Sample records for interference filter system

  1. Integrating the ECG power-line interference removal methods with rule-based system.

    PubMed

    Kumaravel, N; Senthil, A; Sridhar, K S; Nithiyanandam, N

    1995-01-01

    The power-line frequency interference in electrocardiographic signals is eliminated to enhance the signal characteristics for diagnosis. The power-line frequency normally varies +/- 1.5 Hz from its standard value of 50 Hz. In the present work, the performances of the linear FIR filter, Wave digital filter (WDF) and adaptive filter for the power-line frequency variations from 48.5 to 51.5 Hz in steps of 0.5 Hz are studied. The advantage of the LMS adaptive filter in the removal of power-line frequency interference even if the frequency of interference varies by +/- 1.5 Hz from its normal value of 50 Hz over other fixed frequency filters is very well justified. A novel method of integrating rule-based system approach with linear FIR filter and also with Wave digital filter are proposed. The performances of Rule-based FIR filter and Rule-based Wave digital filter are compared with the LMS adaptive filter.

  2. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.

    1997-01-01

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  3. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation effectiveness of the system on the 140 ft telescope at Green Bank Observatory.

  4. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  5. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks.

    PubMed

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-05-25

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.

  6. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks

    PubMed Central

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-01-01

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085

  7. A Two-Stage Approach for Improving the Convergence of Least-Mean-Square Adaptive Decision-Feedback Equalizers in the Presence of Severe Narrowband Interference

    NASA Astrophysics Data System (ADS)

    Batra, Arun; Zeidler, James R.; Beex, A. A. Louis

    2007-12-01

    It has previously been shown that a least-mean-square (LMS) decision-feedback filter can mitigate the effect of narrowband interference (L.-M. Li and L. Milstein, 1983). An adaptive implementation of the filter was shown to converge relatively quickly for mild interference. It is shown here, however, that in the case of severe narrowband interference, the LMS decision-feedback equalizer (DFE) requires a very large number of training symbols for convergence, making it unsuitable for some types of communication systems. This paper investigates the introduction of an LMS prediction-error filter (PEF) as a prefilter to the equalizer and demonstrates that it reduces the convergence time of the two-stage system by as much as two orders of magnitude. It is also shown that the steady-state bit-error rate (BER) performance of the proposed system is still approximately equal to that attained in steady-state by the LMS DFE-only. Finally, it is shown that the two-stage system can be implemented without the use of training symbols. This two-stage structure lowers the complexity of the overall system by reducing the number of filter taps that need to be adapted, while incurring a slight loss in the steady-state BER.

  8. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  9. Public access defibrillation: suppression of 16.7 Hz interference generated by the power supply of the railway systems.

    PubMed

    Christov, Ivaylo I; Iliev, Georgi L

    2005-03-15

    A specific problem using the public access defibrillators (PADs) arises at the railway stations. Some countries as Germany, Austria, Switzerland, Norway and Sweden are using AC railroad net power-supply system with rated 16.7 Hz frequency modulated from 15.69 Hz to 17.36 Hz. The power supply frequency contaminates the electrocardiogram (ECG). It is difficult to be suppressed or eliminated due to the fact that it considerably overlaps the frequency spectra of the ECG. The interference impedes the automated decision of the PADs whether a patient should be (or should not be) shocked. The aim of this study is the suppression of the 16.7 Hz interference generated by the power supply of the railway systems. Software solution using adaptive filtering method was proposed for 16.7 Hz interference suppression. The optimal performance of the filter is achieved, embedding a reference channel in the PADs to record the interference. The method was tested with ECGs from AHA database. The method was tested with patients of normal sinus rhythms, symptoms of tachycardia and ventricular fibrillation. Simulated interference with frequency modulation from 15.69 Hz to 17.36 Hz changing at a rate of 2% per second was added to the ECGs, and then processed by the suggested adaptive filtering. The method totally suppresses the noise with no visible distortions of the original signals. The proposed adaptive filter for noise suppression generated by the power supply of the railway systems has a simple structure requiring a low level of computational resources, but a good reference signal as well.

  10. Apodized RFI filtering of synthetic aperture radar images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less

  11. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  12. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  13. Identification and mitigation of interference sources present in SSB-based wireless MRI receiver arrays

    PubMed Central

    Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.

    2013-01-01

    Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242

  14. Public access defibrillation: Suppression of 16.7 Hz interference generated by the power supply of the railway systems

    PubMed Central

    Christov, Ivaylo I; Iliev, Georgi L

    2005-01-01

    Background A specific problem using the public access defibrillators (PADs) arises at the railway stations. Some countries as Germany, Austria, Switzerland, Norway and Sweden are using AC railroad net power-supply system with rated 16.7 Hz frequency modulated from 15.69 Hz to 17.36 Hz. The power supply frequency contaminates the electrocardiogram (ECG). It is difficult to be suppressed or eliminated due to the fact that it considerably overlaps the frequency spectra of the ECG. The interference impedes the automated decision of the PADs whether a patient should be (or should not be) shocked. The aim of this study is the suppression of the 16.7 Hz interference generated by the power supply of the railway systems. Methods Software solution using adaptive filtering method was proposed for 16.7 Hz interference suppression. The optimal performance of the filter is achieved, embedding a reference channel in the PADs to record the interference. The method was tested with ECGs from AHA database. Results The method was tested with patients of normal sinus rhythms, symptoms of tachycardia and ventricular fibrillation. Simulated interference with frequency modulation from 15.69 Hz to 17.36 Hz changing at a rate of 2% per second was added to the ECGs, and then processed by the suggested adaptive filtering. The method totally suppresses the noise with no visible distortions of the original signals. Conclusion The proposed adaptive filter for noise suppression generated by the power supply of the railway systems has a simple structure requiring a low level of computational resources, but a good reference signal as well. PMID:15766390

  15. Spectral Analysis Tool 6.2 for Windows

    NASA Technical Reports Server (NTRS)

    Morgan, Feiming; Sue, Miles; Peng, Ted; Tan, Harry; Liang, Robert; Kinman, Peter

    2006-01-01

    Spectral Analysis Tool 6.2 is the latest version of a computer program that assists in analysis of interference between radio signals of the types most commonly used in Earth/spacecraft radio communications. [An earlier version was reported in Software for Analyzing Earth/Spacecraft Radio Interference (NPO-20422), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 52.] SAT 6.2 calculates signal spectra, bandwidths, and interference effects for several families of modulation schemes. Several types of filters can be modeled, and the program calculates and displays signal spectra after filtering by any of the modeled filters. The program accommodates two simultaneous signals: a desired signal and an interferer. The interference-to-signal power ratio can be calculated for the filtered desired and interfering signals. Bandwidth-occupancy and link-budget calculators are included for the user s convenience. SAT 6.2 has a new software structure and provides a new user interface that is both intuitive and convenient. SAT 6.2 incorporates multi-tasking, multi-threaded execution, virtual memory management, and a dynamic link library. SAT 6.2 is designed for use on 32- bit computers employing Microsoft Windows operating systems.

