Three-Axis Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1987-01-01
Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.
Compact integrated dc SQUID gradiometer
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Klapwijk, T. M.
1982-10-01
An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17×12 mm and a sensitivity of 3.5×10-12 T m-1 Hz-1/2.
Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Ho Eom, Byeong
2009-01-01
A new gradiometer scheme uses middle loops as sensing elements in lowfield superconducting quantum interference device (SQUID) magnetic resonance imaging (MRI). This design of a second order gradiometer increases its sensitivity and makes it more uniform, compared to the conventional side loop sensing scheme with a comparable matching SQUID. The space between the two middle loops becomes the imaging volume with the enclosing cryostat built accordingly.
Unshielded fetal magnetocardiography system using two-dimensional gradiometers
NASA Astrophysics Data System (ADS)
Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio
2008-03-01
We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.
Overton, Jr., William C.; Steyert, Jr., William A.
1984-01-01
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Overton, W.C. Jr.; Steyert, W.A. Jr.
1981-05-22
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, H.A.; Paik, H.J.
1987-06-15
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less
Second order gradiometer and dc SQUID integrated on a planar substrate
NASA Astrophysics Data System (ADS)
van Nieuwenhuyzen, G. J.; de Waal, V. J.
1985-02-01
An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative ∂2Bz/∂x2 of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16×16.5 mm2 a sensitivity of 1.5×10-9 Tm-2 Hz-1/2 is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1×10-7 T Φ-10.
Development of a Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Astrophysics Data System (ADS)
Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.
2007-12-01
JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.
NASA Astrophysics Data System (ADS)
Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke
2012-07-01
A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.
NASA Astrophysics Data System (ADS)
Saburo, Tanaka; Tomohiro, Akai; Makoto, Takemoto; Yoshimi, Hatsukade; Takeyoshi, Ohtani; Yoshio, Ikeda; Shuichi, Suzuki
2010-08-01
We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.
Long baseline planar superconducting gradiometer for biomagnetic imaging
NASA Astrophysics Data System (ADS)
Granata, C.; Vettoliere, A.; Nappi, C.; Lisitskiy, M.; Russo, M.
2009-07-01
A niobium based dc-superconducting quantum interference device (SQUID) planar gradiometer with a long baseline (50 mm) for biomagnetic applications has been developed. The pickup antenna consists of two integrated rectangular coils connected in series and magnetically coupled to a dc-SQUID in a double parallel washer configuration by two series multiturn input coils. Due to a high intrinsic responsivity, the sensors have shown at T =4.2 K a white magnetic flux noise spectral density as low as 3 μΦ0/Hz1/2. The spectral density of the magnetic field noise referred to one sensing coil, is 3.0 fT/Hz1/2 resulting in a gradient spectral noise of 0.6 fT/(cm Hz1/2). In order to verify the effectiveness of such sensors for biomagnetic applications, the magnetic response to a current dipole has been calculated and the results have been compared with those of an analogous axial gradiometer. The results show that there is no significant difference. Due to their high intrinsic balance and good performances, planar gradiometers may be the elective sensors for biomagnetic application in a soft shielded environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-10-01
The bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism, galvanometers, voltmeters, bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices). (Contains 250 citations and includes a subject term index and title list.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-02-01
The bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices.) (Contains 250 citations and includes a subject term index and title list.)
Magnetoelectric gradiometer with enhanced vibration rejection efficiency under H-field modulation
NASA Astrophysics Data System (ADS)
Xu, Junran; Zhuang, Xin; Leung, Chung Ming; Staruch, Margo; Finkel, Peter; Li, Jiefang; Viehland, D.
2018-03-01
A magnetoelectric (ME) gradiometer consisting of two Metglas/Pb(Zr,Ti)O3 fiber-based sensors has been developed. The equivalent magnetic noise of both sensors was first determined to be about 60 pT/√Hz while using an H-field modulation technique. The common mode rejection ratio of a gradiometer based on these two sensors was determined to be 74. The gradiometer response curve was then measured, which provided the dependence of the gradiometer output as a function of the source-gradiometer-normalized distance. Investigations in the presence of vibration noise revealed that a ME gradiometer consisting of two ME magnetometers working under H-field modulation was capable of significant vibration rejection. The results were compared to similar studies of ME gradiometers operated in a passive working mode. Our findings demonstrate that this active gradiometer has a good vibration rejection capability in the presence of both magnetic signals and vibration noise/interferences by using two magnetoelectric sensors operated under H-field modulation.
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-09-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-07-01
This bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean-bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDs (superconducting quantum interference devices.) (This updated bibliography contains 74 citations, all of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-07-01
This bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean-bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDs (superconducting quantum interference devices.) (This updated bibliography contains 394 citations, none of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
This bibliography contains citations from conference proceedings concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices.) (Contains 115 citations fully indexed and including a title list.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
This bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism, and ocean-bottom magnetic exploration, galvanometers and voltmeters, and bolometers, and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for squids (superconducting quantum interference devices.) (This updated bibliography contains 394 citations, 71 of which are new entries to the previous edition.)
Low-noise magnetoencephalography system cooled by a continuously operating reliquefier
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Kwon, H.; Yu, K. K.; Kim, J. M.; Lee, S. K.; Kim, M.-Y.; Kim, K.
2017-08-01
We fabricated a low-noise magnetoencephalography (MEG) system based on a continuously operating reliquefier for cooling of low-temperature superconducting quantum interference device gradiometers. In order to reduce the vibration transmission, the gradiometers are mounted in the vacuum space of the helmet dewar with direct thermal contact with the liquid helium helmet. The reliquefier uses a 1.4 W pulse tube cryocooler with a remote motor, and a horizontal transfer tube with a downslope angle of 1°. The white noise of the system is 3.5 fTrms/√Hz (at 100 Hz). The vibration-induced peak at 1.4 Hz is 18 fTrms/√Hz averaged over the whole helmet array of 150 channels, which is the lowest among the reported values using reliquefier cooling and comparable to the noise peak cooled by conventional direct liquid helium cooling with axial gradiometers of the same baseline. The spontaneous brain activity signal showed nearly identical signal quality with the reliquefier turned on and off, and the reliquefier-based MEG system noise is well below the brain noise level.
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
NASA Astrophysics Data System (ADS)
Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji
2014-05-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Sensitive Superconducting Gravity Gradiometer Constructed with Levitated Test Masses
NASA Astrophysics Data System (ADS)
Griggs, C. E.; Moody, M. V.; Norton, R. S.; Paik, H. J.; Venkateswara, K.
2017-12-01
We demonstrate basic operations of a two-component superconducting gravity gradiometer (SGG) that is constructed with a pair of magnetically levitated test masses coupled to superconducting quantum-interference devices. A design that gives a potential sensitivity of 1.4 ×10-4 E Hz-1 /2 (1 E ≡10-9 s-2 ) in the frequency band of 1 to 50 mHz and better than 2 ×10-5 E Hz-1 /2 between 0.1 and 1 mHz for a compact tensor SGG that fits within a 22-cm-diameter sphere. The SGG has the capability of rejecting the platform acceleration and jitter in all 6 degrees of freedom to one part in 109 . Such an instrument has applications in precision tests of fundamental laws of physics, earthquake early warning, and gravity mapping of Earth and the planets.
NASA Astrophysics Data System (ADS)
Liu, H.; Dong, H.; Liu, Z.; Ge, J.; Bai, B.; Zhang, C.
2017-10-01
The proton precession magnetometer with single sensor is commonly used in geomagnetic observation and magnetic anomaly detection. Due to technological limitations, the measurement accuracy is restricted by several factors such as the sensor performance, frequency measurement precision, instability of polarization module, etc. Aimed to improve the anti-interference ability, an Overhauser magnetic gradiometer with dual sensor structure was designed. An alternative design of a geomagnetic sensor with differential dual-coil structure was presented. A multi-channel frequency measurement algorithm was proposed to increase the measurement accuracy. A silicon oscillator was adopted to resolve the instability of polarization system. This paper briefly discusses the design and development of the gradiometer and compares the data recorded by this instrument with a commonly used commercially Overhauser magnetometer in the world market. The proposed gradiometer records the earth magnetic field in 24 hours with measurement accuracy of ± 0.3 nT and a sampling rate of 3 seconds per sample. The quality of data recorded is excellent and consistent with the commercial instrument. In addition, experiments of ferromagnetic target localization were conducted. This gradiometer shows a strong ability in magnetic anomaly detection and localization. To sum up, it has the advantages of convenient operation, high precision, strong anti-interference, etc., which proves the effectiveness of the dual sensor structure Overhauser magnetic gradiometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu
2014-09-15
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Yu, K. K.; Kim, J. M.; Kwon, H.; Kim, K.
2009-11-01
We fabricated a low-noise 64-channel first-order axial gradiometer system for measuring magnetocardiography (MCG) signals. The key technical features of the system are the compact structure of the gradiometer, division of the sensor array plate, direct mounting of the sensor plates into the Dewar bottom, reduced neck diameter of the liquid He Dewar, and compact readout electronics. To make the refill interval of liquid He longer, the distance between the compensation coil of the gradiometer and the input coil pads of the superconducting quantum interference device (SQUID) was reduced to 20 mm. By using direct ultrasonic bonding of Nb wires between the pickup coil wires and input coil pads, the superconductive connection structure became simple. The baseline of the first-order gradiometer is 70 mm, a little longer than for typical conventional axial gradiometers, to provide a larger signal amplitude for deep sources. The 64-channel gradiometer array consists of four blocks, and each block is fixed separately onto the bottom of the Dewar. The neck diameter of the He Dewar (192 mm) is smaller than the bottom diameter (280 mm) in which the gradiometers are distributed. The average boil-off rate of the Dewar is 3 l per day when the 64-channel system is in operation every day. Double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficients were used to operate SQUIDs via compact electronics. The magnetically shielded room (MSR) has a wall thickness of 80 mm, and consists of two layers of permalloy and one layer of aluminum. When the 64-channel system was installed inside the MSR, the field noise level of the system was about 3.5 fTrms Hz-1/2 at 100 Hz. MCG measurements with high signal quality were done successfully using the developed system. In addition to the parameter analysis method, we developed software for the three-dimensional imaging of the myocardial current on a realistic image of the heart based on the anatomical image of the torso.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
This bibliography contains citations from conference proceedings concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for squids (superconducting quantum interference devices.) (This updated bibliography contains 189 citations, 74 of which are new entries to the previous edition.)
NASA Astrophysics Data System (ADS)
de Waal, V. J.
1983-02-01
The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.
2008-08-01
Figure 17: USGS Helmholtz coils with SQUID and fluxgate magnetometers installed. 22 Figure 18: Plot of SQUID and fluxgate data from a rotating... fluxgate magnetometer , each sensor measures flux in only one direction. Combinations of SQUID sensor elements are arranged in various configurations...than the absolute field value the way that a fluxgate magnetometer would do. If the SQUID is shut down or loses lock, it has no way to relate the new
Microfabricated optically pumped magnetometer arrays for biomedical imaging
NASA Astrophysics Data System (ADS)
Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.
2017-02-01
Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.
Superconductive imaging surface magnetometer
Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.
1991-01-01
An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.
SQUID-Detected MRI in the Limit of Zero Static Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelso, Nathan Dean
2009-12-14
This thesis describes an implementation of the so-called"zero-field MRI" (ZFMRI) pulse sequence, which allows for imaging in an arbitrarily low B 0 field. The ZFMRI sequence created an effective unidirectional gradient field by using a train of pi pulses to average out the concomitant gradient components during encoding. The signals were acquired using a low-transition temperature dc Superconducting QUantum Interference Device (low-Tc dc SQUID) coupled to a first-order axial gradiometer. The experiments were carried out in a liquid helium dewar which was magnetically shielded with a single-layer mu-metal can around the outside and a superconducting Pb can contained within themore » helium space. We increased the filling factor of the custom-made, double-walled Pyrex insert by placing the liquid alcohol sample, at a temperature of approximately -50 degrees C, at the center of one loop of the superconducting gradiometer, which was immersed in the helium bath.« less
Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
A sensitive gravity gradiometer can provide much needed gravity data of the earth and improve the accuracy of inertial navigation. Superconductivity and other properties of materials at low temperatures can be used to obtain a sensitive, low-drift gravity gradiometer; by differencing the outputs of accelerometer pairs using superconducting circuits, it is possible to construct a tensor gravity gradiometer which measures all the in-line and cross components of the tensor simultaneously. Additional superconducting circuits can be provided to determine the linear and angular acceleration vectors. A tensor gravity gradiometer with these features is being developed for satellite geodesy. The device constitutes a complete package of inertial navigation instruments with angular and linear acceleration readouts as well as gravity signals.
NASA Astrophysics Data System (ADS)
Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo
2004-11-01
An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.
Choice of Magnetometers and Gradiometers after Signal Space Separation.
Garcés, Pilar; López-Sanz, David; Maestú, Fernando; Pereda, Ernesto
2017-12-16
Modern Elekta Neuromag MEG devices include 102 sensor triplets containing one magnetometer and two planar gradiometers. The first processing step is often a signal space separation (SSS), which provides a powerful noise reduction. A question commonly raised by researchers and reviewers relates to which data should be employed in analyses: (1) magnetometers only, (2) gradiometers only, (3) magnetometers and gradiometers together. The MEG community is currently divided with regard to the proper answer. First, we provide theoretical evidence that both gradiometers and magnetometers result from the backprojection of the same SSS components. Then, we compare resting state and task-related sensor and source estimations from magnetometers and gradiometers in real MEG recordings before and after SSS. SSS introduced a strong increase in the similarity between source time series derived from magnetometers and gradiometers (r² = 0.3-0.8 before SSS and r² > 0.80 after SSS). After SSS, resting state power spectrum and functional connectivity, as well as visual evoked responses, derived from both magnetometers and gradiometers were highly similar (Intraclass Correlation Coefficient > 0.8, r² > 0.8). After SSS, magnetometer and gradiometer data are estimated from a single set of SSS components (usually ≤ 80). Equivalent results can be obtained with both sensor types in typical MEG experiments.
Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise
Dantsker, Eugene; Clarke, John
2000-01-01
An asymmetric planar gradiometer for use in making biomagnetic measurements. The gradiometer is formed from a magnetometer which is inductively-coupled to the smaller of two connected loops patterned in a superconducting film which form a flux transformer. The magnetometer is based on a SQUID formed from a high T.sub.c superconducting material. The flux transformer and magnetometer may be formed on separate substrates, allowing the baseline to be increased relative to presently available devices.
NASA Astrophysics Data System (ADS)
Trammell, Hoke S., III; Perry, Alexander R.; Kumar, Sankaran; Czipott, Peter V.; Whitecotton, Brian R.; McManus, Tobin J.; Walsh, David O.
2005-05-01
Magnetic sensors configured as a tensor magnetic gradiometer not only detect magnetic targets, but also determine their location and their magnetic moment. Magnetic moment information can be used to characterize and classify objects. Unexploded ordnance (UXO) and thus many types of improvised explosive device (IED) contain steel, and thus can be detected magnetically. Suitable unmanned aerial vehicle (UAV) platforms, both gliders and powered craft, can enable coverage of a search area much more rapidly than surveys using, for instance, total-field magnetometers. We present data from gradiometer passes over different shells using a gradiometer mounted on a moving cart. We also provide detection range and speed estimates for aerial detection by a UAV.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.
Bragg gravity-gradiometer using the 1S0–3P1 intercombination transition of 88Sr
NASA Astrophysics Data System (ADS)
del Aguila, R. P.; Mazzoni, T.; Hu, L.; Salvi, L.; Tino, G. M.; Poli, N.
2018-04-01
We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely 88Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow 1S0–3P1 intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches 1.5 × 10‑5 s‑2 for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 104 times lower than the sensitivity of alkali-atom based gradiometers, limited by the interferometer sensitivity. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.
Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers
NASA Astrophysics Data System (ADS)
Seki, Yusuke; Kandori, Akihiko; Ogata, Kuniomi; Miyashita, Tsuyoshi; Kumagai, Yukio; Ohnuma, Mitsuru; Konaka, Kuni; Naritomi, Hiroaki
2010-09-01
Magnetoencephalography (MEG) noninvasively measures neuronal activity with high temporal resolution. The aim of this study was to develop a new type of MEG system that can measure bilateral MEG waveforms without a magnetically shielded room, which is an obstacle to reducing both the cost and size of an MEG system. An unshielded bilateral MEG system was developed using four two-dimensional (2D) gradiometers and two symmetric cryostats. The 2D gradiometer, which is based on a low-Tc superconducting quantum interference device and wire-wound pickup coil detects a magnetic-field gradient in two orthogonal directions, or ∂/∂x(∂2Bz/∂z2), and reduces environmental magnetic-field noise by more than 50 dB. The cryostats can be symmetrically positioned in three directions: vertical, horizontal, and rotational. This makes it possible to detect bilateral neuronal activity in the cerebral cortex simultaneously. Bilateral auditory-evoked fields (AEF) of 18 elderly subjects were measured in an unshielded hospital environment using the MEG system. As a result, both the ipsilateral and the contralateral AEF component N100m, which is the magnetic counterpart of electric N100 in electroencephalography and appears about 100 ms after the onset of an auditory stimulus, were successfully detected for all the subjects. Moreover, the ipsilateral P50m and the contralateral P50m were also detected for 12 (67%) and 16 (89%) subjects, respectively. Experimental results demonstrate that the unshielded bilateral MEG system can detect MEG waveforms, which are associated with brain dysfunction such as epilepsy, Alzheimer's disease, and Down syndrome.
Joint geophysical investigation of a small scale magnetic anomaly near Gotha, Germany
NASA Astrophysics Data System (ADS)
Queitsch, Matthias; Schiffler, Markus; Goepel, Andreas; Stolz, Ronny; Guenther, Thomas; Malz, Alexander; Meyer, Matthias; Meyer, Hans-Georg; Kukowski, Nina
2014-05-01
In the framework of the multidisciplinary project INFLUINS (INtegrated FLUid Dynamics IN Sedimentary Basins) several airborne surveys using a full tensor magnetic gradiometer (FTMG) system were conducted in and around the Thuringian basin (central Germany). These sensors are based on highly sensitive superconducting quantum interference devices (SQUIDs) with a planar-type gradiometer setup. One of the main goals was to map magnetic anomalies along major fault zones in this sedimentary basin. In most survey areas low signal amplitudes were observed caused by very low magnetization of subsurface rocks. Due to the high lateral resolution of a magnetic gradiometer system and a flight line spacing of only 50m, however, we were able to detect even small magnetic lineaments. Especially close to Gotha a NW-SE striking strong magnetic anomaly with a length of 1.5 km was detected, which cannot be explained by the structure of the Eichenberg-Gotha-Saalfeld (EGS) fault zone and the rock-physical properties (low susceptibilities). Therefore, we hypothesize that the source of the anomaly must be related to an anomalous magnetization in the fault plane. To test this hypothesis, here we focus on the results of the 3D inversion of the airborne magnetic data set and compare them with existing structural geological models. In addition, we conducted several ground based measurements such as electrical resistivity tomography (ERT) and frequency domain electromagnetics (FDEM) to locate the fault. Especially, the geoelectrical measurements were able to image the fault zone. The result of the 2D electrical resistivity tomography shows a lower resistivity in the fault zone. Joint interpretation of airborne magnetics, geoelectrical and geological information let us propose that the source of the magnetization may be a fluid-flow induced impregnation with iron-oxide bearing minerals in the vicinity of the EGS fault plane.
NASA Astrophysics Data System (ADS)
Qiu, Yang; Li, Hua; Zhang, Shu-Lin; Wang, Yong-Liang; Kong, Xiang-Yan; Zhang, Chao-Xiang; Zhang, Yong-Sheng; Xu, Xiao-Feng; Yang, Kang; Xie, Xiao-Ming
2015-07-01
We constructed a 36-channel magnetocardiography (MCG) system based on low-Tc direct current (DC) superconducting quantum interference device (SQUID) magnetometers operated inside a magnetically shielded room (MSR). Weakly damped SQUID magnetometers with large Steward-McCumber parameter βc (βc ≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient ∂ V/∂ Φ larger than 420 μV/Φ 0, the SQUID magnetometers had a white noise level of about 5.5 fT·Hz-1/2 when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 dB were done successfully using the developed system. Project supported by “One Hundred Persons Project” of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).
Advanced superconducting gradiometers for mine detection
NASA Astrophysics Data System (ADS)
Clem, Ted R.
1996-05-01
Sensors incorporating superconducting quantum interference devices provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980s, the Coastal Systems Station (CSS) developed a superconducting magnetic gradiometer capable of operation outside of the laboratory environment. With this sensor, the CSS was able to demonstrate buried mine detection for the U.S. Navy. Subsequently, the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines Project. This sensor using thin film niobium and a new liquid helium cooling concept was developed to provide significant increases in sensitivity and detection range. In the late 1980s, a new class of `high- Tc' superconductor were discovered with critical temperatures above the boiling point of liquid nitrogen (77 K). This advance has opened up new opportunities for mine reconnaissance and hunting, especially for operation onboard small unmanned underwater vehicles. A high-Tc sensor concept using liquid nitrogen refrigeration has been developed and a test article of that concept is currently being evaluated for its applicability to mobile operation. The design principles for the two new sensor approaches and the results of their evaluations will be described. Finally, the implications of these advances to mine reconnaissance and hunting will be discussed.
Magnetic induction spectroscopy (MIS)-probe design for cervical tissue measurements.
Wang, Jau-Yi; Healey, Timothy; Barker, Anthony; Brown, Brian; Monk, Chris; Anumba, Dilly
2017-05-01
Gradiometers have the advantage of increasing measuring sensitivity, which is particularly useful in magnetic induction spectroscopy (MIS) for bio-impedance measurements. Traditional gradiometers use a pair of field sensing coils equally distant and on opposite sides of a drive coil, which provides high immunity to interference. In this paper, a ferrite-cored coaxial gradiometer probe of 29 mm diameter has been developed for measuring the impedance spectra of cervical tissues in vivo. It consists of a ferrite rod with outer ferrite confinement screening in order to eliminate the signals from surrounding tissue. The magnetic screening efficiency was compared with an air-cored gradiometer probe. For both gradiometer probes, a drive coil and two sensing coils were wound on a borosilicate glass former aligned coaxially with two sensing coils equidistant from the drive coil. The signal sensitivity of those two MIS gradiometers has been measured using saline samples with a conductivity range between 0.1 and 1.1 S m -1 . Finite element methods using COMSOL Multiphysics have been used to simulate the distribution of sensitivity to conductivity over the face of each probe and with depth. The ferrite-cored probe has a sensitivity confined to the volume defined by the gap between the ferrite core and outer tube of ferrite while the air-cored probe without any magnetic shielding had a wide sensitivity over the face and the side of the probe. Four saline samples and one of distilled water with conductivities from 0.1 to 1.1 S m -1 have been used to make conductivity measurements at frequencies of 50 kHz, 100 kHz, and 300 kHz. The measurement accuracy of the air-cored MIS probe was 0.09 S m -1 at 50 kHz, improving to 0.05 S m -1 at 300 kHz. For the ferrite-cored MIS probe, the measurement accuracy was 0.28 S m -1 at 50 kHz, improving to 0.04 S m -1 at 300 kHz. In vivo measurements on human hand have been performed using both types of gradiometers and the conductivity is consistent with reported data.
Mean-Square Error Due to Gradiometer Field Measuring Devices
1991-06-01
convolving the gradiometer data with the inverse transform of I /T(a, 13), applying an ap- Hence (2) may be expressed in the transform domain as propriate... inverse transform of I / T(ot, 1) will not be possible quency measurements," Superconductor Applications: SQUID’s and because its inverse does not exist...and because it is a high- Machines, B. B. Schwartz and S. Foner, Eds. New York: Plenum pass function its use in an inverse transform technique Press
A microfabricated optically-pumped magnetic gradiometer
NASA Astrophysics Data System (ADS)
Sheng, D.; Perry, A. R.; Krzyzewski, S. P.; Geller, S.; Kitching, J.; Knappe, S.
2017-01-01
We report on the development of a microfabricated atomic magnetic gradiometer based on optical spectroscopy of alkali atoms in the vapor phase. The gradiometer, which operates in the spin-exchange relaxation free regime, has a length of 60 mm and cross sectional diameter of 12 mm, and consists of two chip-scale atomic magnetometers which are interrogated by a common laser light. The sensor can measure differences in magnetic fields, over a 20 mm baseline, of 10 fT/ Hz1 /2 at frequencies above 20 Hz. The maximum rejection of magnetic field noise is 1000 at 10 Hz. By use of a set of compensation coils wrapped around the sensor, we also measure the sensor sensitivity at several external bias field strengths up to 150 mG. This device is useful for applications that require both sensitive gradient field information and high common-mode noise cancellation.
NASA Astrophysics Data System (ADS)
Kaufman, Lloyd; Williamson, Samuel J.; Costaribeiro, P.
1988-02-01
Recently developed small arrays of SQUID-based magnetic sensors can, if appropriately placed, locate the position of a confined biomagnetic source without moving the array. The authors present a technique with a relative accuracy of about 2 percent for calibrating such sensors having detection coils with the geometry of a second-order gradiometer. The effects of calibration error and magnetic noise on the accuracy of locating an equivalent current dipole source in the human brain are investigated for 5- and 7-sensor probes and for a pair of 7-sensor probes. With a noise level of 5 percent of peak signal, uncertainties of about 20 percent in source strength and depth for a 5-sensor probe are reduced to 8 percent for a pair of 7-sensor probes, and uncertainties of about 15 mm in lateral position are reduced to 1 mm, for the configuration considered.
NASA Astrophysics Data System (ADS)
Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2018-01-01
Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.
Mathematical modeling of fluxgate magnetic gradiometers
NASA Astrophysics Data System (ADS)
Milovzorov, D. G.; Yasoveev, V. Kh.
2017-07-01
Issues of designing fluxgate magnetic gradiometers are considered. The areas of application of fluxgate magnetic gradiometers are determined. The structure and layout of a two-component fluxgate magnetic gradiometer are presented. It is assumed that the fluxgates are strictly coaxial in the gradiometer body. Elements of the classical approach to the mathematical modeling of the spatial arrangement of solids are considered. The bases of the gradiometer body and their transformations during spatial displacement of the gradiometer are given. The problems of mathematical modeling of gradiometers are formulated, basic mathematical models of a two-component fluxgate gradiometer are developed, and the mathematical models are analyzed. A computer experiment was performed. Difference signals from the gradiometer fluxgates for the vertical and horizontal position of the gradiometer body are shown graphically as functions of the magnitude and direction of the geomagnetic field strength vector.
NASA Astrophysics Data System (ADS)
Myers, Whittier Ryan
This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 muT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz 1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T1 of ex vivo normal and cancerous prostate tissue differ significantly at 132 muT. A single-sided MRI system designed for prostate imaging could achieve 3 x 3 x 5 mm3 resolution in 8 minutes. Existing SQUID-based magnetoencephalography (MEG) systems could be used as microtesla MRI detectors. A commercial 275-channel MEG system could acquire 6-minute brain images with (4 mm)3 resolution and SNR 16.
A high- Tc SQUID-based sensor head cooled by a Joule-Thomson cryocooler
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; ter Brake, H. J. M.; de Vries, E.; Nijhof, N.; Holland, H. J.; Rogalla, H.
2002-08-01
The goal of the so-called FHARMON project is to develop a high- Tc SQUID-based magnetometer system for the measurement of fetal heart activity in standard clinical environments. To lower the threshold for the application of this fetal heart monitor, it should be simple to operate. It is, therefore, advantageous to replace the liquid cryogen bath by a closed-cycle refrigerator. For this purpose, we selected a mixed-gas Joule-Thomson cooler; the APD Cryotiger ©. Because of its magnetic interference, the compressor of this closed-cycle cooler will be placed at a distance of ≈2 m from the actual sensor, which is an axial second order gradiometer. The gradiometer is formed by three magnetometers placed on an alumina cylinder, which is connected to the cold head of the cooler. This paper describes the sensor head in detail and reports on test experiments.
Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2018-01-01
Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room. Copyright © 2017 Elsevier Inc. All rights reserved.
Spaceborne Gravity Gradiometers. Part 3: Instrument status and prospects
NASA Technical Reports Server (NTRS)
1984-01-01
Various technologies incorporated in the development of gravity gradiometers are demonstrated through descriptions of specific instruments. Concepts covered include: rotating, spherical, cryogenic, and superconducting gravity gradiometers with and without accelerometers. The application of superconducting cavity oscillators to mass-spring gradiometers, and cooperation of Italy's Piano Spaziale Nazionale with the Smithsonian Astrophysics Observatory in the design and development of a high sensitivity gradiometer are described. Schematics are provided for each instrument.
NASA Technical Reports Server (NTRS)
Paik, H. J.; Richard, J. P.
1986-01-01
A sensitive and stable gravity gradiometer would provide high resolution gravity measurements from space. The instrument could also provide precision tests of fundamental laws of physics and be applied to inertial guidance systems of the future. This report describes research on the superconducting gravity gradiometer program at the University of Maryland from July 1980 to July 1985. The report describes the theoretical and experimental work on a prototype superconducting gravity gradiometer. The design of an advanced three-axis superconducting gravity gradiometer is also discussed.
Gravity gradiometry developments at Lockheed Martin
NASA Astrophysics Data System (ADS)
Difrancesco, D.
2003-04-01
Lockheed Martin has developed and fielded multiple configurations of the rotating accelerometer gravity gradiometer instrument. Applications for both static and moving-base measurements have been demonstrated for a variety of scenarios, including vehicle navigation, hydrocarbon exploration, mineral exploration, reservoir monitoring, underground void detection and treaty monitoring and compliance. The most recent systems built by Lockheed Martin extend the performance range of the early 4-accelerometer gradiometers by adding a second complement of four accelerometers. This achieves the benefit of lower instrument noise and improved frequency response (wider bandwidth) for stringent application scenarios. A summary of the gradiometer development history, functional concepts, instrument and system operation, and demonstrated performance will be presented. Development Background The U. S. Air Force Geophysics Laboratory (AFGL; now AFRL) instituted a program in 1982 to develop and field a moving base gradiometer system that could be used both on land and in the air. The result was the Gravity Gradiometer Survey System (GGSS) which first demonstrated the ability to make airborne gravity gradient measurements in 1987 (Jekeli, 1988). At the same time, the U.S. Navy began development of the Gravity Sensors System (GSS) for use on the Fleet Ballistic Submarine Trident II navigation subsystem. This military background paved the way for commercial uses of gravity gradiometry. Both the GSS and GGSS employed a first generation gravity gradiometer instrument (GGI), which was comprised of four accelerometers mounted on a rotating disk. The details of the GGI operation are further described in the work by Gerber and Hofmeyer (Gerber, 1978 and Hofmeyer, 1994). Recent Advancements in Gradiometer Instrumentation With the instrumentation experience gained through such programs as GSS and GGSS, Lockheed Martin embarked upon an ambitious effort in the early 1990's to further improve the performance of the rotating accelerometer gradiometer design. Under funding from the Defense Threat Reduction Agency (DTRA), a "next generation" gradiometer was developed for the specific purpose of identifying treaty-limited items in arms control inspection scenarios. The result was the Arms Control Verification Gravity Gradiometer (ACVGG), which comprised two complements of four accelerometers to provide for lower noise and improved frequency response. Following the advancements made with the ACVGG, Lockheed Martin began development of an airborne gradiometer to be used for mineral exploration. The Airborne Gravity Gradiometer (AGG) is installed into an inertially stabilized platform for use in a geophysical survey aircraft. The AGG has been successfully deployed in the BHP Billiton Falcon™ system (van Leeuwen, 2000) for detection and identification of mineral targets. The most recent gradiometer development by Lockheed Martin is the Land Gradiometer System for time-lapse measurement (4D), designed and tested in 2000. In this configuration, the gradiometer is employed in a static mode, without a stabilized platform. The system positions the gradiometer at unique heading and tilt combinations to reduce the influence of bias drift and the coupling of horizontal gradients into the measurement (Feldman, 2000). The gradiometer is used to make measurements at discrete points in time (typically months apart) to monitor the time-varying signal associated with such processes as steam flooding, water flooding or gas injection for enhanced oil recovery (Talwani, 2001). The system also has been deployed to make 3D surveys over targets of interest. Conclusions Significant advancements in gradiometer instrumentation have been realized in recent years. Instrument and system performance has improved by nearly two orders of magnitude and new applications have emerged that span a broad range of geophysical interest. References (1)Jekeli, C., 1988, "The Gravity Gradiometer Survey System (GGSS)", EOS, 69, 105 and 116-117 (2)Gerber, M.A., 1978, "Gravity gradiometry - something new in inertial navigation", Astronautics &Aeronautics, 18-26. (3)Hofmeyer, G.M. and Affleck, C.A., 1994, "Rotating Accelerometer Gradiometer", US Patent 5,357,802. (4)Van Leeuwen, E.H., 2000, "BHP develops world's first airborne gravity gradiometer for mineral exploration", Preview 86, 28-30. (5)Feldman, W.K., et al, 2000, "System and Process for Optimizing Gravity Gradiometer Measurements", US Patent 6,125,698. (6)Talwani, M., et al, 2001, "System enables time lapse gradiometry", American Oil &Gas Reporter 44, 101-108
Correcting Concomitant Gradient Distortion in Microtesla Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Myers, Whittier
2005-03-01
Progress in ultra-low field magnetic resonance imaging (MRI) using an untuned gradiometer coupled to a Superconducting Quantum Interference Device (SQUID) has resulted in three-dimensional images with an in-plane resolution of 2 mm. Protons in samples up to 80 mm in size were prepolarized in a 100 mT field, manipulated by ˜100 μT/m gradients for image encoding, and detected by the SQUID in the ˜65 μT precession field. Maxwell's equations prohibit a unidirectional magnetic field gradient. While the additional concomitant gradients can be neglected in high-field MRI, they distort high-resolution images of large samples taken in microtesla precession fields. We propose two methods to mitigate such distortion: raising the precession field during image encoding, and software post-processing. Both approaches are demonstrated using computer simulations and MRI images. Simulations show that the combination of these techniques can correct the concomitant gradient distortion present in a 4-mm resolution image of an object the size of a human brain with a precession field of 50 μT. Supported by USDOE.
