for longitudinal and shear wave propagation in viscoelastic media

    PubMed

    Szabo; Wu

    2000-05-01

    Relaxation models fail to predict and explain loss characteristics of many viscoelastic materials which follow a frequency power law. A model based on a time-domain statement of causality is presented that describes observed power-law behavior of many viscoelastic materials. A Hooke's law is derived from power-law loss characteristics; it reduces to the Hooke's law for the Voigt model for the specific case of quadratic frequency loss. Broadband loss and velocity data for both longitudinal and shear elastic types of waves agree well with predictions. These acoustic loss models are compared to theories for loss mechanisms in dielectrics based on isolated polar molecules and cooperative interactions.

  18. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  19. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner.

    PubMed

    Wilson, James W; Ott, C Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L; Nickerson, Cheryl A

    2002-11-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  20. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  1. In vivo bone response and interfacial properties of titanium-alloy implant with different designs in rabbit model with time.

    PubMed

    Chakraborty, Abhijit; Kundu, Biswanath; Basu, Debabrata; Pal, Tamal Kanti; Nandi, Samit Kumar

    2011-01-01

    Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed systematically. In the present study, a thorough and systemic approach was made to identify a suitable implant, considering the above criteria after both in vitro and in vivo animal trials. Titanium alloy (Ti-6Al-4V) implants, with thread and without thread models, were implanted to the mid-metaphysial portion of the tibia of the right hind leg of three white Australian Chinchilla rabbit species and their effects and response to the surrounding bone were investigated. Parameters studied included hematological and biochemical features (serum alkaline phosphatase and calcium), both preoperatively and postoperatively, consecutively for 7 days and after 1-3 months. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDAX) and histopathology from 1 to 3 months consecutively. Finally, biomechanical properties were studied with the help of push-out test. Bone remineralization started through the process of electro-physiological ionic exchanges, which helps in formation of osteoblastic cells in the area of bony injury. The SEM-EDAX results confirmed the initial stability for the Ti (with thread) implant, but the regeneration of new bone formation was faster in the case of Ti (Without thread) implant, and hence could be used for faster healing. These have also been substantiated through push-out and histopathlogical tests. From the physico-chemical and biomechanical observations, it was found that that smooth type implants were well accepted in the physiological condition although chances of elemental leaching from the surface were also observed

  2. Modeling shear-induced CHO cell damage in a rotary positive displacement pump.

    PubMed

    Kamaraju, Hari; Wetzel, Kenneth; Kelly, William J

    2010-01-01

    Rotary lobe pumps are commonly used in the biotechnology industry for a variety of purposes. Shear damage to animal cells within the rotary lobe pump can adversely affect the product yield or purity during, for example, cell concentration via cross-flow filtration. In this research, CHO cells grown in 20-L bioreactors were fed to a rotary lobe pump in both single pass and recycle experiments were conducted at different RPMs and "slip" conditions. The results indicate that the slip flow rate more severely impacts the viability of the CHO cells than the pump RPM. A novel mathematical modeling approach is presented that predicts shear rates in all of the positive displacement pump's slip regions, and then predicts cell death vs. operating conditions. This model accounts for the complex flow situation that results from changes to RPM, backpressure and pump geometry (i.e., clearances).

  3. Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation

    NASA Astrophysics Data System (ADS)

    Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.

    2012-07-01

    In-situ observation was carried out to observe deformation of semi-solid Fe-2mass%C steel with 65% solid and globular morphology by X-ray radiography. Deformation was predominantly controlled by the rearrangement of globules. The solid particles were pushed into each other and rearrangement caused lower solid fraction regions to form. On the basis of the observation, a macroscopic model that introduces a normal stress acting on the solid due to collisions and rearrangement is proposed. The solid particles are treated as a non-Newtonian fluid. The stiffness parameters, which characterize the flow of the solid, are introduced. Stability of semisolid to fluctuations in solid fraction during simple shear was analysed. Shear deformation can be stably localized in the semisolid with a certain solid fraction range. The model essentially reproduces band segregation formation.

  4. Experimental validation of a two-dimensional shear-flow model for determining acoustic impedance

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Watson, Willie R.; Jones, Michael G.

    1987-01-01

    Tests were conducted to validate a two-dimensional shear-flow analytical model for determining the acoustic impedance of a liner test specimen in a grazing-incidence, grazing-flow environment. The tests were limited to a test specimen chosen to exhibit minimal effects of grazing flow so that the results obtained by using the shear-flow analytical model would be expected to match those obtained from normal-incidence impedance measurements. Impedances for both downstream and upstream sound propagation were generally consistent with those from normal-incidence measurements. However, sensitivity of the grazing-incidence impedance to small measurement or systematic errors in propagation constant varied dramatically over the range of test frequencies.

  5. Elasto-plastic localised shearing and diffuse dilatation modeled around a 3D inflating magma chamber

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Hassani, Riad

    2017-04-01

    A three-dimensional numerical model of failure around an upper crustal magmatic chamber is presented, by applying an increasing magmatic pressure at the chamber walls. In a cylindrical geometry (equivalent to 2D plane strain), the failure domain develops first from the surface downwards then from the chamber wall upwards, and these two zones connect with increasing pressure to form a pair of connected conical blocks consistent with plastic slip line theory. In contrast in a spherical chamber, shear failure initiates and develops from the chamber's crest towards the surface, no localised shear band develops at depth, the plastic domain remains diffuse. However at the surface radial elliptic outwards patterns develop. Localised shear zones do not develop at depth in prolate chambers either. In turn in oblate chambers, shear bands develop above the central vertical axis, similarly to 2d patterns, and vanish progressively along the horizontal elongated axis. At the edge of the horizontal elongated axis outside the chamber, tensile domains develop due to the extra vertical pull induced there by the internal overpressure. The critical internal pressure for bedrock failure is, as in 2D, dependent on the state of internal fluid pressure within the bedrock, that reduces the depth-dependent component of the Coulomb yield stress. This critical overpressure and the onset of failure is compared with previous studies on the dependency on chamber shape. Furthermore from the stress field distribution, one can infer that magmatic fluids propagate out of the chamber in competition either along the sub-vertical shear zones connecting to the surface, or laterally as they flow within the deeper lateral dilation zones where porosity is created. Lateral propagation of magmatic fluids is thus favored in the case of oblate chambers, as opposed to prolate chambers where porosity is reduced by compressional stresses along the vertical walls, and thus where vertical flow (eg. diking?) is

  6. A new analytical model for vibration of a cylindrical shell and cardboard liner with focus on interfacial distributed damping

    NASA Astrophysics Data System (ADS)

    Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra

    2016-06-01

    This paper proposes a new analytical model for a thin cylindrical shell that utilizes a homogeneous cardboard liner to increase modal damping. Such cardboard liners are frequently used as noise and vibration control devices for cylindrical shell-like structures in automotive drive shafts. However, most prior studies on such lined structures have only investigated the associated damping mechanisms in an empirical manner. Only finite element models and experimental methods have been previously used for characterization, whereas no analytical studies have addressed sliding friction interaction at the shell-liner interface. The proposed theory, as an extension of a prior experimental study, uses the Rayleigh-Ritz method and incorporates material structural damping along with frequency-dependent viscous and Coulomb interfacial damping formulations for the shell-liner interaction. Experimental validation of the proposed model, using a thin cylindrical shell with three different cardboard liner thicknesses, is provided to validate the new model, and to characterize the damping parameters. Finally, the model is used to investigate the effect of the liner and the damping parameters on the modal attenuation of the shell vibration, in particular for the higher-order coupled shell modes.

  7. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.

    PubMed

    Van Epps, J Scott; Vorp, David A

    2008-10-01

    The biomechanical milieu of the coronary arteries is unique in that they experience mechanical deformations of twisting, bending, and stretching due to their tethering to the epicardial surface. Spatial variations in stresses caused by these deformations could account for the heterogeneity of atherosclerotic plaques within the coronary tree. The goal of this work was to utilize previously reported shear moduli to calculate a shear strain parameter for a Fung-type exponential model of the arterial wall and determine if this single constant can account for the observed behavior of arterial segments under torsion. A Fung-type exponential strain-energy function was adapted to include a torsional shear strain term. The material parameter for this term was determined from previously published data describing the relationship between shear modulus and circumferential stress and longitudinal stretch ratio. Values for the shear strain parameter were determined for three geometries representing the mean porcine left anterior descending coronary artery dimensions plus or minus one standard deviation. Finite element simulation of triaxial biomechanical testing was then used to validate the model. The mean value calculated for the shear strain parameter was 0.0759+/-0.0009 (N=3 geometries). In silico triaxial experiments demonstrated that the shear modulus is directly proportional to the applied pressure at a constant longitudinal stretch ratio and to the stretch ratio at a constant pressure. Shear moduli determined from these simulations showed excellent agreement to shear moduli reported in literature. Previously published models describing the torsional shear behavior of porcine coronary arteries require a total of six independent constants. We have reduced that description into a single parameter in a Fung-type exponential strain-energy model. This model will aid in the estimation of wall stress distributions of vascular segments undergoing torsion, as such information

  8. Physics-Based Multi-Scale Modeling of Shear Initiated Reactions in Energetic and Reactive Materials

    DTIC Science & Technology

    2010-04-01

    Physics-based Multi-scale Modeling of Shear Initiated Reactions in Energetic and Reactive Materials by John K. Brennan, Müge Fermen -Coker...Energetic and Reactive Materials John K. Brennan and Müge Fermen -Coker Weapons and Materials Research Directorate, ARL and Linhbao Tran Shock...Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John K. Brennan, Müge Fermen -Coker, and Linhbao Tran 5d

  9. Physics-Based Multi-Scale Modeling of Shear Initiated Reactions in Energetic and Reactive Materials

    DTIC Science & Technology

    2009-03-01

    Phys. 1972, 5, 1921. 7. McQuarrie , D. A., Statistical Mechanics , Harper: New York, 1976. 8. Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J...munitions due to fragment impact. Present computational capabilities in continuum mechanics codes used by Army designers do not possess the capability to...into the continuum mechanics code CTH, and perform simulations for HEs and RMs. 2 Figure 1. Schematic of multi-scale shear initiation model. As

  10. Evaluation of the Lazarus Leblond constants in the asymptotic model of the interfacial wavy crack

    NASA Astrophysics Data System (ADS)

    Piccolroaz, A.; Mishuris, G.; Movchan, A. B.

    2007-08-01

    The paper addresses the problem of a semi-infinite plane crack along the interface between two isotropic half-spaces. Two methods of solution have been considered in the past: Lazarus and Leblond [1998a. Three-dimensional crack-face weight functions for the semi-infinite interface crack-I: variation of the stress intensity factors due to some small perturbation of the crack front. J. Mech. Phys. Solids 46, 489-511, 1998b. Three-dimensional crack-face weight functions for the semi-infinite interface crack-II: integrodifferential equations on the weight functions and resolution J. Mech. Phys. Solids 46, 513-536] applied the "special" method by Bueckner [1987. Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three space. Int. J. Solids Struct. 23, 57-93] and found the expression of the variation of the stress intensity factors for a wavy crack without solving the complete elasticity problem; their solution is expressed in terms of the physical variables, and it involves five constants whose analytical representation was unknown; on the other hand, the "general" solution to the problem has been recently addressed by Bercial-Velez et al. [2005. High-order asymptotics and perturbation problems for 3D interfacial cracks. J. Mech. Phys. Solids 53, 1128-1162], using a Wiener-Hopf analysis and singular asymptotics near the crack front. The main goal of the present paper is to complete the solution to the problem by providing the connection between the two methods. This is done by constructing an integral representation for Lazarus-Leblond's weight functions and by deriving the closed form representations of Lazarus-Leblond's constants.

  11. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium.