  16. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system

    NASA Astrophysics Data System (ADS)

    Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.

    2018-05-01

    The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.

  17. Spectral filters for laser communications

    NASA Technical Reports Server (NTRS)

    Shaik, K.

    1991-01-01

    Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.

  18. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.

    2015-12-01

    In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components compared to the respective linear filter. Adaptive configurations of NDLs are similarly controlled by a single parameter and are suitable for improving quality of nonstationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.

  19. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  20. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.

  1. HYBRID SILICON-ON-SAPPHIRE/SCALED CMOS INTERFERENCE MITIGATION FRONT END BASED ON SIMULTANEOUS NOISE CANCELLATION, ACTIVE-INTERFERENCE CANCELLATION AND N-PATH-MIXER FILTERING

    DTIC Science & Technology

    2017-04-01

    INTERFERENCE-CANCELLATION AND N-PATH-MIXER FILTERING Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang Columbia University APRIL 2017 Final...INTERFERENCE-CANCELLATION AND N- PATH-MIXER FILTERING 5a. CONTRACT NUMBER FA8650-14-1-7414 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E/62716E 6...techniques for developing interference mitigation technology (IMT) enabling frequency-agile, reconfigurable filter -less receivers. Wideband noise

  2. A P-band SAR interference filter

    NASA Technical Reports Server (NTRS)

    Taylor, Victor B.

    1992-01-01

    The synthetic aperture radar (SAR) interference filter is an adaptive filter designed to reduce the effects of interference while minimizing the introduction of undesirable side effects. The author examines the adaptive spectral filter and the improvement in processed SAR imagery using this filter for Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) data. The quality of these improvements is determined through several data fidelity criteria, such as point-target impulse response, equivalent number of looks, SNR, and polarization signatures. These parameters are used to characterize two data sets, both before and after filtering. The first data set consists of data with the interference present in the original signal, and the second set consists of clean data which has been coherently injected with interference acquired from another scene.

  3. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    DOEpatents

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  4. Real-time Java simulations of multiple interference dielectric filters

    NASA Astrophysics Data System (ADS)

    Kireev, Alexandre N.; Martin, Olivier J. F.

    2008-12-01

    An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk. Program summaryProgram title: Transmittance Catalogue identifier: AEBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5778 No. of bytes in distributed program, including test data, etc.: 90 474 Distribution format: tar.gz Programming language: Java Computer: Developed on PC-Pentium platform Operating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OS RAM: Variable Classification: 18 Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter. Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool. Running time: Real-time simulations

  5. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  6. Least-mean-square spatial filter for IR sensors.

    PubMed

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.

  7. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.

    PubMed

    Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya

    2005-05-30

    We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.

  8. Design of HTS filter for GSM-R communication system

    NASA Astrophysics Data System (ADS)

    Cui, Hongyu; Ji, Laiyun

    2018-04-01

    High-temperature superconducting materials with its excellent performance have increasingly been valued by industries, especially in the field of electronic information. The superconducting material has almost zero surface resistance, and the filter made of it has the characteristics of low insertion loss, high edge steepness and good out-of-band rejection. It has higher selectivity for the desired signal and thus less interference from adjacent channels Signal interference, and noise reduction coefficient can improve the ability to detect weak signals. This design is suitable for high temperature superconducting filter of GSM-R communication system, which can overcome many shortcomings of the traditional GSM-R. The filter is made of DyBCO, a high temperature superconducting thin film material based on magnesium oxide (MgO) substrate with the dielectric constant of 9.7, the center frequency at 887.5MHz, bandwidth of 5MHz.

  9. Optical calculation of correlation filters for a robotic vision system

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  10. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations.

  11. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  12. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  13. Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.

    PubMed

    Tarumi, Toshiyasu; Amerov, Airat K; Arnold, Mark A; Small, Gary W

    2009-06-01

    Optimal filter design of two-channel near-infrared filter photometers is investigated for simulated two-component systems consisting of an analyte and a spectrally overlapping interferent. The degree of overlap between the analyte and interferent bands is varied over three levels. The optimal design is obtained for three cases: a source or background flicker noise limited case, a shot noise limited case, and a detector noise limited case. Conventional photometers consist of narrow-band optical filters with their bands located at discrete wavelengths. However, the use of broadband optical filters with overlapping responses has been proposed to obtain as much signal as possible from a weak and broad analyte band typical of near-infrared absorptions. One question regarding the use of broadband optical filters with overlapping responses is the selectivity achieved by such filters. The selectivity of two-channel photometers is evaluated on the basis of the angle between the analyte and interferent vectors in the space spanned by the relative change recorded for each of the two detector channels. This study shows that for the shot noise limited or detector noise limited cases, the slight decrease in selectivity with the use of broadband optical filters can be compensated by the higher signal-to-noise ratio afforded by the use of such filters. For the source noise limited case, the best quantitative results are obtained with the use of narrow-band non-overlapping optical filters.

  14. CCD filter and transform techniques for interference excision

    NASA Technical Reports Server (NTRS)

    Borsuk, G. M.; Dewitt, R. N.

    1976-01-01

    The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.

  15. Imaging spectrometer using a liquid crystal tunable filter

    NASA Astrophysics Data System (ADS)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  16. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuo; Maillet, Yoann; Wang, Fei

    2010-01-01

    High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.

  17. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    NASA Astrophysics Data System (ADS)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  18. Impulsive interference in communication channels and its mitigation by SPART and other nonlinear filters

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexei V.; Epard, Marc; Lancaster, John B.; Lutes, Robert L.; Shumaker, Eric A.

    2012-12-01

    A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.

  19. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  20. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  1. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less

  2. GNSS Space-Time Interference Mitigation and Attitude Determination in the Presence of Interference Signals

    PubMed Central

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-01-01

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909

  3. GNSS space-time interference mitigation and attitude determination in the presence of interference signals.

    PubMed

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-05-26

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.

  4. Improved recovery of the hemodynamic response in Diffuse Optical Imaging using short optode separations and state-space modeling

    PubMed Central

    Gagnon, Louis; Perdue, Katherine; Greve, Douglas N.; Goldenholz, Daniel; Kaskhedikar, Gayatri; Boas, David A.