An EM System With Dramatic Multi-Axis Transmitter and Tensor Gradiometer Receiver
2011-06-01
Thus, the main difference between the spatial behavior of target anomalies measured with a magnetometer and those we measured with an EM system is in...current efforts include the development of tensor magnetic gradiometers based on triaxial fluxgate technology by the USGS (Snyder & Bracken, Development...Superconducting gradiometer/ Magnetometer Arrays and a Novel Signal Processing Technique. IEEE Trans. on Magnetics, MAG-11(2), 701-707. EM Tensor Gradiometer
Research relative to the development of a cryogenic microwave cavity gradiometer for orbital use
NASA Technical Reports Server (NTRS)
Grossi, M. D.
1984-01-01
The noncryogenic, single axis, gravity gradiometer which is characterized by a sensitivity of the order of 10 to the minus 2 power Eovos Units in a few sec integration time was investigated. The prototype of testing gradiometer on the earth surface by the free fall in vacuo method was expanded. An existing free fall tower facility and the possibility of adding inside the falling elevator cabin an air tight, sealed, cylindrical container with inside pressure or = -0.001 Torr were examined to test the gradiometer in free fall conditions inside this evacuated container. Earth's gravity anomalies are simulated with masses of suitable shape, weight, and location. The attitude of the falling gradiometer is monitored by a three axis gyro package mounted on the instrument package. It is concluded that the free fall testing of the gradiometer is both feasible and practical.
New Matching Method for Accelerometers in Gravity Gradiometer
Wei, Hongwei; Wu, Meiping; Cao, Juliang
2017-01-01
The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor)
2013-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low Field Squid MRI Devices, Components and Methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2014-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)
2011-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Low field SQUID MRI devices, components and methods
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)
2010-01-01
Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.
Active Tensor Magnetic Gradiometer System
2007-11-01
Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the
Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany
NASA Astrophysics Data System (ADS)
Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.
2013-12-01
In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate that some of the observed magnetic anomalies have a strong remanent magnetization. One example of interpretation of the acquired data of a magnetic anomaly related to a larger gabbro formation is presented.
Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
NASA Technical Reports Server (NTRS)
Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.
1995-01-01
A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.
Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer
NASA Astrophysics Data System (ADS)
Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong
2017-09-01
In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.
Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1985-01-01
A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.
On estimating gravity anomalies from gradiometer data. [by numerical analysis
NASA Technical Reports Server (NTRS)
Argentiero, P.; Garza-Robles, R.
1976-01-01
The Gravsat-gradiometer mission involves flying a gradiometer on a gravity satellite (Gravsat) which is in a low, polar, and circular orbit. Results are presented of a numerical simulation of the mission which demonstrates that, if the satellite is in a 250-km orbit, 3- and 5-degree gravity anomalies may be estimated with accuracies of 0.03 and 0.01 mm/square second (3 and 1 mgal), respectively. At an altitude of 350 km, the results are 0.07 and 0.025 mm.square second (7 and 2.5 mgal), respectively. These results assume a rotating type gradiometer with a 0.1 -etvos unit accuracy. The results can readily be scaled to reflect another accuracy level.
Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.F.; Fan, C.; Ruan, J.Z.
1994-12-31
A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less
NASA Technical Reports Server (NTRS)
Schutz, Bob E.; Baker, Gregory A.
1997-01-01
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
Satellite borne gravity gradiometer study
NASA Technical Reports Server (NTRS)
Metzger, E.; Jircitano, A.; Affleck, C.
1976-01-01
Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.
NASA Astrophysics Data System (ADS)
Baker, Gregory Allen
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
Hunting Sea Mines with UUV-Based Magnetic and Electro-Optic Sensors
2010-06-01
assembly of four 3-axis fluxgate magnetometers and (c) magnetometer package for underwater deployment in flooded body section. data are automatically...features the Real-time Tracking Gradiometer (RTG), which is a multi-channel tensor gradiometer using conventional fluxgate technology. Also in this...integrated together into a Bluefin12 AUV [5]. A. RTG Sensor Technology The RTG is a multi-channel tensor gradiometer using conventional fluxgate
An EM System with Dynamic Multi-Axis Transmitter and Tensor Gradiometer Receiver
2011-06-01
main difference between the spatial behavior of target anomalies measured with a magnetometer and those we measured with an EM system is in the nature...environmental and UXO applications, current efforts include the development of tensor magnetic gradiometers based on triaxial fluxgate technology by the USGS...Superconducting gradiometer/ Magnetometer Arrays and a Novel Signal Processing Technique. IEEE Trans. on Magnetics, MAG-11(2), 701-707. EM Tensor
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record Number 891
2008-08-01
magnetometers (Foerster CON650 gradiometers) and RTK-DGPS georeferencing will be used. The spacing between the individual fluxgate sensors will be 25 cm...used for data acquisition usually ranges from 8 to 32. b. For the demonstration at Aberdeen Proving Ground, a system with eight fluxgate ...up to 32 fluxgate gradiometers (for the APG demonstration: eight fluxgate gradiometers), a robust, all-terrain trailer, the MonMX data acquisition
A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.
Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG.
Hashimoto, Hiroaki; Hasegawa, Yuka; Araki, Toshihiko; Sugata, Hisato; Yanagisawa, Takufumi; Yorifuji, Shiro; Hirata, Masayuki
2017-10-27
High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.
High-Resolution Displacement Sensor Using a SQUID Array Amplifier
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung
2004-01-01
Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-01
The bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, astronomical telescopes, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors. (Contains a minimum of 97 citations and includes a subject term index and title list.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-01
The bibliography contains citations concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity wave experiments, geomagnetism and ocean bottom magnetic exploration. Also covered are galvanometers and voltameters, bolometers, and radiometers. References to design considerations for cooling systems for the sensors and detectors are included. (Contains 73 citations with title list and subject index.)
NASA Technical Reports Server (NTRS)
Schrama, E.
1990-01-01
The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.
Status of the planar electrostatic gradiometer GREMLIT for airborne geodesy
NASA Astrophysics Data System (ADS)
Boulanger, D.; Foulon, B.; Lebat, V.; Bresson, A.; Christophe, B.
2016-12-01
Taking advantage of technologies, developed by ONERA for the GRACE and GOCE space missions, the GREMLIT airborne gravity gradiometer is based of a planar electrostatic gradiometer configuration. The feasibility of the instrument and of its performance was proved by realistic simulations, based on actual data and recorded environmental aircraft perturbations, with performance of about one Eötvös along the two horizontal components of the gravity gradient. In order to assess the operation of the electrostatic gradiometer on its associated stabilized platform, a one axis prototype has also been built. The next step is the realization of the stabilization platform, controlled by the common mode outputs of the instrument itself, in order to reject the perturbations induced by the airborne environment in the horizontal directions. One of the interests of the GREMLIT instrument is the possibility of an easy hybrid configuration with a vertical one axis Cold Atoms Interferometer gravity gradiometer called GIBON and also under development at ONERA. In such hybrid instrument, The CAI instrument takes also advantage of the platform stabilized by the electrostatic one. The poster will emphasize the status of realization of the instrument and of its stabilized platform.
NASA Technical Reports Server (NTRS)
Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.
2015-01-01
We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.
Exploring the Moon and Mars Using an Orbiting Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Strayer, Donald M.
2004-01-01
Gravity measurement is fundamental to understanding the interior structure, dynamics, and evolution of planets. High-resolution gravity maps will also help locating natural resources, including subsurface water, and underground cavities for astronaut habitation on the Moon and Mars. Detecting the second spatial derivative of the potential, a gravity gradiometer mission tends to give the highest spatial resolution and has the advantage of requiring only a single satellite. We discuss gravity missions to the Moon and Mars using an orbiting Superconducting Gravity Gradiometer and discuss the instrument and spacecraft control requirements.
Towards a space-borne quantum gravity gradiometer: progress in laboratory demonstration
NASA Technical Reports Server (NTRS)
Yu, Nan; Kohel, James M.; Kellogg, James R.; Maleki, Lute
2005-01-01
This paper describes the working principles and technical benefits of atom-wave interferometer-based inertial sensors, and gives a progress report on the development of a quantum gravity gradiometer for space applications at JPL.
Spaceborne Gravity Gradiometers
NASA Technical Reports Server (NTRS)
Wells, W. C. (Editor)
1984-01-01
The current status of gravity gradiometers and technology that could be available in the 1990's for the GRAVSAT-B mission are assessed. Problems associated with sensors, testing, spacecraft, and data processing are explored as well as critical steps, schedule, and cost factors in the development plan.
Kasevich, Mark
2017-12-22
Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newtonâs constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, Mark
2008-05-07
Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Canmore » atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?« less
Development of improved superconductive axial gradiometers for biomagnetic SQUID applications
NASA Astrophysics Data System (ADS)
Budnyk, M. M.; Minov, Yu. D.; Lyakhno, V. Yu.; Desnenko, V. A.; Linnik, A. S.; Shopen, O. B.
2018-03-01
SQUID magnetometers for biomagnetic measurements are equipped with superconductive gradiometers which are required to provide a high signal-to-noise ratio at low frequencies, sufficient mechanical strength and sustained performance under repeated thermal cycles, as well as a low level of intrinsic magnetic noise. This paper describes the design of a gradiometer made with a carbon-fiber reinforced composite material for magnetic cardiography measurements. The thermal coefficient of linear expansion (TCLE) of the carbon fiber composite can be precisely adjusted to match that of the superconducting detector coil wire. This is achieved thanks to the difference in the TCLE of carbon fibers in the longitudinal and transverse directions and is realized by varying the laying directions of the fiber in the composite. The data of magnetic susceptibility measurements on carbon fiber composite are reported, showing the magnetic susceptibility about six times smaller than that of graphite. The presented gradiometer design provides a high degree of balancing and is patented along side other specific techniques.
Quantum Gravity Gradiometer Development for Space
NASA Technical Reports Server (NTRS)
Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute
2006-01-01
Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.
Underwater magnetic gradiometer for magnetic anomaly detection, localization, and tracking
NASA Astrophysics Data System (ADS)
Kumar, S.; Sulzberger, G.; Bono, J.; Skvoretz, D.; Allen, G. I.; Clem, T. R.; Ebbert, M.; Bennett, S. L.; Ostrom, R. K.; Tzouris, A.
2007-04-01
GE Security and the Naval Surface Warfare Center, Panama City (NSWC-PC) have collaborated to develop a magnetic gradiometer, called the Real-time Tracking Gradiometer or RTG that is mounted inside an unmanned underwater vehicle (UUV). The RTG is part of a buried mine hunting platform being developed by the United States Navy. The RTG has been successfully used to make test runs on mine-like targets buried off the coast of Florida. We will present a general description of the system and latest results describing system performance. This system can be also potentially used for other applications including those in the area of Homeland Security.
NASA Astrophysics Data System (ADS)
Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho
2011-09-01
We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.
Superconducting gravity gradiometer for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Moody, M. V.; Chan, H. A.; Paik, H. J.
1986-01-01
A three-axis superconducting gravity gradiometer with a potential sensitivity better than Eotvos per sq root Hz is currently under development for applications in space. Although such a high sensitivity may be needed for only a limited number of terrestrial applications, superconductivity offers many extraordinary effects which can be used to obtain a gravity gradiometer with other characteristics necessary for operation in a hostile moving-base environment. Utilizing a number of recently devised techniques which rely on certain properties of superconductors, a design for a sensitive yet rugged gravity gradiometer with a high degree of stability and a common-mode rejection ratio greater than 10 to the 9th is produced. With a base line of 0.11 m, a sensitivity of 0.1 Eotvos per sq root Hz is expected in an environment monitored to a level of 0.01 m/sq sec sq root Hz for linear vibration and 7 x 10 to the -6th rad/s sq root Hz for angular vibration. A conventional stabilized platform can be used at this level. The intrinsic noise level, which is two orders of magnitude lower, could be achieved by monitoring the attitude with a superconducting angular accelerometer which is under development. In addition, the new gradiometer design has the versatility of adapting the instrument to different gravity biases by adjusting stored dc currents.
1996-01-01
used to locate and characterize a magnetic dipole source, and this finding accelerated the development of superconducting tensor gradiometers for... superconducting magnetic field gradiometer, two-color infrared camera, synthetic aperture radar, and a visible spectrum camera. The combination of these...Pieter Hoekstra, Blackhawk GeoSciences ......................................... 68 Prediction for UXO Shape and Orientation Effects on Magnetic
Recent advancements in the SQUID magnetospinogram system
NASA Astrophysics Data System (ADS)
Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen
2017-06-01
In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.
Gradio: Project proposal for satellite gradiometry
NASA Technical Reports Server (NTRS)
Balmino, G.; Barilier, F.; Bernard, A.; Bouzat, C.; Riviera, G.; Runavot, J.
1981-01-01
A gradiometric approach, rather than the more complicated satellite to satellite tracking, is proposed for studying anomalies in the gravitational fields of the Earth and, possibly, other telluric bodies. The first analyses of a gradiometer based on four of ONERA's CACTUS or SUPERCACTUS accelerometers are summarized. it is shown that the obstacles to achieving the required accuracy are not insuperable. The device will be carried in a 1000 kg lens shaped satellite in a heliosynchronous orbit 200 to 300 km in altitude. The first launching is planned for the end of 1987.
Squids in the Study of Cerebral Magnetic Field
NASA Astrophysics Data System (ADS)
Romani, G. L.; Narici, L.
The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES
Proceedings of an ESA-NASA Workshop on a Joint Solid Earth Program
NASA Technical Reports Server (NTRS)
Guyenne, T. Duc (Editor); Hunt, James J. (Editor)
1987-01-01
The NASA geodynamics program; spaceborne magnetometry; spaceborne gravity gradiometry (characterizing the data type); terrestrial gravity data and comparisons with satellite data; GRADIO three-axis electrostatic accelerometers; gradiometer accommodation on board a drag-free satellite; gradiometer mission spectral analysis and simulation studies; and an opto-electronic accelerometer system were discussed.
Detection of magnetic nanoparticles with a large scale AC superconducting susceptometer
NASA Astrophysics Data System (ADS)
Hincapie Ladino, E. A.; Zufelato, N.; Bakuzis, A. F.; Oliveira Carneiro, A. A.; Covas, D. T.; Baffa, O.
2017-08-01
Magnetic nanoparticles (MNPs) are being used in several applications in medicine such as hyperthermia, magnetic particle imaging, in vitro and in vivo bioassay, and still there are many other possibilities for use of these particles to come as research progress in this field. One crucial step of its use is the detection of these particles when present in a certain tissue. For in vitro bioassay, the sample can be harvested and placed inside the detector in optimal conditions to favor sensitivity. However, for in vivo human measurements the system must be noninvasive and conform to the anatomic restrictions requiring sensitive detectors and dedicated setups. In this study, we detect nanoparticles with an AC biosusceptometer having an excitation homogeneous magnetic field with 145 μT, provided by a set of rectangular large Rubens coils driven at 10 Hz. The magnetization induced in the sample was detected by a second-order axial gradiometer (20 mm in diameter and 40 mm of baseline) coupled to an RF Superconducting Quantum Interference Device (SQUID) model 330X (BTi). The MNPs used were manganese ferrite-based surface-coated with citric acid ({{M}}{{n}}{{F}}{{{e}}}2{{{O}}}4-{{C}}{{i}}{{t}}{{r}}{{a}}{{t}}{{e}}), dissolved in water at various concentrations. The colloid is stable at physiological conditions. X-ray diffraction confirmed the spinel structure and using Scherrer’s relation revealed a particle size of 17.3 nm. The magnetization curve showed a typical superparamagnetic behavior with a specific saturation magnetization of 51.2 emu g-1. The stock solution of nanoparticles had a concentration of 23.17 mg ml-1, corresponding to 1.7 × 1015 NPs ml-1. Measurements were made in a volume of 30 ml with 20 × 103-100 × 103 dilutions of the stock solution of nanoparticles and performed at distances of 1.1, 1.5 and 2.5 cm from the top of the sample vial to the closest coil of the gradiometer. The limits of detection were 8.1 × 109 NP ml-1, 9.5 × 109 NP ml-1 and 11.0 × 109 NP ml-1 for the distances above. These values suggest that the technique might have interesting applications in the real-time in vivo detection of nanoparticles after systemic injections. The present setup can be improved by using more sensitive SQUID sensors and less noisy cryostats.
Magnetoencephalographic accuracy profiles for the detection of auditory pathway sources.
Bauer, Martin; Trahms, Lutz; Sander, Tilmann
2015-04-01
The detection limits for cortical and brain stem sources associated with the auditory pathway are examined in order to analyse brain responses at the limits of the audible frequency range. The results obtained from this study are also relevant to other issues of auditory brain research. A complementary approach consisting of recordings of magnetoencephalographic (MEG) data and simulations of magnetic field distributions is presented in this work. A biomagnetic phantom consisting of a spherical volume filled with a saline solution and four current dipoles is built. The magnetic fields outside of the phantom generated by the current dipoles are then measured for a range of applied electric dipole moments with a planar multichannel SQUID magnetometer device and a helmet MEG gradiometer device. The inclusion of a magnetometer system is expected to be more sensitive to brain stem sources compared with a gradiometer system. The same electrical and geometrical configuration is simulated in a forward calculation. From both the measured and the simulated data, the dipole positions are estimated using an inverse calculation. Results are obtained for the reconstruction accuracy as a function of applied electric dipole moment and depth of the current dipole. We found that both systems can localize cortical and subcortical sources at physiological dipole strength even for brain stem sources. Further, we found that a planar magnetometer system is more suitable if the position of the brain source can be restricted in a limited region of the brain. If this is not the case, a helmet-shaped sensor system offers more accurate source estimation.
2016-06-01
TECHNICAL REPORT Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar...Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer Leon Vaizer, Jesse Angle, Neil...of Magnetic Dipole Targets Using LSG i June 2016 TABLE OF CONTENTS INTRODUCTION
Magnetic gradiometer for underwater detection applications
NASA Astrophysics Data System (ADS)
Kumar, S.; Skvoretz, D. C.; Moeller, C. R.; Ebbert, M. J.; Perry, A. R.; Ostrom, R. K.; Tzouris, A.; Bennett, S. L.; Czipott, P. V.; Sulzberger, G.; Allen, G. I.; Bono, J.; Clem, T. R.
2006-05-01
We have designed and constructed a magnetic gradiometer for underwater mine detection, location and tracking. The United States Naval Surface Warfare Center (NSWC PC) in Panama City, FL has conducted sea tests of the system using an unmanned underwater vehicle (UUV). The Real-Time Tracking Gradiometer (RTG) measures the magnetic field gradients caused by the presence of a mine in the Earth's magnetic field. These magnetic gradients can then be used to detect and locate a target with the UUV in motion. Such a platform can also be used for other applications, including the detection and tracking of vessels and divers for homeland (e.g., port) security and the detection of underwater pipelines. Data acquired by the RTG in sea tests is presented in this paper.
Research relative to the development of a cryogenic microwave cavity gradiometer for orbital use
NASA Technical Reports Server (NTRS)
Grossi, M. D.
1985-01-01
Technical approaches to increase the sensitivity of a non-cryogenic gradiometer toward the goal of 0.001 EU/square root of Hz, with solutions that have the potential of achieving an even more ambitious threshold, such as 0.0001 EU/square root of Hz are discussed. This goal can be achieved with a gradiometer design in which the proof masses are each suspended from two small arms, the torsion of which is directly related to the displacement of the sensing element. A negative-spring action, aimed at reducing the resonance frequency, is provided in this design by means of an external electrostatic field. This configuration of the instrument is also suitable for use in a tensorial arrangement.
Effects of space weather on GOCE electrostatic gravity gradiometer measurements
NASA Astrophysics Data System (ADS)
Ince, E. Sinem; Pagiatakis, Spiros D.
2016-12-01
We examine the presence of residual nongravitational signatures in gravitational gradients measured by GOCE electrostatic gravity gradiometer. These signatures are observed over the magnetic poles during geomagnetically active days and can contaminate the trace of the gravitational gradient tensor by up to three to five times the expected noise level of the instrument (˜ 11 mE). We investigate these anomalies in the gradiometer measurements along many satellite tracks and examine possible causes using external datasets, such as interplanetary electric field measurements from the ACE (advanced composition explorer) and WIND spacecraft, and Poynting vector (flux) estimated from equivalent ionospheric currents derived from spherical elementary current systems over North America and Greenland. We show that the variations in the east-west and vertical electrical currents and Poynting vector components at the satellite position are highly correlated with the disturbances observed in the gradiometer measurements. The results presented in this paper reveal that the disturbances are due to intense ionospheric current variations that are enhanced by increased solar activity that causes a very dynamic drag environment. Moreover, successful modelling and removal of a high percentage of these disturbances are possible using external geomagnetic field observations.
Global gravity survey by an orbiting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Leung, Jurn-Sun; Morgan, Samuel H.; Parker, Joseph
1988-01-01
The scientific aims, design, and mission profile of the Superconducting Gravity Gradiometer Mission (SGGM), a NASA spacecraft mission proposed for the late 1990s, are discussed and illustrated with drawings and diagrams. SGGM would complement the two other planned gravimetry missions, GRM and Aristoteles, and would provide gravitational-field measurements with accuracy 2-3 mGal in 55 x 55-km blocks. The principal instruments are a (1) three-axis superconducting gravity gradiometer with intrinsic sensitivity 100 microeotvos/sq rt Hz, (2) a six-axis superconducting accelerometer with sensitivity 100 fg(E)/sq rt Hz linear and 10 prad/sec squared sq rt Hz angular, and (3) a six-axis shaker for active control of the platform. Consideration is given to the error budget and platform requirements, the orbit selection criteria, and the spacecraft design.
Active tensor magnetic gradiometer system final report for Project MM–1514
Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond
2014-01-01
An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.
BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research
NASA Astrophysics Data System (ADS)
Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin; Mascarenas, Anthony; Miller, Paul; Han, Menglai; Robles, Jose; Cavallini, Anders; Power, Bill; Sieng, Kosal; Sun, Limin; Lew, Seok; Doshi, Chiran; Ahtam, Banu; Dinh, Christoph; Esch, Lorenz; Grant, Ellen; Nummenmaa, Aapo; Paulson, Douglas
2016-09-01
We developed a 375-channel, whole-head magnetoencephalography (MEG) system ("BabyMEG") for studying the electrophysiological development of human brain during the first years of life. The helmet accommodates heads up to 95% of 36-month old boys in the USA. The unique two-layer sensor array consists of: (1) 270 magnetometers (10 mm diameter, ˜15 mm coil-to-coil spacing) in the inner layer, (2) thirty-five three-axis magnetometers (20 mm × 20 mm) in the outer layer 4 cm away from the inner layer. Additionally, there are three three-axis reference magnetometers. With the help of a remotely operated position adjustment mechanism, the sensor array can be positioned to provide a uniform short spacing (mean 8.5 mm) between the sensor array and room temperature surface of the dewar. The sensors are connected to superconducting quantum interference devices (SQUIDs) operating at 4.2 K with median sensitivity levels of 7.5 fT/√Hz for the inner and 4 fT/√Hz for the outer layer sensors. SQUID outputs are digitized by a 24-bit acquisition system. A closed-cycle helium recycler provides maintenance-free continuous operation, eliminating the need for helium, with no interruption needed during MEG measurements. BabyMEG with the recycler has been fully operational from March, 2015. Ongoing spontaneous brain activity can be monitored in real time without interference from external magnetic noise sources including the recycler, using a combination of a lightly shielded two-layer magnetically shielded room, an external active shielding, a signal-space projection method, and a synthetic gradiometer approach. Evoked responses in the cortex can be clearly detected without averaging. These new design features and capabilities represent several advances in MEG, increasing the utility of this technique in basic neuroscience as well as in clinical research and patient studies.
BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research.
Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin; Mascarenas, Anthony; Miller, Paul; Han, Menglai; Robles, Jose; Cavallini, Anders; Power, Bill; Sieng, Kosal; Sun, Limin; Lew, Seok; Doshi, Chiran; Ahtam, Banu; Dinh, Christoph; Esch, Lorenz; Grant, Ellen; Nummenmaa, Aapo; Paulson, Douglas
2016-09-01
We developed a 375-channel, whole-head magnetoencephalography (MEG) system ("BabyMEG") for studying the electrophysiological development of human brain during the first years of life. The helmet accommodates heads up to 95% of 36-month old boys in the USA. The unique two-layer sensor array consists of: (1) 270 magnetometers (10 mm diameter, ∼15 mm coil-to-coil spacing) in the inner layer, (2) thirty-five three-axis magnetometers (20 mm × 20 mm) in the outer layer 4 cm away from the inner layer. Additionally, there are three three-axis reference magnetometers. With the help of a remotely operated position adjustment mechanism, the sensor array can be positioned to provide a uniform short spacing (mean 8.5 mm) between the sensor array and room temperature surface of the dewar. The sensors are connected to superconducting quantum interference devices (SQUIDs) operating at 4.2 K with median sensitivity levels of 7.5 fT/√Hz for the inner and 4 fT/√Hz for the outer layer sensors. SQUID outputs are digitized by a 24-bit acquisition system. A closed-cycle helium recycler provides maintenance-free continuous operation, eliminating the need for helium, with no interruption needed during MEG measurements. BabyMEG with the recycler has been fully operational from March, 2015. Ongoing spontaneous brain activity can be monitored in real time without interference from external magnetic noise sources including the recycler, using a combination of a lightly shielded two-layer magnetically shielded room, an external active shielding, a signal-space projection method, and a synthetic gradiometer approach. Evoked responses in the cortex can be clearly detected without averaging. These new design features and capabilities represent several advances in MEG, increasing the utility of this technique in basic neuroscience as well as in clinical research and patient studies.
Modeling and Error Analysis of a Superconducting Gravity Gradiometer.
1979-08-01
fundamental limit to instrument - -1- sensitivity is the thermal noise of the sensor . For the gradiometer design outlined above, the best sensitivity...Mapoles at Stanford. Chapter IV determines the relation between dynamic range, the sensor Q, and the thermal noise of the cryogenic accelerometer. An...C.1 Accelerometer Optimization (1) Development and optimization of the loaded diaphragm sensor . (2) Determination of the optimal values of the
ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation
2012-08-01
threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
NASA Astrophysics Data System (ADS)
Douch, Karim; Wu, Hu; Schubert, Christian; Müller, Jürgen; Pereira dos Santos, Franck
2018-03-01
The prospects of future satellite gravimetry missions to sustain a continuous and improved observation of the gravitational field have stimulated studies of new concepts of space inertial sensors with potentially improved precision and stability. This is in particular the case for cold-atom interferometry (CAI) gradiometry which is the object of this paper. The performance of a specific CAI gradiometer design is studied here in terms of quality of the recovered gravity field through a closed-loop numerical simulation of the measurement and processing workflow. First we show that mapping the time-variable field on a monthly basis would require a noise level below 5mE /√{Hz } . The mission scenarios are therefore focused on the static field, like GOCE. Second, the stringent requirement on the angular velocity of a one-arm gradiometer, which must not exceed 10-6 rad/s, leads to two possible modes of operation of the CAI gradiometer: the nadir and the quasi-inertial mode. In the nadir mode, which corresponds to the usual Earth-pointing satellite attitude, only the gradient Vyy , along the cross-track direction, is measured. In the quasi-inertial mode, the satellite attitude is approximately constant in the inertial reference frame and the 3 diagonal gradients Vxx,Vyy and Vzz are measured. Both modes are successively simulated for a 239 km altitude orbit and the error on the recovered gravity models eventually compared to GOCE solutions. We conclude that for the specific CAI gradiometer design assumed in this paper, only the quasi-inertial mode scenario would be able to significantly outperform GOCE results at the cost of technically challenging requirements on the orbit and attitude control.
Progress towards a space-borne quantum gravity gradiometer
NASA Technical Reports Server (NTRS)
Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute
2004-01-01
Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.
Superconducting gravity gradiometer and a test of inverse square law
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, Ho Jung
1989-01-01
The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.
Standardized UXO Technology Demonstration Site Open Field Scoring Record No. 908
2008-08-01
demonstration at Aberdeen Proving Ground, a system with eight fluxgate magnetometers (Foerster CON650 gradiometers) and RTK-DGPS georeferencing will...be used. The spacing between the individual fluxgate sensors will be 25 cm (ca. 10 inches), totaling to a swath width of 2 m. c. The MAGNETO...MX system consists of: the MX-compact hardware multiplexer electronic module, up to 32 fluxgate gradiometers (for the APG demonstration: 8 fluxgate
Portable Magnetic Gradiometer for Real-Time Localization and Classification of Unexploded Ordnance
2006-09-01
classification (DLC) of Unexploded Ordnance (UXO). The portable gradiometer processes data from triaxial fluxgate magnetometers to develop sets of...low-noise (ង pTrms/√Hz) fluxgate -type Triaxial Magnetometers (TM). Paired sets of TMs comprise magnetic gradient sensor “axes” of the array that...channels of analog B-field data. The digitizers can be locked to the Global Positioning System to provide; a) Precise sensor channel timing, and b
Measuring attitude with a gradiometer
NASA Technical Reports Server (NTRS)
Sonnabend, David; Gardner, Thomas G.
1994-01-01
This paper explores using a gravity gradiometer to measure the attitude of a satellite, given that the gravity field is accurately known. Since gradiometers actually measure a combination of the gradient and attitude rate and acceleration terms, the answer is far from obvious. The paper demonstrates that it can be done and at microradian accuracy. The technique employed is dynamic estimation, based on the momentum biased Euler equations. The satellite is assumed nominally planet pointed, and subject to control, gravity gradient, and partly radom drag torques. The attitude estimator is unusual. While the standard method of feeding back measurement residuals is used, the feedback gain matrix isn't derived from Kalman theory. instead, it's chosen to minimize a measure of the terminal covariance of the error in the estimate. This depends on the gain matrix and the power spectra of all the process and measurement noises. An integration is required over multiple solutions of Lyapunov equations.
The UT 19-channel DC SQUID based neuromagnetometer.
ter Brake, H J; Flokstra, J; Jaszczuk, W; Stammis, R; van Ancum, G K; Martinez, A; Rogalla, H
1991-01-01
A 19-channel DC SQUID based neuromagnetometer is under construction at the University of Twente (UT). Except for the cryostat all elements of the system are developed at the UT. It comprises 19 wire-wound first-order gradiometers in a hexagonal configuration. The gradiometers are connected to planar DC SQUIDs fabricated with a Nb/Al, AlO kappa/Nb technology. For this connection we developed a method to bond a Nb wire to a Nb thin-film. The SQUIDs are placed in compartmentalised Nb modules. Further, external feedback is incorporated in order to eliminate cross talk between the gradiometers. The electronics basically consist of a phase-locked loop operating with a modulation frequency of 100 kHz. Between SQUID and preamplifier a small transformer is used to limit the noise contribution of the preamplifier. In the paper the overall system is described, and special attention is paid to the SQUID module (bonding, compartments, external-feedback setup, output transformer).
NASA Astrophysics Data System (ADS)
Kuwahata, Akihiro; Kaneko, Miki; Chikaki, Shinichi; Kusakabe, Moriaki; Sekino, Masaki
2018-05-01
The developed device with electromagnetic coils and small permanent magnets quantifies the iron contents of superparamagnetic iron oxide nanoparticles for sentinel lymph node (SLN) biopsy. To remove diamagnetic and paramagnetic components and detect only superparamagnetic components, a 2nd harmonics signal is detected by a gradiometer under a moderate AC magnetic field (1-2 mT) with the fundamental frequency (2.944 kHz) of the coils and DC magnetic field (1-2 mT) of the magnets. The detection limit with a signal-to-noise ratio of 5 is approximately 0.28 μg of iron, and the device has a wide dynamic range of 104, 0.28 μg-2.8 mg. Additional coils and permanent magnets play an important role producing the optimum distribution of AC/DC magnetic fields for an iron distribution-independent and SLN size-independent quantification. We demonstrated the quantification of the iron in phantoms, which have a size of 3-20 mm with varied iron distributions and contain magnetic nanoparticles numerically. These results indicate that the developed device is useful for quantifying the magnetic nanoparticles accumulating in SLNs.
An update on mobile phones interference with medical devices.
Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid
2013-10-01
Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems.
McGary, John E; Xiong, Zubiao; Chen, Ji
2013-07-01
TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.
Test Evaluation and Modification of Prototype Rotating Gravity Gradiometer
1975-07-01
RECOMMENEATIONS 3 4.0 BEARINGS 6 4.1 Design 6 4.2 Metrology 6 4.3 Preassembly 14 5.0 TEST RIG 17 5.1 Design 17 5.2 Metrology 21 5.3 Assembly and...print requirements of 5 \\i inches TIR max. However, because of available (stare-of-the-art) metrology equipment limitations, no conclusion as to...gravity gradiometer are contained in Shaker Research Corporation drawing series 101 (see Appendix I), 4.2 Metrology The production of the
Tests of general relativity in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1989-01-01
Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.
Measuring attitude with a gradiometer
NASA Technical Reports Server (NTRS)
Sonnabend, David; Born, George H.
1994-01-01
Static attitude estimation and dynamic attitude estimation are used to describe a gradiometer composed of a number of accelerometers that are used to measure a combination of the local gravity gradient and instrument rotation effects. After a series of measures to isolate the gradient, a global mesh of measurements can be obtained that determine the planetary external gravity potential. Orbital and spacecraft models are developed to determine if, when the gravity potential is known, the same measurements, unsupported by any other information can be used to infer the spacecraft attitude.