    PubMed

    Shen, Hui-Shen

    2010-06-01

    Buckling and postbuckling analysis is presented for axially compressed microtubules (MTs) embedded in an elastic matrix of cytoplasm. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The surrounding elastic medium is modeled as a Pasternak foundation. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. The small scale parameter e (0) a is estimated by matching the buckling load from their vibrational behavior of MTs with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling load and postbuckling behavior of MTs are very sensitive to the small scale parameter e (0) a. The results reveal that the MTs under axial compressive loading condition have an unstable postbuckling path, and the lateral constraint has a significant effect on the postbuckling response of a microtubule when the foundation stiffness is sufficiently large.

  12. Measurements of gap pressure and wall shear stress of a blood pump model.

    PubMed

    Chua, L P; Akamatsu, T

    2000-04-01

    The centrifugal blood pump with a magnetically suspended impeller has shown its superiority as compared to other artificial hearts. However, there is still insufficient understanding of fluid mechanics related issues in the clearance gap. The design nature of the pump requires sufficient washout in the clearance between the impeller and stationary surfaces. As the gap is only 0.2 mm in width, it is very difficult to conduct measurements with present instrumentation. An enlarged model with 5:1 ratio of the pump has been designed and constructed according to specifications. Dimensionless gap pressure measurements of the model are very close to the prototype. The measurements of wall shear stress of the fluid flow in the clearance gap between the impeller face and inlet casing of a blood pump model were accomplished through hot-wire anemometry and rotating disk apparatus. Regions of relatively high and low shear stresses are identified. These correspond to spots where the likelihood of hemolysis and thrombus formation is high. With the use of dimensional analysis, it is found that the highest wall shear stress is equivalent to 146 Pa which is much lower than the threshold value of 400 Pa for hemolysis reported in the literature.

  13. Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran

    NASA Astrophysics Data System (ADS)

    Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa

    2017-02-01

    The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.

  14. Mathematical model to determine the acceleration to the elements of the laboratory model to the 8000kN shears

    NASA Astrophysics Data System (ADS)

    Budiul-Berghian, Adina; Vasiu, Teodor; Abrudean, Cristian; Stoica, Diana

    2013-10-01

    In this paper presents simulations related to kinematics mechanisms shears for cutting metallurgical products. These simulations were performed on bench-scale experiment conducted 1 : 5 to 8000kN Scissors on line rolling SF 1, existing within the company "Arcelor-Mittal SA" Hunedoara. Thus, we modelling the mathematics equations is done using the program in average C++.

  15. A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents

    SciTech Connect

    Shapiro, A. )

    1992-12-01

    Vertically sheared airflow over semi-infinite barriers is investigated with a simple hydrodynamical model. The idealized flow is steady, two-dimensional, neutrally buoyant, and inviscid, bounded on the bottom by a semi-infinite impermeable barrier and on the top by a rigid tropopause lid. With attention further restricted to an exponentially decreasing wind shear, the equations of motion (Euler's equations) reduce, without approximation, to a modified Poisson equation for a pseudo streamfunction and a formula for the Exner function. The free parameters characterizing the model's environment are the tropopause height, the density scale height, the wind speed at ground level, and the wind speed at tropopause level. Additional parameters characterize the barrier geometry. Exact solutions of the equations of motion are obtained for semi-infinite plateau barriers and for a barrier qualitatively resembling the shallow density current associated with some thunderstorm outflows. These solutions are noteworthy in that the reduction of a certain nondimensional shear parameter (through negative values) results in greater vertical parcel displacements over the barrier despite a corresponding reduction in the vertical velocity. This steepening tendency culminates in overturning motions associated with both upstream and down-stream steering levels. In this latter case the low-level inflow impinging on the barrier participates in a mixed jump and overturning updraft reminiscent of updrafts simulated in numerical convective models. Conversely, for large values of the nondimensional shear parameter, parcels undergo small vertical parcel displacements over the barrier despite large vertical velocities. This latter behavior may account for the finding that strong convergence along the leading edge of storm outflows does not always trigger deep convection even in unstable environments.

  16. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Schwab, John R.; Lakshminarayana, Budugur

    1994-01-01

    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  17. Toward a pointwise turbulence model for wall-bounded and free shear flows

    SciTech Connect

    Goldberg, U.C. )

    1994-03-01

    A modified version of the Baldwin-Barth two-equation turbulence model is proposed, in which the near-wall function is based on the ratio of the large eddy and the Kolmogorov time scales. This results in a model applicable to both wall-bounded and free shear flows which, nevertheless, does not require explicit knowledge of local distance to walls, rendering it useful within both structured and unstructured computational frameworks for flow predictions involving complex geometries. The new model's predictive capability is demonstrated through a number of flow cases.

  18. Modeling the influence of tectonic extrusion and volume loss on the geometry, displacement, vorticity, and strain compatibility of ductile shear zones

    NASA Astrophysics Data System (ADS)

    Baird, Graham B.; Hudleston, Peter J.

    2007-10-01

    Oblate strains are often observed in meso-scale ductile shear zones and this is generally taken to indicate narrowing across the shear zone during formation. Volume loss is one mechanism that could produce shear zone narrowing. However, not all shear zones display characteristics consistent with volume loss, and in such cases, the narrowing must be accomplished by the extrusion of material from within the shear zone. To explore the relationship between shear zone geometry, volume loss, and extrusion, shear zones were mathematically modeled. Results demonstrate the important influence of pure shear and volume loss on controlling the geometry, displacement, and vorticity of ductile shear zones. Further, volume loss does not preclude extrusion unless, for a given volume loss, the strain is of a specific geometry. Extrusion is a likely mechanism important in shear zone development, even if volume loss occurs. Extrusion presents strain compatibility problems because, unlike crustal-scale shear zones, meso-scale ductile shear zones do not possess a free surface. If extrusion occurs, bulk strain compatibility can be maintained if shear zones interlink in anastomosing arrays or change in thickness, though not all shear zone systems display such characteristics. Modeling results elucidate the deformation style of shear zone in the northwest Adirondacks in NY and in the Kebnekaise region in northern Sweden.

  19. Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model.

    PubMed

    Shen, Hui-Shen

    2010-05-21

    This paper presents an investigation on the buckling and postbuckling of microtubules (MTs) subjected to a uniform external radial pressure in thermal environments. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The small scale parameter e(0)a is estimated by matching the buckling pressure of MTs measured from the experiments with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling pressure and postbuckling behavior of MTs are very sensitive to the small scale parameter e(0)a. The results reveal that the 13_3 microtubule has a stable postbuckling path, whereas the 13_2 microtubule has an unstable postbuckling behavior due to the presence of skew angles.

  20. Matching the critical portion of the flow duration curve to minimise changes in modelled excess shear.

    PubMed

    Rohrer, C A; Roesner, L A

    2006-01-01

    Hydrologic and hydraulic modeling in the USEPA Stormwater Management Model (SWMM) were used to examine the effectiveness of typical stormwater management practices in reducing the potential for stream erosion. Fifty-year continuous simulations were used to produce flow duration curves and stream erosion rates for a variety of critical shear stress values representative of both cohesive and non-cohesive sediments. An excess shear stress erosion potential index was used to evaluate changes in erosion between undeveloped conditions of a 10 hectare watershed and four variations of post-development stormwater control. Evaluation of flow duration curves showed that when development takes place, the duration of mid- to low-range discharges increase significantly, especially when detention practices are applied. In channels with low entrainment thresholds for bed and bank materials, e.g. sands and highly erodible clays, the significant increase of the duration of mid- to low-range discharges results in erosion potential index values greater than two regardless of the detention practices used. Overcontrol detention resulted in erosion potential index values of less than one, indicating a loss of erosion potential for bed materials such as most gravels (d(s) > 6 mm) and resistant clays that have critical shear stress values greater than four Pa.

  1. Large deviation statistics of non-equilibrium fluctuations in a sheared model-fluid

    NASA Astrophysics Data System (ADS)

    Dolai, Pritha; Simha, Aditi

    2016-08-01

    We analyse the statistics of the shear stress in a one dimensional model fluid, that exhibits a rich phase behaviour akin to real complex fluids under shear. We show that the energy flux satisfies the Gallavotti-Cohen FT across all phases in the system. The theorem allows us to define an effective temperature which deviates considerably from the equilibrium temperature as the noise in the system increases. This deviation is negligible when the system size is small. The dependence of the effective temperature on the strain rate is phase-dependent. It doesn’t vary much at the phase boundaries. The effective temperature can also be determined from the large deviation function of the energy flux. The local strain rate statistics obeys the large deviation principle and satisfies a fluctuation relation. It does not exhibit a distinct kink near zero strain rate because of inertia of the rotors in our system.

  2. Recalibration of the Shear Stress Transport Model to Improve Calculation of Shock Separated Flows

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.

    2013-01-01

    The Menter Shear Stress Transport (SST) k . turbulence model is one of the most widely used two-equation Reynolds-averaged Navier-Stokes turbulence models for aerodynamic analyses. The model extends Menter s baseline (BSL) model to include a limiter that prevents the calculated turbulent shear stress from exceeding a prescribed fraction of the turbulent kinetic energy via a proportionality constant, a1, set to 0.31. Compared to other turbulence models, the SST model yields superior predictions of mild adverse pressure gradient flows including those with small separations. In shock - boundary layer interaction regions, the SST model produces separations that are too large while the BSL model is on the other extreme, predicting separations that are too small. In this paper, changing a1 to a value near 0.355 is shown to significantly improve predictions of shock separated flows. Several cases are examined computationally and experimental data is also considered to justify raising the value of a1 used for shock separated flows.

  3. Interfacial modification to optimize stainless steel photoanode design for flexible dye sensitized solar cells: an experimental and numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Salehi Taleghani, Sara; Zamani Meymian, Mohammad Reza; Ameri, Mohsen

    2016-10-01

    In the present research, we report fabrication, experimental characterization and theoretical analysis of semi and full flexible dye sensitized solar cells (DSSCs) manufactured on the basis of bare and roughened stainless steel type 304 (SS304) substrates. The morphological, optical and electrical characterizations confirm the advantage of roughened SS304 over bare and even common transparent conducting oxides (TCOs). A significant enhancement of about 51% in power conversion efficiency is obtained for flexible device (5.51%) based on roughened SS304 substrate compared to the bare SS304. The effect of roughening the SS304 substrates on electrical transport characteristics is also investigated by means of numerical modeling with regard to metal-semiconductor and interfacial resistance arising from the metallic substrate and nanocrystalline semiconductor contact. The numerical modeling results provide a reliable theoretical backbone to be combined with experimental implications. It highlights the stronger effect of series resistance compared to schottky barrier in lowering the fill factor of the SS304-based DSSCs. The findings of the present study nominate roughened SS304 as a promising replacement for conventional DSSCs substrates as well as introducing a highly accurate modeling framework to design and diagnose treated metallic or non-metallic based DSSCs.

  4. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

  5. Models for viscosity and shear localization in bubble-rich magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-09-01

    Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ⁡ηBulk =log10 ⁡η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency

  6. Nonlinear model calibration of a shear wall building using time and frequency data features

    NASA Astrophysics Data System (ADS)

    Asgarieh, Eliyar; Moaveni, Babak; Barbosa, Andre R.; Chatzi, Eleni

    2017-02-01

    This paper investigates the effects of different factors on the performance of nonlinear model updating for a seven-story shear wall building model. The accuracy of calibrated models using different data features and modeling assumptions is studied by comparing the time and frequency responses of the models with the exact simulated ones. Simplified nonlinear finite element models of the shear wall building are calibrated so that the misfit between the considered response data features of the models and the structure is minimized. A refined FE model of the test structure, which was calibrated manually to match the shake table test data, is used instead of the real structure for this performance evaluation study. The simplified parsimonious FE models are composed of simple nonlinear beam-column fiber elements with nonlinearity infused in them by assigning generated hysteretic nonlinear material behaviors to uniaxial stress-strain relationship of the fibers. Four different types of data features and their combinations are used for model calibration: (1) time-varying instantaneous modal parameters, (2) displacement time histories, (3) acceleration time histories, and (4) dissipated hysteretic energy. It has been observed that the calibrated simplified FE models can accurately predict the nonlinear structural response in the absence of significant modeling errors. In the last part of this study, the physics-based models are further simplified for casting into state-space formulation and a real-time identification is performed using an Unscented Kalman filter. It has been shown that the performance of calibrated state-space models can be satisfactory when reasonable modeling assumptions are used.