    2011-01-01

    Diffuse Optical Imaging (DOI) allows the recovery of the hemodynamic response associated with evoked brain activity. The signal is contaminated with systemic physiological interference which occurs in the superficial layers of the head as well as in the brain tissue. The back-reflection geometry of the measurement makes the DOI signal strongly contaminated by systemic interference occurring in the superficial layers. A recent development has been the use of signals from small source-detector separation (1 cm) optodes as regressors. Since those additional measurements are mainly sensitive to superficial layers in adult humans, they help in removing the systemic interference present in longer separation measurements (3 cm). Encouraged by those findings, we developed a dynamic estimation procedure to remove global interference using small optode separations and to estimate simultaneously the hemodynamic response. The algorithm was tested by recovering a simulated synthetic hemodynamic response added over baseline DOI data acquired from 6 human subjects at rest. The performance of the algorithm was quantified by the Pearson R2 coefficient and the mean square error (MSE) between the recovered and the simulated hemodynamic responses. Our dynamic estimator was also compared with a static estimator and the traditional adaptive filtering method. We observed a significant improvement (two-tailed paired t-test, p < 0.05) in both HbO and HbR recovery using our Kalman filter dynamic estimator compared to the traditional adaptive filter, the static estimator and the standard GLM technique. PMID:21385616

  5. Interference-free SDMA for FBMC-OQAM

    NASA Astrophysics Data System (ADS)

    Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome

    2013-12-01

    Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.

  6. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    NASA Astrophysics Data System (ADS)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  7. Hierarchical cluster analysis of technical replicates to identify interferents in untargeted mass spectrometry metabolomics.

    PubMed

    Caesar, Lindsay K; Kvalheim, Olav M; Cech, Nadja B

    2018-08-27

    Mass spectral data sets often contain experimental artefacts, and data filtering prior to statistical analysis is crucial to extract reliable information. This is particularly true in untargeted metabolomics analyses, where the analyte(s) of interest are not known a priori. It is often assumed that chemical interferents (i.e. solvent contaminants such as plasticizers) are consistent across samples, and can be removed by background subtraction from blank injections. On the contrary, it is shown here that chemical contaminants may vary in abundance across each injection, potentially leading to their misidentification as relevant sample components. With this metabolomics study, we demonstrate the effectiveness of hierarchical cluster analysis (HCA) of replicate injections (technical replicates) as a methodology to identify chemical interferents and reduce their contaminating contribution to metabolomics models. Pools of metabolites with varying complexity were prepared from the botanical Angelica keiskei Koidzumi and spiked with known metabolites. Each set of pools was analyzed in triplicate and at multiple concentrations using ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS). Before filtering, HCA failed to cluster replicates in the data sets. To identify contaminant peaks, we developed a filtering process that evaluated the relative peak area variance of each variable within triplicate injections. These interferent peaks were found across all samples, but did not show consistent peak area from injection to injection, even when evaluating the same chemical sample. This filtering process identified 128 ions that appear to originate from the UPLC-MS system. Data sets collected for a high number of pools with comparatively simple chemical composition were highly influenced by these chemical interferents, as were samples that were analyzed at a low concentration. When chemical interferent masses were removed, technical replicates clustered in all data sets. This work highlights the importance of technical replication in mass spectrometry-based studies, and presents a new application of HCA as a tool for evaluating the effectiveness of data filtering prior to statistical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  9. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  10. Filter-based chemical sensors for hazardous materials

    NASA Astrophysics Data System (ADS)

    Major, Kevin J.; Ewing, Kenneth J.; Poutous, Menelaos K.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2014-05-01

    The development of new techniques for the detection of homemade explosive devices is an area of intense research for the defense community. Such sensors must exhibit high selectivity to detect explosives and/or explosives related materials in a complex environment. Spectroscopic techniques such as FTIR are capable of discriminating between the volatile components of explosives; however, there is a need for less expensive systems for wide-range use in the field. To tackle this challenge we are investigating the use of multiple, overlapping, broad-band infrared (IR) filters to enable discrimination of volatile chemicals associated with an explosive device from potential background interferants with similar chemical signatures. We present an optical approach for the detection of fuel oil (the volatile component in ammonium nitrate-fuel oil explosives) that relies on IR absorption spectroscopy in a laboratory environment. Our proposed system utilizes a three filter set to separate the IR signals from fuel oil and various background interferants in the sample headspace. Filter responses for the chemical spectra are calculated using a Gaussian filter set. We demonstrate that using a specifically chosen filter set enables discrimination of pure fuel oil, hexanes, and acetone, as well as various mixtures of these components. We examine the effects of varying carrier gasses and humidity on the collected spectra and corresponding filter response. We study the filter response on these mixtures over time as well as present a variety of methods for observing the filter response functions to determine the response of this approach to detecting fuel oil in various environments.

  11. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference.

    PubMed

    Mosier-Boss, P A; Sorensen, K C; George, R D; Sims, P C; O'braztsova, A

    2017-06-05

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  13. Digital holographic microscope with low-frequency attenuation filter for position measurement of a nanoparticle.

    PubMed

    Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio

    2012-10-01

    We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.

  14. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  15. Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems

    NASA Astrophysics Data System (ADS)

    Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun

    2013-12-01

    The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.

  16. Design and implementation of a multiband digital filter using FPGA to extract the ECG signal in the presence of different interference signals.

    PubMed

    Aboutabikh, Kamal; Aboukerdah, Nader

    2015-07-01

    In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2017-06-01

    The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously.

  18. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  19. The Amateur Scientist: Simple Optical Experiments in Which Spatial Filtering Removes the "Noise" from Pictures.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1982-01-01

    Spatial filtering, based on diffraction/interference of light waves, is a technique by which unwanted information in a picture ("noise") can be separated from wanted information. A series of experiments is described in which students can create a system that functions as an optical computer to create clearer pictures. (Author/JN)

  20. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  1. Summaries of Papers Presented at the Optical Computing Topical Meeting Held in Salt Lake City, Utah on 27 February thru 1 March 1989

    DTIC Science & Technology

    1989-12-31

    interference rejection fo wideband OPENING REMARKS receiver systems. A time/space integrating optical architec- Alexander A. Sawchuk, University of...electroabsorptive self-electrooptic-effect devices on a single ZnS interference filter is proposed. (p. 385) are attractive for 2-D arrays for switching and...photorefractive crystal as shown in figure 1. The mutual interference between the two sets of beams produces the desired outer-product matrix W = uv-iW

  2. Novel method of detecting movement of the interference fringes using one-dimensional PSD.

    PubMed

    Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong

    2015-06-02

    In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  3. Optical Absorption Spectra of Nuclear Filters Modified by Deposition of Silver Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.

    2015-07-01

    Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.

  4. Narrow-band far-infrared interference filters with high-T c, superconducting reflectors

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.

    1994-10-01

    We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.