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences
NASA Technical Reports Server (NTRS)
Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.;
2017-01-01
We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.
NASA Astrophysics Data System (ADS)
Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.
We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.
SQUID use for Geophysics: finding billions of dollars
NASA Astrophysics Data System (ADS)
Foley, Catherine
2014-03-01
Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.
Mobile communication devices causing interference in invasive and noninvasive ventilators.
Dang, Bao P; Nel, Pierre R; Gjevre, John A
2007-06-01
The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of less than 1 meter.
Compact and Easy-Operation Magnetocardiograph With Four-Channel Planar Gradiometers
2001-10-25
AND EASY-OPERATION MAGNETOCARDIOGRAPH WITH FOUR-CHANNEL PLANAR GRADIOMETERS K. Yokosawa1, D. Suzuki1, A. Tsukamoto2, T . Miyashita1, A. Kandori1, K...gradient direction was selected by rotating each rod individually. The QRS-complex and T -wave were traced clearly. The peak-to-peak noise, nB p-p, is...outside (b) the shielding cylinder. The environmental noise is also shown (c). M ag ne tic fi el d no is e (p T / H z 1/ 2 ) 80 fT/Hz1/2 Proceedings
Webster, Gregory; Jordao, Ligia; Martuscello, Maria; Mahajan, Tarun; Alexander, Mark E; Cecchin, Frank; Triedman, John K; Walsh, Edward P; Berul, Charles I
2008-04-01
Concern exists regarding the potential electromagnetic interaction between pacemakers, implantable cardioverter-defibrillators (ICDs) and digital music players (DMPs). A preliminary study reported interference in 50% of patients whose devices were interrogated near Apple iPods. Given the high prevalence of DMP use among young patients, we sought to define the nature of interference from iPods and evaluate other DMPs. Four DMPs (Apple Nano, Apple Video, SanDisk Sansa and Microsoft Zune) were evaluated against pacemakers and ICDs (PM/ICD). Along with continuous monitoring, we recorded a baseline ECG strip, sensing parameters and lead impedance at baseline and for each device. Among 51 patients evaluated (age 6 to 60 years, median 22), there was no interference with intrinsic device function. Interference with the programmer occurred in 41% of the patients. All four DMPs caused programmer interference, including disabled communication between the PM/ICD and programmer, noise in the ECG channel, and lost marker channel indicators. Sensing parameters and lead impedances exhibited no more than baseline variability. When the DMPs were removed six inches, there were no further programmer telemetry interactions. Contrary to a prior report, we did not identify any evidence for electromagnetic interference between a selection of DMPs and intrinsic function of PM/ICDs. The DMPs did sometimes interfere with device-programmer communication, but not in a way that compromised device function. Therefore, we recommend that DMPs not be used during device interrogation, but suggest that there is reassuring counterevidence to mitigate the current high level of concern for interactions between DMPs and implantable cardiac rhythm devices.
Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry
NASA Astrophysics Data System (ADS)
Mahadeswaraswamy, Chetan
First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2 gravity gradient signature due to an underground void at Hansen Experimental Physics Building at Stanford was successfully measured using this mobile gradiometer.
Hybrid gravity survey to search for submarine ore deposit
NASA Astrophysics Data System (ADS)
Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.
2011-12-01
Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.
A high-temperature rf SQUID system for magnetocardiography
NASA Astrophysics Data System (ADS)
Zeng, X. H.; Soltner, H.; Selbig, D.; Bode, M.; Bick, M.; Rüders, F.; Schubert, J.; Zander, W.; Banzet, M.; Zhang, Y.; Bousack, H.; Braginski, A. I.
1998-09-01
A first-order axial electronic gradiometer having a baseline of 10 cm was constructed by assembling two 0957-0233/9/9/033/img15 rf SQUID magnetometers with coplanar tank resonators, each having a white magnetic field resolution of about 0957-0233/9/9/033/img16 at 77 K. The gradiometer's near-field resolution was about 0957-0233/9/9/033/img17, including the Dewar flask's noise. A peak-to-peak noise level of 3 pT was obtained in the bandwidth 0.016-250 Hz. Magnetocardiographic (MCG) measurements were performed using this bandwidth. Measurements on human subjects have been conducted in a magnetically shielded room of moderate shielding factor. Using the signal either of the lower magnetometer or of the gradiometer, high-quality heart signal traces could be collected, which were suitable for diagnostic use. A team of physicians, assisted by two of the authors, used the equipment over 10 months to perform MCG measurements in a medical study of about 80 clinical patients with cardiac arrhythmia problems and healthy persons. The system's performance was stable over that whole period.
Development of a rotating gravity gradiometer for earth orbit applications (AAFE)
NASA Technical Reports Server (NTRS)
Forward, R. L.; Bell, C. C.; Lahue, P. M.; Mallove, E. F.; Rouse, D. W.
1973-01-01
Some preliminary mission studies are described along with the design, fabrication, and test of a breadboard model of an earth orbital, rotating gravity gradiometer with a design goal of 10 to the minus 11th power/sec sq (0.01 EU) in a 35-sec integration time. The proposed mission uses a Scout vehicle to launch one (or two orthogonally oriented) spin-stabilized satellites into a 330-km circular polar orbit some 20 days before an equinox. During the short orbital lifetime, the experiment would obtain two complete maps of the gravity gradient field with a resolution approaching 270 km (degree 75). The breadboard model of the gradiometer demonstrated a combined thermal and electronic noise threshold of 0.015 EU per data channel. The design changes needed to reduce the noise to less than 0.01 EU were identified. Variations of the sensor output signal with temperature were experimentally determined and a suitable method of temperature compensation was developed and tested. Other possible error sources, such as sensor interaction with satellite dynamics and magnetic fields, were studied analytically and shown to be small.
Cellular telephone interference with medical equipment.
Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P
2005-10-01
To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.
Spaceborne gravity gradiometry characterizing the data type
NASA Technical Reports Server (NTRS)
Sonnabend, D.
1987-01-01
Satellite gravity gradiometers, particularly the two stage drag free carrier vehicle are discussed. An inner stage, carrying the tracking antenna(s), measures the relative position of the internal free proof mass, and feeds this to a set of magnetic forcers, acting against the outer or main vehicle. As the external forces on the inner stage are low, and as the position relative to the proof mass is tightly controlled, carrier phase disturbances are greatly reduced. The arrangement lowers instantaneous accelerations. It is stressed that gravity gradiometers do not measure gradients, they measure components of an intrinsic tensor.
Earth's gravity field mapping requirements and concept. [using a supercooled gravity gradiometer
NASA Technical Reports Server (NTRS)
Vonbun, F. O.; Kahn, W. D.
1981-01-01
A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km.
78 FR 35173 - Physical Medicine Devices; Reclassification of Stair-Climbing Wheelchairs
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
.... Electromagnetic interference: The device may interfere with the operation of other electrical devices or be... electromagnetic compatibility testing as well as characterization of speed/acceleration, battery longevity, and... electrical safety and electromagnetic compatibility of the device. Performance testing must demonstrate...
Multimode quantum interference of photons in multiport integrated devices
Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.
2011-01-01
Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563
Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.
2003-01-01
Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.
Electromagnetic interference in cardiac rhythm management devices.
Sweesy, Mark W; Holland, James L; Smith, Kerry W
2004-01-01
Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.
NASA Astrophysics Data System (ADS)
Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico
2018-03-01
Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.
Obituary: Gordon Donaldson Obituary: Gordon Donaldson
NASA Astrophysics Data System (ADS)
Pegrum, Colin; Campbell, Archie; Hampshire, Damian
2013-07-01
Gordon Donaldson died in Glasgow on 28 November 2012 at the age of 71. He was born in Edinburgh and brought up and educated in Glasgow, which was his home city for much of his life. He was educated first at Glasgow Academy, and then with a scholarship at Christ's College Cambridge. Here he read Natural Sciences, finishing with first class honors in Physics. He then did a PhD on tunneling in superconductors in the Mond Laboratory, supervised by John Adkins. These were interesting times, since type II superconductors had only recently been identified, and the Mond was a leading player in the physics of vortices and other quantum effects. It was headed by Pippard and Shoenberg, and colleagues around that time were Brian Josephson, John Clarke, Colin Gough and John Waldram. On finishing his PhD in 1966 Gordon went straight to a lectureship at the University of Lancaster. In 1975 during a sabbatical at the University of California, Berkeley, with John Clarke's group, Gordon co-invented thin-film gradiometers with integrated DC SQUIDs. He then moved back to Glasgow, to the Department of Applied Physics at Strathclyde University, where he founded a new research group to make and use superconducting devices, especially SQUIDs and gradiometers. From modest beginnings the group grew steadily, acquiring new facilities and members, until in the 1990s it had over 20 members and a host of collaborators from elsewhere in Glasgow and abroad. With funding from the Wellcome Trust, Gordon and colleagues at Glasgow University and the Southern General Hospital in Glasgow set up a new biomagnetism facility in 1998 on the hospital campus to use SQUID gradiometers made at Strathclyde for measurements on patients and volunteers. Another of his main research interests was the use of SQUIDs for nondestructive evaluation (NDE). This started in the days before high temperature superconductors (HTS) with wire-wound gradiometers and niobium SQUIDs, soon moving on to miniature thin-film niobium integrated SQUID gradiometers. This was followed by major programs to develop and demonstrate HTS gradiometers for NDE. Gordon was appointed to a personal professorship in 1985 and became Professor of Applied Physics two years later. He was also head of department from 1984 to 1986 and again from 1993 to 1998. He was a Fellow of the Royal Society of Edinburgh and became Convener of their Physics Panel. He was also a Trustee of the James Clerk Maxwell Foundation. Gordon was much involved in teaching and in many university matters. He was particularly fond of the course How Things Work, which he developed and taught for fifteen years, that was so much in keeping with his passion for useful practical physics and science. After the explosion in HTS research, Gordon became the Coordinator for the National Committee for Superconductivity in the UK for three years from 1990. One of his important tasks was to coordinate the distribution of EPSRC funds to university groups and to support industrial activity. He did this with tact and good judgment. He knew everybody, understood what they were doing, and made sure that while the large groups were well supported, nobody was left out completely. This exercise could have led to resentment, but under his guidance it was a great success and it is a pity that similar exercises have not been tried since. He was a key member of the Low Temperature Group of the Institute of Physics in London, and became its Chairman for the last three years of his tenure. In 1998, he was invited to become editor of Superconductor Science and Technology (SuST). He was a referee for every paper in the journal during this period, which was an enormous task and very widely appreciated by the superconductivity community. He was particularly active during the discovery and commercialization of MgB2. He oversaw a smooth handover to his successor as Editor-in-Chief in 2007. Gordon's long list of publications and contributions to books attest to his advancement of superconducting technology. He will be especially remembered as an independent originator of nondestructive evaluation (NDE) of materials and structures using SQUIDs, and for the advancement and use of the gradiometers developed at Berkeley for biomagnetic use. He organized and chaired two key conferences, the International Superconductive Electronics Conference in Glasgow in 1991 and then the 1995 European Conference on Applied Superconductivity in Edinburgh, together with many smaller specialist meetings. Since he retired he was afflicted with severe back problems, and unfortunately operations were not successful. He was confined to a wheelchair and later to the house, which was a great trial to him. Gordon was universally respected and liked both as a scientist and a person. He was sharp, humorous and excellent company on social occasions. He will be much missed by his many colleagues and friends at SuST and throughout science, as well as by his family.
SQUIDs De-fluxing Using a Decaying AC Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei Nikolaevich; Semenov, Vasili Kirilovich; Anderson, Bill
Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper wemore » present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
...; Hazards caused by electromagnetic interference and electrostatic discharge hazards; and Hearing loss. FDA... electromagnetic Electromagnetic compatibility. interference and electrostatic discharge hazards. Labeling. Hearing...
Superconducting techniques for gravity survey and inertial navigation
NASA Technical Reports Server (NTRS)
Chan, H. A.; Moody, M. V.; Paik, H. J.; Parke, J. W.
1985-01-01
A three-axis gravity gradiometer is developed, in which the magnetic fields produced by persistent currents are modulated by motions of superconducting proof masses. The common-acceleration-induced errors are compensated for by a six-axis superconducting accelerometer with a single magnetically levitated proof mass, linear acceleration resolution of 4 x 10 to the -12th m/(s exp 2 Hz exp 1/2), and angular acceleration resolution of 3 x 10 to the -11th rad/(s exp 2 Hz exp 1/2). The testing of a prototype gradiometer revealed that the environment-induced noise limits the noise floor to 7 x 10 to the -10th/(s exp 2 Hz exp 1/2).
Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Smith, Laura J.; Williams, Reuben A.; Salud, Maria Theresa P.
2005-01-01
Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location.
Miller, Steven C M
2015-06-01
Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Kim, Joongheon; Kim, Jong-Kook
2016-01-01
This paper addresses the computation procedures for estimating the impact of interference in 60 GHz IEEE 802.11ad uplink access in order to construct visual big-data database from randomly deployed surveillance camera sensing devices. The acquired large-scale massive visual information from surveillance camera devices will be used for organizing big-data database, i.e., this estimation is essential for constructing centralized cloud-enabled surveillance database. This performance estimation study captures interference impacts on the target cloud access points from multiple interference components generated by the 60 GHz wireless transmissions from nearby surveillance camera devices to their associated cloud access points. With this uplink interference scenario, the interference impacts on the main wireless transmission from a target surveillance camera device to its associated target cloud access point with a number of settings are measured and estimated under the consideration of 60 GHz radiation characteristics and antenna radiation pattern models.
78 FR 26849 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
...--Acetone Test 14--Emergency Override Test 15--Radiofrequency Interference/Electromagnetic Interference Test... requirements; temperature extreme testing; radio frequency interference (RFI) or electromagnetic interference...
Calibrating a tensor magnetic gradiometer using spin data
Bracken, Robert E.; Smith, David V.; Brown, Philip J.
2005-01-01
Scalar magnetic data are often acquired to discern characteristics of geologic source materials and buried objects. It is evident that a great deal can be done with scalar data, but there are significant advantages to direct measurement of the magnetic gradient tensor in applications with nearby sources, such as unexploded ordnance (UXO). To explore these advantages, we adapted a prototype tensor magnetic gradiometer system (TMGS) and successfully implemented a data-reduction procedure. One of several critical reduction issues is the precise determination of a large group of calibration coefficients for the sensors and sensor array. To resolve these coefficients, we devised a spin calibration method, after similar methods of calibrating space-based magnetometers (Snare, 2001). The spin calibration procedure consists of three parts: (1) collecting data by slowly revolving the sensor array in the Earth?s magnetic field, (2) deriving a comprehensive set of coefficients from the spin data, and (3) applying the coefficients to the survey data. To show that the TMGS functions as a tensor gradiometer, we conducted an experimental survey that verified that the reduction procedure was effective (Bracken and Brown, in press). Therefore, because it was an integral part of the reduction, it can be concluded that the spin calibration was correctly formulated with acceptably small errors.
High-performance dc SQUIDs with submicrometer niobium Josephson junctions
NASA Astrophysics Data System (ADS)
de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.
1983-11-01
We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.
A Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Technical Reports Server (NTRS)
Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.
2010-01-01
A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.
A call for safer utilization of radio frequency identification in the e-health era.
Liu, Chung-Feng; Hwang, Hsin-Ginn; Kuo, Kuang-Ming; Hung, Won-Fu
2011-10-01
The main purpose of this study was to investigate the perceptions of the electromagnetic interference (EMI) caused by radio frequency identification (RFID) with medical devices among hospitals as well as to call the attention of medical institutions to the development of RFID applications. A survey sponsored by the Department of Health of Taiwan was conducted and the target subjects were every hospital in Taiwan (486 in total). The survey topics included testing of RFID interference with medical devices and perceptions of safety issues of RFID. The main targets of the survey were the Chief Information Officers (CIOs) or the main person responsible for RFID systems in each hospital. Of the original 486 questionnaires mailed, 273 were returned. A return rate of 56.17% was obtained. The survey results revealed that only six hospitals had carried out tests on interference by RFID with medical devices, and the results of these tests indicated that RFID does not interfere with medical devices. A majority of hospitals understood that RFID may interfere with medical devices but did not think that this would seriously harm patients. The application of RFID in the healthcare industry is certainly promising; however, EMI issues must be appropriately handled. This study asserts that most hospitals do not understand or pay insufficient attention to the issue of RFID interference with patient safety or medical devices. In addition, most hospitals believe that the problem of RFID should be resolved by RFID vendors. Therefore, this study argues that medical institutions should develop more understanding of RFID issues and that more attention should be given to the potential problems of RFID interference when developing RFID applications.
Self powered sensing by combining novel sensor architectures with energy harvesting
NASA Astrophysics Data System (ADS)
Bedekar, Vishwas Narayan
The sensing techniques investigated in this thesis utilize piezoelectric materials, piezoresistive materials, and magnetoelectric composites. Prior studies on structural health monitoring have demonstrated the use and promise of piezoelectric sensors. In this research, impedance spectroscopy based sensing technique was investigated with respect to two parameters (i) effect of the piezoelectric vibration mode on damage index metric, and (ii) selection of frequency band through manipulation of the electrode size and shape. These results were then used to determine sensor geometry and dimensions for detecting surface defects, fatigue and corrosion. Based upon these results, power requirement for structural health monitoring sensors was determined. Next, piezoelectric materials were coupled with magnetostrictive material for novel magnetic field gradient sensing. The ceramic -- ceramic (CC) gradiometer resembles in functionality a magnetoelectric transformer. It measures the magnetic field gradient and sensitivity with respect to a reference value. The CC gradiometer designed in this study was based upon the magnetoelectric (ME) composites and utilizes the ring-dot piezoelectric transformer structure working near resonance as the basis. This study investigated the gradiometer design and characterized the performance of gradiometer based upon Terfenol--D -- PZT composites. Based upon these results, next a metal -- ceramic gradiometer consisting of PZT and nickel was designed and characterized. In this thesis, two different designs of gradiometer with nickel and PZT laminate composites were fabricated. Nickel was chosen over other materials considering its co-firing ability with PZT. It can give a better control over dimensional parameters of the gradiometer sample and further size reduction is possible with tape casting technique. Detailed theoretical analysis was conducted in order to understand the experimental results. In order to significantly reduce the power consumption of health monitoring and magnetic field sensors, bottom -- up design of structural health monitoring and magnetic field sensors was investigated. A MWCNT/SiCN nanotube template was developed that exhibits piezoresistive effect. Next, a novel nanotube morphology "nanoNecklace" was synthesized that consists of BaTiO 3 (BTO) nanoparticles decorated along the surface of SiCN. Monolayer coating of SiCN on MWCNT serves two purposes: (i) modifies the surface wetting characteristics, and (ii) enhances the piezoresistive effect. Investigation of the mechanisms that provide periodic arrangement of BTO on nanotube surface was conducted using HRTEM and contact angle measurements. Next, we tried to modify the surface wetting characteristics of MWCNTs in order to get a full coating of BTO nanoparticles. The SiCN/MWCNT approach was further extended to fabricate magnetoelectric nanowire based sensors designs. In this approach a SiCN-NT template was coated with BTO and CoFe2O4 (CFO) nanoparticles. Microstructural studies indicated the presence of piezoelectric (BTO) as well as magnetic (CFO) material on the nanotube surface. In order to power the sensors from mechanical vibrations, we investigated two different techniques, (i) piezoelectric and (ii) inductive. An analytical model for energy harvesting from bimorph transducer was developed which was confirmed by experimental measurements. The results show that power density of bimorph transducer can be enhanced by increasing the magnitude of product (d.g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant. Under inductive energy harvesting, we designed and fabricated a small scale harvester that was integrated inside a pen commonly carried by humans to harvest vibration energy. Inductive energy harvesting was selected in order to achieve high power at lower frequencies. The prototype cylindrical harvester was found to generate 3mW at 5 Hz and 1mW at 3.5 Hz operating under displacement amplitude of 16mm (corresponding to an acceleration of approximately 1.14 grms at 5Hz and 0.56 grms at 3.5 Hz, respectively). (Abstract shortened by UMI.)
Potential GPRS 900/180-MHz and WCDMA 1900-MHz interference to medical devices.
Iskra, Steve; Thomas, Barry W; McKenzie, Ray; Rowley, Jack
2007-10-01
This study compared the potential for interference to medical devices from radio frequency (RF) fields radiated by GSM 900/1800-MHz, general packet radio service (GPRS) 900/1800-MHz, and wideband code division multiple access (WCDMA) 1900-MHz handsets. The study used a balanced half-wave dipole antenna, which was energized with a signal at the standard power level for each technology, and then brought towards the medical device while noting the distance at which interference became apparent. Additional testing was performed with signals that comply with the requirements of the international immunity standard to RF fields, IEC 61000-4-3. The testing provides a sense of the overall interference impact that GPRS and WCDMA (frequency division duplex) may have, relative to current mobile technologies, and to the internationally recognized standard for radiated RF immunity. Ten medical devices were tested: two pulse oximeters, a blood pressure monitor, a patient monitor, a humidifier, three models of cardiac defibrillator, and two models of infusion pump. Our conclusion from this and a related study on consumer devices is that WCDMA handsets are unlikely to be a significant interference threat to medical electronics at typical separation distances.
Mattingly, Emily
2005-04-01
The technological complexity of implantable arrhythmia management devices, specifically pacemakers and defibrillators, has increased dramatically since their introduction only a few decades ago. Patients with such devices are encountered much more frequently in hospitals and surgery centers, yet anesthesia provider knowledge of safe and proper management is often incomplete. Anesthesia textbooks and references may provide only short paragraphs on arrhythmia management devices that do not address important perioperative management strategies for this ever-growing patient population. It is no longer satisfactory to simply place a magnet over an implanted device during surgery and assume that this action protects the patient from harm due to electromagnetic interference from inappropriate device function. This AANA Journal course serves as a concise review of basic device function, the sources and effects of electromagnetic interference in the operative setting, and patient management recommendations from current literature.
Electromagnetic interference from GSM and TETRA phones with life-support medical devices.
Hietanen, Maila; Sibakov, Viktor
2007-01-01
Disturbances in hospital devices caused by cellular telephone signals were investigated. The interference sources were GSM900, GSM1800, and TETRA380 phones. The number of medical appliances tested was 23. Most measurements were taken in a semi-anechoic laboratory. To simulate the worst situation, the phones were adjusted to emit at their maximum power levels. No interference was observed if the distance from GSM1800 phone was over 5 cm. Corresponding safety distance for GSM900 phone was 70 cm, and for TETRA phones over 3 m. Hence, the use of GSM1800 type mobile phones can be considered safe, whereas GSM 900 and TETRA phones may cause considerable interference in hospital devices, which can result in life-endangering situations.
Apparatus and method for creating a photonic densely-accumulated ray-point
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.
Jilek, Clemens; Tzeis, Stylianos; Reents, Tilko; Estner, Heidi-Luise; Fichtner, Stephanie; Ammar, Sonia; Wu, Jinjin; Hessling, Gabriele; Deisenhofer, Isabel; Kolb, Christof
2010-10-01
Electromagnetic interference with pacemaker and implantable cardioverter defibrillator (ICD) systems may cause temporary or permanent system malfunction of implanted devices. The aim of this study was to evaluate potential interference of a novel magnetic navigation system with implantable rhythm devices. A total of 121 devices (77 pacemakers, 44 ICDs) were exposed to an activated NIOBE II® Magnetic Navigation System (Stereotaxis, St. Louis, MO, USA) at the maximal magnetic field strength of 0.1 Tesla and evaluated in vitro with respect to changes in parameter settings of the device, changes of the battery status/detection of elective replacement indication, or alterations of data stored in the device. A total of 115 out of 121 (95%) devices were free of changes in parameter settings, battery status, and internally stored data after repeated exposition to the electromagnetic field of the remote magnetic navigation system. Interference with the magnetic navigation field was observed in 6 pacemakers, resulting in reprogramming to a power-on-reset mode with or without detection of the elective replacement indication in 5 devices and abnormal variance of battery status in one device. All pacemakers could be reprogrammed to the initial modes and the battery status proved to be normal some minutes after the pacemakers had been removed from the magnetic field. Interference of a remote magnetic navigation system (at maximal field strength) with pacemakers and ICDs not connected to leads with antitachycardic detection and therapies turned off is rare. Occurring functional abnormalities could be reprogrammed in our sample. An in vitro study will give information about interference of devices connected to leads. © 2010 Wiley Periodicals, Inc.
Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging.
Yu, Ningbo; Gassert, Roger; Riener, Robert
2011-07-01
Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility" is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential database.
1994-05-15
Nogues superconducting quantum interference device magnetometry and small-angle neutron-scattering techniques 5829 Thermodynamical properties of a...sa’nple magnetometer (VSM) and superconducting Coey et al.1 have been extensively studied during the past quantum interference device (SQUID) were used to...were measured in a superconducting quantum- interference 30 device magnetometer at 273 K. 20 e 10 U1 Y3 U RESULTS - C0 20 40 60 80 100 Phase relations
MEMS-based gradiometer for the complete characterization of Martian magnetic environment
NASA Astrophysics Data System (ADS)
Mesa, Jose Luis; Ciudad, David; McHenry, Michael E.; Aroca, Claudio; Díaz-Michelena, Marina
2013-04-01
The in-situ determination of the Martian magnetic field is one of the most important and ambitious objectives in Mars exploration, because its implications in paleomagnetism, tectonics and mineral determination. To place sensors on Mars is a complicated task, due to the extreme conditions of the planet surface and also because of the relative low budget devoted to this kind of instrument: low power, mass, volume and the need to operate in a magnetically noise environment. A complete and accurate measurement of the magnetic environment includes the determination of both magnitude and gradient of the magnetic field (B). There are many developments of magnetometers with the characteristics mentioned before [2], but the question about gradient is not that well solved and most gradient sensors are based on a couple of magnetometers separated a certain distance [2, 3]. The aim of this abstract is to introduce a new MEMS based robust gradiometer for the point measurement of the field gradient with the ultimate goal to perform in situ measurement on Mars and shed some light in the magnetic anomalies explanation of the Red Planet. Since in some conditions ?ׯB = 0, we assume knowing six of the nine components is sufficient to reconstruct entirely the magnetic field gradient. The device proposed consists of a set of six cantilevers to measure these six components (with resolution in the order of 1 nT/mm) combined either with another miniaturized and more accurate magnetometer (with resolution below the nT) for the measurement of the field vector. Every component system consists of a cantilever with an appropriate geometry, an excitation coil and a mechanism to generate a field gradient. The cantilevers are made of piezoelectric material (bimorph, with two piezoelectric layers) covered by a soft ferromagnetic material (of Iron-Nickel base). Is explained below the working principle for one component. When the excitation system generates an alternating magnetic field (enough to saturate) along the width of the cantilever, the ferromagnetic material is alternatively saturated in both directions along the cantilever's width. Under the presence of a magnetic field gradient in the normal direction to the plane of the cantilever, the ferromagnetic material experiments a force, making the cantilever vibrate. This vibration generates an electric signal, given that when the cantilever vibrates, the piezoelectric layers stretches and contracts, so it sets a voltage difference. The current system with dimensions in the order of mm is run at its resonant frequency. In the presence of an external magnetic field gradient, the vibration frequency changes. The external gradient can be easily measured by means of the measurement of the frequency shift. References: [1] Acuña, M.H.: Space-based magnetometers, Rev. Sci. Instrum., 73, 3717-3736, doi: 10.1063/1.1510570, Nov 2002. [2] Merayo, J.M.G.; Brauer, P.; Primdahl, F.: Triaxial fluxgate gradiometer of high stability and linearity, Sensor Actuat A-Phys., 120, 71-77, doi: 10.1016/j.sna.2004.11.014, Apr 2005. [3] Lucas, I.; Michelena, M.D.;del Real, R.P.; de Manuel, V.; Plaza, J.A. 2; Duch, M.; Esteve, J; Guerrero, H.: A New Single-Sensor Magnetic Field Gradiometer, Sens. Lett., 7, 563-570, doi: 10.1166/sl.2009.1110, Aug 2009.
MCG measurement in the environment of active magnetic shield.
Yamazaki, K; Kato, K; Kobayashi, K; Igarashi, A; Sato, T; Haga, A; Kasai, N
2004-11-30
MCG (Magnetocardiography) measurement by a SQUID gradiometer was attempted with only active magnetic shielding (active shielding). A three-axis-canceling-coil active shielding system, where three 16-10-16 turns-coil sets were put in the orthogonal directions, produces a homogeneous magnetic field in a considerable volume surrounding the center. Fluxgate sensors were used as the reference sensors of the system. The system can reduce environmental magnetic noise at low frequencies of less than a few Hz, at 50 Hz and at 150 Hz. Reducing such disturbances stabilizes biomagnetic measurement conditions for SQUIDs in the absence of magnetically shielded rooms (MSR). After filtering and averaging the measured MCG data by a first-order SQUID gradiometer with only the active shielding during the daytime, the QRS complex and T wave was clearly presented.
Liu, Xikai; Ma, Dong; Chen, Liang; Liu, Xiangdong
2018-02-08
Tuning the stiffness balance is crucial to full-band common-mode rejection for a superconducting gravity gradiometer (SGG). A reliable method to do so has been proposed and experimentally tested. In the tuning scheme, the frequency response functions of the displacement of individual test mass upon common-mode accelerations were measured and thus determined a characteristic frequency for each test mass. A reduced difference in characteristic frequencies between the two test masses was utilized as the criterion for an effective tuning. Since the measurement of the characteristic frequencies does not depend on the scale factors of displacement detection, stiffness tuning can be done independently. We have tested this new method on a single-component SGG and obtained a reduction of two orders of magnitude in stiffness mismatch.
Jones, R P; Conway, D H
2005-08-01
Electromagnetic interference produced by wireless communication can affect medical devices and hospital policies exist to address this risk. During the transfer of ventilated patients, these policies may be compromised by essential communication between base and receiving hospitals. Local wireless networks (e.g. Bluetooth) may reduce the 'spaghetti syndrome' of wires and cables seen on intensive care units, but also generate electromagnetic interference. The aim of this study was to investigate these effects on displayed and actual ventilator performance. Five ventilators were tested: Drager Oxylog 2000, BREAS LTV-1000, Respironics BiPAP VISION, Puritan Bennett 7200 and 840. Electromagnetic interference was generated by three devices: Simoco 8020 radio handset, Nokia 7210 and Nokia 6230 mobile phone, Nokia 6230 communicating via Bluetooth with a Palm Tungsten T Personal Digital Assistant. We followed the American National Standard Recommended Practice for On-Site, Ad Hoc Testing (ANSI C63) for electromagnetic interference. We used a ventilator tester, to simulate healthy adult lungs and measure ventilator performance. The communication device under test was moved in towards each ventilator from a distance of 1 m in six axes. Alarms or error codes on the ventilator were recorded, as was ventilator performance. All ventilators tested, except for the Respironics VISION, showed a display error when subjected to electromagnetic interference from the Nokia phones and Simoco radio. Ventilator performance was only affected by the radio which caused the Puritan Bennett 840 to stop functioning completely. The transfer ventilators' performance were not affected by radio or mobile phone, although the mobile phone did trigger a low-power alarm. Effects on intensive care ventilators included display reset, with the ventilator restoring normal display function within 2 s, and low-power/low-pressure alarms. Bluetooth transmission had no effect on the function of all the ventilators tested. In a clinical setting, high-power-output devices such as a two-way radio may cause significant interference in ventilator function. Medium-power-output devices such as mobile phones may cause minor alarm triggers. Low-power-output devices such as Bluetooth appear to cause no interference with ventilator function.
Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun
2017-01-01
Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR. PMID:28489064
Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun
2017-05-10
Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.
NASA Astrophysics Data System (ADS)
Queitsch, M.; Schiffler, M.; Stolz, R.; Meyer, M.; Kukowski, N.
2017-12-01
Measurements of the Earth's magnetic field are one of the most used methods in geophysical exploration. The ambiguity of the method, especially during modeling and inversion of magnetic field data sets, is one of its biggest challenges. Additional directional information, e.g. gathered by gradiometer systems based on Superconducting Quantum Interference Devices (SQUIDs), will positively influence the inversion results and will thus lead to better subsurface magnetization models. This is especially beneficial, regarding the shape and direction of magnetized structures, especially when a significant remanent magnetization of the underlying sources is present. The possibility to separate induced and remanent contributions to the total magnetization may in future also open up advanced ways for geological interpretation of the data, e.g. a first estimation of diagenesis processes. In this study we present the results of airborne full tensor magnetic gradiometry (FTMG) surveys conducted over a dolerite intrusion in central Germany and the results of two magnetization vector inversions (MVI) of the FTMG and a conventional total field anomaly data set. A separation of the two main contributions of the acquired total magnetization will be compared with information of the rock magnetization measured on orientated rock samples. The FTMG inversion results show a much better agreement in direction and strength of both total and remanent magnetization compared to the inversion using only total field anomaly data. To enhance the separation process, the application of additional geophysical methods, i.e. frequency domain electromagnetics (FDEM), in order to gather spatial information of subsurface rock susceptibility will also be discussed. In this approach, we try to extract not only information on subsurface conductivity but also the induced magnetization. Using the total magnetization from the FTMG data and the induced magnetization from the FDEM data, the full separation of induced and remanent magnetization should be enabled. First results this approach will be shown and discussed.
Potential for Personal Digital Assistant interference with implantable cardiac devices.
Tri, Jeffrey L; Trusty, Jane M; Hayes, David L
2004-12-01
To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.
NASA Technical Reports Server (NTRS)
1991-01-01
A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.
Reducing tensor magnetic gradiometer data for unexploded ordnance detection
Bracken, Robert E.; Brown, Philip J.