  7. Use of self-assembled monolayers to control interface bonding in a model study of interfacial fracture

    SciTech Connect

    KENT,MICHAEL S.; YIM,HYUN; MATHESON,AARON J.; COGDILL,C.; REEDY JR.,EARL DAVID

    2000-03-02

    The relationship between the nature and spatial distribution of fundamental interfacial interactions and fracture stress/fracture toughness of a glassy adhesive-inorganic solid joint is not understood. This relationship is important from the standpoint of designing interfacial chemistry sufficient to provide the level of mechanical strength required for a particular application. In addition, it is also important for understanding the effects of surface contamination. Different types of contamination, or different levels of contamination, likely impact joint strength in different ways. Furthermore, the relationship is also important from the standpoint of aging. If interfacial chemical bonds scission over time due to the presence of a contaminant such as water, or exposure to UV, etc, the relationship between joint strength/fracture toughness and interface strength is important for predicting reliability with time. A fundamental understanding of the relationship between joint strength and fundamental interfacial interactions will give insight into these issues.

  8. Modeling of Wall-Bounded Complex Flows and Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope was the first to introduce this kind of constitutive relation to turbulence modeling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k-E eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown an encouraging success in modeling complex turbulent flows.

  9. Experimental Tests and FEM Model for SFRC Beams under Flexural and Shear Loads

    SciTech Connect

    Colajanni, Piero; Spinella, Nino; La Mendola, Lidia; Priolo, Salvatore

    2008-07-08

    The complete load-vs-displacement curves obtained by four-point-bending tests on Steel Fiber Reinforced Concrete (SFRC) beams are predicted by using a nonlinear finite element code based on the Modified Compression Field Theory (MCFT) and the Disturbed Stress Field Model (DSFM) suitably adapted for SFRC elements. The effect of fibers on the shear-flexure response is taken into account, mainly incorporating tensile stress-strain analytical relationship for SFRC. The numerical results show the effectiveness of the model for prediction of the behavior of the tested specimens reinforced with light amount of stirrups or with fibers only.

  10. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-12-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  11. A Digital Image-Based Discrete Fracture Network Model and Its Numerical Investigation of Direct Shear Tests

    NASA Astrophysics Data System (ADS)

    Wang, Peitao; Cai, Meifeng; Ren, Fenhua; Li, Changhong; Yang, Tianhong

    2017-07-01

    This paper develops a numerical approach to determine the mechanical behavior of discrete fractures network (DFN) models based on digital image processing technique and particle flow code (PFC2D). A series of direct shear tests of jointed rocks were numerically performed to study the effect of normal stress, friction coefficient and joint bond strength on the mechanical behavior of joint rock and evaluate the influence of micro-parameters on the shear properties of jointed rocks using the proposed approach. The complete shear stress-displacement curve of the DFN model under direct shear tests was presented to evaluate the failure processes of jointed rock. The results show that the peak and residual strength are sensitive to normal stress. A higher normal stress has a greater effect on the initiation and propagation of cracks. Additionally, an increase in the bond strength ratio results in an increase in the number of both shear and normal cracks. The friction coefficient was also found to have a significant influence on the shear strength and shear cracks. Increasing in the friction coefficient resulted in the decreasing in the initiation of normal cracks. The unique contribution of this paper is the proposed modeling technique to simulate the mechanical behavior of jointed rock mass based on particle mechanics approaches.

  12. Basal shear stress under alpine glaciers: Insights from experiments using the iSOSIA and Elmer/ICE models

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Pedersen, V. K.

    2015-10-01

    Shear stress at the base of glaciers controls basal sliding and is therefore immensely important for glacial erosion and landscape evolution in arctic and high-altitude areas. However, the inaccessible nature of glacial beds complicates empirical studies of basal shear stress, and little is therefore known of its spatial and temporal distribution. In this study we seek to improve our understanding of basal shear stress using a higher-order numerical ice model (iSOSIA). In order to test the validity of the higher-order model, we first compare the detailed distribution of basal shear stress in iSOSIA and in a three-dimensional full-Stokes model (Elmer/ICE). We find that iSOSIA and Elmer/ICE predict similar first-order stress and velocity patterns, and that differences are restricted to local variations over length-scales on the order of the grid resolution. In addition, we find that subglacial shear stress is relatively uniform and insensitive to suble changes in local topographic relief. Following these initial stress benchmark experiments, we use iSOSIA to investigate changes in basal shear stress as a result of landscape evolution by glacial erosion. The experiments with landscape evolution show that subglacial shear stress decreases as glacial erosion transforms preglacial V-shaped valleys into U-shaped troughs. These findings support the hypothesis that glacial erosion is most efficient in the early stages of glacial landscape development.

  13. Basal shear stress under alpine glaciers: insights from experiments using the iSOSIA and Elmer/Ice models

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Pedersen, V. K.

    2016-02-01

    Shear stress at the base of glaciers exerts a significant control on basal sliding and hence also glacial erosion in arctic and high-altitude areas. However, the inaccessible nature of glacial beds complicates empirical studies of basal shear stress, and little is therefore known of its spatial and temporal distribution. In this study we seek to improve our understanding of basal shear stress using a higher-order numerical ice model (iSOSIA). In order to test the validity of the higher-order model, we first compare the detailed distribution of basal shear stress in iSOSIA and in a three-dimensional full-Stokes model (Elmer/Ice). We find that iSOSIA and Elmer/Ice predict similar first-order stress and velocity patterns, and that differences are restricted to local variations at length scales of the order of the grid resolution. In addition, we find that subglacial shear stress is relatively uniform and insensitive to subtle changes in local topographic relief. Following the initial comparison studies, we use iSOSIA to investigate changes in basal shear stress as a result of landscape evolution by glacial erosion. The experiments with landscape evolution show that subglacial shear stress decreases as glacial erosion transforms preglacial V-shaped valleys into U-shaped troughs. These findings support the hypothesis that glacial erosion is most efficient in the early stages of glacial landscape development.

  14. Pore Fluid Effects on Shear Modulus in a Model of Heterogeneous Rocks, Reservoirs, and Granular Media

    SciTech Connect

    Berryman, J G

    2005-03-23

    To provide quantitative measures of the importance of fluid effects on shear waves in heterogeneous reservoirs, a model material called a ''random polycrystal of porous laminates'' is introduced. This model poroelastic material has constituent grains that are layered (or laminated), and each layer is an isotropic, microhomogeneous porous medium. All grains are composed of exactly the same porous constituents, and have the same relative volume fractions. The order of lamination is not important because the up-scaling method used to determine the transversely isotropic (hexagonal) properties of the grains is Backus averaging, which--for quasi-static or long-wavelength behavior--depends only on the volume fractions and layer properties. Grains are then jumbled together totally at random, filling all space, and producing an overall isotropic poroelastic medium. The poroelastic behavior of this medium is then analyzed using the Peselnick-Meister-Watt bounds (of Hashin-Shtrikman type). We study the dependence of the shear modulus on pore fluid properties and determine the range of behavior to be expected. In particular we compare and contrast these results to those anticipated from Gassmann's fluid substitution formulas, and to the predictions of Mavko and Jizba for very low porosity rocks with flat cracks. This approach also permits the study of arbitrary numbers of constituents, but for simplicity the numerical examples are restricted here to just two constituents. This restriction also permits the use of some special exact results available for computing the overall effective stress coefficient in any two-component porous medium. The bounds making use of polycrystalline microstructure are very tight. Results for the shear modulus demonstrate that the ratio of compliance differences R (i.e., shear compliance changes over bulk compliance changes when going from drained to undrained behavior, or vice versa) is usually nonzero and can take a wide range of values, both

  15. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    PubMed

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  17. Prediction of wall shear-stress fluctuations in wall-modeled large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Park, George; Howland, Michael; Lozano-Duran, Adrian; Moin, Parviz

    2016-11-01

    Wall-modeled large-eddy simulation (WMLES) is emerging as a viable and affordable tool for predicting mean flow statistics in high Reynolds number turbulent boundary layers. Recently, we examined the performance of two RANS-based wall models in prediction of wall pressure and shear stress fluctuations which are important in flow/structure interaction problems. Whereas the pressure statistics were predicted with reasonable accuracy, the magnitude of wall shear stress fluctuations was severely underestimated. The present study expands on this finding to characterize in more detail the capabilities of wall models for predicting τw'. Predictions of several wall models in high Reynolds number channel flows (Reτ = 2000) will be presented. Additionally, a recent empirical inner-outer model for τw' is reconstructed using channel flow DNS database , and it is coupled to WMLES to assess its performance as a predictive model in LES. The majority of this work was carried out during the 16th biannual Center for Turbulence Research (CTR) summer program, 2016. George Park was partially supported through NASA under the Subsonic Fixed-Wing Program (Grant No. NNX11AI60A).

  18. Modeling Nanoparticle Targeting to a Vascular Surface in Shear Flow Through Diffusive Particle Dynamics.

    PubMed

    Peng, Bei; Liu, Yang; Zhou, Yihua; Yang, Longxiang; Zhang, Guocheng; Liu, Yaling

    2015-12-01

    Nanoparticles are regarded as promising carriers for targeted drug delivery and imaging probes. A fundamental understanding of the dynamics of polymeric nanoparticle targeting to receptor-coated vascular surfaces is therefore of great importance to enhance the design of nanoparticles toward improving binding ability. Although the effects of particle size and shear flow on the binding of nanoparticles to a vessel wall have been studied at the particulate level, a computational model to investigate the details of the binding process at the molecular level has not been developed. In this research, dissipative particle dynamics simulations are used to study nanoparticles with diameters of several nanometers binding to receptors on vascular surfaces under shear flow. Interestingly, shear flow velocities ranging from 0 to 2000 s(-1) had no effect on the attachment process of nanoparticles very close to the capillary wall. Increased binding energy between the ligands and wall caused a corresponding linear increase in bonding ability. Our simulations also indicated that larger nanoparticles and those of rod shape with a higher aspect ratio have better binding ability than those of smaller size or rounder shape.

  19. Effect of Shear Deformation and Continuity on Delamination Modelling with Plate Elements

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Riddell, W. T.; Raju, I. S.

    1998-01-01

    The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models that model the upper and lower surface of the delamination or debond with two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler geometric modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom or both in the neighborhood of the crack tip; element order and assumed shear deformation; and continuity of material properties and section stiffness in the vicinity of the debond front, Where appropriate, the plate element analyses are compared with corresponding two-dimensional plane strain analyses.