  5. A high powered radar interference mitigation technique for communications signal recovery with fpga implementation

    DTIC Science & Technology

    2017-03-01

    2016.7485263.] 14. SUBJECT TERMS parameter estimation; matched- filter detection; QPSK; radar; interference; LSE, cyber, electronic warfare 15. NUMBER OF...signal is routed through a maximum-likelihood detector (MLD), which is a bank of four filters matched to the four symbols of the QPSK constellation... filters matched for each of the QPSK symbols is used to demodulate the signal after cancellation. The matched filters are defined as the complex

  6. The multi-spectral line-polarization MSE system on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less

  7. The multi-spectral line-polarization MSE system on Alcator C-Mod

    DOE PAGES

    Mumgaard, R. T.; Scott, S. D.; Khoury, M.

    2016-08-17

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less

  8. FILTSoft: A computational tool for microstrip planar filter design

    NASA Astrophysics Data System (ADS)

    Elsayed, M. H.; Abidin, Z. Z.; Dahlan, S. H.; Cholan N., A.; Ngu, Xavier T. I.; Majid, H. A.

    2017-09-01

    Filters are key component of any communication system to control spectrum and suppress interferences. Designing a filter involves long process as well as good understanding of the basic hardware technology. Hence this paper introduces an automated design tool based on Matlab-GUI, called the FILTSoft (acronym for Filter Design Software) to ease the process. FILTSoft is a user friendly filter design tool to aid, guide and expedite calculations from lumped elements level to microstrip structure. Users just have to provide the required filter specifications as well as the material description. FILTSoft will calculate and display the lumped element details, the planar filter structure, and the expected filter's response. An example of a lowpass filter design was calculated using FILTSoft and the results were validated through prototype measurement for comparison purposes.

  9. Problems in the use of interference filters for spectrophotometric determination of total ozone

    NASA Technical Reports Server (NTRS)

    Basher, R. E.; Matthews, W. A.

    1977-01-01

    An analysis of the use of ultraviolet narrow-band interference filters for total ozone determination is given with reference to the New Zealand filter spectrophotometer under the headings of filter monochromaticity, temperature dependence, orientation dependence, aging, and specification tolerances and nonuniformity. Quantitative details of each problem are given, together with the means used to overcome them in the New Zealand instrument. The tuning of the instrument's filter center wavelengths to a common set of values by tilting the filters is also described, along with a simple calibration method used to adjust and set these center wavelengths.

  10. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  11. Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis.

    PubMed

    Soedirdjo, S D H; Ullah, K; Merletti, R

    2015-08-01

    Electromyogram (EMG) recordings are often corrupted by power line interference (PLI) even though the skin is prepared and well-designed instruments are used. This study focuses on the analysis of some of the recent and classical existing digital signal processing approaches have been used to attenuate, if not eliminate, the power line interference from EMG signals. A comparison of the signal to interference ratio (SIR) of the output signals is presented, for four methods: classical notch filter, spectral interpolation, adaptive noise canceller with phase locked loop (ANC-PLL) and adaptive filter, applied to simulated multichannel monopolar EMG signals with different SIR. The effect of each method on the shape of the EMG signals is also analyzed. The results show that ANC-PLL method gives the best output SIR and lowest shape distortion compared to the other methods. Classical notch filtering is the simplest method but some information might be lost as it removes both the interference and the EMG signals. Thus, it is obvious that notch filter has the lowest performance and it introduces distortion into the resulting signals.

  12. Boundary layer temperature measurements of a noctual urban boundary layer

    NASA Astrophysics Data System (ADS)

    Holloway, Simon; Ricketts, Hugo; Vaughan, Geraint

    2018-04-01

    A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.

  13. Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.

    1990-02-01

    A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.

  14. Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings.

    PubMed

    Xu, Fang; Poon, Andrew W

    2008-06-09

    We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.

  15. Electromechanical Frequency Filters

    NASA Astrophysics Data System (ADS)

    Wersing, W.; Lubitz, K.

    Frequency filters select signals with a frequency inside a definite frequency range or band from signals outside this band, traditionally afforded by a combination of L-C-resonators. The fundamental principle of all modern frequency filters is the constructive interference of travelling waves. If a filter is set up of coupled resonators, this interference occurs as a result of the successive wave reflection at the resonators' ends. In this case, the center frequency f c of a filter, e.g., set up of symmetrical λ/2-resonators of length 1, is given by f_c = f_r = v_{ph}/λ = v_{ph}/2l , where v ph is the phase velocity of the wave. This clearly shows the big advantage of acoustic waves for filter applications in comparison to electro-magnetic waves. Because v ph of acoustic waves in solids is about 104-105 smaller than that of electro-magnetic waves, much smaller filters can be realised. Today, piezoelectric materials and processing technologies exist that electromechanical resonators and filters can be produced in the frequency range from 1 kHz up to 10 GHz. Further requirements for frequency filters such as low losses (high resonator Q) and low temperature coefficients of frequency constants can also be fulfilled with these filters. Important examples are quartz-crystal resonators and filters (1 kHz-200 MHz) as discussed in Chap. 2, electromechanical channel filters (50 kHz and 130 kHz) for long-haul communication systems as discussed in this section, surface acoustic wave (SAW) filters (20 MHz-5 GHz), as discussed in Chap. 14, and thin film bulk acoustic resonators (FBAR) and filters (500 MHz-10 GHz), as discussed in Chap. 15.

  16. Design and Analysis of a Triple Stop-band Filter Using Ratioed Periodical Defected Microstrip Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Yanyan; Li, Yingsong

    2017-07-01

    In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.

  17. Tunable multimode-interference bandpass fiber filter.

    PubMed

    Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P

    2010-02-01

    We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.

  18. Far infrared filters for the Galileo-Jupiter and other missions

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.

    1981-01-01

    Progress in the development of FIR multilayer interference filters for the net flux radiometer and photopolarizing radiometer to be carried on board the Galileo mission to Jupiter is reported. The multilayer interference technique has been extended to the region above 40 microns by the use of PbTe/II-VI materials in hard-coated combination, with the thickest layers composed of CdSe QWOT at 74 microns and PbTe QWOT. Improvements have also been obtained in filters below 20 microns on the basis of the Chebyshev stack design. A composite filter cutting on steeply at 40 microns has been designed which employs a thin crystal quartz substrate, shorter wavelength absorption in ZnS and As2S3 thin films, and supplementary multilayer interference. Finally, absorptive filters have been developed based on II-VI compounds in multilayer combination with KRS-5 (or 6) on a KRS-5 (or 6) substrate

  19. External cavity diode laser setup with two interference filters

    NASA Astrophysics Data System (ADS)

    Martin, Alexander; Baus, Patrick; Birkl, Gerhard

    2016-12-01

    We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of these interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on Hänsch-Couillaud locking to a cavity, has been added to improve the stability. The laser is stabilized to a line in the tellurium spectrum via saturation spectroscopy, and single-frequency operation for a duration of two days is demonstrated by monitoring the error signal of the lock and the piezo drive compensating the length change of the external resonator due to air pressure variations. Additionally, transmission curves of the filters and the spectra of a sample of diodes are given.