2005-01-01
We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic gradiometer system (TMGS) for detection of buried unexploded ordnance (UXO). In order to achieve a useful result, we designed a data-reduction procedure that resulted in a realistic magnetic gradient tensor and devised a simple way of viewing complicated tensor data, not only to assess the validity of the final resulting tensor, but also to preview the data at interim stages of processing. The final processed map of the surveyed area clearly shows a sharp anomaly that peaks almost directly over the target UXO. This map agrees well with a modeled map derived from dipolar sources near the known target locations. From this agreement, it can be deduced that the reduction process is valid, making the prototype TMGS a foundation for development of future systems and processes.
Liu, Xikai; Ma, Dong; Chen, Liang; Liu, Xiangdong
2018-01-01
Tuning the stiffness balance is crucial to full-band common-mode rejection for a superconducting gravity gradiometer (SGG). A reliable method to do so has been proposed and experimentally tested. In the tuning scheme, the frequency response functions of the displacement of individual test mass upon common-mode accelerations were measured and thus determined a characteristic frequency for each test mass. A reduced difference in characteristic frequencies between the two test masses was utilized as the criterion for an effective tuning. Since the measurement of the characteristic frequencies does not depend on the scale factors of displacement detection, stiffness tuning can be done independently. We have tested this new method on a single-component SGG and obtained a reduction of two orders of magnitude in stiffness mismatch. PMID:29419796
A superconducting gravity gradiometer for measurements from a moving vehicle.
Moody, M V
2011-09-01
A gravity gradiometer designed for operation on an aircraft or ship has been tested in the laboratory. A noise level of 0.53 E (E ≡ 10(-9) s(-2)) rms over a 0.001 to 1 Hz bandwidth has been measured, and the primary error mechanisms have been analyzed and quantified. The design is a continuation in the development of superconducting accelerometer technology at the University of Maryland over more than three decades. A cryogenic instrument presents not only the benefit of reduced thermal noise, but also, the extraordinary stability of superconducting circuits and material properties at very low temperatures. This stability allows precise matching of scale factors and accurate rejection of dynamic errors. The design of the instrument incorporates a number of additional features that further enhance performance in a dynamically noisy environment. © 2011 American Institute of Physics
Archaeogeophysical Surveys on Mersin, Silifke, Uzuncaburç (Diokaisareia) Zeus Olbios Temple
NASA Astrophysics Data System (ADS)
Ahmet Yüksel, Fethi; Deniz, Hazel; Şahin, Hamdi
2017-04-01
The ancient city of Diocaesarea (Uzuncaburç), located 30 km north Silifke in Mersin, was a temple centre subjected to Olba in the Hellenistic period. It was declared as free city by Tiberius in the Early Imperial period and it flourished until the 5th century AD. During this period, a Thykhaion to the west of the city was built in the 1st century AD by Obrimos and his son Oppius from his wife Kyria, daughter of Leonidas. A theater was also erected in the co-reign of Marcus Aurelius and Lucius Verus and the city gate in the west of Diocaesarea was repaired under Arcadius and Honorius (396-408 AD). It was financed by the dux ad comes of Isauria, Leontios. In July 2011, archaeogeophysical measurements were made on the columns of the town of Zeus Olbios and on the peripteral Street of the city by magnetic methods. The purpose of these investigations is to determine the presence of architectural remains under the ground at the points specified. G-858 Cesium Gradiometer (G-858 Cesium Gradiometer) was used for magnetic measurement. These measurements were made on 38 pitches of 20 m length in Zeus Olbios temple on 13 creeks of 160 m length on the city's columned street. obtained sub-sensor, top sensor and gradient magnetic maps are created. Linear, angular locations with high susceptibilty were identified on magnetic maps. Keywords: Magnetic, Diokaisareia (Uzuncahurç), Archaeogeophysics, Archaeology, Cesium Gradiometer
Cumulative Interference to Aircraft Radios from Multiple Portable Electronic Devices
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.
2005-01-01
Cumulative interference effects from portable electronic devices (PEDs) located inside a passenger cabin are conservatively estimated for aircraft radio receivers. PEDs' emission powers in an aircraft radio frequency band are first scaled according to their locations' interference path loss (IPL) values, and the results are summed to determine the total interference power. The multiple-equipment-factor (MEF) is determined by normalizing the result against the worst case contribution from a single device. Conservative assumptions were made and MEF calculations were performed for Boeing 737's Localizer, Glide-slope, Traffic Collision Avoidance System, and Very High Frequency Communication radio systems where full-aircraft IPL data were available. The results show MEF for the systems to vary between 10 and 14 dB. The same process was also used on the more popular window/door IPL data, and the comparison show the multiple-equipment-factor results came within one decibel (dB) of each other.
Jacob, Sony; Cherian, Prasad K; Ghumman, Waqas S; Das, Mithilesh K
2010-09-01
Patients implanted with left ventricular assist devices (LVAD) may have implantable cardioverter defibrillators (ICD) implanted for sudden cardiac death prevention. This opens the possibility of device-device communication interactions and thus interferences. We present a case of such interaction that led to ICD communication failure following the activation of an LVAD. In this paper, we describe a practical solution to circumvent the communication interference and review the communication links of ICDs and possible mechanisms of ICD-LVAD interactions.
77 FR 12302 - Information Collection Being Reviewed by the Federal Communications Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... necessary for the proper performance of the functions of the Commission, including whether the information...). This transmitter must not cause harmful interference to stations authorized to operate on a primary... device: ``This device may not interfere with stations authorized to operate on a primary basis in the 413...
Improved CDMA Performance Using Parallel Interference Cancellation
NASA Technical Reports Server (NTRS)
Simon, Marvin; Divsalar, Dariush
1995-01-01
This report considers a general parallel interference cancellation scheme that significantly reduces the degradation effect of user interference but with a lesser implementation complexity than the maximum-likelihood technique. The scheme operates on the fact that parallel processing simultaneously removes from each user the interference produced by the remaining users accessing the channel in an amount proportional to their reliability. The parallel processing can be done in multiple stages. The proposed scheme uses tentative decision devices with different optimum thresholds at the multiple stages to produce the most reliably received data for generation and cancellation of user interference. The 1-stage interference cancellation is analyzed for three types of tentative decision devices, namely, hard, null zone, and soft decision, and two types of user power distribution, namely, equal and unequal powers. Simulation results are given for a multitude of different situations, in particular, those cases for which the analysis is too complex.
Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N
2014-12-01
Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Impact of Implantable Transvenous Device Lead Location on Severity of Tricuspid Regurgitation
Addetia, Karima; Maffessanti, Francesco; Mediratta, Anuj; Yamat, Megan; Weinert, Lynn; Moss, Joshua D.; Nayak, Hemal M.; Burke, Martin C.; Patel, Amit R.; Kruse, Eric; Jeevanandam, Valluvan; Mor-Avi, Victor; Lang, Roberto M.
2015-01-01
Background Implantable device leads can cause tricuspid regurgitation (TR) when they interfere with leaflet motion. The aim of this study was to determine whether lead-leaflet interference is associated with TR severity, independent of other causative factors of functional TR. Methods A total of 100 patients who underwent transthoracic two-dimensional and three-dimensional (3D) echocardiography of the tricuspid valve before and after lead placement were studied. Lead position was classified on 3D echocardiography as leaflet-interfering or noninterfering. TR severity was estimated by vena contracta (VC) width. Logistic regression analysis was used to identify factors associated with postdevice TR, including predevice VC width, right ventricular end-diastolic and end-systolic areas, fractional area change, right atrial size, tricuspid annular diameter, TR gradient, device lead age, and presence or absence of lead interference. Odds ratios were used to describe the association with moderate (VC width ≥ 0.5 cm) or severe (VC width ≥ 0.7 cm) TR, separately, using bivariate and stepwise multivariate logistic regression analysis. Results Forty-five of 100 patients showed device lead tricuspid valve leaflet interference. The septal leaflet was the most commonly affected (23 patients). On bivariate analysis, preimplantation VC width, right atrial size, tricuspid annular diameter, and lead-leaflet interference were significantly associated with postdevice TR. On multivariate analysis, preimplantation VC width and the presence of an interfering lead were independently associated with postdevice TR. Furthermore, the presence of an interfering lead was the only factor associated with TR worsening, increasing the likelihood of developing moderate or severe TR by 15- and 11-fold, respectively. Conclusion Lead-leaflet interference as seen on 3D echocardiography is associated with TR after device lead placement, suggesting that 3D echocardiography should be used to assess for lead interference in patients with significant TR. PMID:25129393
Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K
2005-11-01
Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.
Huang, Yingyan; Ho, Seng-Tiong
2008-10-13
We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.
The GOCE end-to-end system simulator
NASA Astrophysics Data System (ADS)
Catastini, G.; Cesare, S.; de Sanctis, S.; Detoma, E.; Dumontel, M.; Floberghagen, R.; Parisch, M.; Sechi, G.; Anselmi, A.
2003-04-01
The idea of an end-to-end simulator was conceived in the early stages of the GOCE programme, as an essential tool for assessing the satellite system performance, that cannot be fully tested on the ground. The simulator in its present form is under development at Alenia Spazio for ESA since the beginning of Phase B and is being used for checking the consistency of the spacecraft and of the payload specifications with the overall system requirements, supporting trade-off, sensitivity and worst-case analyses, and preparing and testing the on-ground and in-flight calibration concepts. The software simulates the GOCE flight along an orbit resulting from the application of Earth's gravity field, non-conservative environmental disturbances (atmospheric drag, coupling with Earth's magnetic field, etc.) and control forces/torques. The drag free control forces as well as the attitude control torques are generated by the current design of the dedicated algorithms. Realistic sensor models (star tracker, GPS receiver and gravity gradiometer) feed the control algorithms and the commanded forces are applied through realistic thruster models. The output of this stage of the simulator is a time series of Level-0 data, namely the gradiometer raw measurements and spacecraft ancillary data. The next stage of the simulator transforms Level-0 data into Level-1b (gravity gradient tensor) data, by implementing the following steps: - transformation of raw measurements of each pair of accelerometers into common and differential accelerations - calibration of the common and differential accelerations - application of the post-facto algorithm to rectify the phase of the accelerations and to estimate the GOCE angular velocity and attitude - computation of the Level-1b gravity gradient tensor from calibrated accelerations and estimated angular velocity in different reference frames (orbital, inertial, earth-fixed); computation of the spectral density of the error of the tensor diagonal components (measured gravity gradient minus input gravity gradient) in order to verify the requirement on the error of gravity gradient of 4 mE/sqrt(Hz) within the gradiometer measurement bandwidth (5 to 100 mHz); computation of the spectral density of the tensor trace in order to verify the requirement of 4 sqrt(3) mE/sqrt(Hz) within the measurement bandwidth - processing of GPS observations for orbit reconstruction within the required 10m accuracy and for gradiometer measurement geolocation. The current version of the end-to-end simulator, essentially focusing on the gradiometer payload, is undergoing detailed testing based on a time span of 10 days of simulated flight. This testing phase, ending in January 2003, will verify the current implementation and conclude the assessment of numerical stability and precision. Following that, the exercise will be repeated on a longer-duration simulated flight and the lesson learnt so far will be exploited to further improve the simulator's fidelity. The paper will describe the simulator's current status and will illustrate its capabilities for supporting the assessment of the quality of the scientific products resulting from the current spacecraft and payload design.
A media player causes clinically significant telemetry interference with implantable loop recorders.
Thaker, Jay P; Patel, Mehul B; Shah, Ashok J; Liepa, Valdis V; Jongnarangsin, Krit; Thakur, Ranjan K
2009-03-01
The implantable loop recorder is a useful diagnostic tool for intermittent cardiovascular symptoms because it can automatically record arrhythmias as well as a patient-triggered ECG. Media players have been shown to cause telemetry interference with pacemakers. Telemetry interference may be important in patients with implantable loop recorders because capturing a patient-triggered ECG requires a telemetry link between a hand-held activator and the implanted device. The purpose of this study was to determine if a media player causes interference with implantable loop recorders. Fourteen patients with implantable loop recorders underwent evaluation for interference with a 15 GB third generation iPod (Apple, Inc.) media player. All patients had the Reveal Plus (Medtronic, Inc.) implantable loop recorder. We tested for telemetry interference on the programmer by first establishing a telemetry link with the loop recorder and then, the media player was placed next to it, first turned off and then, on. We evaluated for telemetry interference between the activator and the implanted device by placing the activator over the device (normal use) and the media player next to it, first turned off and then, on. We made 5 attempts to capture a patient-triggered ECG by depressing the activator switch 5 times while the media player was off or on. Telemetry interference on the programmer screen, consisting of either high frequency spikes or blanking of the ECG channel was seen in all patients. Telemetry interference with the activator resulted in failure to capture an event in 7 patients. In one of these patients, a green indicator light on the activator suggested that a patient-triggered event was captured, but loop recorder interrogation did not show a captured event. In the remaining 7 patients, an event was captured and appropriately recognized by the device at least 1 out of 5 times. A media player playing in close proximity to an implanted loop recorder may interfere with capture of a patient-triggered event. Patients should be advised to keep media players away from their implanted loop recorder.
Influence of Mobile Phones on the Quality of ECG Signal Acquired by Medical Devices
NASA Astrophysics Data System (ADS)
Buczkowski, T.; Janusek, D.; Zavala-Fernandez, H.; Skrok, M.; Kania, M.; Liebert, A.
2013-10-01
Health aspects of the use of radiating devices, like mobile phones, are still a public concern. Stand-alone electrocardiographic systems and those built-in, more sophisticated, medical devices have become a standard tool used in everyday medical practice. GSM mobile phones might be a potential source of electromagnetic interference (EMI) which may affect reliability of medical appliances. Risk of such event is particularly high in places remote from GSM base stations in which the signal received by GSM mobile phone is weak. In such locations an increase in power of transmitted radio signal is necessary to enhance quality of the communication. In consequence, the risk of interference of electronic devices increases because of the high level of EMI. In the present paper the spatial, temporal, and spectral characteristics of the interference have been examined. The influence of GSM mobile phone on multilead ECG recordings was studied. It was observed that the electrocardiographic system was vulnerable to the interference generated by the GSM mobile phone working with maximum transmit power and in DTX mode when the device was placed in a distance shorter than 7.5 cm from the ECG electrode located on the surface of the chest. Negligible EMI was encountered at any longer distance.
Superconducting gravity gradiometer mission. Volume 1: Study team executive summary
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1989-01-01
An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Superconducting gravity gradiometer mission. Volume 2: Study team technical report
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1988-01-01
Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data
NASA Astrophysics Data System (ADS)
Wu, Hu; Muiller, Jurgen; Brieden, Phillip
2015-03-01
An independent global gravity field model is computed from the GOCE orbit and gradiometer data using our own IfE software. We analysed the same data period that were considered for the first released GOCE models. The Acceleration Approach is applied to process the orbit data. The gravity gradients are processed in the framework of the remove-restore technique by which the low-frequency noise of the original gradients are removed. For the combined solution, the normal equations are summed by the Variance Component Estimation Approach. The result in terms of accumulated geoid height error calculated from the coefficient difference w.r.t. EGM2008 is about 11 cm at D/O 200, which corresponds to the accuracy level of the first released TIM and DIR solutions. This indicates that our IfE model has a comparable performance as the other official GOCE models.
A new spinner magnetometer using high sensitivity magneto-impedance sensor
NASA Astrophysics Data System (ADS)
Kodama, Kazuto
2016-04-01
A sensitive spinner magnetometer was developed using a pair of high-resolution Magneto-Impedance sensors. The MI sensor generally utilizes the MI effect of amorphous wire whose impedance changes by the application of a small magnetic field. Various kinds of MI sensors are currently used in many electric devices, for example, a magnetic compass chip built-in smart phones and car navigations. The MI sensor employed in this study is a pico-Tesla MI sensor, an especially sensitive MI sensor originally manufactured for industrial use to detect contamination of small magnetic particles in industrial materials such as fabrics. To detect weak magnetic signals from natural samples and avoid DC drift, a gradiometer system was employed that consists of a pair of the MI sensors and the electronics with analog filter and pre-amplification circuit. This MI gradiometer system was equipped to a commercial spinner magnetometer (SMD-88, Natsuhara Giken, Osaka) with the spinning rate of 5 Hz. It is demonstrated that this new spinner magnetometer is capable of measuring weak magnetic samples of 10-6 mAm2, with the highest resolution being 10-8 mAm2, approximately two orders of magnitude better than the previous one using a ring-core flux-gate sensor. One of the advantages of the MI spinner magnetometer is that it can be easily modified to accommodate samples of any shape and size. Moreover the slow-rotating speed (5 Hz) allows to measure samples for archeomagnetic studies that are usually irregular and fragile. Because the irregularity of shape increases errors in measuring the dipole component of the total magnetization, it is necessary to increase the distance between the sample and sensor, resulting in poorer sensitivity. The high-sensitivity MI sensor enables to measure the NRM of such irregular-shaped samples from an appropriate distance to the sample, with no significant loss of sensitivity.
Design and fabrication of multimode interference couplers based on digital micro-mirror system
NASA Astrophysics Data System (ADS)
Wu, Sumei; He, Xingdao; Shen, Chenbo
2008-03-01
Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.
Interference Cancellation System Design Using GNU Radio
2015-12-01
ARL-TR-7546 ● DEC 2015 US Army Research Laboratory Interference Cancellation System Design Using GNU Radio by Jan Paolo...Interference Cancellation System Design Using GNU Radio by Jan Paolo Acosta Sensors and Electron Devices Directorate, ARL...REPORT DATE (DD-MM-YYYY) December 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Interference Cancellation System
Electromagnetic interference with pacemakers caused by portable media players.
Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K
2008-04-01
Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions testing from the iPods demonstrated maximum emissions in the pacemaker carrier frequency range when the iPod was turned "on" with the headphones attached. iPods placed within 2 inches of implanted pacemakers monitored via the telemetry wand can cause interference with pacemakers.
Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter
2014-04-10
Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.
Milhorn, Denise; Korpi-Steiner, Nichole
2015-02-01
It is unclear if the point-of-care (POC) Clinitest hCG device is subject to high-dose hook interference from physiological concentrations of intact human chorionic gonadotropin (hCG), β-core fragment of hCG (hCGβcf), and hCG free β-subunit (hCGβ) found in urine during pregnancy. We used a simulation model to address this question and related our findings to our institution's pregnant population in order to assess risk for potential false-negative hCG results. The expected distribution of days relative to ovulation during routine POC hCG testing was estimated from 182 patients. Clinitest-Clinitek Status hCG device susceptibility to high-dose hook interference from hCG variants and potential risk of false-negative results as it relates to this population were evaluated by testing increasing concentrations of hCG, hCGβcf, hCGβ as well as urine simulating physiological hCG, hCGβcf and hCGβ concentrations expected during early pregnancy (≤44 days post-ovulation). The Clinitest-Clinitek Status hCG device exhibited high-dose hook interference from hCGβcf alone, but not from hCG, hCGβ, or simulated physiological urinary concentrations of combined hCG, hCGβcf and hCGβ expected during early pregnancy. The majority of our patient population had urinary hCG testing conducted during early pregnancy. The Clinitest-Clinitek Status hCG device is unlikely to exhibit false-negative urinary hCG results due to high-dose hook interference for women in early healthy pregnancy, although additional studies are necessary to determine potential risk in other patient populations. Visual interpretation of POC urinary hCG device results is an important failure mode to consider in risk analyses for erroneous urinary hCG device results. Published by Elsevier Inc.
Readout of the atomtronic quantum interference device
NASA Astrophysics Data System (ADS)
Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi
2018-01-01
A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.
Superfluid helium quantum interference devices: physics and applications.
Sato, Y; Packard, R E
2012-01-01
We present an overview of recent developments related to superfluid helium quantum interference devices (SHeQUIDs). We discuss the physics of two reservoirs of superfluid helium coupled together and describe the quantum oscillations that result from varying the coupling strength. We explain the principles behind SHeQUIDs that can be built based on these oscillations and review some techniques and applications.
High resolution non-contact interior profilometer
Piltch, Martin S.; Patterson, R. Alan; Leeches, Gerald W.; Nierop, John Van; Teti, John J.
2001-01-01
Apparatus and method for inspecting the interior surfaces of devices such as vessels having a single entry port. Laser energy is launched into the vessel, and the light reflected from the interior surfaces is interfered with reference laser energy to produce an interference pattern. This interference pattern is analyzed to reveal information about the condition of the interior surfaces of the device inspected.
Evaluation of two glucose meters and interference corrections for screening neonatal hypoglycemia.
Wada, Yuka; Nakamura, Tomoo; Kaneshige, Masao; Takahashi, Shigehiro; Fujinaga, Hideshi; Tsukamoto, Keiko; Ito, Yushi; Sago, Haruhiko
2015-08-01
Many neonatal intensive care and maternal units still use self-monitoring of blood glucose (SMBG) devices as a tool to aid diagnosis despite the introduction of point-of-care testing (POCT) devices, which are known to have higher accuracy. We evaluated the performance of two glucose meters, the StatStrip (Nova Biomedical), a POCT device, and the Medisafe Mini (Terumo), an SMBG device, to detect hypoglycemia in neonates. In addition, we evaluated the interference of hematocrit, acetaminophen and ascorbic acid. Whole blood samples were drawn from neonates who were at risk of hypoglycemia and analyzed with the StatStrip and Medisafe Mini. The results were further confirmed with blood gas analyzers ABL825 and BM6050. To evaluate the interference of hematocrit, acetaminophen and ascorbic acid, concentrated solutions of glucose and interfering substances were gravimetrically prepared and analyzed. Among the 222 blood samples analyzed, results from the StatStrip were more closely aligned to those of the ABL825 at all levels of glucose than the Medisafe Mini. StatStrip appears to be unaffected by hematocrit, ascorbic acid or acetaminophen. We recommend its use in neonates in hospital. Further studies are required to identify other interference effects. © 2014 Japan Pediatric Society.
Impact of in-band interference on a wake-up radio system in wireless sensor networks
NASA Astrophysics Data System (ADS)
Lebreton, J. M.; Murad, N. M.; Lorion, R.
2017-05-01
The energy efficiency of Wireless Sensor Networks (WSNs) is considerably improved with Wake-up Radio (WuR) systems. However, their resilience to interference is often neglected in the literature. This might be an issue due to the proliferation of wireless devices and the growing field of internet of things. In this paper, we evaluate the impact of in-band interference from wireless devices on a WuR system. The approach proves that WuR systems are still performing well when coexisting with external wireless networks, even if the energy-efficiency is slightly reduced.
Mostafanezhad, Isar; Boric-Lubecke, Olga; Lubecke, Victor; Mandic, Danilo P
2009-01-01
Empirical Mode Decomposition has been shown effective in the analysis of non-stationary and non-linear signals. As an application in wireless life signs monitoring in this paper we use this method in conditioning the signals obtained from the Doppler device. Random physical movements, fidgeting, of the human subject during a measurement can fall on the same frequency of the heart or respiration rate and interfere with the measurement. It will be shown how Empirical Mode Decomposition can break the radar signal down into its components and help separate and remove the fidgeting interference.
Electronic recording of holograms with applications to holographic displays
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Merat, F. L.
1979-01-01
The paper describes an electronic heterodyne recording which uses electrooptic modulation to introduce a sinusoidal phase shift between the object and reference wave. The resulting temporally modulated holographic interference pattern is scanned by a commercial image dissector camera, and the rejection of the self-interference terms is accomplished by heterodyne detection at the camera output. The electrical signal representing this processed hologram can then be used to modify the properties of a liquid crystal light valve or a similar device. Such display devices transform the displayed interference pattern into a phase modulated wave front rendering a three-dimensional image.
Optimization of pick-up coils for weakly damped SQUID gradiometers
NASA Astrophysics Data System (ADS)
Yang, Kang; Wang, Jialei; Kong, Xiangyan; Yang, Ruihu; Chen, Hua
2018-05-01
Not Available Project supported by the Key Project of Shanghai Zhangjiang National Innovation Demonstration Zone of the Special Development Fund, China (Grant No. 2015-JD-C104-060) and the National Natural Science Foundation of China (Grant No. 61741122).
Passive athermalization of multimode interference devices for wavelength-locking applications.
Ruiz-Perez, Victor I; May-Arrioja, Daniel A; Guzman-Sepulveda, Jose R
2017-03-06
In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.
47 CFR 2.807 - Statutory exceptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Carriers transporting radiofrequency devices without trading in them. (b) Radiofrequency devices manufactured solely for export. (c) The manufacture, assembly, or installation of radiofrequency devices for... device shall be operated if it causes harmful interference to radio communications. (d) Radiofrequency...
Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.
Palma, M; Maradan, D; Casparis, L; Liu, T-M; Froning, F N M; Zumbühl, D M
2017-04-01
We present a parallel network of 16 demagnetization refrigerators mounted on a cryofree dilution refrigerator aimed to cool nanoelectronic devices to sub-millikelvin temperatures. To measure the refrigerator temperature, the thermal motion of electrons in a Ag wire-thermalized by a spot-weld to one of the Cu nuclear refrigerators-is inductively picked-up by a superconducting gradiometer and amplified by a SQUID mounted at 4 K. The noise thermometer as well as other thermometers are used to characterize the performance of the system, finding magnetic field independent heat-leaks of a few nW/mol, cold times of several days below 1 mK, and a lowest temperature of 150 μK of one of the nuclear stages in a final field of 80 mT, close to the intrinsic SQUID noise of about 100 μK. A simple thermal model of the system capturing the nuclear refrigerator, heat leaks, and thermal and Korringa links describes the main features very well, including rather high refrigerator efficiencies typically above 80%.
Interference lithography for optical devices and coatings
NASA Astrophysics Data System (ADS)
Juhl, Abigail Therese
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.
Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter
2018-02-14
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.
Silva Pereira, Silvana; Hindriks, Rikkert; Mühlberg, Stefanie; Maris, Eric; van Ede, Freek; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo
2017-11-01
A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.
EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.
Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J
2016-07-01
Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.
Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission
NASA Technical Reports Server (NTRS)
Li, X.; Lemoine, F. G.; Paik, H. J.; Zagarola, M.; Shirron, P. J.; Griggs, C. E.; Moody, M. V.; Han, S.-C.
2016-01-01
Measurement of a planet's gravity field provides fundamental information about the planet's mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planet's geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESA's GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.
Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission
NASA Technical Reports Server (NTRS)
Li, X.; Lemoine, F. G.; Shirron, P. J.; Paik, H. J.; Griggs, C. E.; Moody, M. V.; Han, S. C.; Zagarola, M.
2016-01-01
Measurement of a planets gravity field provides fundamental information about the planets mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planets geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESAs GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.
Reality and Surreality of 3-D Displays: Holodeck and Beyond
2000-01-01
are 2-D interference patterns and may, in principal, be written on a 2-D recording medium whose response is a function of intensity (e.g. photographic...devices based on reflective digital micromirror devices ( DMD ), or 1-D grading light valves. Photorefractive crystals include tantalum dioxide, lithium...Hologram readout is a diffractive interference phenomenon, which becomes significant when electromagnetic radiation encounters structures (e.g. pixels of
NASA Astrophysics Data System (ADS)
Yu, Long-Bao; Zhang, Wen-Hai; Ye, Liu
2007-09-01
We propose a simple scheme to realize 1→M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.
Huang, Dong; Dong, Zhi-Feng; Chen, Yan; Wang, Fa-Bin; Wei, Zhi; Zhao, Wen-Bin; Li, Shuai; Liu, Ming-Ya; Zhu, Wei; Wei, Meng; Li, Jing-Bo
2015-07-01
To investigate interference, and how to avoid it, by high-frequency electromagnetic fields (EMFs) of Global System for Mobile Communications (GSM) mobile phone with communication between cardiac rhythm management devices (CRMs) and programmers, a combined in vivo and in vitro testing was conducted. During in vivo testing, GSM mobile phones interfered with CRM-programmer communication in 33 of 65 subjects tested (50.8%). Losing ventricle sensing was representative in this study. In terms of clinical symptoms, only 4 subjects (0.6%) felt dizzy during testing. CRM-programmer communication recovered upon termination of mobile phone communication. During in vitro testing, electromagnetic interference by high-frequency (700-950 MHz) EMFs reproducibly occurred in duplicate testing in 18 of 20 CRMs (90%). During each interference, the pacing pulse signal on the programmer would suddenly disappear while the synchronous signal was normal on the amplifier-oscilloscope. Simulation analysis showed that interference by radiofrequency emitting devices with CRM-programmer communication may be attributed to factors including materials, excitation source distance, and implant depth. Results suggested that patients implanted with CRMs should not be restricted from using GSM mobile phones; however, CRMs should be kept away from high-frequency EMFs of GSM mobile phone during programming. © 2015 Wiley Periodicals, Inc.
Capacity of dental equipment to interfere with cardiac implantable electrical devices.
Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier
2015-06-01
Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.
Basu, Ananda; Veettil, Sona; Dyer, Roy; Peyser, Thomas
2016-01-01
Abstract Background: Recent advances in accuracy and reliability of continuous glucose monitoring (CGM) devices have focused renewed interest on the use of such technology for therapeutic dosing of insulin without the need for independent confirmatory blood glucose meter measurements. An important issue that remains is the susceptibility of CGM devices to erroneous readings in the presence of common pharmacologic interferences. We report on a new method of assessing CGM sensor error to pharmacologic interferences using the example of oral administration of acetaminophen. Materials and Methods: We examined the responses of several different Food and Drug Administration–approved and commercially available CGM systems (Dexcom [San Diego, CA] Seven® Plus™, Medtronic Diabetes [Northridge, CA] Guardian®, and Dexcom G4® Platinum) to oral acetaminophen in 10 healthy volunteers without diabetes. Microdialysis catheters were placed in the abdominal subcutaneous tissue. Blood and microdialysate samples were collected periodically and analyzed for glucose and acetaminophen concentrations before and after oral ingestion of 1 g of acetaminophen. We compared the response of CGM sensors with the measured acetaminophen concentrations in the blood and interstitial fluid. Results: Although plasma glucose concentrations remained constant at approximately 90 mg/dL (approximately 5 mM) throughout the study, CGM glucose measurements varied between approximately 85 to 400 mg/dL (from approximately 5 to 22 mM) due to interference from the acetaminophen. The temporal profile of CGM interference followed acetaminophen concentrations measured in interstitial fluid (ISF). Conclusions: This is the first direct measurement of ISF concentrations of putative CGM interferences with simultaneous measurements of CGM performance in the presence of the interferences. The observed interference with glucose measurements in the tested CGM devices coincided temporally with appearance of acetaminophen in the ISF. The method applied here can be used to determine the susceptibility of current and future CGM systems to interference from acetaminophen or other exogenous pharmacologic agents. PMID:26784129
2014-07-01
Device Fabrication The migration devices were fabricated at the Cornell NanoScale Science and Technology Facility (CNF) using standard lithography ...mutations interfere with tissue-specific genes: lamin mutations may inhibit binding to tissue-specific factors [27] or lead to abnormal gene activation...mutations associated with stri- ated muscle disease can interfere with coupling to SUN proteins [77,78], emerin [59,77], Klaroid (a Drosophila nesprin
Frequency Management Engineering Principles--Spectrum Measurements (Reference Order 6050.23).
1982-08-01
Interference 22 (a) Dielectric Heater Example 22 (b) High Power FM Interference Examle 22 (c) Radar Interference Example 22 (d) ARSR Interference Example...Localizer 23 (i) Dielectric Heaters 23 (j) High Power TV/FM 23 (k) Power Line Noise 23 (1) Incidental Radiating Devices 23 (m) Super-regenerative...employing broad band power amplifiers or and random spectrum analyzer instabilities traveling wave tubes. The "cleanest" spectrums create drift problems
Low field electron paramagnetic resonance imaging with SQUID detection
NASA Technical Reports Server (NTRS)
Hahn, Inseob (Inventor); Day, Peter K. (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Cohen, Mark S. (Inventor)
2012-01-01
In one embodiment, a flux transformer with a gradiometer pickup coil is magnetically coupled to a SQUID, and a SQUID array amplifier comprising a plurality of SQUIDs, connected in series, is magnetically coupled to the output of the SQUID. Other embodiments are described and claimed.
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-07-14
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-04-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.
Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-01-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.
2002-01-01
With the increasing pressures to allow wireless devices on aircraft, the susceptibility of aircraft receivers to interference from Portable Electronic Devices (PEDs) becomes an increasing concern. Many investigations were conducted in the past, with limited success, to quantify device emissions, path loss, and receiver interference susceptibility thresholds. This paper outlines the recent effort in determining the receiver susceptibility thresholds for ILS, VOR and GPS systems. The effort primarily consists of analysis of data available openly as reported in many RTCA and ICAO documents as well as manufacturers data on receiver sensitivity. Shortcomings with the susceptibility threshold data reported in the RTCA documents are presented, and an approach for an in-depth study is suggested. In addition, intermodulation products were observed and demonstrated in a laboratory experiment when multiple PEDs were in the proximity of each other. These intermodulation effects generate spurious frequencies that may fall within aircraft communication or navigation bands causing undesirable effects. Results from a preliminary analysis are presented that show possible harmful combinations of PEDs and the potentially affected aircraft bands.
NASA Astrophysics Data System (ADS)
Wu, Mengfei; Jean, Joel; Bulović, Vladimir; Baldo, Marc A.
2017-05-01
Infrared-to-visible photon upconversion has potential applications in photovoltaics, sensing, and bioimaging. We demonstrate a solid-state thin-film device that utilizes sensitized triplet-triplet exciton annihilation, converting infrared photons absorbed by colloidal lead sulfide nanocrystals (NCs) into visible photons emitted from a luminescent dopant in rubrene at low incident light intensities. A typical bilayer device consisting of a monolayer of NCs and a doped film of rubrene is limited by low infrared absorption in the thin NC film. Here, we augment the bilayer with an optical spacer layer and a silver-film back reflector, resulting in interference effects that enhance the optical field and thus the absorption in the NC film. The interference-enhanced device shows an order-of-magnitude increase in the upconverted emission at the wavelength of λ = 610 nm when excited at λ = 980 nm. At incident light intensities above 1.1 W/cm2, the device attains maximum efficiency, converting (1.6 ± 0.2)% of absorbed infrared photons into higher-energy singlet excitons in rubrene.