  20. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation

    PubMed Central

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-01-01

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844

  1. Why homogeneous boundary conditions lead to heterogeneous internal strain in analogue simple shear experiments - explained by numerical modeling

    NASA Astrophysics Data System (ADS)

    Exner, Ulrike; Frehner, Marcel; Mancktelow, Neil S.; Grujic, Djordje

    2010-05-01

    Analogue modeling of geological structures, investigating for example the rotation and interaction of rigid or weak inclusions in a matrix, single layer folding, or fold interference patterns, commonly employs a linear simple shear or general shear rig. While the boundaries of such deformation rigs theoretically prescribe a homogeneous isochoric (plane strain) flow, the internal deformation pattern of the analogue material (paraffin wax or silicone putties) may strongly deviate from the intended homogeneous strain conditions. For example, in simple shear experiments (x-y-coordinate system, simple shear in x-direction) the following observations can be made: (1) Close to model boundaries initially parallel to the y-direction of the apparatus a prominent deflection of passive marker lines develops during the experiment, indicating a strong perturbation strain. (2) The central part of the model rotates with the opposite sense of rotation compared to the imposed vorticity, documented by the imposed marker grid. We employ two-dimensional numerical finite element models to investigate the observed deviation from a homogeneous simple shear flow field in simple shear rig experiments. A Newtonian rheology is used to represent the analogue material. We tested different boundary conditions that do not represent perfect simple shear boundary conditions, but could possibly be present in analogue experiments. The numerical results show that neither traction-free slip nor free surface boundary conditions at the four walls, nor any combination of these boundary conditions produces the deformation pattern observed in analogue experiments. Therefore, we conclude that the imposed boundary conditions at the walls of the analogue rigs are not the reason for the observed heterogeneous strain field. In analogue experiments, the analogue material commonly lies on top of a weak viscous material (e.g. vaseline) or is sandwiched between two layers of such a material. These layers are also

  2. Quantifying Uncertainty in Inverse Models of Geologic Data from Shear Zones

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Titus, S.

    2016-12-01

    We use Bayesian Markov chain Monte Carlo simulation to quantify uncertainty in inverse models of geologic data. Although this approach can be applied to many tectonic settings, field areas, and mathematical models, we focus on transpressional shear zones. The underlying forward model, either kinematic or dynamic, produces a velocity field, which predicts the dikes, foliation-lineations, crystallographic preferred orientation (CPO), shape preferred orientation (SPO), and other geologic data that should arise in the shear zone. These predictions are compared to data using modern methods of geometric statistics, including the Watson (for lines such as dike poles), isotropic matrix Fisher (for orientations such as foliation-lineations and CPO), and multivariate normal (for log-ellipsoids such as SPO) distributions. The result of the comparison is a likelihood, which is a key ingredient in the Bayesian approach. The other key ingredient is a prior distribution, which reflects the geologist's knowledge of the parameters before seeing the data. For some parameters, such as shear zone strike and dip, we identify realistic informative priors. For other parameters, where the geologist has no prior knowledge, we identify useful uninformative priors.We investigate the performance of this approach through numerical experiments on synthetic data sets. A fundamental issue is that many models of deformation exhibit asymptotic behavior (e.g., flow apophyses, fabric attractors) or periodic behavior (e.g., SPO when the clasts are rigid), which causes the likelihood to be too uniform. Based on our experiments, we offer rules of thumb for how many data, of which types, are needed to constrain deformation.

  3. Using a Numerical Model to Quantitatively Assess Dynamic Recrystallization as a Mechanism for He Enrichment in Mantle Shear Zones

    NASA Astrophysics Data System (ADS)

    Kaminski, K.; Mittelstaedt, E. L.; Warren, J. M.; Kurz, M. D.; Kumamoto, K.

    2015-12-01

    Recent studies of ductile peridotite shear zones in the Josephine Peridotite in SW Oregon find higher helium concentrations in whole rock samples located where total strain is greatest and recrystallized grain sizes are smallest. Based upon these results, previous workers suggest that dynamic recrystallization may lead to increased storage of He on grain boundaries. To assess the feasibility of this mechanism for enhanced He storage, we utilize a combined set of new and previous data from Shear Zone A (SZA) and B (SZB) of the Fresno Bench of the Josephine Peridotite to constrain a 1D numerical model of a ductile shear zone; the combined data set includes both He concentrations as well as measured total strain across the shear zone. Existing data within the region of highest strain (0 to ~2.5 m from the center of each shear zone) are sparse and, thus, we strategically sampled locations within this zone to maximize data resolution across a range of total strain. In each sample, we measure helium concentrations in unserpentinized harzburgite bulk rock using mass spectrometry. Analysis of the orientation of pyroxene foliation planes compared to shear planes provides an estimation of shear strain during deformation. Numerically, our model is discretized using finite differences and incorporates a non-linear, temperature-dependent viscosity, shear heating, and dynamic recrystallization. Here, we present our newly compiled collection of helium concentrations relative to total strain within SZA and SZB and measured grain sizes, which are used to constrain the modeled equilibrium grain size and quantitatively test dynamic recrystallization as a mechanism for concentrating He within peridotite shear zones.

  4. Second moment closure modeling for rotating stably stratified turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Ji, Minsuk

    The general linear second moment closure (SMC) turbulence model is considered for flows subjected to buoyancy and rotation. Model response to external forces are analyzed with the aid of structural equilibrium analysis. A closed form equilibrium solution for the anisotropy tensor bij, dispersion tensor Kij, dimensionless scalar variance q2 /k(S/Stheta )2, and the ratio of mean to turbulent time scale epsilon/ Sk is obtained. The variable of particular interest to bifurcation analysis, epsilon/Sk is shown as a function of the parameters characterizing the body forces: O/S (the ratio of the rotation rate to the mean shear rate) for rotation and Rig (the gradient Richardson number) for buoyancy; it determines the bifurcation surface in the epsilon/Sk-O/S-Rig space. It is shown, with the use of the closed form solution, that the conventional general linear models do not have a real and stable equilibrium solution when rotational and buoyant forces of certain magnitudes are simultaneously imposed on the flow. When this occurs, time integration of the turbulence model results in a diverging solution. A new model is proposed that removes this unphysical behavior. It ensures the existence of stable, real solutions for all combinations of rotation and buoyancy. Further improvements to the model are made through bifurcation analysis. Model constants are adjusted such that the model's bifurcation characteristics are in agreement with the physically observed onset of turbulence stabilization due to stable stratification. Experimental data and numerical simulation results for stably stratified homogeneous shear flow suggest the critical gradient Richardson number of Ricrg = 0.25, and the new model is able to predict it correctly. In connection with the bifurcation analysis of SMC models, rapid distortion theory (RDT) of turbulence is applied to rotating, stably stratified shear flow to provide the stability characteristics of such flows. It is shown that the RDT predictions are

  5. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    NASA Technical Reports Server (NTRS)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  6. Modeling Compressional and Shear Wave Velocities of Unconsolidated Sediments in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Berge, P. A.

    2001-12-01

    Recent advances in seismic surveys have provided ways to image shallow structure in highly attenuating soils and near-surface rock. Applications include using surface wave methods to find tunnels; mapping landfills with seismic refraction methods; finding faults, the water table, or other strong heterogeneities using seismic reflection surveys. Recent improvements in laboratory ultrasonic measurement techniques have provided reliable data on compressional and shear wave velocities in soils at low pressures analogous to the top few meters to tens of meters of the subsurface. The availability of these data points the way for development of interpretation methods that may allow seismologists to obtain more information from their data in the future. For environmental applications, improvements to interpretation methods could lead to reliable detection of second-order features such as changes in soil saturation, presence of dense non-aqueous phase liquids, or changes in clay content. Traditional modeling techniques developed in the oil industry are optimized for consolidated materials at pressures and depths greater than those typical for environmental applications. The shallow subsurface velocities are highly nonlinear and the soils are highly attenuating, and these characteristics must be considered when modeling velocities (and also when processing seismic data). Various factors, including grain contact roughness, location of clay with respect to sand grains, location of fluid in the partially-saturated case, loose vs. dense packing, all affect the compressional and shear wave velocities and attenuation and their pressure (depth) dependence. Care must be taken when applying effective medium theories or grain-contact theories to model shallow soil velocity behavior. Unconsolidated materials at low pressures show much greater variation in compressional vs. shear wave properties than consolidated materials and high-pressure applications would show. Despite the modeling

  7. Effect of interfacial energy on the viscosities of two-phase mixtures—A physical modeling approach

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Sichen, Du; Seetharaman, S.

    2001-02-01

    With a view to understanding the viscosities of metal emulsions in viscous slags, the present work was carried out to study the phenomena underlying the viscous flow in a two-phase mixture with widely differing viscosities. Experimental study was carried out to determine the effective viscosities of emulsions of silicone oils of known viscosities (345 and 1010 mPa · s at 293 K) with small amounts of water evenly distributed in the same. The viscosities of these emulsions were measured at a constant temperature by the rotating-cylinder method. The uniformity of the preparation of the emulsions was confirmed by the reproducibility of the results. The measured viscosities were generally found to be independent of the torque under the experimental conditions, so that the two-phase mixture could be considered as a Newtonian liquid. The variation of viscosities with temperature and the effect of the addition of a surface-active substance were also studied in this work. The viscosities were found to be higher than those of both pure water and silicone oil. The experimental results were used to examine the applicabilities of the theoretical models developed by Einstein, Taylor, and Oldroyd. It was found that interfacial energy would play an important role in the viscous flow of the two-liquid mixture.

  8. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. © 2013 Wiley Periodicals, Inc.

  9. Micromechanical study of concrete materials with interfacial transition zone

    NASA Astrophysics Data System (ADS)

    Gambheera, Ramesh

    This thesis describes analytical and finite element micromechanical studies for investigating the mechanical behavior of concrete materials. A concrete material is treated as a three phase composite consisting of aggregate, bulk paste and an interfacial transition zone around the aggregate. Experimental work on the microstructure of concrete has demonstrated the existence of interfacial transition zone and that this is the weakest link in the composite system of concrete material. Hence, the main focus of this thesis is to understand the role of the interfacial transition zone on the overall mechanical behavior of concrete materials. A four phase composite model consisting of aggregate, ITZ, bulk paste and an equivalent homogeneous medium is proposed to represent the concrete material. Analytical solutions are derived for the overall elastic moduli of the four phase composite model. The effects of volume fraction and the elastic moduli of the transition zone on the overall elastic moduli are investigated. The results obtained using the analytical model are in good agreement with those obtained from experiments. Analytical stress solutions are also derived for the four phase composite model subjected to uniaxial compression in two and three dimensions. The stress concentration and the tensile stress development in the interfacial transition zone are investigated. The effect of imperfect shear interfacial bond on the overall elastic moduli and on the stresses in the transition zone is also investigated. Basic concepts of damage mechanics are applied to model the damage in the transition zone. The effect of local damage in the transition zone on the overall damage in a concrete material is illustrated. For the specific case of uniaxial compression, the pre-peak stress-strain curves are generated. Computational analysis of micromechanical models of concrete materials requires efficient finite elements. This thesis proposes the use of hybrid finite elements for the

  10. A global shear velocity model of the mantle from normal modes and surface waves

    NASA Astrophysics Data System (ADS)

    durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.

    2013-12-01

    We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.

  11. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  12. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  13. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    USGS Publications Warehouse

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  14. Development of DPD coarse-grained models: From bulk to interfacial properties.

    PubMed

    Solano Canchaya, José G; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-07

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

  15. Development of DPD coarse-grained models: From bulk to interfacial properties

    NASA Astrophysics Data System (ADS)

    Solano Canchaya, José G.; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-01

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

  16. Yeast genomic expression patterns in response to low-shear modeled microgravity

    PubMed Central

    Sheehan, Kathy B; McInnerney, Kate; Purevdorj-Gage, Boloroo; Altenburg, Sara D; Hyman, Linda E

    2007-01-01

    The low-shear microgravity environment, modeled by rotating suspension culture bioreactors called high aspect ratio vessels (HARVs), allows investigation in ground-based studies of the effects of microgravity on eukaryotic cells and provides insights into the impact of space flight on cellular physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) causes significant phenotypic changes of a select group of Saccharomyces cerevisiae genes associated with the establishment of cell polarity, bipolar budding, and cell separation. However, the mechanisms cells utilize to sense and respond to microgravity and the fundamental gene expression changes that occur are largely unknown. In this study, we examined the global transcriptional response of yeast cells grown under LSMMG conditions using DNA microarray analysis in order to determine if exposure to LSMMG results in changes in gene expression. LSMMG differentially changed the expression of a significant number of genes (1372) when yeast cells were cultured for either five generations or twenty-five generations in HARVs, as compared to cells grown under identical conditions in normal gravity. We identified genes in cell wall integrity signaling pathways containing MAP kinase cascades that may provide clues to novel physiological responses of eukaryotic cells to the external stress of a low-shear modeled microgravity environment. A comparison of the microgravity response to other environmental stress response (ESR) genes showed that 26% of the genes that respond significantly to LSMMG are involved in a general environmental stress response, while 74% of the genes may represent a unique transcriptional response to microgravity. In addition, we found changes in genes involved in budding, cell polarity establishment, and cell separation that validate our hypothesis that phenotypic changes observed in cells grown in microgravity are reflected in genome-wide changes. This study documents a

  17. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.