  20. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  1. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  2. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  3. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  4. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  5. Widely tunable erbium-doped fiber laser based on multimode interference effect.

    PubMed

    Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P

    2010-01-18

    A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

  6. Epoch length to accurately estimate the amplitude of interference EMG is likely the result of unavoidable amplitude cancellation

    PubMed Central

    Keenan, Kevin G.; Valero-Cuevas, Francisco J.

    2008-01-01

    Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time window) be to average an EMG signal to reliably estimate muscle forces and command signals? Shorter epochs are most practical, and significant reductions in epoch have been reported with high-pass filtering and whitening. Given that this processing attenuates power at frequencies of interest (< 250 Hz), however, it is unclear how it improves the extraction of physiologically-relevant information. We examined the influence of amplitude cancellation and high-pass filtering on the epoch necessary to accurately estimate the “true” average EMG amplitude calculated from a 28 s EMG trace (EMGref) during simulated constant isometric conditions. Monte Carlo iterations of a motor-unit model simulating 28 s of surface EMG produced 245 simulations under 2 conditions: with and without amplitude cancellation. For each simulation, we calculated the epoch necessary to generate average full-wave rectified EMG amplitudes that settled within 5% of EMGref. For the no-cancellation EMG, the necessary epochs were short (e.g., < 100 ms). For the more realistic interference EMG (i.e., cancellation condition), epochs shortened dramatically after using high-pass filter cutoffs above 250 Hz, producing epochs short enough to be practical (i.e., < 500 ms). We conclude that the need to use long epochs to accurately estimate EMG amplitude is likely the result of unavoidable amplitude cancellation, which helps to clarify why high-pass filtering (> 250 Hz) improves EMG estimates. PMID:19081815

  7. Mitigation of narrowband interferences by means of a reconfigurable stepped frequency GPR system

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Dei, Devis; Parrini, Filippo; Matera, Loredana

    2016-08-01

    This paper proposes a new technique for the mitigation of narrowband interferences by making use of an innovative stepped frequency Ground Penetrating Radar (GPR) system, based on the modulation of the integration time of the harmonic components of the signal. This can allow a good rejection of the interference signal without filtering out part of the band of the useful signal (which would involve a loss of information) and without increasing the power of the transmitted signal (which might saturate the receiver and make illegal the level of transmitted power). The price paid for this is an extension of the time needed in order to perform the measurements. We will show that this necessary drawback can be contained by making use of a prototypal reconfigurable stepped frequency GPR system.

  8. A New Reassigned Spectrogram Method in Interference Detection for GNSS Receivers.

    PubMed

    Sun, Kewen; Jin, Tian; Yang, Dongkai

    2015-09-02

    Interference detection is very important for Global Navigation Satellite System (GNSS) receivers. Current work on interference detection in GNSS receivers has mainly focused on time-frequency (TF) analysis techniques, such as spectrogram and Wigner-Ville distribution (WVD), where the spectrogram approach presents the TF resolution trade-off problem, since the analysis window is used, and the WVD method suffers from the very serious cross-term problem, due to its quadratic TF distribution nature. In order to solve the cross-term problem and to preserve good TF resolution in the TF plane at the same time, in this paper, a new TF distribution by using a reassigned spectrogram has been proposed in interference detection for GNSS receivers. This proposed reassigned spectrogram method efficiently combines the elimination of the cross-term provided by the spectrogram itself according to its inherent nature and the improvement of the TF aggregation property achieved by the reassignment method. Moreover, a notch filter has been adopted in interference mitigation for GNSS receivers, where receiver operating characteristics (ROCs) are used as metrics for the characterization of interference mitigation performance. The proposed interference detection method by using a reassigned spectrogram is evaluated by experiments on GPS L1 signals in the disturbing scenarios in comparison to the state-of-the-art TF analysis approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-term problem and also keeps good TF localization properties, which has been proven to be valid and effective to enhance the interference Sensors 2015, 15 22168 detection performance; in addition, the adoption of the notch filter in interference mitigation has shown a significant acquisition performance improvement in terms of ROC curves for GNSS receivers in jamming environments.

  9. A New Reassigned Spectrogram Method in Interference Detection for GNSS Receivers

    PubMed Central

    Sun, Kewen; Jin, Tian; Yang, Dongkai

    2015-01-01

    Interference detection is very important for Global Navigation Satellite System (GNSS) receivers. Current work on interference detection in GNSS receivers has mainly focused on time-frequency (TF) analysis techniques, such as spectrogram and Wigner–Ville distribution (WVD), where the spectrogram approach presents the TF resolution trade-off problem, since the analysis window is used, and the WVD method suffers from the very serious cross-term problem, due to its quadratic TF distribution nature. In order to solve the cross-term problem and to preserve good TF resolution in the TF plane at the same time, in this paper, a new TF distribution by using a reassigned spectrogram has been proposed in interference detection for GNSS receivers. This proposed reassigned spectrogram method efficiently combines the elimination of the cross-term provided by the spectrogram itself according to its inherent nature and the improvement of the TF aggregation property achieved by the reassignment method. Moreover, a notch filter has been adopted in interference mitigation for GNSS receivers, where receiver operating characteristics (ROCs) are used as metrics for the characterization of interference mitigation performance. The proposed interference detection method by using a reassigned spectrogram is evaluated by experiments on GPS L1 signals in the disturbing scenarios in comparison to the state-of-the-art TF analysis approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-term problem and also keeps good TF localization properties, which has been proven to be valid and effective to enhance the interference detection performance; in addition, the adoption of the notch filter in interference mitigation has shown a significant acquisition performance improvement in terms of ROC curves for GNSS receivers in jamming environments. PMID:26364637

  10. Spatial mode filters realized with multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H.

    1996-06-01

    Spatial mode filters based on multimode interference couplers (MMI's) that offer the possibility of splitting off antisymmetric from symmetric modes are presented, and realizations of these filters in InGaAsP / InP are demonstrated. Measured suppression of the antisymmetric first-order modes at the output for the symmetric mode is better than 18 dB. Such MMI's are useful for monolithically integrating mode filters with all-optical devices, which are controlled through an antisymmetric first-order mode. The filtering out of optical control signals is necessary for cascading all-optical devices. Another application is the improvement of on-off ratios in optical switches.

  11. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  12. Accuracy of telemetry signal power loss in a filter as an estimate for telemetry degradation

    NASA Technical Reports Server (NTRS)

    Koerner, M. A.