Laser interference fringe tomography: a novel 3D imaging technique for pathology
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan
2011-03-01
Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.
NASA Astrophysics Data System (ADS)
Fang, Bao-Long; Yang, Zhen; Ye, Liu
2009-05-01
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
Method of making an improved superconducting quantum interference device
Wu, Cheng-Teh; Falco, Charles M.; Kampwirth, Robert T.
1977-01-01
An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper.
Mobile phone interference with medical equipment and its clinical relevance: a systematic review.
Lawrentschuk, Nathan; Bolton, Damien M
2004-08-02
To conduct a systematic review of studies on clinically relevant digital mobile phone electromagnetic interference with medical equipment. MEDLINE and SUMSEARCH were searched for the period 1966-2004. The Cochrane Library and Database of Abstracts of Reviews of Effects were also searched for systematic reviews. Studies were eligible if published in a peer-reviewed journal in English, and if they included testing of digital mobile phones for clinically relevant interference with medical equipment used to monitor or treat patients, but not implantable medical devices. As there was considerable heterogeneity in medical equipment studied and the conduct of testing, results were summarised rather than subjected to meta-analysis. Clinically relevant electromagnetic interference (EMI) secondary to mobile phones potentially endangering patients occurred in 45 of 479 devices tested at 900 MHz and 14 of 457 devices tested at 1800 MHz. However, in the largest studies, the prevalence of clinically relevant EMI was low. Most clinically relevant EMI occurred when mobile phones were used within 1 m of medical equipment. Although testing was not standardised between studies and equipment tested was not identical, it is of concern that at least 4% of devices tested in any study were susceptible to clinically relevant EMI. All studies recommend some type of restriction of mobile phone use in hospitals, with use greater than 1 m from equipment and restrictions in clinical areas being the most common.
Magnetic biosensor using a high transition temperature SQUID
NASA Astrophysics Data System (ADS)
Grossman, Helene Lila
A high transition temperature (Tc) Superconducting QUantum Interference Device (SQUID) is used to detect magnetically-labeled microorganisms. The targets are identified and quantified by means of magnetic relaxation measurements, with no need for unbound magnetic labels to be washed away. The binding rate between antibody-linked magnetic particles and targets can be measured with this technique. Installed in a "SQUID microscope," a YBa2Cu 3O7-delta SQUID is mounted on a sapphire rod thermally linked to a liquid nitrogen can; these components are enclosed in a fiberglass vacuum chamber. A thin window separates the vacuum chamber from the sample, which is at room temperature and atmospheric pressure. In one mode of the experiment, targets are immobilized on a substrate and immersed a suspension of ˜50 nm diameter superparamagnetic particles, coated with antibodies. A pulsed magnetic field aligns the magnetic dipole moments, and the SQUID measures the magnetic relaxation signal each time the field is turned off. Unbound particles relax within ˜50 mus by Brownian rotation, too fast for the SQUID system to measure. In contrast, particles bound to targets have their Brownian motion inhibited. These particles relax in ˜1 s by rotation of the internal dipole moment, and this Neel relaxation process is detected by the SQUID. This assay is demonstrated with a model system of liposomes carrying the FLAG epitope; the detection limit is (2.7 +/- 0.2) x 105 particles. The replacement of the SQUID with a gradiometer improves the detection limit to (7.0 +/- 0.7) x 103 particles. In an alternate mode of the experiment, freely suspended targets (larger than ˜1 mum diameter) are detected. Since the Brownian relaxation time of the targets is longer than the measurement time, particles bound to targets are effectively immobilized and exhibit Neel relaxation. Listeria monocytogenes are detected using this method; the sensitivity is (1.1 +/- 0.2) x 105 bacteria in 20 muL. For a 1 nL sample volume, the detection limit is expected to be 230 +/- 40 bacteria. Time-resolved measurements, which yield the binding rate between particles and bacteria, are reported. Also, potential improvements to the system and possible applications are discussed.
Potential aerospace applications of high temperature superconductors
NASA Technical Reports Server (NTRS)
Selim, Raouf
1994-01-01
The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on Earth Orbit Systems (EOS) with HTS leads. IR detectors on these EOS missions are cooled to a 4.2K to improve their signal to noise ratio. They are connected to data acquisitions systems using manganin wires (low thermal conductors) to reduce the heat load on the cryogen. Replacing these wires with HTS leads will increase the lifetime of these missions by about 50 percent. This is a promising application that is ready for actual implementation on such systems. The analysis also show that an the number of IR detectors increase in larger EOS systems, substantial increase in the lifetime of each mission will be realized by using HTS leads instead of the manganin ones.
Integrated-optic current sensors with a multimode interference waveguide device.
Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol
2016-04-04
Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Salud, M. Theresa
2002-01-01
To address the concern for cellular phone electromagnetic interference (EMI) to aircraft radios, a radiated emission measurement process for CDMA (IS-95) and GSM (ETSI GSM 11.22) wireless handsets was developed. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective isotropic radiated power. Eight representative handsets (4 GSM, 4 CDMA) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation for cellular/PCS phones, Bluetooth, IEEE802.11b, IEEE802.11a, FRS/GMRS radios, and other portable transmitters. Aircraft interference path loss (IPL) and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using this data, a preliminary risk assessment is provided for CDMA and GSM wireless phone interference to aircraft localizer, Glideslope, VOR, and GPS radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, IPL, and navigation radio interference thresholds needs to be extended for an accurate risk assessment for wireless transmitters in aircraft.
Wireless Phone Threat Assessment and New Wireless Technology Concerns for Aircraft Navigation Radios
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Beggs, John H.; Salud, Maria Theresa P.
2003-01-01
To address the concern for cellular phone electromagnetic interference to aircraft radios, a radiated emission measurement process was developed for two dominant digital standards of wireless handsets. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective radiated power. Eight representative handsets (four from each digital standard) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation of other portable transmitters using a variety of wireless transmission protocols. Aircraft interference path loss and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using these data, a preliminary risk assessment is provided for wireless phone interference to aircraft Localizer, Glideslope, Very High Frequency Omni directional Range, and Global Positioning Satellite radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, interference path loss, and navigation radio interference thresholds need to be extended for an accurate risk assessment for wireless transmitters in aircraft.
Robinson, Thomas N; Varosy, Paul D; Guillaume, Girard; Dunning, James E; Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Stiegmann, Greg V; Weyer, Christopher; Rozner, Marc A
2014-09-01
The monopolar "Bovie" instrument emits radiofrequency energy that can disrupt the function of other implanted electronic devices through a phenomenon termed electromagnetic interference. The purpose of this study was to quantify the electromagnetic interference occurring on cardiac implantable devices (CIEDs) resulting from monopolar instrument use in common, modifiable clinical scenarios. Three anesthetized pigs underwent CIED placement (1 pacemaker and 2 defibrillators). Electromagnetic interference was quantified when changing the monopolar instrument parameters of generator power, generator mode, surgical technique, orientation of active electrode cord, pathway of current vector, and proximity of active electrode to the CIED. Monopolar instrument parameters that decreased the electromagnetic interference occurring on the CIED included decreasing generator power from 60 W to 30 W (p < 0.001), using cut mode rather than coag mode (p < 0.001), using desiccation technique rather than fulguration technique (p < 0.001), orienting the active electrode cord from the feet rather than across the chest wall (p < 0.001), and avoiding the current vector from crossing the CIED system (p < 0.001). Increasing the distance between the active electrode tool and the CIED system decreased electromagnetic interference occurring on the CIED in a dose-response fashion up to a distance of 10 cm (ANOVA, p < 0.001), after which the magnitude of electromagnetic interference remained constant. Electromagnetic interference occurring on CIEDs resulting from monopolar instruments is minimized by decreasing generator power, using cut mode, using desiccation technique, orienting the active electrode cord from the feet, avoiding the current vector for crossing the CIED system, and increasing the distance between the active electrode and the CIED. Surgeons and operating room staff can minimize electromagnetic interference on CIEDs during monopolar instrument use by accounting for these modifiable clinical factors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
47 CFR 15.17 - Susceptibility to interference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Susceptibility to interference. 15.17 Section 15.17 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General... obtained by contacting: Director, Spectrum Plans and Policy, National Telecommunications and Information...
Ambulation and complications related to assistive devices after spinal cord injury
Saunders, Lee L.; Krause, James S.; DiPiro, Nicole D.; Kraft, Sara; Brotherton, Sandra
2013-01-01
Objective To evaluate long-term health outcomes including pain intensity, pain interference, and fatigue among ambulatory persons with spinal cord injury (SCI). Design Prospective cohort study. Setting Data were analyzed at a major medical university in the southeast USA. Participants Participants included 783 ambulatory adults with SCI of traumatic origin, who were at least 1-year post-injury. Participants were identified through three sources of records at a large specialty hospital in the southeastern USA. Interventions Not applicable. Outcome measures Pain intensity and interference (Brief Pain Inventory) and fatigue (Modified Fatigue Impact Scale Abbreviated Version 5). Results Examining assistive devices used for ambulation, 66% of the population used at least one device. In the logistic model, wheelchair and cane usage were significantly related to the outcomes after controlling for age, gender, and race. Wheelchair usage 50% of the time or less was significantly related to pain intensity (odds ratio (OR) 2.05, 95% confidence interval (CI) = 1.39–3.03), pain interference (OR 2.11, 95% CI = 1.43–3.12), and fatigue (OR 1.99, 95% CI = 1.12–1.43). Additionally, unilateral cane use was significantly related to the outcomes; pain intensity (OR 1.86, 95% CI = 1.35–2.56), pain interference (OR 2.11, 95% CI = 1.52–2.93), and fatigue (OR 2.49, 95% CI = 1.52–4.08). Conclusions Among ambulatory persons with SCI, increased pain intensity, pain interference, and fatigue are associated with minimal wheelchair usage (50% or less) and less supportive assistive device (unilateral cane) usage. PMID:24090470
NASA Astrophysics Data System (ADS)
Ye, Liu; Hu, GuiYu; Li, AiXia
2011-01-01
We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Fiber Optic Temperature Sensor Based on Multimode Interference Effects
NASA Astrophysics Data System (ADS)
Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.
2011-01-01
A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.
Excitonic quantum interference in a quantum dot chain with rings.
Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang
2008-04-16
We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.
Emission analysis of large number of various passenger electronic devices in aircraft
NASA Astrophysics Data System (ADS)
Schüür, Jens; Oppermann, Lukas; Enders, Achim; Nunes, Rafael R.; Oertel, Carl-Henrik
2016-09-01
The ever increasing use of PEDs (passenger or portable electronic devices) has put pressure on the aircraft industry as well as operators and administrations to reevaluate established restrictions in PED-use on airplanes in the last years. Any electronic device could cause electromagnetic interference to the electronics of the airplane, especially interference at receiving antennas of sensitive wireless navigation and communication (NAV/COM) systems. This paper presents a measurement campaign in an Airbus A320. 69 test passengers were asked to actively use a combination of about 150 electronic devices including many attached cables, preferentially with a high data load on their buses, to provoke maximal emissions. These emissions were analysed within the cabin as well as at the inputs of aircraft receiving antennas outside of the fuselage. The emissions of the electronic devices as well as the background noise are time-variant, so just comparing only one reference and one transmission measurement is not sufficient. Repeated measurements of both cases lead to a more reliable first analysis. Additional measurements of the absolute received power at the antennas of the airplane allow a good estimation of the real interference potential to aircraft NAV/COM systems. Although there were many measured emissions within the cabin, there were no disturbance signals detectable at the aircraft antennas.
Neun, Barry W; Dobrovolskaia, Marina A
2018-01-01
Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic response and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro Limulus Amebocyte Lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimation of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.
High-chroma visual cryptography using interference color of high-order retarder films
NASA Astrophysics Data System (ADS)
Sugawara, Shiori; Harada, Kenji; Sakai, Daisuke
2015-08-01
Visual cryptography can be used as a method of sharing a secret image through several encrypted images. Conventional visual cryptography can display only monochrome images. We have developed a high-chroma color visual encryption technique using the interference color of high-order retarder films. The encrypted films are composed of a polarizing film and retarder films. The retarder films exhibit interference color when they are sandwiched between two polarizing films. We propose a stacking technique for displaying high-chroma interference color images. A prototype visual cryptography device using high-chroma interference color is developed.
47 CFR 15.105 - Information to the user.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... the instruction manual, may cause harmful interference to radio communications. Operation of this... accordance with the instructions, may cause harmful interference to radio communications. However, there is...
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Measurement of curvature and temperature using multimode interference devices
NASA Astrophysics Data System (ADS)
Guzman-Sepulveda, J. R.; Aguilar-Soto, J. G.; Torres-Cisneros, M.; Ibarra-Manzano, O. G.; May-Arrioja, D. A.
2011-09-01
In this paper we propose the fabrication, implementation, and testing of a novel fiber optic sensor based on Multimode Interference (MMI) effects for independent measurement of curvature and temperature. The development of fiber based MMI devices is relatively new and since they exhibit a band-pass filter response they can be used in different applications. The operating mechanism of our sensor is based on the self-imaging phenomena that occur in multimode fibers (MMF), which is related to the interference of the propagating modes and their accumulated phase. We demonstrate that the peak wavelength shifts with temperature variations as a result of changes in the accumulated phase through thermo-optics effects, while the intensity of the peak wavelength is reduced as the curvature increases since we start to loss higher order modes. In this way both measurements are obtained independently with a single fiber device. Compared to other fiber-optic sensors, our sensor features an extremely simple structure and fabrication process, and hence cost effectiveness.
Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling
NASA Astrophysics Data System (ADS)
Varlet, Anastasia; Liu, Ming-Hao; Krueckl, Viktor; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Ensslin, Klaus; Ihn, Thomas
2014-09-01
We report the experimental observation of Fabry-Pérot interference in the conductance of a gate-defined cavity in a dual-gated bilayer graphene device. The high quality of the bilayer graphene flake, combined with the device's electrical robustness provided by the encapsulation between two hexagonal boron nitride layers, allows us to observe ballistic phase-coherent transport through a 1-μm-long cavity. We confirm the origin of the observed interference pattern by comparing to tight-binding calculations accounting for the gate-tunable band gap. The good agreement between experiment and theory, free of tuning parameters, further verifies that a gap opens in our device. The gap is shown to destroy the perfect reflection for electrons traversing the barrier with normal incidence (anti-Klein tunneling). The broken anti-Klein tunneling implies that the Berry phase, which is found to vary with the gate voltages, is always involved in the Fabry-Pérot oscillations regardless of the magnetic field, in sharp contrast with single-layer graphene.
Ultrawideband Electromagnetic Interference to Aircraft Radios
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.
2002-01-01
A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.
de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria
2015-01-01
In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance.
de Miguel-Bilbao, Silvia; Aguirre, Erik; Lopez Iturri, Peio; Azpilicueta, Leire; Roldán, José; Falcone, Francisco; Ramos, Victoria
2015-01-01
In the last decade the number of wireless devices operating at the frequency band of 2.4 GHz has increased in several settings, such as healthcare, occupational, and household. In this work, the emissions from Wi-Fi transceivers applicable to context aware scenarios are analyzed in terms of potential interference and assessment on exposure guideline compliance. Near field measurement results as well as deterministic simulation results on realistic indoor environments are presented, providing insight on the interaction between the Wi-Fi transceiver and implantable/body area network devices as well as other transceivers operating within an indoor environment, exhibiting topological and morphological complexity. By following approaches (near field estimation/deterministic estimation), colocated body situations as well as large indoor emissions can be determined. The results show in general compliance with exposure levels and the impact of overall network deployment, which can be optimized in order to reduce overall interference levels while maximizing system performance. PMID:25632400
Electromagnetic Interference in Implantable Defibrillators in Single-Engine Fixed-Wing Aircraft.
de Rotte, Alexandra A J; van der Kemp, Peter; Mundy, Peter A; Rienks, Rienk; de Rotte, August A
2017-01-01
Little is known about the possible electromagnetic interferences (EMI) in the single-engine fixed-wing aircraft environment with implantable cardio-defibrillators (ICDs). Our hypothesis is that EMI in the cockpit of a single-engine fixed-wing aircraft does not result in erroneous detection of arrhythmias and the subsequent delivery of an inappropriate device therapy. ICD devices of four different manufacturers, incorporated in a thorax phantom, were transported in a Piper Dakota Aircraft with ICAO type designator P28B during several flights. The devices under test were programmed to the most sensitive settings for detection of electromagnetic signals from their environment. After the final flight the devices under test were interrogated with the dedicated programmers in order to analyze the number of tachycardias detected. Cumulative registration time of the devices under test was 11,392 min, with a mean of 2848 min per device. The registration from each one of the devices did not show any detectable "tachycardia" or subsequent inappropriate device therapy. This indicates that no external signals, which could be originating from electromagnetic fields from the aircraft's avionics, were detected by the devices under test. During transport in the cockpit of a single-engine fixed-wing aircraft, the tested ICDs did not show any signs of being affected by electromagnetic fields originating from the avionics of the aircraft. This current study indicates that EMI is not a potential safety issue for transportation of passengers with an ICD implanted in a single-engine fixed-wing aircraft.de Rotte AAJ, van der Kemp P, Mundy PA, Rienks R, de Rotte AA. Electromagnetic interference in implantable defibrillators in single-engine fixed-wing aircraft. Aerosp Med Hum Perform. 2017; 88(1):52-55.
Buried Object Classification using a Sediment Volume Imaging SAS and Electromagnetic Gradiometer
2006-09-01
field data with simulated RTG data using AST’s in-house magnetic modeling tool EMAGINE . Given a set of input dipole moments, or pa- rameters to...approximate a moment by assuming the object is a prolate ellipsoid shell, EMAGINE uses Green’s func- tion formulations to generate three-component
Cell jammers, GPS jammers, and other jamming devices.
DOT National Transportation Integrated Search
2012-10-15
We caution consumers that it is against the law to use a cell or GPS jammer or any other type of device that blocks, : jams or interferes with authorized communications, as well as to import, advertise, sell, or ship such a device. The : FCC Enforcem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, R.; CNR-SPIN, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II,” I-80125 Napoli; Arzeo, M.
2014-02-17
We present results on ultra low noise YBa{sub 2}Cu{sub 3}O{sub 7–δ} (YBCO) nano Superconducting QUantum Interference Devices (nanoSQUIDs). To realize such devices, we implemented high quality YBCO nanowires, working as weak links between two electrodes. We observe critical current modulation as a function of an externally applied magnetic field in the full temperature range below the transition temperature T{sub C}. The white flux noise below 1μΦ{sub 0}/√(Hz) at T=8 K makes our nanoSQUIDs very attractive for the detection of small spin systems.
An on-chip silicon compact triplexer based on cascaded tilted multimode interference couplers
NASA Astrophysics Data System (ADS)
Chen, Jingye; Liu, Penghao; Shi, Yaocheng
2018-03-01
An on-chip triplexer based on cascaded tilted multimode interference (MMI) couplers has been demonstrated to separate the 1310 nm wavelength band into one port and 1490 nm and 1550 nm wavelength bands into the other two ports respectively. By utilizing the dispersive self-imaging and pseudo self-imaging, the device length is not critically determined by the common multiple of beat lengths for different wavelengths. The total device size can be reduced to ∼450 μm, which is half of the butterfly structure reported. The whole device, fabricated with only one fully-etching step, is characterized with <-15 dB low crosstalk (CT) and ∼1 dB insertion loss (IL).
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-01-01
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215
Heterophile antibody interference in qualitative urine/serum hCG devices: Case report.
Patel, Khushbu K; Gronowski, Ann M
2016-06-01
This case report investigates the origin of a false positive result on a serum qualitative human chorionic gonadotropin (hCG) device. A 46-year-old woman diagnosed with chronic myeloid leukemia presented with nausea and vomiting. A qualitative serum hCG test was interpreted as positive; however, a quantitative serum hCG test was negative (<5IU/L). To further investigate this discrepancy, the sample was pretreated with heterophilic blocking reagent (HBR). Additionally, the sample was tested on other qualitative hCG devices composed of antibodies from different animal sources. Blocking reagent from an automated quantitative immunoassay was also tested for its ability to inhibit the heterophile antibody interference. The qualitative test result was negative after pretreatment with heterophilic blocking reagent. Other devices composed of antibodies from different animal sources also demonstrated mixed results with the patient's sample. Blocking reagent obtained from the automated quantitative assay inhibited the heterophile antibody interference in the patient's sample. This case demonstrates that positive serum point-of-care hCG results should be interpreted with caution and confirmed with a quantitative serum hCG immunoassay when clinical suspicion is raised. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Quantum-ring spin interference device tuned by quantum point contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diago-Cisneros, Leo; Mireles, Francisco
2013-11-21
We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a functionmore » of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.« less
NASA Astrophysics Data System (ADS)
Douch, Karim; Müller, Jürgen; Heinzel, Gerhard; Wu, Hu
2017-04-01
The successful GRACE mission and its far-reaching benefits have highlighted the interest to continue and extend the mapping of the Earth's time-variable gravitational field with follow-on missions and ideally a higher spatiotemporal resolution. Here, we would like to put forward satellite gravitational gradiometry as an alternative solution to satellite-to-satellite tracking for future missions. Besides the higher sensitivity to smaller scales compared to GRACE-like missions, a gradiometry mission would only require one satellite and would provide a direct estimation of a functional of the gravitational field. GOCE, the only gradiometry mission launched so far, was not sensitive enough to map the time-variable part of the gravity field. However, the unprecedented precision of the state-of-the-art optical metrology system on-board the LISA PATHFINDER satellite has opened the way to more performant space inertial sensors. We will therefore examine whether it is technically possible to go beyond GOCE performances and to quantify to what extent the time-variable gravitational field could be determined. First, we derive the requirements on the knowledge of the attitude and the position of the satellite and on the measured gradients in terms of sensitivity and calibration accuracy for a typical repeat low-orbit. We conclude in particular that a noise level smaller than 0.1 mE/√Hz- is required in the measurement bandwidth [5x10-4 ; 10-2]Hz so as to be sensitive to the time-variable gravity signal. We introduce then the design and characteristics of the new gradiometer concept and give an assessment of its noise budget. Contrary to the GOCE electrostatic gradiometer, the position of the test-mass in the accelerometer is measured here by laser interferometry rather than by a capacitive readout system, which improves the overall measurement chain. Finally, the first results of a performance analysis carried out thanks to an end-to-end simulator are discussed and compared to the previously defined requirements.
Development and Performance of an Atomic Interferometer Gravity Gradiometer for Earth Science
NASA Astrophysics Data System (ADS)
Luthcke, S. B.; Saif, B.; Sugarbaker, A.; Rowlands, D. D.; Loomis, B.
2016-12-01
The wealth of multi-disciplinary science achieved from the GRACE mission, the commitment to GRACE Follow On (GRACE-FO), and Resolution 2 from the International Union of Geodesy and Geophysics (IUGG, 2015), highlight the importance to implement a long-term satellite gravity observational constellation. Such a constellation would measure time variable gravity (TVG) with accuracies 50 times better than the first generation missions, at spatial and temporal resolutions to support regional and sub-basin scale multi-disciplinary science. Improved TVG measurements would achieve significant societal benefits including: forecasting of floods and droughts, improved estimates of climate impacts on water cycle and ice sheets, coastal vulnerability, land management, risk assessment of natural hazards, and water management. To meet the accuracy and resolution challenge of the next generation gravity observational system, NASA GSFC and AOSense are currently developing an Atomic Interferometer Gravity Gradiometer (AIGG). This technology is capable of achieving the desired accuracy and resolution with a single instrument, exploiting the advantages of the microgravity environment. The AIGG development is funded under NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), and includes the design, build, and testing of a high-performance, single-tensor-component gravity gradiometer for TVG recovery from a satellite in low Earth orbit. The sensitivity per shot is 10-5 Eötvös (E) with a flat spectral bandwidth from 0.3 mHz - 0.03 Hz. Numerical simulations show that a single space-based AIGG in a 326 km altitude polar orbit is capable of exceeding the IUGG target requirement for monthly TVG accuracy of 1 cm equivalent water height at 200 km resolution. We discuss the current status of the AIGG IIP development and estimated instrument performance, and we present results of simulated Earth TVG recovery of the space-based AIGG. We explore the accuracy, and spatial and temporal resolution of surface mass change observations from several space-based implementations of the AIGG instrument, including various orbit configurations and multi-satellite/multi-orbit configurations.
2013-11-25
previously considered this proactive approach to combat unintentional, persistent (non- reactive) interference . In this project, we plan on extending our...channel” (or code ) by chance, through public knowledge of the underlying protocol semantics , or by compromising one of the network devices. An alternative...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0142 TR-2013-0142 RENDEZVOUS PROTOCOLS AND DYNAMIC FREQUENCY HOPPING INTERFERENCE DESIGN FOR ANTI-JAMMING
Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions
Nandkishore, Rahul; Levitov, Leonid
2011-01-01
Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departure from this paradigm. We show that Zener tunneling in gapped bilayer graphene, which governs transport through p-n heterojunctions, exhibits common-path interference that takes place under the tunnel barrier. Due to a symmetry peculiar to the gapped bilayer graphene bandstructure, interfering tunneling paths form conjugate pairs, giving rise to high-contrast oscillations in transmission as a function of the gate-tunable bandgap and other control parameters of the junction. The common-path interference is solely due to forward-propagating waves; in contrast to Fabry–Pérot-type interference in resonant-tunneling structures, it does not rely on multiple backscattering. The oscillations manifest themselves in the junction I–V characteristic as N-shaped branches with negative differential conductivity. The negative dI/dV, which arises solely due to under-barrier interference, can enable new high-speed active-circuit devices with architectures that are not available in electronic semiconductor devices. PMID:21825159
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Molavi, Behnam; Reid, W. D.; Dumont, Guy; Macnab, Andrew J.
2010-02-01
Background: Medical and diagnostic applications of near infrared spectroscopy (NIRS) are increasing, especially in operating rooms (OR). Since NIRS is an optical technique, radio frequency (RF) interference from other instruments is unlikely to affect the raw optical data, however, NIRS data processing and signal output could be affected. Methods: We investigated the potential for three common OR instruments: an electrical cautery, an orthopaedic drill and an imaging system, to generate electromagnetic interference (EMI) that could potentially influence NIRS signals. The time of onset and duration of every operation of each device was recorded during surgery. To remove the effects of slow changing physiological variables, we first used a lowpass filter and then selected 2 windows with variable lengths around the moment of device onset. For each instant, variances (energy) and means of the signals in the 2 windows were compared. Results: Twenty patients were studied during ankle surgery. Analysis shows no statistically significant difference in the means and variance of the NIRS signals (p < 0.01) during operation of any of the three devices for all surgeries. Conclusion: This method confirms the instruments evaluated caused no significant interference. NIRS can potentially be used without EMI in clinical environments such as the OR.
78 FR 59844 - Operation in the 57-64 GHz Band
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
.... With regard to the radio astronomy service and National Radio Astronomy Observatory (NRAO) concerns... analysis of potential harmful interference from 60 GHz devices to radio astronomy service. 20. Consistent with this experience, the Commission finds that interference to Radio Astronomy Service (RAS) stations...
Devices That May Interfere with Pacemakers
... Devices with risk Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ... the pulse generator Anti-theft systems (also called electronic article surveillance or EAS): Interactions with EAS systems ...
Intravenous iron in clinical concentrations does not impair haemoglobin measurement.
O'Loughlin, Edmond; Garnett, Peter Bj; Falkner, Nathalie M; Williams, Robin
2016-03-01
Intravenous iron is commonly administered to anaemic patients to treat iron deficiency, but due to its ferric colouration, it may interfere with the spectrophotometric assessment of haemoglobin concentrations. This paper investigates the potential interference of three clinically used intravenous iron preparations on the measurement of haemoglobin. Haemoglobin concentration was measured for neat and Hartmann's solution-diluted iron polymaltose, carboxymaltose and sucrose solutions using bedside (Radiometer HemoCue®), point-of-care (Radiometer ABL800 Flex) and laboratory (Abbott CellDyne Sapphire™) devices. Haemoglobin concentration was then assessed with the same devices utilizing anaemic whole blood with the iron solutions added. Neat iron preparations registered clinically significant haemoglobin concentrations on bedside and laboratory measurements. When intravenous iron preparations were diluted to clinical concentrations, their effect on haemoglobin measurements, either in isolation or mixed with anaemic blood, was negligible. Although neat preparations of intravenous iron do interfere with spectrophotometric analysis of haemoglobin, concentrations likely to be seen post iron infusion do not significantly interfere with haemoglobin measurement. © The Author(s) 2015.
Multimode interference tapered fiber refractive index sensors.
Biazoli, Claudecir R; Silva, Susana; Franco, Marcos A R; Frazão, Orlando; Cordeiro, Cristiano M B
2012-08-20
Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained.
Design and analysis of DNA strand displacement devices using probabilistic model checking
Lakin, Matthew R.; Parker, David; Cardelli, Luca; Kwiatkowska, Marta; Phillips, Andrew
2012-01-01
Designing correct, robust DNA devices is difficult because of the many possibilities for unwanted interference between molecules in the system. DNA strand displacement has been proposed as a design paradigm for DNA devices, and the DNA strand displacement (DSD) programming language has been developed as a means of formally programming and analysing these devices to check for unwanted interference. We demonstrate, for the first time, the use of probabilistic verification techniques to analyse the correctness, reliability and performance of DNA devices during the design phase. We use the probabilistic model checker prism, in combination with the DSD language, to design and debug DNA strand displacement components and to investigate their kinetics. We show how our techniques can be used to identify design flaws and to evaluate the merits of contrasting design decisions, even on devices comprising relatively few inputs. We then demonstrate the use of these components to construct a DNA strand displacement device for approximate majority voting. Finally, we discuss some of the challenges and possible directions for applying these methods to more complex designs. PMID:22219398
Cardiac rhythm management devices
Stevenson, Irene; Voskoboinik, Alex
2018-05-01
The last decade has seen ongoing evolution and use of cardiac rhythm management devices, including pacemakers, cardiac resynchronisation therapy, implantable cardioverter defibrillators and loop recorders. General practitioners are increasingly involved in follow-up and management of patients with these devices. The aim of this article is to provide an overview of different cardiac rhythm management devices, including their role, implant procedure, post-procedural care, potential complications and follow‑up. We also include practical advice for patients regarding driving, exercise, sexual intimacy and precautions with regards to electromagnetic interference. Cardiac rhythm management devices perform many functions, including bradycardia pacing, monitoring for arrhythmias, cardiac resynchronisation for heart failure, defibrillation and anti-tachycardia pacing for tachyarrhythmias. Concerns regarding potential device-related complications should be discussed with the implanting physician. In the post-implant period, patients with cardiac rhythm management devices can expect to lead normal, active lives. However, caution must occasionally be exercised in certain situations, such as near appliances with electromagnetic interference. Future innovations will move away from transvenous leads to leadless designs with combinations of different components on a 'modular' basis according to the function required.
Optimization of an integrated wavelength monitor device
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald
2011-05-01
In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.
Localization of Interference Fringes.
ERIC Educational Resources Information Center
Simon, J. M.; Comastri, Silvia A.
1980-01-01
Discusses a proof for determining the localized fringes position arrived at when one considers the interference of two extended sources when one is able to observe fringes only at certain points in space. Shows how the localized fringes may be found in a device used to observe Newton's rings. (Author/CS)
Shock whilst gardening--implantable defibrillators & lawn mowers.
Von Olshausen, G; Lennerz, C; Grebmer, C; Pavaci, H; Kolb, C
2014-02-01
Electromagnetic interference with implantable cardioverter defibrillators (ICDs) can cause inappropriate shock delivery or temporary inhibition of ICD functions. We present a case of electromagnetic interference between a lawn mower and an ICD resulting in an inappropriate discharge of the device due to erroneous detection of ventricular fibrillation.
2012-09-01
used a proton magnetometer to detect kiln and earth-filled pits in the United Kingdom as early as 1958 (Atkinson, 1953; Clark, 2001; Gaffney and Gater...Grad601-2 (Figure 8, upper left) is a vertical component dual sensor fluxgate gradiometer. It is designed for archaeological prospection, permits
Malfunction of medical equipment as a result of mains borne interference.
Railton, R; Currie, G D; Corner, G A; Evans, A L
1993-08-01
Medical equipment has become more intelligent as the manufacturers have incorporated the latest microprocessor based technology. Equipment malfunction can be caused at any time by inherent errors in the control program but it is particularly important that this is designed to cope with the effects of electrical interference which, in addition, may cause corruption of the software. We have considered interference found in the mains supply in the hospital environment. Using a test protocol with appropriate interference simulators, a wide range of medical equipment was removed temporarily from use and its immunity to electrical mains borne interference tested. Battery operated mains rechargeable devices were unaffected by mains voltage variations including drop-outs and sags whereas mains powered devices were affected to varying degrees of severity. In particular, repetitive drop-outs caused loss of power due to fuse blowing in some life support equipment. Impulses affected 25% and pulse bursts 50% of the equipment tested with some evidence that the more recent designs coped better. The EEC Directive on electro-medical compatibility compliance may cause the design of equipment to be improved but hospitals will have to cope with the above problems in their existing equipment for many years to come.
Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference
NASA Astrophysics Data System (ADS)
Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.
Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.
Chavez-Burbano, Patricia; Rabadan, Jose; Perez-Jimenez, Rafael
2017-01-01
Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios. PMID:28677613
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.
Choi, Sangil; Park, Jong Hyuk
2016-12-02
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network
Choi, Sangil; Park, Jong Hyuk
2016-01-01
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438
Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Rodríguez-Esparragón, Dionisio; Perez-Jimenez, Rafael
2017-07-04
Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios.