    PubMed

    Weinbaum, S; Cowin, S C; Zeng, Y

    1994-03-01

    A new experimentally testable hypothesis is advanced for the mechanosensory transduction mechanism by which communicating osteocytes sense the very small in vivo strains in the calcified matrix components of bone. We propose that the osteocytes, although not responsive to substantial fluid pressures, can be stimulated by relatively small fluid shear stresses acting on the membranes of their osteocytic processes. Biot's porous media theory is used to relate the combined axial and bending loads applied to a whole bone to the flow past the osteocytic processes in their canaliculi. In this theory, the bone pores of interest are the proteoglycan filled fluid annuli that surround the osteocytic processes in the canaliculi. We show that previously predicted fluid pore pressure relaxation times were a hundred-fold too short for the lacunar-canalicular porosity because they neglected the fluid drag associated with proteoglycan matrix on the surface membrane of the osteocyte and its cell processes. The recent theory developed in Tsay and Weinbaum [J. Fluid Mech. 226, 125-148 (1991)] for flow through cross-linked fiber filled channels is used to model the flow through this proteoglycan matrix. The predicted pore relaxation time, 1-2 s, closely corresponds to the times measured by Salzstein and Pollack [J. Biomechanics 20, 271-280 (1987)]. Furthermore, using this model, the magnitude of the predicted fluid induced shear stresses, 8-30 dyn cm-2, is shown to be similar to the fluid shear stresses measured in osteoblasts and other cells in which an intracellular Ca2+ shear stress response had been observed. This model is also used, in conjunction with anatomical data and the pore fluid pressure relaxation time data, to show that the spacing between the fibers is approximately 7 nm. The result is consistent with the notion that the canalicular pore space is filled with glycosaminoglycans that are ordered by albumin according to the model of Michel [J. Physiol. 404, 1-29 (1988

  18. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  19. Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions

    NASA Astrophysics Data System (ADS)

    Liou, Nai-Shang; Okada, Makoto; Prakash, Vikas

    2004-09-01

    The present paper describes results of plate-impact pressure-shear friction experiments conducted to study time-resolved growth of molten metal films during dry metal-on-metal slip under extreme interfacial conditions. By employing tribo-pairs comprising hard tool-steel against relatively low melt-point metals such as 7075-T6 aluminum alloys, interfacial friction stress ranging from 100 to 400 MPa and slip speeds of approximately 100 m/ s have been generated. These relatively high levels of friction stress combined with high slip-speeds generate conditions conducive for interfacial temperatures to approach the melting point of the lower melt point metal (Al alloy) comprising the tribo-pair. A Lagrangian finite element code is developed to understand the evolution of the thermo-mechanical fields and their relationship to the observed slip response. The code accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below the melting point the material is described as an isotropic thermally softening elastic-viscoplastic solid. For material elements with temperatures in excess of the melt point a purely Newtonian fluid constitutive model is employed. The results of the hybrid experimental-computational study provides new insights into the thermoelastic-plastic interactions during high speed metal-on-metal slip under extreme interfacial conditions. During the early part of frictional slip the coefficient of kinetic friction is observed to decrease with increasing slip velocity. During the later part transition in interfacial slip occurs from dry metal-on-metal sliding to the formation of molten Al films at the tribo-pair interface. Under these conditions the interfacial resistance approaches the shear strength of the molten aluminum alloy under normal pressures of approximately 1- 3 GPa and shear strain rates of ˜10 7 s-1. The results of the study indicate that under these extreme conditions molten

  20. Material Models to Study the Bauschinger Effect on an Aluminum Shear Test Specimen

    SciTech Connect

    Cardoso, Rui P. R.; Gracio, Jose J.; Yoon, Jeong-Whan

    2007-05-17

    Sheet metal forming processes generally involve complex loadings and nonlinear material models. Combinations of drawing, re-drawing and/or reverse drawing operations commonly induce cyclic loads with non-proportional strain paths, leading to Bauschinger effects that can not be predicted by conventional isotropic hardening laws. In order to properly represent this effect, it is also required to accommodate an appropriate kinematic hardening model along with an anisotropic yield function. In this work, two different approaches will be used to predict the Bauschinger effect for an Aluminum shear test specimen: the rate dependent crystal plasticity model and a new combined isotropic/kinematic hardening model based on the two yield surfaces approach (loading and boundary yield surfaces), as recently proposed.

  1. Calculation of the joint strength of hot shear joined bars based on a modified lemaitre model

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Lee, Seonggi; Kim, Naksoo

    2016-01-01

    To join the head and tail ends of two steel bars together, a solid-state joining technology named "shear joining" has been developed. In the process, no external heating is required since the bar temperature is around 1000 °C and sufficiently high for joining. Compared with the laser welding and fusion welding, the head and tail ends are joined together within a short time by pressing and shearing. So the process is very easy, quick and reliable without special heating and forming processes. As an innovative process, there is no appropriate method to evaluate the strength of joint up to now. In this research, a modified Lemaitre model was put forward to predict the strength of joint. This model could be also used to improve the design of joining tools and process conditions. Through comparison of load-displacement curves of tensile test obtained from FE simulation and experiment, the reliability of numerical model was verified. Compared with experimental results, the predicted joint strength showed a good quantitative agreement.

  2. Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling.

    PubMed

    Chan, R W; Titze, I R

    2000-01-01

    The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [Chan and Titze, J. Acoust. Soc. Am. 106, 2008-2021 (1999)], but data were obtained only in a frequency range of 0.01-15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Fung, Biomechanics (Springer-Verlag, New York, 1993), pp. 277-292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [Zhu et al., J. Biomech. 24, 1007-1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.

  3. Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows

    NASA Astrophysics Data System (ADS)

    Tol, Henry; Kotsonis, Marios; de Visser, Coen

    2016-11-01

    A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.

  4. A simple lattice model for the effect of voids on slip avalanches in sheared granular materials

    NASA Astrophysics Data System (ADS)

    Dahmen, K.; Ben-Zion, Y.; Uhl, J. T.

    2009-12-01

    It is well known that densely packed granular materials respond to slow shear with slip avalanches. Experiments and simulations show that the avalanche statistics depend strongly on the granular volume fraction v and grain shape related properties [1]. Previous studies have focused on force chain properties [2-6]. Here we use a mean field technique to construct an analytic model of the universal (i.e. detail-independent) slip avalanche statistics. For large v, and small frictional weakening ɛ, the model predicts solid-like behavior, with power-law avalanche size distributions and universal exponents and scaling functions. For large v and large ɛ it predicts mode switching between stick slip behavior and power law avalanche size distributions. For small v it predicts fluid-like flow. The results are presented in a (v, ɛ) phase diagram. They agree with published experiments [6-10] and simulations [2-4]. They complement recent studies on static properties, such as the shear modulus as a function of v near the jamming transition [2-4,7-10]. References: [1] V. Frette et al., “Avalanche Dynamics in a Pile of Rice”, Nature 379, 49-52 (1996). [2] E. Aharonov and D. Sparks, “Rigidity phase transition in granular packings”, Phys. Rev E, 60, 6890-6896 (1999). [3] E. Aharonov and D. Sparks, “Stick-slip motion in simulated granular layers”, J. Geophys. Res, 109, B09306 (2004). [4] E. Aharonov and D. Sparks, “Shear profiles and localization in simulations of granular materials”, Phys. Rev. E 65, 051302/1-12 (2002). [5] M.E. Cates, J.P. Wittmer, J.-P. Bouchaud, and P. Claudin, “Jamming, Force Chains, and Fragile Matter”, Phys. Rev. Lett., 81, 1841 (1998) and references therein. [6

  5. A multiphase interfacial model for the dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  6. Study on the interfacial adhesion property of low-k thin film by the surface acoustic waves with cohesive zone model

    NASA Astrophysics Data System (ADS)

    Xiao, Xia; Qi, Haiyang; Tao, Ye; Kikkawa, Takamaro

    2016-12-01

    The cohesive zone model being increasingly used in discrete fracture processes simulation is adopted to study the interfacial adhesion property of low dielectric constant film deposited on the silicon substrate in this work. The two parameters, maximum normal traction and normal interface characteristic length in cohesive zone model, are taken into account to calculate the theoretical surface acoustic wave dispersion curves. Broadband surface acoustic wave signals with effective frequency up to 200 MHz are generated by short pulse ultraviolet laser source and detected by a piezoelectric transducer. The interfacial adhesion properties of dense and porous films determined accurately by matching the experimental dispersion curves with the calculated theoretical dispersion curves are 10.7 PPa/m and 2.8 PPa/m, respectively. The results show that the adhesion quality of dense low dielectric constant film is better than that of the porous. The study exhibits that the adhesion properties determined by improved laser-generated surface acoustic wave technique have the same trends with the test results of the nanoscratch technique, which indicates that the surface acoustic wave technique with cohesive zone model is a promising and nondestructive method for determining interfacial adhesion properties between low dielectric constant film and substrate.

  7. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  8. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  9. The SH-1 Reference Model for Shear Wave Splitting Observations in Western North America

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Silver, P. G.

    2009-12-01

    Shear wave splitting observations can provide useful information about the finite strain history within the upper mantle. Splitting measurements together with an understanding of lithosphere deformation patterns and rates enables a nearly direct measurement of mantle flow. Silver and Holt [2002] inferred that splitting measurements west of the longitude of central Nevada (115° W) represented a lattice preferred orientation fabric within the asthenosphere and are controlled primarily by the differential horizontal motion between base of lithosphere and a deeper mantle frame. Fast splitting directions are expected to be parallel to the net differential horizontal shear direction. Thus, knowing the surface motions of the lithosphere (from GPS observations), Silver and Holt inverted splitting observations (solving for three parameters of a rotation vector) to infer a simple model describing the differential horizontal motion between lithosphere and a deeper mantle frame within westernmost North America. The best-fit reference model can be obtained by applying the rotation of 1.3° ± 0.3°/My about a pole at -65° ± 4° latitude and 49° ± 1° longitude to the lithosphere velocity field of western North America in a North American frame. This frame optimally aligned surface velocities with the then existing shear wave splitting directions west of 115° W, and is referred to here as the SH-1 reference model. The SH-1 reference model implies that the deeper mantle motion within a hot spot framework can be approximated by the pole of rotation and angular velocity of (+63°, -122°, 1.1°/My), which describes east-northeast mantle counter flow (at depths below the asthenosphere) beneath western North America of 5.5 ± 1.5 cm/yr (1σ). Silver and Holt argued that this counter flow was a long wavelength feature, consistent with existing models of density buoyancy driven mantle circulation, where the history of subduction of the Farallon plate is the major player in the

  10. Interfacial characteristics of propylene carbonate and validation of simulation models for electrochemical applications

    NASA Astrophysics Data System (ADS)

    You, Xinli

    Supercapacitors have occupy an indispensable role in today's energy storage systems due to their high power density and long life. The introduction of car- bon nanotube (CNT) forests as electrode offers the possibility of nano-scale design and high capacitance. We have performed molecular dynamics simulations on a CNT forest-based electrochemical double-layer capacitor (EDLC) and a widely used electrolyte solution (tetra-ethylammonium tetra-fluoroborate in propylene carbonate, TEABF4 /PC). We compare corresponding primitive model and atomically detailed model of TEABF4 /P, emphasizing the significance of ion clustering in electrolytes. The molecular dynamic simulation results suggests that the arrangement of closest neigh- bors leads to the formation of cation-anion chains or rings. Fuoss's discussion of ion-pairing model provides the approximation for a primitive model of 1-1 electrolyte is not broadly satisfactory for both primitive and atomically detailed cases. A more general Poisson statistical assumption is shown to be satisfactory when coordina- tion numbers are low, as is likely to be the case when ion-pairing initiates. We examined the Poisson-based model over a range of concentrations for both models of TEABF4 /P, and the atomically detailed model results identified solvent-separated nearest-neighbor ion-pairs. Large surface areas plays an essential role in nanomaterial properties, which calls for an accurate description of interfaces through modeling. We studied propylene carbonate, a widely used solvent in EDLC systems. PC wets graphite with a contact angle of 31°. The MD simulation model reproduced this contact angle after reduction 40% of the strength of graphite-C atom Lennard-Jones interactions with the solvent. The critical temperature of PC was accurately evaluated by extrapolating the PC liquid-vapor surface tensions. PC molecules tend to lie flat on the PC liquid-vapor surface, and project the propyl carbon toward the vapor phase. Liquid PC

  11. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  12. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.