    1989-01-01

    When telemetry data is transmitted through a communication link, some degradation in telemetry performance occurs as a result of the imperfect frequency response of the channel. The term telemetry degradation as used here is the increase in received signal power required to offset this filtering. The usual approach to assessing this degradation is to assume that it is equal to the signal power loss in the filtering, which is easily calculated. However, this approach neglects the effects of the nonlinear phase response of the filter, the effect of any reduction of the receiving system noise due to the filter, and intersymbol interference. Here, an exact calculation of the telemetry degradation, which includes all of the above effects, is compared with the signal power loss calculation for RF filtering of NRZ data on a carrier. The signal power loss calculation is found to be a reasonable approximation when the filter follows the point at which the receiving system noise is introduced, especially if the signal power loss is less than 0.5 dB. The signal power loss approximation is less valid when the receiving system noise is not filtered.

  13. Adaptive Enhancement of X-Band Marine Radar Imagery to Detect Oil Spill Segments

    PubMed Central

    Liu, Peng; Li, Ying; Xu, Jin; Zhu, Xueyuan

    2017-01-01

    Oil spills generate a large cost in environmental and economic terms. Their identification plays an important role in oil-spill response. We propose an oil spill detection method with improved adaptive enhancement on X-band marine radar systems. The radar images used in this paper were acquired on 21 July 2010, from the teaching-training ship “YUKUN” of the Dalian Maritime University. According to the shape characteristic of co-channel interference, two convolutional filters are used to detect the location of the interference, followed by a mean filter to erase the interference. Small objects, such as bright speckles, are taken as a mask in the radar image and improved by the Fields-of-Experts model. The region marked by strong reflected signals from the sea’s surface is selected to identify oil spills. The selected region is subject to improved adaptive enhancement designed based on features of radar images. With the proposed adaptive enhancement technique, calculated oil spill detection is comparable to visual interpretation in accuracy. PMID:29036892

  14. Optical filters for wavelength selection in fluorescence instrumentation.

    PubMed

    Erdogan, Turan

    2011-04-01

    Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.

  15. A highly linear fully integrated powerline filter for biopotential acquisition systems.

    PubMed

    Alzaher, Hussain A; Tasadduq, Noman; Mahnashi, Yaqub

    2013-10-01

    Powerline interference is one of the most dominant problems in detection and processing of biopotential signals. This work presents a new fully integrated notch filter exhibiting high linearity and low power consumption. High filter linearity is preserved utilizing active-RC approach while IC implementation is achieved through replacing passive resistors by R-2R ladders achieving area saving of approximately 120 times. The filter design is optimized for low power operation using an efficient circuit topology and an ultra-low power operational amplifier. Fully differential implementation of the proposed filter shows notch depth of 43 dB (78 dB for 4th-order) with THD of better than -70 dB while consuming about 150 nW from 1.5 V supply.

  16. Optimal design of active EMC filters

    NASA Astrophysics Data System (ADS)

    Chand, B.; Kut, T.; Dickmann, S.

    2013-07-01

    A recent trend in automotive industry is adding electrical drive systems to conventional drives. The electrification allows an expansion of energy sources and provides great opportunities for environmental friendly mobility. The electrical powertrain and its components can also cause disturbances which couple into nearby electronic control units and communication cables. Therefore the communication can be degraded or even permanently disrupted. To minimize these interferences, different approaches are possible. One possibility is to use EMC filters. However, the diversity of filters is very large and the determination of an appropriate filter for each application is time-consuming. Therefore, the filter design is determined by using a simulation tool including an effective optimization algorithm. This method leads to improvements in terms of weight, volume and cost.

  17. Digital Optical Circuit Technology.

    DTIC Science & Technology

    1985-03-01

    ordinateurs ct des syst~mcs de diffusion de donn’es qui soient I la fois numcriques, entierement optiques. tres rapides etI I’abri des interferences et des...F.A.Hopf SESSION 11 - OPTICAL LOGIC PROSPECTS FOR PARALLEL NONLINEAR OPTICAL SIGNAL PROCESSING USING GaAs ETALONS AND ZnS INTERFERENCE FILTERS by...talks 1, 8, and 9) interference filters for room-temperature parallel processing. If one imposes a maximum heat load of 100 W/cm 2 , consistent with

  18. 2ND International Workshop on Adaptive Optics for Industry and Medicine.

    DTIC Science & Technology

    2000-02-08

    The spots are well-separated, and there are only very weak interference peaks between adjacent spots, so identification of the spots is easy and...for transmission through an interference filter, a polarizing filter, the SLM, and a 12 mm diameter aperture to mask the active area in the SLM. A... interfere greatly with the visibility of the primary image. However, as the SLM power increases so does the contrast of the secondary images and

  19. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    PubMed Central

    LeChevallier, M W; Evans, T M; Seidler, R J

    1981-01-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act. Images PMID:7259162

  20. A Novel Attitude Determination System Aided by Polarization Sensor

    PubMed Central

    Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong

    2018-01-01

    This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle. PMID:29315256

  1. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  2. Augmenting distractor filtering via transcranial magnetic stimulation of the lateral occipital cortex.

    PubMed

    Eštočinová, Jana; Lo Gerfo, Emanuele; Della Libera, Chiara; Chelazzi, Leonardo; Santandrea, Elisa

    2016-11-01

    Visual selective attention (VSA) optimizes perception and behavioral control by enabling efficient selection of relevant information and filtering of distractors. While focusing resources on task-relevant information helps counteract distraction, dedicated filtering mechanisms have recently been demonstrated, allowing neural systems to implement suitable policies for the suppression of potential interference. Limited evidence is presently available concerning the neural underpinnings of these mechanisms, and whether neural circuitry within the visual cortex might play a causal role in their instantiation, a possibility that we directly tested here. In two related experiments, transcranial magnetic stimulation (TMS) was applied over the lateral occipital cortex of healthy humans at different times during the execution of a behavioral task which entailed varying levels of distractor interference and need for attentional engagement. While earlier TMS boosted target selection, stimulation within a restricted time epoch close to (and in the course of) stimulus presentation engendered selective enhancement of distractor suppression, by affecting the ongoing, reactive instantiation of attentional filtering mechanisms required by specific task conditions. The results attest to a causal role of mid-tier ventral visual areas in distractor filtering and offer insights into the mechanisms through which TMS may have affected ongoing neural activity in the stimulated tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2017-06-01

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  4. Summaries of Papers Presented at Photonic Switching Topical Meeting Held in Salt Lake City, Utah on 1-3 March 1989. Technical Digest

    DTIC Science & Technology

    1990-01-31

    a set of codes which will provide a large number of addresses while minimizing interference . We have analyzed the bit error rate (BER) of the...there will be significant crosstalk. The most severe interference will be caused by the unswitched component of the high-intensity pulses. For example...Diagram of Experimental Apparatus Q = Quarter-wave Plate P = Polarising Filter IF = Interference Filter Figure 2. I Oscilloscope trace a. of Kerr

  5. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  6. A novel filter bank for biotelemetry.