25 CFR 547.2 - What are the definitions for this part?
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that is caused by another electronic device. Electrostatic...
25 CFR 547.2 - What are the definitions for this part?
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Electromagnetic interference. The disruption of operation of an electronic device when it is in the vicinity of an electromagnetic field in the radio frequency spectrum that is caused by another electronic device. Electrostatic...
Small Aircraft RF Interference Path Loss
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.
Thermooptic two-mode interference device for reconfigurable quantum optic circuits
NASA Astrophysics Data System (ADS)
Sahu, Partha Pratim
2018-06-01
Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.
Sample processing approach for detection of ricin in surface samples.
Kane, Staci; Shah, Sanjiv; Erler, Anne Marie; Alfaro, Teneile
2017-12-01
With several ricin contamination incidents reported over the past decade, rapid and accurate methods are needed for environmental sample analysis, especially after decontamination. A sample processing method was developed for common surface sampling devices to improve the limit of detection and avoid false negative/positive results for ricin analysis. Potential assay interferents from the sample matrix (bleach residue, sample material, wetting buffer), including reference dust, were tested using a Time-Resolved Fluorescence (TRF) immunoassay. Test results suggested that the sample matrix did not cause the elevated background fluorescence sometimes observed when analyzing post-bleach decontamination samples from ricin incidents. Furthermore, sample particulates (80mg/mL Arizona Test Dust) did not enhance background fluorescence or interfere with ricin detection by TRF. These results suggested that high background fluorescence in this immunoassay could be due to labeled antibody quality and/or quantity issues. Centrifugal ultrafiltration devices were evaluated for ricin concentration as a part of sample processing. Up to 30-fold concentration of ricin was observed by the devices, which serve to remove soluble interferents and could function as the front-end sample processing step to other ricin analytical methods. The procedure has the potential to be used with a broader range of environmental sample types and with other potential interferences and to be followed by other ricin analytical methods, although additional verification studies would be required. Published by Elsevier B.V.
Wing-Fuselage Interference, Tail Buffeting, and Air Flow About the Tail of a Low-Wing Monoplane
NASA Technical Reports Server (NTRS)
White, James A; Hood, Manley J
1935-01-01
This report presents the results of wind tunnel tests on a Mcdonnell Douglas airplane to determine the wing-fuselage interference of a low-wing monoplane. The tests included a study of tail buffeting and the air flow in the region of the tail. The airplane was tested with and without the propeller slipstream, both in the original condition and with several devices designed to reduce or eliminate tail buffeting. The devices used were wing-fuselage fillets, a NACA cowling, reflexed trailing edge of the wing, and stub auxiliary airfoils.
Magnetic sensor technology for detecting mines, UXO, and other concealed security threats
NASA Astrophysics Data System (ADS)
Czipott, Peter V.; Iwanowski, Mark D.
1997-01-01
Magnetic sensors have been the sensor of choice in the detection and classification of buried mines and unexploded ordnance (UXO), both on land and underwater, Quantum Magnetics (QM), together with its research partner IBM, have developed a variety of advanced, very high sensitivity superconducting and room temperature magnetic sensors to meet military needs. This work has led to the development and utilization of a three-sensor gradiometer (TSG) patented by IBM, which cannot only detect, but also localize mines and ordnance. QM is also working with IBM and the U.S. Navy to develop an advanced superconducting gradiometer for buried underwater mine detection. The ability to both detect and classify buried non-metallic mines is virtually impossible with existing magnetic sensors. To solve this problem, Quantum Magnetics, building on work of the Naval Research Laboratory (NRL), is pioneering work in the development of quadrupole resonance (QR) methods which can be used to detect the explosive material directly. Based on recent laboratory work done at QM and previous work done in the U.S., Russia and the United Kingdom, we are confident that QR can be effectively applied to the non-metallic mine identification problem.
Fusion of magnetometer and gradiometer sensors of MEG in the presence of multiplicative error.
Mohseni, Hamid R; Woolrich, Mark W; Kringelbach, Morten L; Luckhoo, Henry; Smith, Penny Probert; Aziz, Tipu Z
2012-07-01
Novel neuroimaging techniques have provided unprecedented information on the structure and function of the living human brain. Multimodal fusion of data from different sensors promises to radically improve this understanding, yet optimal methods have not been developed. Here, we demonstrate a novel method for combining multichannel signals. We show how this method can be used to fuse signals from the magnetometer and gradiometer sensors used in magnetoencephalography (MEG), and through extensive experiments using simulation, head phantom and real MEG data, show that it is both robust and accurate. This new approach works by assuming that the lead fields have multiplicative error. The criterion to estimate the error is given within a spatial filter framework such that the estimated power is minimized in the worst case scenario. The method is compared to, and found better than, existing approaches. The closed-form solution and the conditions under which the multiplicative error can be optimally estimated are provided. This novel approach can also be employed for multimodal fusion of other multichannel signals such as MEG and EEG. Although the multiplicative error is estimated based on beamforming, other methods for source analysis can equally be used after the lead-field modification.
49 CFR 236.508 - Interference with application of brakes by means of brake valve.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.508 Interference with application of brakes by means of brake valve. The automatic train stop, train control, or...
49 CFR 236.508 - Interference with application of brakes by means of brake valve.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.508 Interference with application of brakes by means of brake valve. The automatic train stop, train control, or...
Selective interference with pacemaker activity by electrical dental devices.
Miller, C S; Leonelli, F M; Latham, E
1998-01-01
We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.
1989-12-31
interference rejection fo wideband OPENING REMARKS receiver systems. A time/space integrating optical architec- Alexander A. Sawchuk, University of...electroabsorptive self-electrooptic-effect devices on a single ZnS interference filter is proposed. (p. 385) are attractive for 2-D arrays for switching and...photorefractive crystal as shown in figure 1. The mutual interference between the two sets of beams produces the desired outer-product matrix W = uv-iW
Energy efficient cooperation in underlay RFID cognitive networks for a water smart home.
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-09-30
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model's (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes.
Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea
2015-03-01
Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances. © 2014 Diabetes Technology Society.
Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-01-01
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes. PMID:25271565
Taino, G; Frigerio, F
2004-01-01
The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.
Safe use of cellular telephones in hospitals: fundamental principles and case studies.
Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David
2005-01-01
Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.
Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo
2017-01-01
We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046
Small Aircraft RF Interference Path Loss Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.
Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks
NASA Astrophysics Data System (ADS)
Orlov, Yu.; Fedorov, S.; Samuylov, A.; Gaidamaka, Yu.; Molchanov, D.
2017-07-01
The problem of channel quality estimation for devices in a wireless 5G network is formulated. As a performance metrics of interest we choose the signal-to-interference-plus-noise ratio, which depends essentially on the distance between the communicating devices. A model with a plurality of moving devices in a bounded three-dimensional space and a simulation algorithm to determine the distances between the devices for a given motion model are devised.
NASA Astrophysics Data System (ADS)
Fischer, R.; Müller, R.
1989-08-01
It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun
2004-08-01
Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
Communication Applications for Deformable Mirror Devices.
1997-06-01
is mean deflection [after Rhoadarmer. 1994] 4.5 Improved interference microscope system for micromirror characterization [after Michalicek. et...identical hexagonal micromirrors [after Michalicek. et al.. 1995] 4.7 (a) Optical system design for micromirror array (or DMD ) interfacing...constructive and destructive interference between the reflective and nonreflective portions of the element (about 75% of the element is reflective
Effects of geared motor characteristics on tactile perception of tissue stiffness.
Longnion, J; Rosen, J; Sinanan, M; Hannaford, B
2001-01-01
Endoscopic haptic surgical devices have shown promise in addressing the loss of tactile sensation associated with minimally invasive surgery. However, these devices must be capable of generating forces and torques similar to those applied on the tissue with a standard endoscopic tool. Geared motors are a possible solution for actuation; however, they possess mechanical characteristics that could potentially interfere with tactile perception of tissue qualities. The aim of the current research was to determine how the characteristics of a geared motor suitable for a haptic surgical device affect a user's perception of stiffness. The experiment involved six blindfolded subjects who were asked to discriminate the stiffness of six distinct silicone rubber samples whose mechanical properties are similar to those of soft tissue. Using a novel testing device whose dimensions approximated those of an endoscopic grasper, each subject palpated 30 permutations of sample pairs for each of three types of mechanical loads; the motor (friction and inertia), a flywheel (with the same inertia as motor), and a control (no significant mechanical interference). One factor ANOVA of the error scores and palpation time showed that no significant difference existed among error scores, but mean palpation time for the control was significantly less than for the other two methods. These results indicated that the mechanical characteristics of a geared motor chosen for application in a haptic surgical device did not interfere with the subjects' perception of the silicone samples' stiffness, but these characteristics may significantly affect the energy expenditure and time required for tissue palpation. Therefore, before geared motors can be considered for use in haptic surgical devices, consideration should be given to factors such as palpation speed and fatigue.
Investigation of RF Emissions From Wireless Networks as a Threat to Avionic Systems
NASA Technical Reports Server (NTRS)
Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)
2002-01-01
The paper focuses on understanding and obtaining preliminary measurements of radiated field (RF) emissions of laptop/wireless local area network (WLAN) systems. This work is part of a larger research project to measure radiated emissions of wireless devices to provide a better understanding for potential interference with crucial aircraft avionics systems. A reverberation chamber data collection process is included, as well as recommendations for additional tests. Analysis of measurements from devices under test (DUTs) proved inconclusive for addressing potential interference issues. Continued effort is expected to result in a complete easily reproducible test protocol. The data and protocol presented here are considered preliminary.
Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu
2014-01-01
We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falferi, P.; Mezzena, R.; Vitale, S.
1997-08-01
The coupling effects of a commercial dc superconducting quantum interference device (SQUID) to an electrical LC resonator which operates at audio frequencies ({approx}1kHz) with quality factors Q{approx}10{sup 6} are presented. The variations of the resonance frequency of the resonator as functions of the flux applied to the SQUID are due to the SQUID dynamic inductance in good agreement with the predictions of a model. The variations of the quality factor point to a feedback mechanism between the output of the SQUID and the input circuit. {copyright} {ital 1997 American Institute of Physics.}
Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant
NASA Astrophysics Data System (ADS)
Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.
2017-11-01
We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.
Spatial mode filters realized with multimode interference couplers
NASA Astrophysics Data System (ADS)
Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H.
1996-06-01
Spatial mode filters based on multimode interference couplers (MMI's) that offer the possibility of splitting off antisymmetric from symmetric modes are presented, and realizations of these filters in InGaAsP / InP are demonstrated. Measured suppression of the antisymmetric first-order modes at the output for the symmetric mode is better than 18 dB. Such MMI's are useful for monolithically integrating mode filters with all-optical devices, which are controlled through an antisymmetric first-order mode. The filtering out of optical control signals is necessary for cascading all-optical devices. Another application is the improvement of on-off ratios in optical switches.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, C.; Martinis, J.M.; Clarke, J.
1984-04-27
A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.
Phase-tunable temperature amplifier
NASA Astrophysics Data System (ADS)
Paolucci, F.; Marchegiani, G.; Strambini, E.; Giazotto, F.
2017-06-01
Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier (PTA). Taking advantage of a recently discovered thermoelectric effect in spin-split superconductors coupled to a spin-polarized system, we generate the magnetic flux controlling the transport through a temperature-biased SQUIPT by applying a temperature gradient. We simulate the behavior of the device and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures almost infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This concept paves the way for applications in radiation sensing, thermal logics and quantum information.
Circuitry, systems and methods for detecting magnetic fields
Kotter, Dale K [Shelley, ID; Spencer, David F [Idaho Falls, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID
2010-09-14
Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Sisk, R. C.
1992-01-01
This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin
2018-03-01
Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.
Physical layer simulation study for the coexistence of WLAN standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howlader, M. K.; Keiger, C.; Ewing, P. D.
This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less
47 CFR 15.706 - Information to the user.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.706... radio communications. If this equipment does cause harmful interference to radio or television reception... a form other than paper, such as on a computer disk or over the Internet, the information required...
47 CFR 15.706 - Information to the user.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.706... radio communications. If this equipment does cause harmful interference to radio or television reception... a form other than paper, such as on a computer disk or over the Internet, the information required...
47 CFR 15.706 - Information to the user.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.706... radio communications. If this equipment does cause harmful interference to radio or television reception... a form other than paper, such as on a computer disk or over the Internet, the information required...
47 CFR 15.706 - Information to the user.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.706... radio communications. If this equipment does cause harmful interference to radio or television reception... a form other than paper, such as on a computer disk or over the Internet, the information required...
47 CFR 95.1215 - Disclosure policies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1215 Disclosure policies. Manufacturers... transmitter is authorized by rule under the Medical Device Radiocommunication Service (in part 95 of the FCC Rules) and must not cause harmful interference to stations operating in the 400.150-406.000 MHz band in...
Optical signal splitting and chirping device modeling
NASA Astrophysics Data System (ADS)
Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.
2017-04-01
This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.
ERIC Educational Resources Information Center
Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol
2011-01-01
The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)
NASA Astrophysics Data System (ADS)
Tajaldini, Mehdi; Jafri, Mohd Zubir Mat
2015-04-01
The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
The Security Aspects of Wireless Local Area Network (WLAN)
2003-09-01
by wireless links to enable devices to communicate. In a Bluetooth network, mobile routers control the changing network topologies of these... Bluetooth Bluetooth is a simple peer-to-peer protocol created to connect multiple consumer mobile information devices (cellular phones, laptops...technology [Ref 2]. Bluetooth enables mobile devices to avoid interference from other signals by hopping to a new frequency after transmitting or
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
Munitions Detection Using Unmanned Underwater Vehicles Equipped with Advanced Sensors
2012-06-29
buried target. The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal magnetic-field vector components at 3...surveys. Figure 6 shows the RTG magnetic sensor in both an open (showing the fluxgate magnetometers ) and enclosed state (mode for integration onto...7.6 Real-time Tracking Gradiometer (RTG) System The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal
Bracken, Robert E.; Brown, Philip J.
2006-01-01
On March 12, 2003, data were gathered at Yuma Proving Grounds, in Arizona, using a Tensor Magnetic Gradiometer System (TMGS). This report shows how these data were processed and explains concepts required for successful TMGS data reduction. Important concepts discussed include extreme attitudinal sensitivity of vector measurements, low attitudinal sensitivity of gradient measurements, leakage of the common-mode field into gradient measurements, consequences of thermal drift, and effects of field curvature. Spatial-data collection procedures and a spin-calibration method are addressed. Discussions of data-reduction procedures include tracking of axial data by mathematically matching transfer functions among the axes, derivation and application of calibration coefficients, calculation of sensor-pair gradients, thermal-drift corrections, and gradient collocation. For presentation, the magnetic tensor at each data station is converted to a scalar quantity, the I2 tensor invariant, which is easily found by calculating the determinant of the tensor. At important processing junctures, the determinants for all stations in the mapped area are shown in shaded relief map-view. Final processed results are compared to a mathematical model to show the validity of the assumptions made during processing and the reasonableness of the ultimate answer obtained.
Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation
Lee, Jisun; Kwon, Jay Hyoun; Yu, Myeongjong
2015-01-01
In this study, simulation tests for gravity gradient referenced navigation (GGRN) are conducted to verify the effects of various factors such as database (DB) and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN). In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available. PMID:26184212
NASA Astrophysics Data System (ADS)
Wiegert, R. F.
2009-05-01
A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.
47 CFR 15.706 - Information to the user.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Television Band Devices § 15.706... with the instructions, may cause harmful interference to radio communications. However, there is no.... (b) In cases where the manual is provided only in a form other than paper, such as on a computer disk...
Torus elements used in effective shock absorber
NASA Technical Reports Server (NTRS)
Cunningham, P.; Platus, D. L.
1966-01-01
Energy absorbing device forces torus elements to revolve annularly between two concentric tubes when a load is applied to one tube. Interference forces can be varied by using torus elements of different thicknesses. The device operates repeatedly in compression or tension, and under problems of large onset rate tolerance or structural overload.
A phaseonium magnetometer: A new optical magnetometer based on index enhanced media
NASA Technical Reports Server (NTRS)
Scully, Marlan O.; Fleischauer, Michael; Graf, Martin
1993-01-01
An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.
Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H
2011-11-01
Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.
Observations of interference between portable particle counters and NOx monitors
NASA Astrophysics Data System (ADS)
Bereznicki, Sarah D.; Kamal, Ali
2013-08-01
Studies in environmental exposure science have developed a preference for smaller devices that can be easily co-located without need for gas standards, such as those instruments utilized in the Near-road Exposures and Effects from Urban Air Pollutants Study (NEXUS). One observation from NEXUS was the potential for instrument interference from alcohol-based particle counters on photometric-based nitrogen oxide (NOx) monitors. This article reports the findings from laboratory tests replicating enclosed-shelter monitoring configurations and operation cycles for a common photometric-based NOx monitor and a widely used alcohol-based particle counter. These tests monitored the NOx response while the particle counter sampling interval and ambient airflow rate were varied to (1) confirm that proximity between the instruments induced interferences, (2) identify any dependencies in NOx monitor recovery on ambient airflow, and (3) determine the time needed for the NOx monitor to recover to pre-interference levels under different atmospheric conditions. During particle counter operations, NOx concentrations responded instantaneously with a several-fold jump above the measurement baseline. When the particle counter was operated for more than 10 min, this interference period also showed a marked decline in the NOx baseline. The overall recovery time of the NOx monitor depended less on the time of particle counter operation, and more on the speed of ambient airflow. If photometric-based NOx monitors need to be operated alongside alcohol-based particle counters, mechanisms must be employed to exhaust alcohol-based vapors from enclosed monitoring environments. Given the strong evidence for interference, however, it is recommended these devices not be operated within close proximity to one another.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation.
Pang, Zhaoguang; Zhang, Xinping
2011-04-08
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation
NASA Astrophysics Data System (ADS)
Pang, Zhaoguang; Zhang, Xinping
2011-04-01
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
NASA Astrophysics Data System (ADS)
Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing
2018-04-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.
Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev
2016-06-25
In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).
Thermovoltaic semiconductor device including a plasma filter
Baldasaro, Paul F.
1999-01-01
A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.
[Magnets, pacemaker and defibrillator: fatal attraction?].
Bergamin, C; Graf, D
2015-05-27
This article aims at clarifying the effects of a clinical magnet on pacemakers and Implantable Cardioverter Defibrillators. The effects of electromagnetic interferences on such devices, including interferences linked to electrosurgery and magnetic resonance imaging are also discussed. In general, a magnet provokes a distinctive effect on a pacemaker by converting it into an asynchronous mode of pacing, and on an Implantable Cardioverter Defibrillator by suspending its own antitachyarythmia therapies without affecting the pacing. In the operating room, the magnet has to be used cautiously with precisely defined protocols which respect the type of the device used, the type of intervention planned, the presence or absence of EMI and the pacing-dependency of the patient.
All-optical switch using optically controlled two mode interference coupler.
Sahu, Partha Pratim
2012-05-10
In this paper, we have introduced optically controlled two-mode interference (OTMI) coupler having silicon core and GaAsInP cladding as an all-optical switch. By taking advantage of refractive index modulation by launching optical pulse into cladding region of TMI waveguide, we have shown optically controlled switching operation. We have studied optical pulse-controlled coupling characteristics of the proposed device by using a simple mathematical model on the basis of sinusoidal modes. The device length is less than that of previous work. It is also seen that the cross talk of the OTMI switch is not significantly increased with fabrication tolerances (±δw) in comparison with previous work.
2013-01-01
Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems. PMID:23845013
Seidman, Seth J; Guag, Joshua W
2013-07-11
The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems.
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
Digital mobile telephones and interference of ophthalmic equipment.
Ang, G S; Lian, P; Ng, W S; Whyte, I; Ong, J M
2007-01-01
To assess the effect of mobile telephone electromagnetic interference on electronic ophthalmic equipment. Prospective audit with mobile telephones placed at distances of 3 m, 1 m, and 30 cm from, and in contact with, electronic ophthalmic equipment. Any interruption or cessation of the function of the ophthalmic device was assessed with the mobile telephones in standby, and in dialling or receiving modes. Any alterations of displayed digital figures or numbers were also assessed. A total of 23 electronic ophthalmic devices in two hospital ophthalmology outpatient departments were evaluated. All six mobile telephones used, and 22 (95.7%) of the 23 ophthalmic equipment evaluated had the Conformité Européene (CE) mark. No device showed any interruption or cessation of function. There were no alterations of displayed digital figures or numbers. The only effect of any kind was found with four instruments (1 non-CE marked), where there was temporary flickering on the screen, and only occurred when the mobile telephones were dialling or receiving at a distance of 30 cm or less from the instruments. This study shows that among the electronic ophthalmic devices tested, none suffered failure or interruption of function, from mobile telephone interference. Although not comprehensive for all ophthalmic equipment, the results question the need for a complete ban of mobile telephones in ophthalmic departments. It highlights the need for a controlled, objectively measured study of the clinically relevant effects of mobile telephones in the ophthalmology outpatient setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Jill Wisnewski
2006-01-01
The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactionsmore » either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO +), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.« less
NASA Astrophysics Data System (ADS)
Leung, R. C. K.; So, R. M. C.; Tang, S. K.; Wang, X. Q.
2011-07-01
In-duct devices are commonly installed in flow ducts for various flow management purposes. The structural construction of these devices indispensably creates disruption to smooth flow through duct passages so they exist as structural discontinuities in duct flow. The presence of these discontinuities provides additional possibility of noise generation. In real practice, in-duct devices do not exist alone in any duct system. Even though each in-duct device would generate its own noise, it might be possible that these devices could be properly arranged so as to strengthen the interference between individual noise; thus giving rise to an overall reduction of noise radiation in the in-duct far field. This concept of passive noise control is investigated by considering different configurations of two structural discontinuities of simple form (i.e., a cavity) in tandem in an unconfined flow and in opposing setting within a flow duct. It is known that noise generated by a cavity in unconfined domain (unconfined cavity) is strongly dependent on flow-resonant behavior within the cavity so the interference it produces is merely aeroacoustic. The objective of the present study is to verify the concept of passive noise reduction through enhancement of aeroacoustic interference due to two cavities by considering laminar flow only. A two-dimensional approach is adopted for the direct aeroacoustic calculations using a direct numerical simulation (DNS) technique. The position and geometries of the cavities and the Mach number are varied; the resultant aeroacoustic behavior and acoustic power are calculated. The numerical results are compared with a single cavity case to highlight the effect of introducing additional cavities to the aeroacoustic problem. Resonant flow oscillations occur when two unconfined cavities are very close and the associated acoustic field is very intense with no noise reduction possible. However, for duct aeroacoustics, it is found that a 7.9 db reduction of acoustic power in the downstream side of the duct or a total reduction of ˜6 db is possible with opposing cavities having an offset of half a cavity length. In addition, the reduction is shown to be free from lock-on with trapped modes of the ducts with cavities.
Effects of mobile phone use on specific intensive care unit devices.
Hans, Nidhi; Kapadia, Farhad N
2008-10-01
To observe the effects of mobile phone use in the vicinity of medical devices used in a critical care setting. Electromagnetic interference (EMI) was tested by using two types of mobile phones - GSM and CDMA. Mobile phones were placed at a distance of one foot from three medical devices - syringe pump, mechanical ventilator, and the bedside monitor - in switch off, standby, and talking modes of the phone. Medical devices were observed for any interference caused by the electromagnetic radiations (EMR) from the mobile phones. Out of the three medical devices that were tested, EMI occurred while using the mobile phone in the vicinity of the syringe pump, in the 'talk mode.' The mean variation observed in the calculated and delivered volume of the syringe pump was 2.66 ml. Mechanical ventilator did not show any specific adverse effects with mobile phone use in the one-foot vicinity. No other adverse effects or unexplained malfunctions or shutdown of the syringe pump, mechanical ventilator, or the bedside monitor was noted during the study period of 36 hours. EMI from mobile phones have an adverse effect on the medical devices used in critical care setup. They should be used at least one foot away from the diameter of the syringe pump.
Formaldehyde: a comparative evaluation of four monitoring methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyne, L.B.; Cook, R.E.; Mann, J.R.
1985-10-01
The performances of four formaldehyde monitoring devices were compared in a series of laboratory and field experiments. The devices evaluated included the DuPont C-60 formaldehyde badge, the SKC impregnated charcoal tube, an impinger/polarographic method and the MDA Lion formaldemeter. The major evaluation parameters included: concentration range, effects of humidity, sample storage, air velocity, accuracy, precision, interferences from methanol, styrene, 1,3-butadiene, sulfur dioxide and dimethylamine. Based on favorable performances in the laboratory and field, each device was useful for monitoring formaldehyde in the industrial work environment; however, these devices were not evaluated for residential exposure assessment. The impinger/polarographic method had amore » sensitivity of 0.06 ppm, based on a 20-liter air sample volume, and accurately determined the short-term excursion limit (STEL). It was useful for area monitoring but was not very practical for time-weighted average (TWA) personal monitoring measurements. The DuPont badge had a sensitivity of 2.8 ppm-hr and accurately and simply determined TWA exposures. It was not sensitive enough to measure STEL exposures, however, and positive interferences resulted if 1,3-butadiene was present. The SKC impregnated charcoal tube measured both TWA and STEL concentrations and had a sensitivity of 0.06 ppm based on a 25-liter air sample volume. Lightweight and simple to use, the MDA Lion formaldemeter had a sensitivity of 0.2 ppm. It had the advantage of giving an instantaneous reading in the field; however, it must be used with caution because it responded to many interferences. The method of choice depended on the type of sampling required, field conditions encountered during sampling and an understanding of the limitations of each monitoring device.« less
Tunable resonator-based devices for producing variable delays and narrow spectral linewidths
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)
2006-01-01
Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.
Interference and memory capacity effects in memristive systems
NASA Astrophysics Data System (ADS)
Hermiz, John; Chang, Ting; Du, Chao; Lu, Wei
2013-02-01
Short-term memory implies the existence of a capacity limit beyond which memory cannot be securely formed and retained. The underlying mechanisms are believed to be two primary factors: decay and interference. Here, we demonstrate through both simulation and experiment that the memory capacity effect can be implemented in a parallel memristor circuit, where decay and interference are achieved by the inherent ion diffusion in the device and the competition for current supply in the circuit, respectively. This study suggests it is possible to emulate high-level biological behaviors with memristor circuits and will stimulate continued studies on memristor-based neuromorphic circuits.
Inexpensive Audio Activities: Earbud-based Sound Experiments
NASA Astrophysics Data System (ADS)
Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James
2016-11-01
Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two interference laboratories (beat frequency and two-speaker interference) and two resonance laboratories (quarter- and half-wavelength). Lastly, a Doppler laboratory using rotating earbuds is explained. The audio signal captured by all experiments is analyzed on free spectral analysis software and many of the experiments incorporate the unifying theme of measuring the speed of sound in air.
Abstractions for DNA circuit design.
Lakin, Matthew R; Youssef, Simon; Cardelli, Luca; Phillips, Andrew
2012-03-07
DNA strand displacement techniques have been used to implement a broad range of information processing devices, from logic gates, to chemical reaction networks, to architectures for universal computation. Strand displacement techniques enable computational devices to be implemented in DNA without the need for additional components, allowing computation to be programmed solely in terms of nucleotide sequences. A major challenge in the design of strand displacement devices has been to enable rapid analysis of high-level designs while also supporting detailed simulations that include known forms of interference. Another challenge has been to design devices capable of sustaining precise reaction kinetics over long periods, without relying on complex experimental equipment to continually replenish depleted species over time. In this paper, we present a programming language for designing DNA strand displacement devices, which supports progressively increasing levels of molecular detail. The language allows device designs to be programmed using a common syntax and then analysed at varying levels of detail, with or without interference, without needing to modify the program. This allows a trade-off to be made between the level of molecular detail and the computational cost of analysis. We use the language to design a buffered architecture for DNA devices, capable of maintaining precise reaction kinetics for a potentially unbounded period. We test the effectiveness of buffered gates to support long-running computation by designing a DNA strand displacement system capable of sustained oscillations.
Measurement of the Mutual Interference Between Independent Bluetooth Devices
NASA Astrophysics Data System (ADS)
Schoof, Adrien; Ter Haseborg, Jan Luiken
In this paper the field superposition of commercial Bluetooth transmitters is examined. The superposition is measured for miscellaneous analyzer filter bandwidths, transmitter combinations and numbers. Also the commonness of the collisions is measured. Finally the spatial field distributions of standalone and Bluetooth equipped devices are measured and will be presented and discussed.
Houliston, Bryan; Parry, David; Webster, Craig S; Merry, Alan F
2009-06-19
To replicate electromagnetic interference (EMI) with a common drug infusion device resulting from the use of radio frequency identification (RFID) technology in a simulated operating theatre environment. An infusion pump, of a type previously reported as having failed due to RFID EMI, was placed in radio frequency (RF) fields of various strengths, and its operation observed. Different strength RF fields were created by varying the number of RFID readers, the use of a high-gain RFID antenna, the distance between the reader(s) and the infusion pump, and the presence of an RFID tag on the infusion pump. The infusion pump was not affected by low-power RFID readers, even when in direct contact. The pump was disrupted by a high-power reader at 10 cm distance when an RFID tag was attached, and by a combination of high-power and low-power readers at 10 cm distance. Electronic medical devices may fail in the presence of high-power RFID readers, especially if the device is tagged. However, low-power RFID readers appear to be safer.
Parasitic effects in superconducting quantum interference device-based radiation comb generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it; NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa; Giazotto, F., E-mail: giazotto@sns.it
2015-12-07
We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication ofmore » an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.« less
Theory and simulation of multi-channel interference (MCI) widely tunable lasers.
Chen, Quanan; Lu, Qiaoyin; Guo, Weihua
2015-07-13
A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.
Ohira, Shin-Ichi; Nakamura, Koretaka; Chiba, Mitsuki; Dasgupta, Purnendu K; Toda, Kei
2017-03-01
Chromium speciation by spectrophotometric determination of hexavalent chromium (Cr(VI)) with diphenylcarbazide (DPC) has several problems. These include: (1) the inability to directly detect trivalent chromium (Cr(III)) with DPC, (2) positive interference in Cr(VI) determination by other metal cations and (3) negative interference by any reducing agent present in the sample. These are addressed with an ion transfer device (ITD) in a flow injection analysis system. We previously developed the ITD for electrodialytic separations. Here we separate oppositely charged Cr(III) and Cr(VI) species by the ITD into two different acceptor solutions within ~5 s. The acceptor solutions consist of buffered H 2 O 2 to oxidize the Cr(III) to Cr(VI). Then DPC is added to either acceptor to measure Cr(III) and Cr(VI) spectrophotometrically. The system was optimized to provide the same response for Cr(VI) and Cr(III) with limits of detection (LODs, S/N=3) of 0.5 μg L -1 for each and a throughput rate of 30 samples h -1 . The ITD separation was also effective for matrix isolation and reduction of interferences. Potential cationic interferences were not transferred into the anionic Cr(VI) acceptor stream. Much of the organic compounds in soil extracts were also eliminated as evidenced from standard addition and recovery studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Interference with electrons: from thought to real experiments
NASA Astrophysics Data System (ADS)
Matteucci, Giorgio
2013-11-01
The two-slit interference experiment is usually adopted to discuss the superposition principle applied to radiation and to show the peculiar wave behaviour of material particles. Diffraction and interference of electrons have been demonstrated using, as interferometry devices, a hole, a slit, double hole, two-slits, an electrostatic biprism etc. A number of books, short movies and lectures on the web try to popularize the mysterious behaviour of electrons on the basis of Feynman thought experiment which consists of a Young two-hole interferometer equipped with a detector to reveal single electrons. A short review is reported regarding, i) the pioneering attempts carried out to demonstrate that interference patterns could be obtained with single electrons through an interferometer and, ii) recent experiments, which can be considered as the realization of the thought electron interference experiments adopted by Einstein-Bohr and subsequently by Feynman to discuss key features of quantum physics.
Proactive Time-Rearrangement Scheme for Multi-Radio Collocated Platform
NASA Astrophysics Data System (ADS)
Kim, Chul; Shin, Sang-Heon; Park, Sang Kyu
We present a simple proactive time rearrangement scheme (PATRA) that reduces the interferences from multi-radio devices equipped in one platform and guarantees user-conceived QoS. Simulation results show that the interference among multiple radios in one platform causes severe performance degradation and cannot guarantee the user requested QoS. However, the PATRA can dramatically improve not only the userconceived QoS but also the overall network throughput.
NASA Astrophysics Data System (ADS)
Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevinçli, Hâldun; Gutierrez, Rafael; Cuniberti, Gianaurelio
2013-03-01
Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. We also demonstrate Fano and anti-resonance in T-shaped molecular junctions using a simple tight-binding model. This parabolic model enables one to infer on-site energies of T-shaped molecules and the coupling between side group and main conduction channel from transmission spectra.
Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev
2016-01-01
In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, Claude; Martinis, John M.; Clarke, John
1986-01-01
A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.
Stegmayr, Armin; Fessl, Benjamin; Hörtnagl, Richard; Marcadella, Michael; Perkhofer, Susanne
2013-08-01
The aim of the study was to assess the potential negative impact of cellular phones and digitally enhanced cordless telecommunication (DECT) devices on the quality of static and dynamic scintigraphy to avoid repeated testing in infant and teenage patients to protect them from unnecessary radiation exposure. The assessment was conducted by performing phantom measurements under real conditions. A functional renal-phantom acting as a pair of kidneys in dynamic scans was created. Data were collected using the setup of cellular phones and DECT phones placed in different positions in relation to a camera head to test the potential interference of cellular phones and DECT phones with the cameras. Cellular phones reproducibly interfered with the oldest type of gamma camera, which, because of its single-head specification, is the device most often used for renal examinations. Curves indicating the renal function were considerably disrupted; cellular phones as well as DECT phones showed a disturbance concerning static acquisition. Variable electromagnetic tolerance in different types of γ-cameras could be identified. Moreover, a straightforward, low-cost method of testing the susceptibility of equipment to interference caused by cellular phones and DECT phones was generated. Even though some departments use newer models of γ-cameras, which are less susceptible to electromagnetic interference, we recommend testing examination rooms to avoid any interference caused by cellular phones. The potential electromagnetic interference should be taken into account when the purchase of new sensitive medical equipment is being considered, not least because the technology of mobile communication is developing fast, which also means that different standards of wave bands will be issued in the future.