  13. Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows

    NASA Technical Reports Server (NTRS)

    Zhao, C. Y.; So, R. M. C.; Gatski, T. B.

    2001-01-01

    The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.

  14. Quantification of shear stress in a meandering native topographic channel using a physical hydraulic model

    Treesearch

    Michael E. Ursic

    2011-01-01

    Current guidelines for predicting increases in shear stress in open-channel bends were developed from investigations that were primarily prismatic in cross section. This study provides possible increases in shear stress relative to approach flow conditions resulting from planimetric and topographic geometric features. Boundary shear stress estimates were determined by...

  15. Bifurcation and stability in a model of moist convection in a shearing environment

    NASA Technical Reports Server (NTRS)

    Shirer, H. N.

    1980-01-01

    The truncated spectral system (model I) of shallow moist two-dimensional convection discussed by Shirer and Dutton (1979) is expanded to eleven coefficients (model II) in order to include a basic wind. Cloud streets, the atmospheric analog of the solutions to model II, are typically observed in an environment containing a shearing basic motion field. Analysis of the branching behavior of solutions to mode II shows that, if the basic wind direction varies with height, very complex temporal behavior is possible as the modified Rayleigh number HR is increased sufficiently. The first convective solution is periodic, corresponding to a cloud band that propagates downwind; but secondary branching to a two-dimensional torus can occur for larger values of HR. Orientation band formulas are derived whose predictions generally agree with the results of previous studies.

  16. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    NASA Astrophysics Data System (ADS)

    Farjoud, Alireza; Ahmadian, Mehdi; Mahmoodi, Nima; Zhang, Xinjie; Craft, Michael

    2011-08-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS.

  17. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 x g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.

  18. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 x g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.

  19. Viscosity of a sheared correlated (near-critical) model fluid in confinement

    NASA Astrophysics Data System (ADS)

    Rohwer, Christian M.; Gambassi, Andrea; Krüger, Matthias

    2017-08-01

    Second-order phase transitions are characterized by a divergence of the spatial correlation length of the order parameter fluctuations. For confined systems, this is known to lead to remarkable equilibrium physical phenomena, including finite-size effects and critical Casimir forces. We explore here some non-equilibrium aspects of these effects in the stationary state resulting from the action of external forces: by analyzing a model of a correlated fluid under shear, spatially confined by two parallel plates, we study the resulting viscosity within the setting of (Gaussian) Landau-Ginzburg theory. Specifically, we introduce a model in which the hydrodynamic velocity field (obeying the Stokes equation) is coupled to an order parameter with dissipative dynamics. The well-known Green-Kubo relation for bulk systems is generalized for confined systems. This is shown to result in a non-local Stokes equation for the fluid flow, due to the correlated fluctuations. The resulting effective shear viscosity shows universal as well as non-universal contributions, which we study in detail. In particular, the deviation from the bulk behavior is universal, depending on the ratio of the correlation length and the film thickness L. In addition, at the critical point the viscosity is proportional to \\ell /L , where \\ell is a dynamic length scale. These findings are expected to be experimentally observable, especially for systems where the bulk viscosity is affected by critical fluctuations.

  20. Physical test of a particle simulation model in a sheared granular system.

    PubMed

    Rycroft, Chris H; Orpe, Ashish V; Kudrolli, Arshad

    2009-09-01

    We report a detailed comparison of a slow gravity-driven sheared granular flow with a discrete-element simulation performed in the same geometry. In the experiments, grains flow inside a silo with a rectangular cross section and are sheared by a rough boundary on one side and smooth boundaries on the other sides. Individual grain position and motion are measured using a particle index-matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the same refractive index as the glass beads. The simulations use a Cundall-Strack contact model between the grains using contact parameters that have been used in many other previous studies and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean flow properties. We then perform a detailed comparison of the particle fluctuation properties as measured by the displacement probability distribution function and the mean square displacement. All in all, our study suggests a high level of quantitative agreement between the simulations and experiments.

  1. Equivalent Plate Structural Modeling for Wing Shape Optimization Including Transverse Shear

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1994-01-01

    A new technique for structural modeling of airplane wings is presented taking transverse shear effects into account. The kinematic assumptions of first-order shear deformation plate theory In combination with numerical analysis, where simple polynomials are used to define geometry, construction, and displacement approximations, lead to analytical expressions for elements of the stiffness and mass matrices and load vector. Contributions from the cover skins, spar and rib caps, and spar and rib webs are included as well as concentrated springs and concentrated masses. Limitations of wing modeling techniques based on classical plate theory are discussed, and the Improved accuracy of the new equivalent plate technique is demonstrated through comparison with finite element analysis and test results. Expressions for analytical derivatives of stiffness, mass, and load terms with respect to wing shape are given. Based on these, it is possible to obtain analytic sensitivities of displacements, stresses, and natural frequencies with respect to planform shape and depth distribution. This makes the new capability an effective structural tool for wing shape optimization.

  2. Equivalent plate structural modeling for wing shape optimization including transverse shear

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1994-01-01

    A new technique for structural modeling of airplanes wings is presented taking transverse shear effects into account. The kinematic assumptions of first-order shear deformation plate theory in combination with numerical analysis, where simple polynomials are used to define geometry, construction, and displacement approximations, lead to analytical expressions for elements of the stiffness and mass matrices and load vector. Contributions from the cover skins, spar and rib caps, and spar and rib webs are included as well as concentrated springs and concentrated masses. Limitations of wing modeling techniques based on classical plate theory are discussed, and the improved accuracy of the new equivalent plate technique is demonstrated through comparison with finite element analysis and test results. Expressions for analytical derivatives of stiffness, mass, and load terms with respect to wing shape are given. Based on these, it is possible to obtain analytic sensitivities of displacements, stresses, and natural frequencies with respect to planform shape and depth distribution. This makes the new capability an effective structural tool for wing shape optimization.

  3. A Fractal Model for the Shear Behaviour of Large-Scale Opened Rock Joints

    NASA Astrophysics Data System (ADS)

    Li, Y.; Oh, J.; Mitra, R.; Canbulat, I.

    2017-01-01

    This paper presents a joint constitutive model that represents the shear behaviour of a large-scale opened rock joint. Evaluation of the degree of opening is made by considering the ratio between the joint wall aperture and the joint amplitude. Scale dependence of the surface roughness is investigated by approximating a natural joint profile to a fractal curve patterned in self-affinity. Developed scaling laws show the slopes of critical waviness and critical unevenness tend to flatten with increased sampling length. Geometrical examination of four 400-mm joint profiles agrees well with the suggested formulations involving multi-order asperities and fractal descriptors. Additionally, a fractal-based formulation is proposed to estimate the peak shear displacements of rock joints at varying scales, which shows a good correlation with experimental data taken from the literature. Parameters involved in the constitutive law can be acquired by inspecting roughness features of sampled rock joints. Thus, the model can be implemented in numerical software for the stability analysis of the rock mass with opened joints.

  4. Size and Structure of Clusters Formed by Shear Induced Coagulation: Modeling by Discrete Element Method.

    PubMed

    Kroupa, Martin; Vonka, Michal; Soos, Miroslav; Kosek, Juraj

    2015-07-21

    The coagulation process has a dramatic impact on the properties of dispersions of colloidal particles including the change of optical, rheological, as well as texture properties. We model the behavior of a colloidal dispersion with moderate particle volume fraction, that is, 5 wt %, subjected to high shear rates employing the time-dependent Discrete Element Method (DEM) in three spatial dimensions. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to model noncontact interparticle interactions, while contact mechanics was described by the Johnson-Kendall-Roberts (JKR) theory of adhesion. The obtained results demonstrate that the steady-state size of the produced clusters is a strong function of the applied shear rate, primary particle size, and the surface energy of the particles. Furthermore, it was found that the cluster size is determined by the maximum adhesion force between the primary particles and not the adhesion energy. This observation is in agreement with several simulation studies and is valid for the case when the particle-particle contact is elastic and no plastic deformation occurs. These results are of major importance, especially for the emulsion polymerization process, during which the fouling of reactors and piping causes significant financial losses.

  5. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering.

    PubMed

    Navran, Stephen

    2008-01-01

    The practice of cell culture has been virtually unchanged for 100 years. Until recently, life scientists have had to content themselves with two-dimensional cell culture technology. Clearly, living creatures are not constructed in two dimensions and thus it has become widely recognized that in vitro culture systems must become three dimensional to correctly model in vivo biology. Attempts to modify conventional 2-D culture technology to accommodate 3-D cell growth such as embedding cells in extracellular matrix have demonstrated the superiority of concept. Nevertheless, there are serious drawbacks to this approach including limited mass transport and lack of scalability. Recently, a new cell culture technology developed at NASA to study the effects of microgravity on cells has emerged to solve many of the problems of 3-D cell culture. The technology, the Rotating Wall Vessel (RWV) is a single axis clinostat consisting of a fluid-filled, cylindrical, horizontally rotating culture vessel. Cells placed in this environment are suspended by the resolution of the gravitational, centrifugal and Coriolis forces with extremely low mechanical shear. These conditions, which have been called "low shear modeled microgravity", enable cells to assemble into tissue-like aggregates with high mass transport of nutrients, oxygen and wastes. Examples of the use of the RWV for basic cell biology research and tissue engineering applications are discussed.

  6. Interfacial structure, thermodynamics, and electrostatics of aqueous methanol solutions via molecular dynamics simulations using charge equilibration models.

    PubMed

    Patel, Sandeep; Zhong, Yang; Bauer, Brad A; Davis, Joseph E

    2009-07-09

    We present results from molecular dynamics simulations of methanol-water solutions using charge equilibration force fields to explicitly account for nonadditive electronic interaction contributions to the potential energy. We study solutions across the concentration range from 0.1 to 0.9 methanol mole fraction. At dilute concentrations, methanol density is enhanced at the liquid-vapor interface, consistent with previous molecular dynamics and experimental studies. Interfacial thickness exhibits a monotonic increase with increasing methanol mole fraction, while surface tensions display monotonic decrease with methanol concentration, in qualitative agreement with experimental data and previous molecular dynamics predictions using polarizable force fields. In terms of interfacial structure, in keeping with predictions of traditional force fields, there is a unique preferential orientation of methanol molecules at the interface. Moreover, there is a free energetic preference for methanol molecules at the interface as evidenced by potential of mean force calculations. The pmf calculations suggest an interfacial state with 0.8 kcal/mol stability relative to the bulk, again in qualitative agreement with previous simulation and experimental studies. Interfacial potentials based on double integration of total charge density range from -610 to -330 mV over the dilute to concentrated regimes, respectively. The preponderance of methanol at the interface at all mole fractions gives rise to a dominant methanol contribution to the total interfacial potential. Interestingly, there is a transition of the water surface potential contribution from negative to positive upon the transition from methanol mole fraction of 0.1 to 0.2. The dipole and quadrupole contributions to the water component of the total interfacial potential are effectively of equal magnitude and opposite sign, thus cancelling one another. We compute the in-plane component of the dielectric permittivity along the

  7. A Model for the Interfacial Kinetics of Phospholipase D Activity on Long-Chain Lipids

    DTIC Science & Technology

    2013-07-01

    the currents from the original current-versus-time traces with Clampfit 9.2 software (Axon Instruments) (41). From these histograms, we extracted the...indistinguishable from the simplified model given by Eq. 4 (black curve). The error bars in both plots represent the mean 5 SD (N R 3) and the curves...R. Verger. 1997. Study of fatty acid spec- ificity of sunflower phospholipase D using detergent /phospholipid micelles. Eur. J. Biochem. 248:374–379

  8. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, K. D.; Kerisit, Sebastien N.