    PubMed

    Karagözoglu, B

    2001-03-01

    In a multichannel biotelemetry system, signals taken from a patient are distributed along the available frequency range (bandwidth) of the system through frequency-division-multiplexing, and combined into a single composite signal. Biological signals that are limited to low frequencies (below 10 Hz) modulate the frequencies of respective sub-carriers. Other biological signals are carried in amplitude-modulated forms. It is recognized that recovering original signals from a composite signal at the receiver side is a technical challenge when a telemetry system with narrow bandwidth capacity is used, since such a system leaves little frequency spacing between information channels. A filter bank is therefore utilized for recovering biological signals that are transmitted. The filter bank contains filter units comprising switched-capacitor filter integrated circuits. The filters have two distinct and opposing outputs (band-stop (notch) and band-pass). Since most biological signals are at low frequencies, and modulated signals occupy a narrow band around the carrier, notch filters can be used to efficiently stop signals in the narrow frequency range. Once the interim channels are removed, other channels become well separated from each other, and band-pass filters can select them. In the proposed system, efficient filtering of closely packed channels is achieved, with low interference, from neighboring channels. The filter bank is applied to a system that carries four biological signals and a battery status indicator signal. Experimental results reinforce theoretical predictions that the filter bank successfully de-multiplexes closely packed information channels with low crosstalk between them. It is concluded that the proposed filter bank allows utilization of cost-effective multichannel biotelemetry systems that are designed around commercial audio devices, and that it can be readily adapted to a broad range of physiological recording requirements.

  7. Suppression of Biodynamic Interference by Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Velger, M.; Merhav, S. J.; Grunwald, A. J.

    1984-01-01

    Preliminary experimental results obtained in moving base simulator tests are presented. Both for pursuit and compensatory tracking tasks, a strong deterioration in tracking performance due to biodynamic interference is found. The use of adaptive filtering is shown to substantially alleviate these effects, resulting in a markedly improved tracking performance and reduction in task difficulty. The effect of simulator motion and of adaptive filtering on human operator describing functions is investigated. Adaptive filtering is found to substantially increase pilot gain and cross-over frequency, implying a more tight tracking behavior. The adaptive filter is found to be effective in particular for high-gain proportional dynamics, low display forcing function power and for pursuit tracking task configurations.

  8. Thin film-based optically variable security devices: From passive to active

    NASA Astrophysics Data System (ADS)

    Baloukas, Bill

    Counterfeiting costs the world economy billions of dollars every year. Aside from financial losses, counterfeiting also poses a great threat to the public's safety, for example through the existence of counterfeit passports (terrorism), pharmaceutical products (health hazards) and even airplane parts (safety issues). Optical security devices (OSDs) have therefore played a critical role in the fight against counterfeiting. It is the aim of the present thesis to show that through the use of metamerism and electrochromic materials, new types of active security devices with interesting features can be created; indeed, most present-day devices are passive in nature. I first demonstrate that the addition of metamerism in the design of interference filters can result in innovative features. Different structures which can be used in transmission and/or in reflection are designed, fabricated, and evaluated. The first structures which are presented here are based on a combination of two different metameric interference filters. Possessing widely different transmission spectra, these filters also offer different angular color shifts and, as a result, offer an opportunity of creating hidden image effects. Despite their interesting properties, such metameric devices are shown to be highly illuminant and observer sensitive; that is the color match is lost under most observation conditions. These issues are solved by a simpler structure based on the juxtaposition of an interference filter and a non-iridescent colored material. Throughout this study, I present the design approach, analyze the filters' sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering. Following my work on passive metameric systems, I then propose to go one step further by implementing an active component using an electrochromic material. This novel concept, which is based on the joint use of a metameric filter and electrochromic device, offers the possibility of creating various surprising optical effects. Such a system is obviously more challenging to duplicate due to its complexity, but also adds a second level of authentication accessible to specialized personnel. By designing a metameric filter which matches either the bleached or colored state of an electrochromic device, I show that one can generate two hidden image effects: one which appears when the structure is tilted, and the other one which disappears when the electrochromic material is colored under an applied potential. In this specific study, I present an example of a filter that is metameric with the colored state of a tungsten-oxide-based Deb-type electrochromic device. A hybrid device such as presented in the previous study is clearly interesting from a prototype point of view. Unfortunately, having to design and fabricate two individual components would make such a security feature very expensive. Consequently, my goal was to combine both the color shift and electrochromic color change into a single structure. The following study thus demonstrates, that by designing and fabricating an interference filter based on dense and porous WO3, this goal can be achieved. Finally, a second method of fabricating electrochromic interference filters is proposed which results in a significant decrease in the total numbers of layers of the filters. Replacing the porous WO3 films by a WO 3/SiO2 composite allows for much lower refractive indices to be obtained thus resulting in a larger index contrast (0.61 versus 0.22 in the previous study). In this study, I first explore the physical and electrochromic properties of WO3/SiO2 mixtures. I then combine high and low index films in tandem configurations to observe the bleaching/ coloration dynamics. To account for the poor performance of the ITO|Composite|WO 3 film configuration, I also present an explanation based on the differences in electron diffusion coefficients of the films. I conclude this study with the demonstration of an 11 layer electrochromic interference filter based on the alternation of pure WO3 and (WO3)0.17(SiO 2)0.83 films (with a blue to purple angular color shift) as well as a short discussion on some possible solutions for the observed limitations. (Abstract shortened by UMI.).

  9. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  10. Multispectral interference filter arrays with compensation of angular dependence or extended spectral range.

    PubMed

    Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier

    2015-05-04

    Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.

  11. A Coarse Alignment Method Based on Digital Filters and Reconstructed Observation Vectors

    PubMed Central

    Xu, Xiang; Xu, Xiaosu; Zhang, Tao; Li, Yao; Wang, Zhicheng

    2017-01-01

    In this paper, a coarse alignment method based on apparent gravitational motion is proposed. Due to the interference of the complex situations, the true observation vectors, which are calculated by the apparent gravity, are contaminated. The sources of the interference are analyzed in detail, and then a low-pass digital filter is designed in this paper for eliminating the high-frequency noise of the measurement observation vectors. To extract the effective observation vectors from the inertial sensors’ outputs, a parameter recognition and vector reconstruction method are designed, where an adaptive Kalman filter is employed to estimate the unknown parameters. Furthermore, a robust filter, which is based on Huber’s M-estimation theory, is developed for addressing the outliers of the measurement observation vectors due to the maneuver of the vehicle. A comprehensive experiment, which contains a simulation test and physical test, is designed to verify the performance of the proposed method, and the results show that the proposed method is equivalent to the popular apparent velocity method in swaying mode, but it is superior to the current methods while in moving mode when the strapdown inertial navigation system (SINS) is under entirely self-contained conditions. PMID:28353682

  12. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    PubMed

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  13. Switchable multi-wavelength fiber laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng

    2015-08-01

    A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.