NASA Astrophysics Data System (ADS)
Tait, Jeffrey G.; de Volder, Michaël F. L.; Cheyns, David; Heremans, Paul; Rand, Barry P.
2015-04-01
A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection. Electronic supplementary information (ESI) available: An animation of the MWCNT spray coating process, and five figures, including: a photograph of completed devices with MWCNT electrodes, performance metrics for devices with photoactive layer thickness up to 3000 nm, contour plots of simulated devices used to build Fig. 5, simulation data for perovskite devices, and a contour plot of the simplified equation of photoactive layer thickness required to attain a specified photocurrent ratio (x-axis) and absorption coefficient (y-axis). See DOI: 10.1039/c5nr01119a
Method and apparatus for removing unwanted reflections from an interferometer
NASA Technical Reports Server (NTRS)
Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)
1994-01-01
A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.
Using the full tensor of GOCE gravity gradients for regional gravity field modelling
NASA Astrophysics Data System (ADS)
Lieb, Verena; Bouman, Johannes; Dettmering, Denise; Fuchs, Martin; Schmidt, Michael
2013-04-01
With its 3-axis gradiometer GOCE delivers 3-dimensional (3D) information of the Earth's gravity field. This essential advantage - e.g. compared with the 1D gravity field information from GRACE - can be used for research on the Earth's interior and for geophysical exploration. To benefit from this multidimensional measurement system, the combination of all 6 GOCE gradients and additionally the consistent combination with other gravity observations mean an innovative challenge for regional gravity field modelling. As the individual gravity gradients reflect the gravity field depending on different spatial directions, observation equations are formulated separately for each of these components. In our approach we use spherical localizing base functions to display the gravity field for specified regions. Therefore the series expansions based on Legendre polynomials have to be adopted to obtain mathematical expressions for the second derivatives of the gravitational potential which are observed by GOCE in the Cartesian Gradiometer Reference Frame (GRF). We (1) have to transform the equations from the spherical terrestrial into a Cartesian Local North-Oriented Reference Frame (LNOF), (2) to set up a 3x3 tensor of observation equations and (3) finally to rotate the tensor defined in the terrestrial LNOF into the GRF. Thus we ensure the use of the original non-rotated and unaffected GOCE measurements within the analysis procedure. As output from the synthesis procedure we then obtain the second derivatives of the gravitational potential for all combinations of the xyz Cartesian coordinates in the LNOF. Further the implementation of variance component estimation provides a flexible tool to diversify the influence of the input gradiometer observations. On the one hand the less accurate xy and yz measurements are nearly excluded by estimating large variance components. On the other hand the yy measurements, which show systematic errors increasing at high latitudes, could be manually down-weighted in the corresponding regions. We choose different test areas to compute regional gravity field models at mean GOCE altitudes for different spectral resolutions and varying relative weights for the observations. Further we compare the regional models with the static global GOCO03S model. Especially the flexible handling and combination of the 3D measurements promise a great benefit for geophysical applications from GOCE gravity gradients, as they contain information on radial as well as on lateral gravity changes.
Willett, R L; Pfeiffer, L N; West, K W
2009-06-02
A standing problem in low-dimensional electron systems is the nature of the 5/2 fractional quantum Hall (FQH) state: Its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be used to manipulate and measure quantum Hall edge excitations. Here we use a small-area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharonov-Bohm effect are observed for integer quantum Hall and FQH states (filling factors nu = 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these factors as charge calibrations, periodic transmission through the device consistent with quasiparticle charge e/4 is observed at nu = 5/2 and at lowest temperatures. The principal finding of this work is that, in addition to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 nu and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.
Willett, R. L.; Pfeiffer, L. N.; West, K. W.
2009-01-01
A standing problem in low-dimensional electron systems is the nature of the 5/2 fractional quantum Hall (FQH) state: Its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be used to manipulate and measure quantum Hall edge excitations. Here we use a small-area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharonov–Bohm effect are observed for integer quantum Hall and FQH states (filling factors ν = 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these factors as charge calibrations, periodic transmission through the device consistent with quasiparticle charge e/4 is observed at ν = 5/2 and at lowest temperatures. The principal finding of this work is that, in addition to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 ν and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations. PMID:19433804
Electrical interference in non-competitive pacemakers
Sowton, E.; Gray, K.; Preston, T.
1970-01-01
Patients with 41 implanted non-competitive pacemakers were investigated. A variety of domestic electrical equipment, a motor-car, and a physiotherapy diathermy apparatus were each operated in turn at various ranges from the patient. Interference effects on pacemaker function were assessed on the electrocardiograph. Medtronic demand 5841 pacemakers were stopped by diathermy while Cordis Ectocor pacemakers developed a fast discharge rate. Cordis triggered pacemakers (both Atricor and Ectocor) were sensitive to interference from many items of domestic equipment and the motor car. The Elema EM153 ran at an increased rate when an electric razor was running close to the pacemaker. The Devices demand 2980 and the Medtronic demand 5841 were not affected by the domestic equipment tested. The significance of interference effects is discussed in relation to pacemaker design. Images PMID:5470044
47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.
Code of Federal Regulations, 2014 CFR
2014-10-01
... device that is in the conceptual, developmental, design or pre-production stage may be offered for sale...) The following notice is included with the kit: FCC NOTICE: This kit is designed to allow: (1) Product... stations and that this product accept harmful interference. Unless the assembled kit is designed to operate...
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Instrument for Analysis of Greenland's Glacier Mills Cryogenic Moisture Apparatus; A Transportable Gravity Gradiometer Based on Atom Interferometry; Three Methods of Detection of Hydrazines; Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer; Wavefront Correction for Large, Flexible Antenna Reflector; Novel Micro Strip-to-Waveguide Feed Employing a Double-Y Junction; Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis; Two-Stage, 90-GHz, Low-Noise Amplifier; A 311-GHz Fundamental Oscillator Using InP HBT Technology; FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager; Serrating Nozzle Surfaces for Complete Transfer of Droplets; Turbomolecular Pumps for Holding Gases in Open Containers; Triaxial Swirl Injector Element for Liquid-Fueled Engines; Integrated Budget Office Toolbox; PLOT3D Export Tool for Tecplot; Math Description Engine Software Development Kit; Astronaut Office Scheduling System Software; ISS Solar Array Management; Probabilistic Structural Analysis Program; SPOT Program; Integrated Hybrid System Architecture for Risk Analysis; System for Packaging Planetary Samples for Return to Earth; Offset Compound Gear Drive; Low-Dead-Volume Inlet for Vacuum Chamber; Simple Check Valves for Microfluidic Devices; A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions; Gimballing Spacecraft Thruster; Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid; Lightweight Heat Pipes Made from Magnesium; Ceramic Rail-Race Ball Bearings; Improved OTEC System for a Submarine Robot; Reflector Surface Error Compensation in Dual-Reflector Antennas; Enriched Storable Oxidizers for Rocket Engines; Planar Submillimeter-Wave Mixer Technology with Integrated Antenna; Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser; Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise; Using Whispering-Gallery-Mode Resonators for Refractometry; RF Device for Acquiring Images of the Human Body; Reactive Collision Avoidance Algorithm; Fast Solution in Sparse LDA for Binary Classification; Modeling Common-Sense Decisions in Artificial Intelligence; Graph-Based Path-Planning for Titan Balloons; Nanolaminate Membranes as Cylindrical Telescope Reflectors; Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes; Large Telescope Segmented Primary Mirror Alignment; and Simplified Night Sky Display System.
NASA Astrophysics Data System (ADS)
Ivanov, M. P.; Tolmachev, Yu. A.
2018-05-01
We consider the most feasible ways to significantly improve the sensitivity of spectroscopic methods for detection and measurement of trace concentrations of greenhouse gas molecules in the atmosphere. The proposed methods are based on combining light fluxes from a number of spectral components of the specified molecule on the same photodetector, taking into account the characteristic features of the transmission spectrum of devices utilizing multipath interference effects.
Index Theory-Based Algorithm for the Gradiometer Inverse Problem
2015-03-28
greatest distance from the center of mass to an equipotential surface occurs when the generating mass of the admissible potential is from two equal point...point on an equipotential surface to the center of mass occurs when the generating mass is contained in an equatorial great circle with the closest...false, it still has practical utility for our purposes. One can also define DC in any Tangent Plane (TP) to the equipotential surface normal to the
1990-03-28
D’IC FILE COpY G---90-0067 ENVIRONMENTAL RESEARCH PAPERS , NO. 1059 AD-A223 568 PROCEEDINGS OF THE SEVENTEENTH ANNUAL GRAVITY GRADIOICET CONFERENCE 12...AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release; Distribution Unlimited 13. ABSTRACT (Maximu&m 200 words)/ Fourteen papers were...instrumentation * and applications. The technical papers covered test program results, applications to gravity field mapping, gravity signal processing
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 805
2007-03-01
and receiver (RX) coils. b. The Tensor Magnetic Gradiometer System ( TMGS ) has been reconfigured to improve its performance compared with the...ALL TEM. The TMGS raw data files consist of an ASCII header with system settings followed by the data in binary format. The GPS positions, EDA...exported in ASCII format. A new data acquisition system for the TMGS will be supplied by the demonstrator. It is controlled by LabVIEW, as is the ALL
Prototype Moving Base Rotating Gravity Gradiometer
1975-05-01
general similarity. Figure II-A-1-3 depicts the first step in disassembly. Number 1 points to the Stator or housing assembly, which in turn...mounts to an environmental isolation system. Number 2 points to the Outer Rotor which is supported within the Stator, at each end, by two journal...bear- ings (not shown). The Outer Rotor is rotated by two electric motors. Number 3 points to the "drag cup" component of each motor. Number 4
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
2018-01-29
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
Routes for GMR-Sensor Design in Non-Destructive Testing
Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas
2012-01-01
GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.
Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients
NASA Astrophysics Data System (ADS)
Yu, Mingbiao; Cai, Tijing
2018-05-01
The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.
Dötsch, J; Demirakça, S; Hahn, D; Katz, N; Kühl, P G; Rascher, W
1999-06-01
During nitric oxide inhalation, methemoglobinemia needs to be monitored. We compared six commercially available instruments and one manual method for methemoglobin measurements. In addition, we studied whether and to what degree methylene blue interferes with methemoglobin measurements. In vitro methodologic study. Research laboratory in a university hospital. Five healthy volunteers from whom red blood cells were obtained. Methemoglobinemia was generated in a red blood cell suspension by nitric oxide; methemoglobin was measured with six commercial instruments and one manual photometric method to calculate variation coefficients and to determine the differences between the devices. Methemoglobin was measured with and without the addition of methylene blue with two instruments. Measurements were performed immediately after the addition of methylene blue. All six commercially available instruments had variation coefficients of <0.1 at methemoglobin concentrations of 5%, whereas the manual photometric method did not reach a variation coefficient of <0.1 at 8% of methemoglobin. Apart from two devices that measured slightly but significantly higher methemoglobin levels, all instruments measured similar values of methemoglobin when the same samples were determined simultaneously. Higher concentrations of methylene blue (10, 40, 100 microM) reduced substantially the apparent concentrations of methemoglobin. Interference by methylene blue was most pronounced at low methemoglobin levels. With some limitations, all commercial instruments that were tested performed adequately for the monitoring of methemoglobinemia. Methylene blue interferes with the methemoglobin measurements in a dose-dependent manner.
Transport properties of a quantum dot and a quantum ring in series
NASA Astrophysics Data System (ADS)
Seo, Minky; Chung, Yunchul
2018-01-01
The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science
NASA Astrophysics Data System (ADS)
Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan
2015-05-01
Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Evaluation of stray radiofrequency radiation emitted by electrosurgical devices
NASA Astrophysics Data System (ADS)
DeMarco, M.; Maggi, S.
2006-07-01
Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.
Thin film-based optically variable security devices: From passive to active
NASA Astrophysics Data System (ADS)
Baloukas, Bill
Counterfeiting costs the world economy billions of dollars every year. Aside from financial losses, counterfeiting also poses a great threat to the public's safety, for example through the existence of counterfeit passports (terrorism), pharmaceutical products (health hazards) and even airplane parts (safety issues). Optical security devices (OSDs) have therefore played a critical role in the fight against counterfeiting. It is the aim of the present thesis to show that through the use of metamerism and electrochromic materials, new types of active security devices with interesting features can be created; indeed, most present-day devices are passive in nature. I first demonstrate that the addition of metamerism in the design of interference filters can result in innovative features. Different structures which can be used in transmission and/or in reflection are designed, fabricated, and evaluated. The first structures which are presented here are based on a combination of two different metameric interference filters. Possessing widely different transmission spectra, these filters also offer different angular color shifts and, as a result, offer an opportunity of creating hidden image effects. Despite their interesting properties, such metameric devices are shown to be highly illuminant and observer sensitive; that is the color match is lost under most observation conditions. These issues are solved by a simpler structure based on the juxtaposition of an interference filter and a non-iridescent colored material. Throughout this study, I present the design approach, analyze the filters' sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering. Following my work on passive metameric systems, I then propose to go one step further by implementing an active component using an electrochromic material. This novel concept, which is based on the joint use of a metameric filter and electrochromic device, offers the possibility of creating various surprising optical effects. Such a system is obviously more challenging to duplicate due to its complexity, but also adds a second level of authentication accessible to specialized personnel. By designing a metameric filter which matches either the bleached or colored state of an electrochromic device, I show that one can generate two hidden image effects: one which appears when the structure is tilted, and the other one which disappears when the electrochromic material is colored under an applied potential. In this specific study, I present an example of a filter that is metameric with the colored state of a tungsten-oxide-based Deb-type electrochromic device. A hybrid device such as presented in the previous study is clearly interesting from a prototype point of view. Unfortunately, having to design and fabricate two individual components would make such a security feature very expensive. Consequently, my goal was to combine both the color shift and electrochromic color change into a single structure. The following study thus demonstrates, that by designing and fabricating an interference filter based on dense and porous WO3, this goal can be achieved. Finally, a second method of fabricating electrochromic interference filters is proposed which results in a significant decrease in the total numbers of layers of the filters. Replacing the porous WO3 films by a WO 3/SiO2 composite allows for much lower refractive indices to be obtained thus resulting in a larger index contrast (0.61 versus 0.22 in the previous study). In this study, I first explore the physical and electrochromic properties of WO3/SiO2 mixtures. I then combine high and low index films in tandem configurations to observe the bleaching/ coloration dynamics. To account for the poor performance of the ITO|Composite|WO 3 film configuration, I also present an explanation based on the differences in electron diffusion coefficients of the films. I conclude this study with the demonstration of an 11 layer electrochromic interference filter based on the alternation of pure WO3 and (WO3)0.17(SiO 2)0.83 films (with a blue to purple angular color shift) as well as a short discussion on some possible solutions for the observed limitations. (Abstract shortened by UMI.).
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
-- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Masakazu, E-mail: m.nakanishi@aist.go.jp
Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic rangemore » of about 1.4 × 10{sup 7} was created as a demonstration.« less
NASA Astrophysics Data System (ADS)
Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen
We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.
Tricuspid Valve Dysfunction Following Pacemaker or Cardioverter-Defibrillator Implantation.
Chang, James D; Manning, Warren J; Ebrille, Elisa; Zimetbaum, Peter J
2017-05-09
The potential for cardiac implantable electronic device leads to interfere with tricuspid valve (TV) function has gained increasing recognition as having hemodynamic and clinical consequences associated with incremental morbidity and death. The diagnosis and treatment of lead-related (as distinct from functional) tricuspid regurgitation pose unique challenges. Because of pitfalls in routine diagnostic imaging, a high level of clinical suspicion must be maintained to avoid overlooking the possibility that worsening heart failure is a consequence of mechanical interference with TV leaflet mobility or coaptation and is amenable to lead extraction or valve repair or replacement. The future of cardiac implantable electronic devices includes pacing and perhaps defibrillation without a lead traversing the TV. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Spectrum sharing between a surveillance radar and secondary Wi-Fi networks
NASA Astrophysics Data System (ADS)
Hessar, Farzad; Roy, Sumit
2016-06-01
Co-existence between unlicensed networks that share spectrum spatio-temporally with terrestrial (e.g. Air Traffic Control) and shipborne radars in 3-GHz band is attracting significant interest. Similar to every primary-secondary coexistence scenario, interference from unlicensed devices to a primary receiver must be within acceptable bounds. In this work, we formulate the spectrum sharing problem between a pulsed, search radar (primary) and 802.11 WLAN as the secondary. We compute the protection region for such a search radar for a) a single secondary user (initially) as well as b) a random spatial distribution of multiple secondary users. Furthermore, we also analyze the interference to the WiFi devices from the radar's transmissions to estimate the impact on achievable WLAN throughput as a function of distance to the primary radar.
Spin wave interference in YIG cross junction
Balinskiy, M.; Gutierrez, D.; Chiang, H.; ...
2017-01-17
This work is aimed at studying the interference between backward volume magnetostatic spin waves and magnetostatic surface spin waves in a magnetic cross junction. These two types of magnetostatic waves possess different dispersion with zero frequency overlap in infinite magnetic films. However, the interference may be observed in finite structures due to the effect magnetic shape anisotropy. We report experimental data on spin wave interference in a micrometer size Y 3Fe 2(FeO 4) 3 cross junction. There are four micro antennas fabricated at the edges of the cross arms. Two of these antennas located on the orthogonal arms are usedmore » for spin wave generation, and the other two antennas are used for the inductive voltage detection. The phase difference between the input signals is controlled by the phase shifter. Prominent spin wave interference is observed at the selected combination of operational frequency and bias magnetic field. The maximum On/Off ratio exceeds 30dB at room temperature. The obtained results are important for a variety of magnetic devices based on spin wave interference.« less
Electromagnetic interference of bone-anchored hearing aids by cellular phones.
Kompis, M; Negri, S; Häusler, R
2000-10-01
We report a case of electromagnetic interference between a bone-anchored hearing aid (BAHA) and a cellular phone. A 54-year-old women was successfully treated for severe mixed conductive and sensorineural hearing loss with a BAHA. Five years after implantation, the patient experienced a sudden feeling of dizziness, accompanied by a loud buzzing sound and by a sensation of head pressure while examining a digital mobile phone. During a subsequent experiment, the buzzing sound could be reproduced and was identified as electromagnetic interference between the BAHA and digital cellular phones. Seventeen adult BAHA users from our clinic participated in a subsequent survey. Of the 13 patients with some experience of digital cellular phones, 11 reported hearing annoying noises elicited by these devices. However, no other sensation, such as dizziness, was described. Owing to the increasing number of users of both hearing aids and cellular phones, the incidence of electromagnetic interference must be expected to increase as well. Although to date there is no evidence that such interference may be harmful or dangerous to users of conventional or bone-anchored hearing aids, unexpected interference can be a frightening experience.
A YBCO RF-squid variable temperature susceptometer and its applications
NASA Technical Reports Server (NTRS)
Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia
1991-01-01
The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.
Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo
2017-04-01
In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.
Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.
Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro
2007-01-01
Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.
Ultracompact photonic crystal polarization beam splitter based on multimode interference.
Lu, Ming-Feng; Liao, Shan-Mei; Huang, Yang-Tung
2010-02-01
We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89 dB, and the extinction ratios are 14.4 and 17.5 dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.
Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2010-01-01
Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.
Evaluation of steering control devices in adapted cars using sled deceleration tests
NASA Astrophysics Data System (ADS)
Eixerés, B.; Masiá, J.; Dols, J. F.; Esquerdo, T. V.
2009-11-01
Steering control devices used by disabled drivers can reduce passive safety, interfering with the existing systems of safety in the vehicle or causing injury to the occupants [1]. In this article, the results obtained in different dynamic tests carried out in a crash test simulator are presented. These tests were carried out on the steering devices which interfere the most with the deployment of the driver's airbag and also with the knee airbag in a Citroen C5.
1992-01-01
perturbations and nonstationary interference effects so as to reduce decoding 13 DARPA SBIR PHASE I AWARDS errors for spread spectrum communications...potential applications - Utilization of spread spectrum techniques by DoD and others is increasing because ot robusines, to interference and fading...Mirror Devices ( DMD ) illuminated by a low power laser diode or led will be considered as a source. Commercial optical software in conjunction with in
Electromagnetic Interference in a Private Swimming Pool: Case report.
Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya
2015-01-01
Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool.
2011-09-01
Electromagnetic interference (EMI) may cause some Philips Healthcare IntelliVue MMS, MP2, MP5, and X2 patient monitoring products to incorrectly display a flat electrocardiogram (ECG) waveform and generate a false asystole alarm. This occurs while the devices' pace pulse rejection feature is enabled. Facilities that suspect such behavior in their inventories should contact Philips to discuss whether installation of firmware version D.02.05 will help address the problem.
Basic and Applied Magnetism with a Squid Gradiometer.
1985-12-01
r , , WV w- =v- -V,; . r Zr! I , : r -. : r , : s : i . : I , C CI SQUID ta) 0 7 - .- 4 , 4 4 4 - .44* . . 2 Te 1 I T ...... 2zt 14 tbt’faceewient...incheS) iuSteed D~ISPLACE4ENT ’ . • •. . , I t ( pi A, , I phud.I’ t h bh r . /Os ,7/,/( ds I DR8 _ I Is i it r V( ttw( lt hd ,h r % I I VS94 SQUID...magnetization. Barkhausen Reversible Missing
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
Semiconductor devices incorporating multilayer interference regions
Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.
1990-01-01
A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.
Blood Glucose Monitoring Devices
... of interferences ability to transmit data to a computer cost of the meter cost of the test ... Performance FDA expands indication for continuous glucose monitoring system, first to replace fingerstick testing for diabetes treatment ...
Wireless technology in the ICU: boon or ban?
Gladman, Aviv S; Lapinsky, Stephen E
2007-01-01
Wireless communication and data transmission are playing an increasing role in the critical care environment. Early anecdotal reports of electromagnetic interference (EMI) with intensive care unit (ICU) equipment resulted in many institutions banning these devices. An increasing literature database has more clearly defined the risks of EMI. Restrictions to the use of mobile devices are being lifted, and it has been suggested that the benefits of improved communication may outweigh the small risks. However, increased use of cellular phones and ever changing communication technologies require ongoing vigilance by healthcare device manufacturers, hospitals and device users, to prevent potentially hazardous events due to EMI.
Analysis of interference performance of tactical radio network
NASA Astrophysics Data System (ADS)
Nie, Hao; Cai, Xiaoxia; Chen, Hong
2017-08-01
Mobile Ad hoc network has a strong military background for its development as the core technology of the backbone network of US tactical Internet. And which tactical radio network, is the war in today's tactical use of the Internet more mature form of networking, mainly used in brigade and brigade following forces. This paper analyzes the typical protocol AODV in the tactical radio network, and then carries on the networking. By adding the interference device to the whole network, the battlefield environment is simulated, and then the throughput, delay and packet loss rate are analyzed, and the performance of the whole network and the single node before and after the interference is obtained.
Magnetic Resonance Imaging (MRI) - Spine
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
MRI of the Musculoskeletal System
... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
Establishing Information Security Systems via Optical Imaging
2015-08-11
SLM, spatial light modulator; BSC, non - polarizing beam splitter cube; CCD, charge-coupled device. In computational ghost imaging, a series of...Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...interference between reference and object beams . (a) (e) (d) (c) (b) Distribution Code A: Approved for public release, distribution is unlimited
Epitaxial Reactor Development for Growth of Silicon-on-Insulator Devices.
1987-04-01
emision from substrate reflected from interface 40 Constructive interference condition 2tc= n X / 1 * Destrictive interference condition 2tD= (2n+1) X...combinations of growth conditions resulted in no oxide growth on the original silicon wafer. Growths occurred for Si:O molecular ratios higher than 1:1...growth rates occurred at 1050 0 C with water vapor at 1250 cc/min and silane at 50 cc/min. These results are shown in Table 6. The molecular ratio was 2:1
Long working distance interference microscope
Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.
2004-04-13
Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.
Semiconductor devices incorporating multilayer interference regions
Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.
1987-08-31
A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo
2010-08-01
DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30° misorientation angles. The 18 × 8 µm2 SQUID loop with an estimated inductance of 13 pH contained two 3 µm wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with ΔV = 1.4 µV at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 × 10 - 5 Φ0 Hz - 1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal-metal-superconductor junction nature of the bicrystal grain boundary.
Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin
2017-06-28
Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.
Backside imaging of a microcontroller with common-path digital holography
NASA Astrophysics Data System (ADS)
Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Gerhardt, Nils C.; Hofmann, Martin
2017-03-01
The investigation of integrated circuits (ICs), such as microcontrollers (MCUs) and system on a chip (SoCs) devices is a topic with growing interests. The need for fast and non-destructive imaging methods is given by the increasing importance of hardware Trojans, reverse engineering and further security related analysis of integrated cryptographic devices. In the field of side-channel attacks, for instance, the precise spot for laser fault attacks is important and could be determined by using modern high resolution microscopy methods. Digital holographic microscopy (DHM) is a promising technique to achieve high resolution phase images of surface structures. These phase images provide information about the change of the refractive index in the media and the topography. For enabling a high phase stability, we use the common-path geometry to create the interference pattern. The interference pattern, or hologram, is captured with a water cooled sCMOS camera. This provides a fast readout while maintaining a low level of noise. A challenge for these types of holograms is the interference of the reflected waves from the different interfaces inside the media. To distinguish between the phase signals from the buried layer and the surface reflection we use specific numeric filters. For demonstrating the performance of our setup we show results with devices under test (DUT), using a 1064 nm laser diode as light source. The DUTs are modern microcontrollers thinned to different levels of thickness of the Si-substrate. The effect of the numeric filter compared to unfiltered images is analyzed.
78 FR 24817 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
...The National Highway Traffic Safety Administration (NHTSA) is concerned about the effects of distraction on motor vehicle safety due to drivers' use of electronic devices. Consequently, NHTSA is issuing nonbinding, voluntary Driver Distraction Guidelines (NHTSA Guidelines) to promote safety by discouraging the introduction of excessively distracting devices in vehicles. This notice announces the issuance of the final version of the first phase of the NHTSA Guidelines. This first phase applies to original equipment (OE) in-vehicle electronic devices used by the driver to perform secondary tasks (communications, entertainment, information gathering, navigation tasks, etc. are considered secondary tasks) through visual-manual means (i.e., the driver looks at a device, manipulates a device-related control with his or her hand, and/or watches for visual feedback). The NHTSA Guidelines list certain secondary tasks believed by the agency to interfere inherently with a driver's ability to safely control the vehicle. The NHTSA Guidelines recommend that in-vehicle devices be designed so that they cannot be used by the driver to perform these inherently distracting secondary tasks while driving. For all other visual-manual secondary tasks, the NHTSA Guidelines specify a test method for measuring eye glance behavior during those tasks. Eye glance metrics are compared to acceptance criteria to evaluate whether a task interferes too much with driver attention, rendering it unsuitable for a driver to perform while driving. If a task does not meet the acceptance criteria, the NHTSA Guidelines recommend that the task be made inaccessible for performance by the driver while driving. In addition, the NHTSA Guidelines contain several recommendations to limit and reduce the potential for distraction associated with the use of OE in-vehicle electronic devices.
Universal stratospheric balloon gradiometer
NASA Astrophysics Data System (ADS)
Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay
The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG, which should be not less than 10 m. A brief description of this instrument is provided in the report. The SBMG is certified for the use in Russia for "zero-pressure" balloon "VAL 120" capable of drifting at about 30 km height. The obtained data are used in solving the problems of deep sounding of the Earth’s crust magnetic structure - an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. Examples of the experiments (data) obtained by SBMG (including along the 9000 km flight track), as a new opportunities in geomagnetism for researchers that could use this device, are shown here. To avoid magnetic noise the sensor of the upper magnetometer is located at 35 meters above the main suspension basket of the balloon (in the small magnetic noise place). As we know, people have a problem to find such places (with a relatively low level of magnetic noise) at other types of balloons. So, for the other types of balloons we have developed and investigated balloon gradiometer with sensors located at a distance of 50 m down from the main suspension basket of the balloon. This decision is optimal for the "superpressure" balloons. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each of three instrumental containers (uniformly placed along a vertical 6 km line) may be reaching 50 kg. More than ten testing flights (1986-2013) at stratospheric altitudes (20-30 km) have proven the reliability of this system.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Shaver, Timothy W.; Fuller, Gerald L.
2002-01-01
On February 14, 2002, the FCC adopted a FIRST REPORT AND ORDER, released it on April 22, 2002, and on May 16, 2002 published in the Federal Register a Final Rule, permitting marketing and operation of new products incorporating UWB technology. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This report provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.
Coherent molecular transistor: control through variation of the gate wave function.
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic beamformer. The solution is two-part. A novel highly-scalable photonic beamformer is first proposed and experimentally verified. A "blind" search algorithm called the guided accelerated random search (GARS) algorithm is then shown. A maximum cancellation of 37 dB is achieved within 50 iterations, a real-world time of 1-3 seconds, while the presence of a signal of interest (SOI) is maintained.
Electromagnetic interference of dental equipment with implantable cardioverter defibrillators.
Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; Araújo, Marcos César Pimenta de; Moraes, Luis Gustavo Belo de; Risso, Patrícia de Andrade
2017-11-01
Implantable cardioverter defibrillators (ICDs) are subject to electromagnetic interference (EMI). The aim of this study was to assess both the EMI of dental equipments with ICDs and related factors. High- and low-speed handpieces, an electric toothbrush, an implant motor and two types of ultrasonic devices were tested next to an ICD with different sensitivity settings. The ICD was immersed in a saline solution with electrical resistance of 400-800 ohms to simulate the resistance of the human body. The dental equipments were tested in both horizontal (0°) and vertical (90°) positions in relation to the components of the ICD. The tests were performed with a container containing saline solution, which was placed on a dental chair in order to assess the cumulative effect of electromagnetic fields. The dental chair, high- and low-speed handpieces, electric toothbrush, implant motor and ultrasonic devices caused no EMI with the ICD, irrespective of the program set-up or positioning. No cumulative effect of electromagnetic fields was verified. The results of this study suggest that the devices tested are safe for use in patients with an ICD.
Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Echols, K.R.; Cranor, W.L.
2000-01-01
Semipermeable membrane devices (SPMDs) are used with increasing frequency, and throughout the world as samplers of organic contaminants. The devices can be used to detect a variety of lipophilic chemicals in water, sediment/soil, and air. SPMDs are designed to sample nonpolar, hydrophobic chemicals. The maximum concentration factor achievable for a particular chemical is proportional to its octanol–water partition coefficient. Techniques used for cleanup of SPMD extracts for targeted analytes and for general screening by full-scan mass spectrometry do not differ greatly from techniques used for extracts of other matrices. However, SPMD extracts contain potential interferences that are specific to the membrane–lipid matrix. Procedures have been developed or modified to alleviate these potential interferences. The SPMD approach has been demonstrated to be applicable to sequestering and analyzing a wide array of environmental contaminants including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans, selected organophosphate pesticides and pyrethroid insecticides, and other nonpolar organic chemicals. We present herein an overview of effective procedural steps for analyzing exposed SPMDs for trace to ultra-trace levels of contaminants sequestered from environmental matrices.
Functional photonic crystal fiber sensing devices
NASA Astrophysics Data System (ADS)
Villatoro, Joel; Finazzi, Vittoria; Pruneri, Valerio
2011-12-01
We report on a functional, highly reproducible and cost effective sensing platform based on photonic crystal fibers (PCFs). The platform consists of a centimeter-length segment of an index-guiding PCF fusion spliced to standard single mode fibers (SMFs). The voids of the PCF are intentionally sealed over an adequate length in the PCF-SMF interfaces. A microscopic collapsed region in the PCF induces a mode field mismatch which combined with the axial symmetry of the structure allow the efficient excitation and recombination or overlapping of azimuthal symmetric modes in the PCF. The transmission or reflection spectrum of the devices exhibits a high-visibility interference pattern or a single, profound and narrow notch. The interference pattern or the notch position shifts when the length of the PCF experiences microelongations or when liquids or coatings are present on the PCF surface. Thus, the platform here proposed can be useful for sensing diverse parameters such as strain, vibration, pressure, humidity, refractive index, gases, etc. Unlike other PCF-based sensing platforms the multiplexing of the devices here proposed is simple for which it is possible to implement PCF-based sensor arrays or networks.
Characterization of a low frequency magnetic noise from a two-stage pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Eshraghi, M. J.; Sasada, I.; Kim, J. M.; Lee, Y. H.
2009-07-01
Magnetic noise of a two-stage pulse tube cryocooler (PT) was measured by a fundamental mode orthogonal fluxgate magnetometer and by a LTS Double Relaxation Oscillation SQUID (DROS) first-order planar gradiometer. The magnetometer was installed in a dewar made of aluminum at 12 cm distance from a section containing magnetic regenerative materials of the second pulse tube. The magnetic noise spectrum showed a clear peak at 1.8 Hz, which is the fundamental frequency of the He gas pumping rate. The 1.8 Hz magnetic noise registered a peak, during the cooling down process, when the second cold-stage temperature was around 12 K, which is well correlated with the 1.8 Hz variation of the temperature of the second cold stage. Hence, we attributed the main source of this magnetic noise to the temperature variation of the magnetic moments resulting from magnetic regenerative materials, Er 3Ni and HoCu 2, in the presence of background static magnetic fields. We have also pointed out that the superconducting magnetic shield of lead sheets reduced the low frequency magnetic noise generated from the magnetic regenerative materials. With this arrangement, the magnetic noise amplitude measured with the LTS DROS gradiometer, mounted at 7 cm horizontal distance from the magnetic regenerative materials, in the optimum condition, was lower than 500 pT peak-to-peak, whereas the noise level without lead shielding was higher than the dynamic range of DROS instrumentations which was around ±10nT.