    2014-07-12

    The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products)represents a complex region, both physically and chemically, sandwiched between two distinct boundaries - pristine glass surface at the inner most interface and aqueous solution at the outer most. The physico-chemical processes that control the development of this region have a significant impact on the long-term glass-water reaction. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include Geochemical Reaction Path simulations, Glass Reactivity in Allowance for Alteration Layer simulations, Monte Carlo simulations, and Molecular Dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers; thus providing the fundamental data needed to develop pore-scale equations that enable more accurate predictions of nuclear waste glass corrosion in a geologic repository.

  9. Applications of inclusion behaviour models to a major shear zone system: The Nordfjord-Sogn Detachment Zone in western Norway

    NASA Astrophysics Data System (ADS)

    Marques, Fernando O.; Schmid, Daniel W.; Andersen, Torgeir B.

    2007-10-01

    Rigid inclusion models have reached a stage where one should be able to use them to obtain quantitative values from ductile shear zones. We used natural data collected in three sites and combined analogue and theoretical modelling to assess vorticity, strain, nature of rigid inclusion/matrix interface and confinement in the large-scale, ductile Nordfjord-Sogn Detachment Zone (NSDZ) of the Caledonides of western Norway. Our study shows that: (1) the observed shape preferred orientation (SPO) at higher structural levels of the NSDZ at Site 1, Gjervika, can be explained by simple shear (pure shear/simple shear ratio S r = 0) associated with a slipping inclusion/matrix interface. (2) The observed SPO at deeper structural levels of the NSDZ at Site 2, near Sandane can be produced by simple shear associated with a significant amount of shortening across the shear zone ( S r ≈ 1), acting upon rigid inclusions in slipping contact with the enclosing matrix. (3) Observed back rotated boudins deeper in the NSDZ at Site 3, Biskjelneset, can form in confined flow associated with a considerable amount of shortening across the shear zone ( S r ≥ 0.4). (4) The observed tails of porphyroclasts indicate a minimum (at least local) strain of ca. γ ≈ 20. (5) The clasts in the studied shear zones strongly depart from Jeffery's model [Jeffery, G. B., 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London A102, 161-179]. The large scale extensional NSDZ under investigation shows evidence of strain partitioning: rocks vary from protomylonites to ultramylonites, and the simple shear and pure shear components are heterogeneously distributed. Therefore, we conclude that flow in the NSDZ was very heterogeneous both at the kilometre and the metre scale. However, the present study suggests that the amount of shortening across the shear plane throughout the NSDZ increases with depth, and the flattening component contributes to

  10. A robust macroscopic model for normal-shear coupling, asymmetric and anisotropic behaviors of polycrystalline SMAs

    NASA Astrophysics Data System (ADS)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2016-07-01

    The aim of this article is to develop a robust macroscopic bi-axial model to capture self-accommodation, martensitic transformation/orientation/reorientation, normal-shear deformation coupling and asymmetric/anisotropic strain generation in polycrystalline shape memory alloys. By considering the volume fraction of martensite and its preferred direction as scalar and directional internal variables, constitutive relations are derived to describe basic mechanisms of accommodation, transformation and orientation/reorientation of martensite variants. A new definition is introduced for maximum recoverable strain, which allows the model to capture the effects of tension-compression asymmetry and transformation anisotropy. Furthermore, the coupling effects between normal and shear deformation modes are considered by merging inelastic strain components together. By introducing a calibration approach, material and kinetic parameters of the model are recast in terms of common quantities that characterize a uniaxial phase kinetic diagram. The solution algorithm of the model is presented based on an elastic-predictor inelastic-corrector return mapping process. In order to explore and demonstrate capabilities of the proposed model, theoretical predictions are first compared with existing experimental results on uniaxial tension, compression, torsion and combined tension-torsion tests. Afterwards, experimental results of uniaxial tension, compression, pure bending and buckling tests on {{NiTi}} rods and tubes are replicated by implementing a finite element method along with the Newton-Raphson and Riks techniques to trace non-linear equilibrium path. A good qualitative and quantitative correlation is observed between numerical and experimental results, which verifies the accuracy of the model and the solution procedure.

  11. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.

    1994-06-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon

  12. Modeling of Long-Term Fate of Mobilized Fines due to Dam-Embankment Interfacial Dislocations

    NASA Astrophysics Data System (ADS)

    Glascoe, L. G.; Ezzedine, S. M.; Kanarska, Y.; Lomov, I.; Antoun, T. H.

    2011-12-01

    Transverse cracks in embankment dams can develop as a result of post-construction settlements, earthquake deformations, or anthropogenic loads such as emplaced explosives. During these dislocations, fine particles are released from the damaged zones and can create unwanted inertial erosion and piping through the transverse cracks. These processes are equally critical to the overall stability of the dam. We present numerical results related to the problem of the fluid flow, transport, and filtration of particulates from damaged zones between the concrete sections of a gravity dam and the embankment wraparound sections. The model solves simultaneously the flow, attachment, and washout of fine particles within a wraparound heterogeneous porous media. We used a state-of-the-art finite element method with adaptive mesh refinement to capture 1) the interface between water dense with fines and clear water, and 2) the non-linearity of the free surface itself. A few scenarios of sediment entrapment in the filter layers of a gravity dam were considered. Several parameterizations of the filtration model and constitutive laws of soil behavior were also investigated. Through these analyses, we concluded that the attachment kinetic isotherm is the key function of the model. More parametric studies need to be conducted to assess the sensitivity of the kinetic isotherm parameters on the overall stability of the embankment. These kinetic parameters can be obtained, for example, through numerical micro- and meso-scale studies. It is worth mentioning that the current model, for the more realistic non-linear kinetic isotherms, has predicted a self-rehabilitation of the breached core with retention of 50% of the mobilized fines using a very conservative filtration length. A more realistic value should exceed the assumed one, resulting in a retention exceeding 50%. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

  13. Kinetics and transport at AMTEC electrodes. I - The interfacial impedance model. [alkali metal thermoelectric converters

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Loveland, M. E.; Jeffries-Nakamura, B.; Underwood, M. L.; Bankston, C. P.; Leduc, H.; Kummer, J. T.

    1990-01-01

    Mixed mass-transport and kinetic control of sodium ion reduction at porous inert electrodes on sodium beta-double-prime alumina solid electrolyte (BASE) ceramic in a high-temperature electrochemical cell has been observed and modeled. The high ionic conductivity of BASE and the reversibility of the liquid sodium/BASE anodic half-cell led to assignment of potential-dependent (nonohmic) resistances to kinetic and mass-transport processes associated with the porous electrode. The morphology of these electrodes and typical sodium gas pressures are consistent with Knudsen, or free-molecular, flow through the electrode.

  14. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area

  15. Hydrated arrays of acidic surface groups as model systems for interfacial structure and mechanisms in PEMs.

    PubMed

    Roudgar, A; Narasimachary, S P; Eikerling, M

    2006-10-19

    We utilize ab initio quantum mechanical calculations in order to explore structural conformations and cooperative mechanisms at a minimally hydrated 2D array of flexible acidic surface groups. This system serves as a model for rationalizing interactions and correlations of protons and water with ionized side chains that are affixed to hydrophobic polymer aggregates in polymer electrolyte membranes (PEMs). The model exhibits two basic minimum energy configurations upon varying the separation of surface groups from 5 to 12 A. In the "upright" structure at small separation, surface groups are fully dissociated and oriented perpendicular to the basal plane. Together with hydronium ions (H3O+) they form a highly ordered network with long-range correlations. At larger separations we found the transition to a "tilted" structure with cluster-like conformation of surface groups. This structure retains only short-range correlations. Moreover, we investigated the strength of water binding to the minimally hydrated structures. At small separations between surface groups, an additional water molecule interacts only weakly with the minimally hydrated array (binding energy < 0.1 eV) while the energy needed to remove one water molecule exceeds 1 eV. This shows that the minimally hydrated systems are very stable. Ideally, these studies would expedite the design of cheap, highly performing PEMs for fuel cells, with a major focus on membranes that could operate stably at minimal hydration and elevated temperatures (>120 degrees C).

  16. Challenges in Modelling of Lightning-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Arnold, S.

    2014-01-01

    Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.

  17. The improvement of the interfacial drag model in RELAP5/MOD3.3 to simulate downcomer boiling phenomena in APR1400

    SciTech Connect

    Kim, Han-Gon; Lee, Seok-Ho

    2006-07-01

    In late reflood phase of LBLOCA, the injected water flow-rate is small compared to those in refill and early reflood phases due to the termination of large cooling water source, that is, the Safety Injection Tanks (SITs). At this situation, the water in downcomer could be vaporized near the reactor vessel wall surface having stored energy. The technical issue is if this local boiling could be extended to the bulk boiling, so called 'Downcomer Boiling'. Some system codes (e.g. RELAP, TRACE) predict this generated steam prevents the penetration of safety injection water into core and eventually degrades the core cooling capability. In this concern, separate effect tests on the downcomer boiling phenomena have been performed. When water in downcomer is boiled off by heated wall, interactions between void and liquid become important. Interfacial drag model is one of key factors to handle those phenomena in RELAP5/MOD3.3. So, we assessed several models related to interfacial drag in RELAP5/MOD3.3 code to obtain the most appropriate model using the experiment. EPRI and Bestion correlations are compared to Kataoka-Ishii correlation. Also, we perform the comparison by adopting Blasius model used in TRACE code. In TRACE code, Blasius model is a special interfacial drag model which applied in the downcomer only. Especially, because Bestion correlation is developed for channel having small diameter, we conduct additional assessment by multiplying factor for calibration of hydraulic diameter term within the correlation. As the results of the assessment, the modified Bestion model is most appropriate to simulate the experiments. Finally, we assess CCTF (Cylindrical Core Test Facility) C2-4 test using the improved model to confirm the validity of the developed model. (authors)

  18. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone

    NASA Astrophysics Data System (ADS)

    Pardoen, Benoît; Levasseur, Séverine; Collin, Frédéric

    2015-03-01

    The drilling of galleries induces damage propagation in the surrounding medium and creates, around them, the excavation damaged zone (EDZ). The prediction of the extension and fracture structure of this zone remains a major issue, especially in the context of underground nuclear waste storage. Experimental studies on geomaterials indicate that localised deformation in shear band mode usually appears prior to fractures. Thus, the excavation damaged zone can be modelled by considering the development of shear strain localisation bands. In the classical finite element framework, strain localisation suffers a mesh-dependency problem. Therefore, an enhanced model with a regularisation method is required to correctly model the strain localisation behaviour. Among the existing methods, we choose the coupled local second gradient model. We extend it to unsaturated conditions and we include the solid grain compressibility. Furthermore, air ventilation inside underground galleries engenders a rock-atmosphere interaction that could influence the damaged zone. This interaction has to be investigated in order to predict the damaged zone behaviour. Finally, a hydro-mechanical modelling of a gallery excavation in claystone is presented and leads to a fairly good representation of the EDZ. The main objectives of this study are to model the fractures by considering shear strain localisation bands, and to investigate if an isotropic model accurately reproduces the in situ measurements. The numerical results provide information about the damaged zone extension, structure and behaviour that are in very good agreement with in situ measurements and observations. For instance, the strain localisation bands that develop in chevron pattern during the excavation and rock desaturation, due to air ventilation, are observed close to the gallery.