NASA Technical Reports Server (NTRS)
Robbins, J. W.
1985-01-01
An autonomous spaceborne gravity gradiometer mission is being considered as a post Geopotential Research Mission project. The introduction of satellite diometry data to geodesy is expected to improve solid earth gravity models. The possibility of utilizing gradiometer data for the determination of pertinent gravimetric quantities on a local basis is explored. The analytical technique of least squares collocation is investigated for its usefulness in local solutions of this type. It is assumed, in the error analysis, that the vertical gravity gradient component of the gradient tensor is used as the raw data signal from which the corresponding reference gradients are removed to create the centered observations required in the collocation solution. The reference gradients are computed from a high degree and order geopotential model. The solution can be made in terms of mean or point gravity anomalies, height anomalies, or other useful gravimetric quantities depending on the choice of covariance types. Selected for this study were 30 x 30 foot mean gravity and height anomalies. Existing software and new software are utilized to implement the collocation technique. It was determined that satellite gradiometry data at an altitude of 200 km can be used successfully for the determination of 30 x 30 foot mean gravity anomalies to an accuracy of 9.2 mgal from this algorithm. It is shown that the resulting accuracy estimates are sensitive to gravity model coefficient uncertainties, data reduction assumptions and satellite mission parameters.
Progress in magnetic sensor technology for sea mine detection
NASA Astrophysics Data System (ADS)
Clem, Ted R.
1997-07-01
A superconducting magnetic-field gradiometer developed in the 1980's has been demonstrated infusion with acoustic sensors to enhance shallow water sea mine detection and classification, especially for buried mine detection and the reduction of acoustic false alarm rates. This sensor incorporated niobium bulk and wire superconducting components cooled by liquid helium to a temperature of 4 degrees K. An advanced superconducting gradiometer prototype is being developed to increase sensitivity and detection range. This sensor features all thin film niobium superconducting components and a new liquid helium cooling concept. In the late 1980's, a new class of 'high Tc' superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen. The use of liquid nitrogen refrigeration offers new opportunities for this sensor technology, providing significant reduction in the size of sensor packages and in the requirements for cryogenic support and logistics. As a result of this breakthrough, a high Tc sensor concept using liquid nitrogen refrigeration has been developed for mine reconnaissance applications and a test article of that concept is being fabricated and evaluated. In addition to these developments in sensor technology, new signal processing approaches and recent experimental results have ben obtained to demonstrate an enhanced D/C capability. In this paper, these recent advances in sensor development and new results for an enhanced D/C capability will be reviewed and a current perspective on the role of magnetic sensors for mine detection and classification will be addressed.
Interferometric rotation sensor
NASA Technical Reports Server (NTRS)
Walsh, T. M.
1972-01-01
Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.
Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow
NASA Technical Reports Server (NTRS)
Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.
1988-01-01
A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.
Investigation of a geodesy coexperiment to the Gravity Probe B relativity gyroscope program
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.; Parkinson, Bradford W.; Tapley, Mark
1993-01-01
Geodesy is the science of measuring the gravitational field of and positions on the Earth. Estimation of the gravitational field via gravitation gradiometry, the measurement of variations in the direction and magnitude of gravitation with respect to position, is this dissertation's focus. Gravity Probe B (GP-B) is a Stanford satellite experiment in gravitational physics. GP-B will measure the precession the rotating Earth causes on the space time around it by observing the precessions of four gyroscopes in a circular, polar, drag-free orbit at 650 km altitude. The gyroscopes are nearly perfect niobium-coated spheres of quartz, operating at 1.8 K to permit observations with extremely low thermal noise. The permissible gyroscope drift rate is miniscule, so the torques on the gyros must be tiny. A drag-free control system, by canceling accelerations caused by nongravitational forces, minimizes the support forces and hence torques. The GP-B system offers two main possibilities for geodesy. One is as a drag-free satellite to be used in trajectory-based estimates of the Earth's gravity field. We described calculations involving that approach in our previous reports, including comparison of laser only, GPS only, and combined tracking and a preliminary estimate of the possibility of estimating relativistic effects on the orbit. The second possibility is gradiometry. This technique has received a more cursory examination in previous reports, so we concentrate on it here. We explore the feasibility of using the residual suspension forces centering the GP-B gyros as gradiometer signals for geodesy. The objective of this work is a statistical prediction of the formal uncertainty in an estimate of the Earth's gravitation field using data from GP-B. We perform an instrument analysis and apply two mathematical techniques to predict uncertainty. One is an analytical approach using a flat-Earth approximation to predict geopotential information quality as a function of spatial wavelength. The second estimates the covariance matrix arising in a least-squares estimate of a spherical harmonic representation of the geopotential using GP-B gradiometer data. The results show that the GP-B data set can be used to create a consistent estimate of the geopotential up to spherical harmonic degree and order 60. The formal uncertainty of all coefficients between degrees 5 and 50 is reduced by factors of up to 30 over current satellite-only estimates and up to 7 over estimates which include surface data. The primary conclusion resulting from this study is that the gravitation gradiometer geodesy coexperiment to GP-B is both feasible and attractive.
Wireless technology in the ICU: boon or ban?
Gladman, Aviv S; Lapinsky, Stephen E
2007-01-01
Wireless communication and data transmission are playing an increasing role in the critical care environment. Early anecdotal reports of electromagnetic interference (EMI) with intensive care unit (ICU) equipment resulted in many institutions banning these devices. An increasing literature database has more clearly defined the risks of EMI. Restrictions to the use of mobile devices are being lifted, and it has been suggested that the benefits of improved communication may outweigh the small risks. However, increased use of cellular phones and ever changing communication technologies require ongoing vigilance by healthcare device manufacturers, hospitals and device users, to prevent potentially hazardous events due to EMI. PMID:17875225
NASA Astrophysics Data System (ADS)
Guerrero, Hector
2010-05-01
In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.
Optically Remote Noncontact Heart Rates Sensing Technique
NASA Astrophysics Data System (ADS)
Thongkongoum, W.; Boonduang, S.; Limsuwan, P.
2017-09-01
Heart rate monitoring via optically remote noncontact technique was reported in this research. A green laser (5 mW, 532±10 nm) was projected onto the left carotid artery. The reflected laser light on the screen carried the deviation of the interference patterns. The interference patterns were recorded by the digital camera. The recorded videos of the interference patterns were frame by frame analysed by 2 standard digital image processing (DIP) techniques, block matching (BM) and optical flow (OF) techniques. The region of interest (ROI) pixels within the interference patterns were analysed for periodically changes of the interference patterns due to the heart pumping action. Both results of BM and OF techniques were compared with the reference medical heart rate monitoring device by which a contact measurement using pulse transit technique. The results obtained from BM technique was 74.67 bpm (beats per minute) and OF technique was 75.95 bpm. Those results when compared with the reference value of 75.43±1 bpm, the errors were found to be 1.01% and 0.69%, respectively.
The SPS interference problem-electronic system effects and mitigation techniques
NASA Technical Reports Server (NTRS)
Juroshek, J. R.
1980-01-01
The potential for interference between solar power satellites (SPS) and other Earth satellite operations was examined along with interference problems involving specific electronic devices. Conclusions indicate that interference is likely in the 2500 MHz to 2690 MHz direct broadcast satellite band adjacent to SPS. Estimates of the adjacent channel noise from SPS in this band are as high as -124 dBc/4 kHz and -100 dBc/MHz, where dBc represents decibels relative to the total power in the fundamental. A second potential problem is the 7350 MHz, 3d harmonic from SPS that falls within the 7300 MHz to 7450 MHz space to Earth, government, satellite assignment. Catastrophic failures can be produced in integrated circuits when the microwave power levels coupled into inputs and power leads reach 1 to 100 watts. The failures are typically due to bonding wire melting, metallization failures, and junction shorting. Nondestructive interaction or interference, however, generally occurs with coupled power levels of the order of 10 milliwatts. This integration is due to the rectification of microwave energy by the numerous pn junctions within these circuits.
... cardiac defibrillators and pacemakers You should tell the technologist if you have medical or electronic devices in your body. These objects may interfere with the exam or potentially pose a risk, depending on their nature and the strength of the MRI ...
47 CFR 18.213 - Information to the user.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for any type of ISM equipment: (a) The interference potential of the device or system (b) Maintenance... permitted provided all the points of the statement are addressed and may be presented in any legible font or...
42 CFR 84.118 - Half-mask facepieces, full facepieces, and mouthpieces; fit; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.118 Half-mask facepieces, full facepieces, and... reduce the respiratory protective qualities of the gas mask. (c) Half-mask facepieces shall not interfere...
42 CFR 84.118 - Half-mask facepieces, full facepieces, and mouthpieces; fit; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.118 Half-mask facepieces, full facepieces, and... reduce the respiratory protective qualities of the gas mask. (c) Half-mask facepieces shall not interfere...
42 CFR 84.118 - Half-mask facepieces, full facepieces, and mouthpieces; fit; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.118 Half-mask facepieces, full facepieces, and... reduce the respiratory protective qualities of the gas mask. (c) Half-mask facepieces shall not interfere...
42 CFR 84.118 - Half-mask facepieces, full facepieces, and mouthpieces; fit; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.118 Half-mask facepieces, full facepieces, and... reduce the respiratory protective qualities of the gas mask. (c) Half-mask facepieces shall not interfere...
42 CFR 84.118 - Half-mask facepieces, full facepieces, and mouthpieces; fit; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF RESPIRATORY PROTECTIVE DEVICES Gas Masks § 84.118 Half-mask facepieces, full facepieces, and... reduce the respiratory protective qualities of the gas mask. (c) Half-mask facepieces shall not interfere...
Sensor Technology Performance Characteristics- Field and Laboratory Observations
Observed Intangible Performance Characteristics RH and temperature impacts may be significant for some devices Internal battery lifetimes range from 4 to 24 hoursSensor packaging can interfere with accurate measurements (reactivity)Wireless communication protocols are not foolpr...
NASA Astrophysics Data System (ADS)
Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2017-08-01
We propose a protocol for complete Bell-state analysis for two superconducting-quantum-interference-device qubits. The Bell-state analysis could be completed by using a sequence of microwave pulses designed by the transitionless tracking algorithm, which is a useful method in the technique of shortcut to adiabaticity. After the whole process, the information for distinguishing four Bell states will be encoded on two auxiliary qubits, while the Bell states remain unchanged. One can read out the information by detecting the auxiliary qubits. Thus the Bell-state analysis is nondestructive. The numerical simulations show that the protocol possesses a high success probability of distinguishing each Bell state with current experimental technology even when decoherence is taken into account. Thus, the protocol may have potential applications for the information readout in quantum communications and quantum computations in superconducting quantum networks.
Chieh, J J; Hong, C Y
2011-08-01
Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.
A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.
Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M
2016-02-08
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
Laser-assisted fabrication of single-layer flexible touch sensor
Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul
2016-01-01
Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device. PMID:27703204
A Simple low-cost device enables four epi-illumination techniques on standard light microscopes
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.
2016-02-01
Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.
Challenges of recording human fetal auditory-evoked response using magnetoencephalography.
Eswaran, H; Lowery, C L; Robinson, S E; Wilson, J D; Cheyne, D; McKenzie, D
2000-01-01
Our goals were to successfully perform fetal auditory-evoked responses using the magnetoencephalography technique, understand its problems and limitations, and propose instrument design modifications to improve the signal quality and success rate. Fetal auditory-evoked responses were recorded from four fetuses with gestational ages ranging from 33-40+ weeks. The signals were recorded using a gantry-based superconducting quantum interference device. Auditory stimulus was 1 kHz tone burst. The evoked signals were digitized and averaged over an 800 ms window. After several trials of positioning and repositioning the subjects, we were able to record auditory-evoked responses in three out of the four fetuses. Since the superconducting quantum interference device array design was not shaped to fit over the mother's abdomen, we experienced difficulty in positioning the sensors over the fetal head. Based on this pilot study, we propose instrument design that may improve signal quality and success rate of the fetal magnetic auditory-evoked response.
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
NASA Astrophysics Data System (ADS)
Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao
2016-12-01
The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
Parahydrogen-enhanced zero-field nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.
2011-07-01
Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.
Charge dissipative dielectric for cryogenic devices
NASA Technical Reports Server (NTRS)
Cantor, Robin Harold (Inventor); Hall, John Addison (Inventor)
2007-01-01
A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.
van der Togt, Remko; van Lieshout, Erik Jan; Hensbroek, Reinout; Beinat, E; Binnekade, J M; Bakker, P J M
2008-06-25
Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never been reported. To assess and classify incidents of EMI by RFID on critical care equipment. Without a patient being connected, EMI by 2 RFID systems (active 125 kHz and passive 868 MHz) was assessed under controlled conditions during May 2006, in the proximity of 41 medical devices (in 17 categories, 22 different manufacturers) at the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. Assessment took place according to an international test protocol. Incidents of EMI were classified according to a critical care adverse events scale as hazardous, significant, or light. In 123 EMI tests (3 per medical device), RFID induced 34 EMI incidents: 22 were classified as hazardous, 2 as significant, and 10 as light. The passive 868-MHz RFID signal induced a higher number of incidents (26 incidents in 41 EMI tests; 63%) compared with the active 125-kHz RFID signal (8 incidents in 41 EMI tests; 20%); difference 44% (95% confidence interval, 27%-53%; P < .001). The passive 868-MHz RFID signal induced EMI in 26 medical devices, including 8 that were also affected by the active 125-kHz RFID signal (26 in 41 devices; 63%). The median distance between the RFID reader and the medical device in all EMI incidents was 30 cm (range, 0.1-600 cm). In a controlled nonclinical setting, RFID induced potentially hazardous incidents in medical devices. Implementation of RFID in the critical care environment should require on-site EMI tests and updates of international standards.
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
Improvement of the Earth's gravity field from terrestrial and satellite data
NASA Technical Reports Server (NTRS)
1987-01-01
The terrestrial gravity data base was updated. Studies related to the Geopotential Research Mission (GRM) have primarily considered the local recovery of gravity anomalies on the surface of the Earth based on satellite to satellite tracking or gradiometer data. A simulation study was used to estimate the accuracy of 1 degree-mean anomalies which could be recovered from the GRM data. Numerous procedures were developed for the intent of performing computations at the laser stations in the SL6 system to improve geoid undulation calculations.
Gauss's law test of gravity at short range
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, H. J.
1993-01-01
A null test of the gravitational inverse-square law can be performed by testing Gauss's law for the field. We have constructed a three-axis superconducting gravity gradiometer and carried out such a test. A lead pendulum weighing 1500 kg was used to produce a time-varying field. This experiment places a new (2-sigma) limit of alpha = (0.9 + or - 4.6) x 10 exp -4 at lambda of 1.5 m, where alpha and lambda are parameters for the generalized potential phi = -(GM/r)(l + alpha e exp -r/lambda).
NASA Astrophysics Data System (ADS)
Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua
2015-03-01
We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.
Fabrication of submicron metallic grids with interference and phase-mask holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joong-Mok; Kim, Tae-Geun; Constant, Kristen
2011-01-25
Complex, submicron Cu metallic mesh nanostructures are made by electrochemical deposition using polymer templates made from photoresist. The polymer templates are fabricated with photoresist using two-beam interference holography and phase mask holography with three diffracted beams. Freestanding metallic mesh structures are made in two separate electrodepositions with perpendicular photoresist grating templates. Cu mesh square nanostructures having large (52.6%) open areas are also made by single electrodeposition with a photoresist template made with a phase mask. These structures have potential as electrodes in photonic devices.
NASA Astrophysics Data System (ADS)
Bachmann, M.; Besse, P. A.; Melchior, H.
1995-10-01
Overlapping-image multimode interference (MMI) couplers, a new class of devices, permit uniform and nonuniform power splitting. A theoretical description directly relates coupler geometry to image intensities, positions, and phases. Among many possibilities of nonuniform power splitting, examples of 1 \\times 2 couplers with ratios of 15:85 and 28:72 are given. An analysis of uniform power splitters includes the well-known 2 \\times N and 1 \\times N MMI couplers. Applications of MMI couplers include mode filters, mode splitters-combiners, and mode converters.
Arbitrary-ratio power splitter based on nonlinear multimode interference coupler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat
2015-04-24
We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less
Diffractive interference optical analyzer (DiOPTER)
NASA Astrophysics Data System (ADS)
Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.
2016-03-01
This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.
Cognitive software defined radar: waveform design for clutter and interference suppression
NASA Astrophysics Data System (ADS)
Kirk, Benjamin H.; Owen, Jonathan W.; Narayanan, Ram M.; Blunt, Shannon D.; Martone, Anthony F.; Sherbondy, Kelly D.
2017-05-01
Clutter and radio frequency interference (RFI) are prevalent issues in the field of radar and are specifically of interest to of cognitive radar. Here, methods for applying and testing the utility of cognitive radar for clutter and RFI mitigation are explored. Using the adaptable transmit capability, environmental database, and general "awareness" of a cognitive radar system (i.e. spectrum sensing, geographical location, etc.), a matched waveform is synthesized that improves the signal-to-clutter ratio (SCR), assuming at least an estimate of the target response and the environmental clutter response are known a prior i. RFI may also be mitigated by sensing the RF spectrum and adapting the transmit center frequency and bandwidth using methods that optimize bandwidth and signal-to-interference plus noise ratio (SINR) (i.e. the spectrum sensing, multi-objective (SS-MO) algorithm). The improvement is shown by a decrease in the noise floor. The above methods' effectiveness are examined via a test-bed developed around a software defined radio (SDR). Testing and the general use of commercial off the shelf (COTS) devices are desirable for their cost effectiveness, general ease of use, as well as technical and community support, but these devices provide design challenges in order to be effective. The universal software radio peripheral (USRP) X310 SDR is a relatively cheap and portable device that has all the system components of a basic cognitive radar. Design challenges of the SDR include phase coherency between channels, bandwidth limitations, dynamic range, and speed of computation and data communication / recording.
1996-06-01
switches 5-43 Figure 5-27. Mechanical interference between ’Pull Spring’ devices 5-45 Figure 5-28. Array of LIGA mechanical relay switches 5-49...like coating DM Direct metal interconnect technique DMD ™ Digital Micromirror Device EDP Ethylene, diamine, pyrocatechol and water; silicon anisotropic...mechanical systems MOSIS MOS Implementation Service PGA Pin grid array, an electronic die package PZT Lead-zirconate-titanate LIGA Lithographie
Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T
2010-09-13
This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.
Takao, Hiroyuki; Yeh, Yu Chih; Arita, Hiroyuki; Obatake, Takumi; Sakano, Teppei; Kurihara, Minoru; Matsuki, Akira; Ishibashi, Toshihiro; Murayama, Yuichi
2016-10-01
Use of mobile phones has become a standard reality of everyday living for many people worldwide, including medical professionals, as data sharing has drastically helped to improve quality of care. This increase in the use of mobile phones within hospitals and medical facilities has raised concern regarding the influence of radio waves on medical equipment. Although comprehensive studies have examined the effects of electromagnetic interference from 2G wireless communication and personal digital cellular systems on medical equipment, similar studies on more recent wireless technologies such as Long Term Evolution, wideband code division multiple access, and high-speed uplink access have yet to be published. Numerous tests targeting current wireless technologies were conducted between December 2012 and March 2013 in an anechoic chamber, shielded from external radio signals, with a dipole antenna to assess the effects of smartphone interference on several types of medical equipment. The interference produced by electromagnetic waves across five frequency bands from four telecommunication standards was assessed on 49 components from 22 pieces of medical equipment. Of the 22 pieces of medical equipment tested, 13 experienced interference at maximum transmission power. In contrast, at minimum transmission power, the maximum interference distance varied from 2 to 5 cm for different wireless devices. Four machines were affected at the minimum transmission power, and the maximum interference distance at the maximum transmission power was 38 cm. Results show that the interference from smartphones on medical equipment is very controllable.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-05-25
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.
Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing
2017-01-01
With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of...
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of...
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of...
Deng, J; Birkett, A G; Kalache, K D; Hanson, M A; Peebles, D M; Linney, A D; Lees, W R; Rodeck, C H
2001-01-01
To remove motion artefacts, a device was built to convert "noisy" umbilical arterial Doppler waveforms (UADWs) from an ultrasound (US) system into sharp ECG R-wave-like cardiac cycle triggering signals (CCTSs). These CCTSs were then used to gate a simultaneous (online) 3-D acquisition of sectional fetal echocardiograms from another US system. To test the conversion performance, a study was carried out in sheep fetal twins. Pulmonary arterial flow waveforms (PAFWs) from implanted probes were traced, in the meantime, to determine the reference cardiac cycle. Interference caused by running the two nonsynchronised US systems was controlled to three degrees (not-noticeable, moderate, and severe), together with high (> or = 40 cm/s) and low (< 40) flow velocities on UADWs. The conversion efficiency, assessed by the percentage of UADWs converted into CCTSs, was in the range of 83% to 100% for not-noticeable and moderate interference, and 0% to 71% for severe interference. The triggering accuracy, assessed by [(time lag mean between the onsets of PAFWs and corresponding CCTSs) -- (its 99% confidence level)] / the mean, was 90% to 96% for the not-noticeable interference high- and low-flow groups and for the moderate interference high-flow group; 19% to 93% for the moderate interference low-flow group; and from not obtainable up to 90% for the severe interference groups. The results show that UADWs can be used as a satisfactory online motion-gating source even in the presence of moderate interference. The major problems are from severe interference or moderate interference with low-flow velocity, which can be minimised/eliminated by the integration of the individual systems involved.
Dual-optical-response photonic crystal fibre interferometer for multi-parameter sensing
NASA Astrophysics Data System (ADS)
Villatoro, Joel; Minkovich, Vladimir P.; Zubia, Joseba
2014-05-01
An all-fiber mode interferometer consisting of a short segment of photonic crystal fiber (PCF) fusion spliced to standard single mode optical fiber and pressed on localized regions is proposed for multi-parameter sensing. In our configuration, the physical parameter being sensed changes the fringe contrast (or visibility) of the interference pattern and also causes a shift to the same. To achieve this dual effect the device is pressed on localized regions over a few millimeters. In this manner we introduce losses and effective refractive index changes to the interference modes, hence visibility and shift to the interference pattern. Our interferometer is suitable for monitoring diverse physical parameters such as weight, force, pressure, load, etc. The advantage is that no temperature or power fluctuations compensation is required.
[Restrictions for ICD patients in daily life].
Köbe, Julia; Gradaus, Rainer; Zumhagen, Sven; Böcker, Dirk
2005-11-01
Patients with an implantable cardioverter defibrillator (ICD) may experience loss of consciousness. Electromagnetic interference (EMI) may trigger undesired or inhibit necessary therapy in patients with an ICD. Therefore, questions about personal or professional activities for ICD patients arise. Restricting driving or other personal activities has adverse effects on the patient's quality of life. The national Societies of Cardiology provide recommendations for ICD patients concerning driving of motor vehicles. Patients with an ICD that is implanted prophylactically do not have to refrain from driving after recovery from the implantation procedure. Patients with arrhythmias are classified into different groups depending on the risk of recurrence of tachycardias and symptoms. Commercial driving is not allowed for patients with an ICD in Germany except for those with a prophylactic indication without a history of arrhythmias. Those patients may drive small cars but no trucks or busses. Guidelines for medical fitness in commercial or military flying are regulated by the Joint Aviation Authorities (JAA) and ventricular tachycardias are a contraindication for both. Fortunately, loss of consciousness is not dangerous in most jobs. Strong sources of EMI can occur at special workplaces. Patients have to be advised and tested individually concerning their risk for EMI at their employment site before returning safely. Modern life exposes to an increasing amount of EMI. Intact household devices usually do not interfere with ICDs. Mobile phones may interfere with implanted devices. Interaction can be minimized by special precautions like maintaining a distance of minimum 10 cm between mobile phone and ICD. Electronic surveillance systems work differently and have the potential to interact with devices. Patients should be advised to pass those systems with avoiding longer exposure. The presence of an ICD is presently a contraindication for undergoing magnetic resonance imaging (MRI) because of a high risk of destruction of the system with even potential harm to the patient. High-frequency application for electrocautery devices or ablation is possible under certain precautions that have to be planned before. There is a high sensitivity of ICD systems to ionizing radiation with defect of the devices after a cumulative dose > 5 Gy.
Transport characteristics of μ-SQUIDs for probing magnetism
NASA Astrophysics Data System (ADS)
Biswas, Sourav; Paul, Sagar; Parashari, Harsh; Winkelmann, Clemens B.; Courtois, Hervé; Gupta, Anjan K.
2018-04-01
We study the transport properties of niobium (Nb) based micron sized superconducting quantum interference devices (μ-SQUID), which are designed to eliminate thermal hysteresis down to 1.3 K. Current-voltage characteristics are non-hysterestic at the lowest temperature. Large voltage oscillations with magnetic field are observed for a wide range of bias currents with good flux sensitivity and reduced flux noise. However, devices with fins and devices on sapphire substrate show hysteresis for wide range of bath temperature. We have also been able to see the sign of magnetic response from a single micron size ferromagnetic permalloy ellipse using the μ-SQUID.
On-fiber plasmonic interferometer for multi-parameter sensing
Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...
2015-01-01
We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less
Evaluation of hematocrit interference with MyStar extra and seven competitive devices.
Demircik, Filiz; Ramljak, Sanja; Hermanns, Iris; Pfützner, Anke; Pfützner, Andreas
2015-03-01
In previous studies, meters employing dynamic electrochemistry (DE), have been shown to correct for hematocrit (HCT) interference. This laboratory investigation assessed the HCT stability of MyStar Extra (Sanofi) in comparison to 7 competitive devices (Accu-Chek Aviva Nano & Accu-Chek Performa, Roche Diagnostics; Contour XT and Contour Link, Bayer; FreeStyle Freedom Lite, Abbott; MyLife Pura, Ypsomed; OneTouch Verio Pro, LifeScan). Venous heparinized blood was freshly drawn, immediately aliquoted, and manipulated to contain 3 different blood glucose concentrations (50-80 mg/dL, 150-180 mg/dL, and 350-400 mg/dL) and 5 different HCT levels (20-25%, 30-35%, 40-45%, 50-55%, and 60-65%). After careful oxygenation to normal blood oxygen pressure, each of the 15 different samples was measured 8 times with 2 devices and 2 strip lots of each meter (32 measurements/meter/sample). YSI Stat 2300 served as laboratory reference method. Next to determination of the mean absolute relative deviation (MARD), stability to HCT influence was assumed, when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT over all tested glucose ranges (HIF: hematocrit interference factor). Four of the devices showed stable performance: Contour XT (MARD: 1.3%/HIF: 6.1%), MyStar Extra (4.7%/7.1%), OneTouch Verio Pro (4.5%/7.3%), and Contour Link (6.3%/9.3%). The 4 other meters were influenced by HCT (Accu-Chek Performa: 4.7%/20.9%, Accu-Chek Aviva Nano: 4.5%/22.4%, FreeStyle Freedom Lite: 4.8%/24.5%; MyLife Pura: 6.4%/28.7%). In this study, all meters showed a good accuracy, but only 50% of them, including MyStar Extra, were shown to reliably correct for potential hematocrit influence on the meter results. © 2014 Diabetes Technology Society.
Evaluation of Hematocrit Interference With MyStar Extra and Seven Competitive Devices
Demircik, Filiz; Ramljak, Sanja; Hermanns, Iris; Pfützner, Anke; Pfützner, Andreas
2014-01-01
Background: In previous studies, meters employing dynamic electrochemistry (DE), have been shown to correct for hematocrit (HCT) interference. This laboratory investigation assessed the HCT stability of MyStar Extra (Sanofi) in comparison to 7 competitive devices (Accu-Chek Aviva Nano & Accu-Chek Performa, Roche Diagnostics; Contour XT and Contour Link, Bayer; FreeStyle Freedom Lite, Abbott; MyLife Pura, Ypsomed; OneTouch Verio Pro, LifeScan). Method: Venous heparinized blood was freshly drawn, immediately aliquoted, and manipulated to contain 3 different blood glucose concentrations (50-80 mg/dL, 150-180 mg/dL, and 350-400 mg/dL) and 5 different HCT levels (20-25%, 30-35%, 40-45%, 50-55%, and 60-65%). After careful oxygenation to normal blood oxygen pressure, each of the 15 different samples was measured 8 times with 2 devices and 2 strip lots of each meter (32 measurements/meter/sample). YSI Stat 2300 served as laboratory reference method. Next to determination of the mean absolute relative deviation (MARD), stability to HCT influence was assumed, when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT over all tested glucose ranges (HIF: hematocrit interference factor). Results: Four of the devices showed stable performance: Contour XT (MARD: 1.3%/HIF: 6.1%), MyStar Extra (4.7%/7.1%), OneTouch Verio Pro (4.5%/7.3%), and Contour Link (6.3%/9.3%). The 4 other meters were influenced by HCT (Accu-Chek Performa: 4.7%/20.9%, Accu-Chek Aviva Nano: 4.5%/22.4%, FreeStyle Freedom Lite: 4.8%/24.5%; MyLife Pura: 6.4%/28.7%). Conclusions: In this study, all meters showed a good accuracy, but only 50% of them, including MyStar Extra, were shown to reliably correct for potential hematocrit influence on the meter results. PMID:25549636
Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu
2017-08-11
The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.
Quantum interference in an interfacial superconductor.
Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M R V L; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya M; Vandersypen, Lieven M K; Caviglia, Andrea D
2016-10-01
The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T c ; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T c superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.
Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco
2012-01-01
In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228
Airborne system for detection and location of radio interference sources
NASA Astrophysics Data System (ADS)
Audone, Bruno; Pastore, Alberto
1992-11-01
The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.
Tuning the thermal conductance of molecular junctions with interference effects
NASA Astrophysics Data System (ADS)
Klöckner, J. C.; Cuevas, J. C.; Pauly, F.
2017-12-01
We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.
NASA Astrophysics Data System (ADS)
Carlotti, Marco; Kovalchuk, Andrii; Wächter, Tobias; Qiu, Xinkai; Zharnikov, Michael; Chiechi, Ryan C.
2016-12-01
Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.
On-chip interference of single photons from an embedded quantum dot and an external laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O'Hara, J.
2016-06-20
In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler.more » This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.« less
Kondo blockade due to quantum interference in single-molecule junctions
Mitchell, Andrew K.; Pedersen, Kim G. L.; Hedegård, Per; Paaske, Jens
2017-01-01
Molecular electronics offers unique scientific and technological possibilities, resulting from both the nanometre scale of the devices and their reproducible chemical complexity. Two fundamental yet different effects, with no classical analogue, have been demonstrated experimentally in single-molecule junctions: quantum interference due to competing electron transport pathways, and the Kondo effect due to entanglement from strong electronic interactions. Here we unify these phenomena, showing that transport through a spin-degenerate molecule can be either enhanced or blocked by Kondo correlations, depending on molecular structure, contacting geometry and applied gate voltages. An exact framework is developed, in terms of which the quantum interference properties of interacting molecular junctions can be systematically studied and understood. We prove that an exact Kondo-mediated conductance node results from destructive interference in exchange-cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/nodes are demonstrated for prototypical molecular junctions, illustrating the intricate interplay of quantum effects beyond the single-orbital paradigm. PMID:28492236
Capsule Endoscopy in Patients with Implantable Electromedical Devices is Safe
Harris, Lucinda A.; Hansel, Stephanie L.; Rajan, Elizabeth; Srivathsan, Komandoor; Rea, Robert; Crowell, Michael D.; Fleischer, David E.; Pasha, Shabana F.; Gurudu, Suryakanth R.; Heigh, Russell I.; Shiff, Arthur D.; Post, Janice K.; Leighton, Jonathan A.
2013-01-01
Background and Study Aims. The presence of an implantable electromechanical cardiac device (IED) has long been considered a relative contraindication to the performance of video capsule endoscopy (CE). The primary aim of this study was to evaluate the safety of CE in patients with IEDs. A secondary purpose was to determine whether IEDs have any impact on images captured by CE. Patients and Methods. A retrospective chart review of all patients who had a capsule endoscopy at Mayo Clinic in Scottsdale, AZ, USA, or Rochester, MN, USA, (January 2002 to June 2010) was performed to identify CE studies done on patients with IEDs. One hundred and eighteen capsule studies performed in 108 patients with IEDs were identified and reviewed for demographic data, method of preparation, and study data. Results. The most common indications for CE were obscure gastrointestinal bleeding (77%), anemia (14%), abdominal pain (5%), celiac disease (2%), diarrhea (1%), and Crohn's disease (1%). Postprocedure assessments did not reveal any detectable alteration on the function of the IED. One patient with an ICD had a 25-minute loss of capsule imaging due to recorder defect. Two patients with LVADs had interference with capsule image acquisition. Conclusions. CE did not interfere with IED function, including PM, ICD, and/or LVAD and thus appears safe. Additionally, PM and ICD do not appear to interfere with image acquisition but LVAD may interfere with capsule images and require that capsule leads be positioned as far away as possible from the IED to assure reliable image acquisition. PMID:23710168
47 CFR 18.111 - General operating conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
....111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL INDUSTRIAL, SCIENTIFIC, AND MEDICAL... interference to an authorized radio station or a radiocommunication device operating in an ISM frequency band... emissions of ISM equipment operating in an ISM frequency band and otherwise complying with the requirements...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
...- Harvesting Device Using Electrostrictive Polymers.//U.S. Patent No. 7,245,292: Apparatus and Method for...: Flexible Video Display Apparatus and Method.//U.S. Patent No. 7,277,475: Narrowband Interference Excision...