  19. BWR Refill-Reflood Program, Task 4. 7 - model development: basic models for the BWR version of TRAC

    SciTech Connect

    Andersen, J G.M.; Chu, K H; Shaug, J C

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best estimate analysis of the thermal hydraulic conditions in a reactor system. The constitutive correlations for shear and heat transfer developed for the Boiling Water Reactor (BWR) version of TRAC are described. A universal flow regime map has been developed to tie the regimes for shear and heat transfer into a consistent package. New models in the areas of interfacial shear, interfacial heat transfer and thermal radiation have been introduced. Improvements have also been made to the constitutive correlations and the numerical methods. All the models have been implemented into the GE version TRACB02 and extensively tested against data.

  20. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model

    NASA Astrophysics Data System (ADS)

    Kustowski, B.; EkströM, G.; DziewońSki, A. M.

    2008-06-01

    We combine a new, large data set of surface wave phase anomalies, long-period waveforms, and body wave travel times to construct a three-dimensional model of the anisotropic shear wave velocity in the Earth's mantle. Our modeling approach is improved and more comprehensive compared to our earlier studies and involves the development and implementation of a new spherically symmetric reference model, simultaneous inversion for velocity and anisotropy, as well as discontinuity topographies, and implementation of nonlinear crustal corrections for waveforms. A comparison of our new three-dimensional model, S362ANI, with two other models derived from comparable data sets but using different techniques reveals persistent features: (1) strong, ˜200-km-thick, high-velocity anomalies beneath cratons, likely representing the continental lithosphere, underlain by weaker, fast anomalies extending below 250 km, which may represent continental roots, (2) weak velocity heterogeneity between 250 and 400 km depths, (3) fast anomalies extending horizontally up to 2000-3000 km in the mantle transition zone beneath subduction zones, (4) lack of strong long-wavelength heterogeneity below 650 km suggesting inhibiting character of the upper mantle-lower mantle boundary, and (5) slow-velocity superplumes beneath the Pacific and Africa. The shear wave radial anisotropy is strongest at 120 km depth, in particular beneath the central Pacific. Lateral anisotropic variations appreciably improve the fit to data that are predominantly sensitive to the uppermost and lowermost mantle but not to the waveforms that control the transition zone and midmantle depths. Tradeoffs between lateral variations in velocity and anisotropy are negligible in the uppermost mantle but noticeable at the bottom of the mantle.

  1. Comparative growth, cross stress resistance, transcriptomics of Streptococcus pyogenes cultured under low shear modeled microgravity and normal gravity

    PubMed Central

    Kalpana, Duraisamy; Im, Chanki; Lee, Yang Soo

    2015-01-01

    Streptococcus pyogenes is commonly found on pharynx, mouth and rarely on skin, lower gastrointestinal tract. It is a potential pathogen causing tonsillitis, pneumonia, endocarditis. The present study was undertaken to study the effects of low shear modeled microgravity on growth, morphology, antibiotic resistance, cross-stress resistance to various stresses and alteration in gene expression of S. pyogenes. The growth analysis performed using UV–Visible spectroscopy indicated decrease in growth of S. pyogenes under low shear modeled microgravity. Morphological analysis by Bio-transmission electron microscopy (TEM), Bio-scanning electron microscopy (SEM) did not reveal much difference between normal and low shear modeled microgravity grown S. pyogenes. The sensitivity of S. pyogenes to antibiotics ampicillin, penicillin, streptomycin, kanamycin, hygromycin, rifampicin indicates that the bacterium is resistant to hygromycin. Further S. pyogenes cultured under low shear modeled microgravity was found to be more sensitive to ampicillin and rifampicin as compared with normal gravity grown S. pyogenes. The bacteria were tested for the acid, osmotic, temperature and oxidative cross stress resistances. The gene expression of S. pyogenes under low shear modeled microgravity analyzed by microarray revealed upregulation of 26 genes and down regulation of 22 genes by a fold change of 1.5. PMID:26858535

  2. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.

    PubMed

    Lesman, Ayelet; Blinder, Yaron; Levenberg, Shulamit

    2010-02-15

    Novel tissue-culture bioreactors employ flow-induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three-dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear-stress values within the physiological range of those naturally sensed by vascular cells (1-10 dyne/cm(2)), and will thereby provide suitable conditions for vascular tissue-engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell-layer thicknesses of 0, 50, 75, 100, and 125 microm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear-stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell-layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in-depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro.

  3. Comparative growth, cross stress resistance, transcriptomics of Streptococcus pyogenes cultured under low shear modeled microgravity and normal gravity.

    PubMed

    Kalpana, Duraisamy; Im, Chanki; Lee, Yang Soo

    2016-01-01

    Streptococcus pyogenes is commonly found on pharynx, mouth and rarely on skin, lower gastrointestinal tract. It is a potential pathogen causing tonsillitis, pneumonia, endocarditis. The present study was undertaken to study the effects of low shear modeled microgravity on growth, morphology, antibiotic resistance, cross-stress resistance to various stresses and alteration in gene expression of S. pyogenes. The growth analysis performed using UV-Visible spectroscopy indicated decrease in growth of S. pyogenes under low shear modeled microgravity. Morphological analysis by Bio-transmission electron microscopy (TEM), Bio-scanning electron microscopy (SEM) did not reveal much difference between normal and low shear modeled microgravity grown S. pyogenes. The sensitivity of S. pyogenes to antibiotics ampicillin, penicillin, streptomycin, kanamycin, hygromycin, rifampicin indicates that the bacterium is resistant to hygromycin. Further S. pyogenes cultured under low shear modeled microgravity was found to be more sensitive to ampicillin and rifampicin as compared with normal gravity grown S. pyogenes. The bacteria were tested for the acid, osmotic, temperature and oxidative cross stress resistances. The gene expression of S. pyogenes under low shear modeled microgravity analyzed by microarray revealed upregulation of 26 genes and down regulation of 22 genes by a fold change of 1.5.

  4. Using pressure and seismological broadband ocean data to model shear wave velocities in the north Atlantic.

    NASA Astrophysics Data System (ADS)

    Rios, Celia; Dahm, Torsten; Jegen, Marion

    2010-05-01

    Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 - 500 s and obey a simple frequency-wavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution

  5. How does interfacial rheology govern soap bubble cluster dynamics?

    NASA Astrophysics Data System (ADS)

    Cohen-Addad, Sylvie; Biance, Anne-Laure; Hohler, Reinhard

    2009-11-01

    Aqueous foams are concentrated dispersions of gas bubbles in a soapy solution. These complex fluids exhibit solid-like or liquid-like mechanical behaviors, depending on the applied shear. When it is increased beyond a yield strain, neighbor switching bubble rearrangements called T1 events are triggered and plastic flow sets in. We study experimentally the dynamics of such strain induced T1s in 3D bubble clusters that we consider as model systems of 3D foams. To determine the hydrodynamics and physico-chemistry that set the duration of T1s, we use foaming solutions of a wide range of well characterized bulk and interfacial rheological properties. At low shear rates, the T1 duration is set by a balance between surface tension and surface viscous forces in qualitative agreement with previous studies of T1s in 2D foams [1] and we present a simple physical model that explains our 3D findings. Moreover, above a characteristic shear rate, rearrangement dynamics are driven by the applied strain. By combining all our results, we link the transition from intermittent to continous flow dynamics in foams to the rheology of the gas-liquid interfaces. [4pt] [1] M. Durand, H. A. Stone, Phys. Rev. Lett. 97, 2226101 (2006).

  6. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.

    PubMed

    Low, Kenny W Q; van Loon, Raoul; Rolland, Samuel A; Sienz, Johann

    2016-05-01

    This paper reviews and further develops pore-scale computational flow modeling techniques used for creeping flow through orthotropic fiber bundles used in blood oxygenators. Porous model significantly reduces geometrical complexity by taking a homogenization approach to model the fiber bundles. This significantly simplifies meshing and can avoid large time-consuming simulations. Analytical relationships between permeability and porosity exist for Newtonian flow through regular arrangements of fibers and are commonly used in macroscale porous models by introducing a Darcy viscous term in the flow momentum equations. To this extent, verification of analytical Newtonian permeability-porosity relationships has been conducted for parallel and transverse flow through square and staggered arrangements of fibers. Similar procedures are then used to determine the permeability-porosity relationship for non-Newtonian blood. The results demonstrate that modeling non-Newtonian shear-thinning fluids in porous media can be performed via a generalized Darcy equation with a porous medium viscosity decomposed into a constant term and a directional expression through least squares fitting. This concept is then investigated for various non-Newtonian blood viscosity models. The proposed methodology is conducted with two different porous model approaches, homogeneous and heterogeneous, and validated against a high-fidelity model. The results of the heterogeneous porous model approach yield improved pressure and velocity distribution which highlights the importance of wall effects.

  7. An optical model for translucent volume rendering and its implementation using the preintegrated shear-warp algorithm.

    PubMed

    Li, Bin; Tian, Lianfang; Ou, Shanxing

    2010-01-01

    In order to efficiently and effectively reconstruct 3D medical images and clearly display the detailed information of inner structures and the inner hidden interfaces between different media, an Improved Volume Rendering Optical Model (IVROM) for medical translucent volume rendering and its implementation using the preintegrated Shear-Warp Volume Rendering algorithm are proposed in this paper, which can be readily applied on a commodity PC. Based on the classical absorption and emission model, effects of volumetric shadows and direct and indirect scattering are also considered in the proposed model IVROM. Moreover, the implementation of the Improved Translucent Volume Rendering Method (ITVRM) integrating the IVROM model, Shear-Warp and preintegrated volume rendering algorithm is described, in which the aliasing and staircase effects resulting from under-sampling in Shear-Warp, are avoided by the preintegrated volume rendering technique. This study demonstrates the superiority of the proposed method.

  8. Microconfined shear deformation of a droplet in an equiviscous non-newtonian immiscible fluid: experiments and modeling.

    PubMed

    Minale, Mario; Caserta, Sergio; Guido, Stefano

    2010-01-05

    In this work, the microconfined shear deformation of a droplet in an equiviscous non-Newtonian immiscible fluid is investigated by modeling and experiments. A phenomenological model based on the assumption of ellipsoidal shape and taking into account wall effects is proposed for systems made of non-Newtonian second-order fluids. The model, without any adjustable parameters, is tested by comparison with experiments under simple shear flow performed in a sliding plate apparatus, where the ratio between the distance between the confining walls and the droplet radius can be varied. The agreement between model predictions and experimental data is good both in steady state shear and in transient drop retraction upon cessation of flow. The results obtained in this work are relevant for microfluidics applications where non-Newtonian fluids are used.

  9. An Optical Model for Translucent Volume Rendering and Its Implementation Using the Preintegrated Shear-Warp Algorithm

    PubMed Central

    Li, Bin; Tian, Lianfang; Ou, Shanxing

    2010-01-01

    In order to efficiently and effectively reconstruct 3D medical images and clearly display the detailed information of inner structures and the inner hidden interfaces between different media, an Improved Volume Rendering Optical Model (IVROM) for medical translucent volume rendering and its implementation using the preintegrated Shear-Warp Volume Rendering algorithm are proposed in this paper, which can be readily applied on a commodity PC. Based on the classical absorption and emission model, effects of volumetric shadows and direct and indirect scattering