  14. High-Resolution Infrared Filter System for Solar Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    Cao, W.; Ma, J.; Wang, J.; Goode, P. R.; Wang, H.; Denker, C.

    2003-05-01

    We report on the design of an imaging filter system working at the near infrared (NIR) of 1.56 μ m to obtain monochromatic images and to probe weak magnetic fields in different layers of the deep photosphere with high temporal resolution and spatial resolution at Big Bear Solar Observatory (BBSO). This filter system consists of an interference filter, a birefringent filter, and a Fabry-Pérot etalon. As the narrowest filter system, the infrared Fabry-Pérot plays an important role in achieving narrow band transmission and high throughput, maintaining wavelength tuning ability, and assuring stability and reliability. In this poster, we outline a set of methods for the evaluation and calibration of the near infrared Fabry-Pérot etalon. Two-dimensional characteristic maps of the near infrared Fabry-Pérot etalon, including full-width-at-half-maximum (FWHM), effective finesse, peak transmission, along with free spectral range, flatness, roughness, stability and repeatability were obtained with lab equipments. Finally, by utilizing these results, a detailed analysis of the filter performance for the Fe I 1.5648 μ m and Fe I 1.5652 μ m Zeeman sensitive lines is presented. These results will benefit the design of NIR spectro-polarimeter of Advanced Technology Solar Telescope (ATST).

  15. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  16. An optimal filter for short photoplethysmogram signals

    PubMed Central

    Liang, Yongbo; Elgendi, Mohamed; Chen, Zhencheng; Ward, Rabab

    2018-01-01

    A photoplethysmogram (PPG) contains a wealth of cardiovascular system information, and with the development of wearable technology, it has become the basic technique for evaluating cardiovascular health and detecting diseases. However, due to the varying environments in which wearable devices are used and, consequently, their varying susceptibility to noise interference, effective processing of PPG signals is challenging. Thus, the aim of this study was to determine the optimal filter and filter order to be used for PPG signal processing to make the systolic and diastolic waves more salient in the filtered PPG signal using the skewness quality index. Nine types of filters with 10 different orders were used to filter 219 (2.1s) short PPG signals. The signals were divided into three categories by PPG experts according to their noise levels: excellent, acceptable, or unfit. Results show that the Chebyshev II filter can improve the PPG signal quality more effectively than other types of filters and that the optimal order for the Chebyshev II filter is the 4th order. PMID:29714722

  17. Space-time adaptive decision feedback neural receivers with data selection for high-data-rate users in DS-CDMA systems.

    PubMed

    de Lamare, Rodrigo C; Sampaio-Neto, Raimundo

    2008-11-01

    A space-time adaptive decision feedback (DF) receiver using recurrent neural networks (RNNs) is proposed for joint equalization and interference suppression in direct-sequence code-division multiple-access (DS-CDMA) systems equipped with antenna arrays. The proposed receiver structure employs dynamically driven RNNs in the feedforward section for equalization and multiaccess interference (MAI) suppression and a finite impulse response (FIR) linear filter in the feedback section for performing interference cancellation. A data selective gradient algorithm, based upon the set-membership (SM) design framework, is proposed for the estimation of the coefficients of RNN structures and is applied to the estimation of the parameters of the proposed neural receiver structure. Simulation results show that the proposed techniques achieve significant performance gains over existing schemes.

  18. Silicon Nitride Grating Coupler with Flexible Bandwidth Incorporating a Serially Concatenated Multimode Interference Filter

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Ju; Lee, Hak-Soon; Lee, Sang-Shin

    2012-04-01

    A compact silicon nitride grating coupler with flexible bandwidth was demonstrated taking advantage of a basic grating integrated with a serially connected multistage multimode interference (MMI) filter. The spectral response could be tailored by varying the order of the MMI filter, without affecting the basic grating structure. The dependence of the spectral response of the proposed device on the order of the MMI stage was thoroughly investigated. As regards the fabricated grating coupler with a four-stage MMI filter, the observed spectral bandwidth was efficiently altered from 53 to 21 nm in the ˜1550 nm spectral band.

  19. Research on signal processing of shock absorber test bench based on zero-phase filter

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Ding, Guoqing

    2017-10-01

    The quality of force-displacement diagram is significant to help evaluate the performance of shock absorbers. Damping force sampling data is often interfered by Gauss white noise, 50Hz power interference and its harmonic wave during the process of testing; data de-noising has become the core problem of drawing true, accurate and real-time indicator diagram. The noise and interference can be filtered out through generic IIR or FIR low-pass filter, but addition phase lag of useful signal will be caused due to the inherent attribute of IIR and FIR filter. The paper uses FRR method to realize zero-phase digital filtering in a software way based on mutual cancellation of phase lag between the forward and reverse sequences after through the filter. High-frequency interference above 40Hz are filtered out completely and noise attenuation is more than -40dB, with no additional phase lag. The method is able to restore the true signal as far as possible. Theoretical simulation and practical test indicate high-frequency noises have been effectively inhibited in multiple typical speed cases, signal-to-noise ratio being greatly improved; the curve in indicator diagram has better smoothness and fidelity. The FRR algorithm has low computational complexity, fast running time, and can be easily transplanted in multiple platforms.

  20. Optical filter including a sub-wavelength periodic structure and method of making

    DOEpatents

    Kaushik, Sumanth; Stallard, Brian R.

    1998-01-01

    An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.

  1. Optical filter including a sub-wavelength periodic structure and method of making

    DOEpatents

    Kaushik, S.; Stallard, B.R.

    1998-03-10

    An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.

  2. Real-Time Wavelength Discrimination for Improved Neutron Discrimination in CLYC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornback, Donald Eric; Hu, Michael Z.; Bell, Zane W.

    We investigated the effects of optical filters on the pulse shape discrimination properties of Cs 2LiYCl 6:Ce (CLYC) scintillator crystals. By viewing the scintillation light through various optical filters, we attempted to better distinguish between neutron and gamma ray events in the crystal. We applied commercial interference and colored glass filters in addition to fabricating quantum dot (QD) filters by suspending QDs in plastic films and glass. QD filters ultimately failed because of instability of the QDs with respect to oxidation when exposed to ambient air, and the tendency of the QDs to aggregate in the plastic. Of the commercialmore » filters, the best results were obtained with a bandpass interference filter covering the spectral region containing core-valence luminescence (CVL) light. However, the PSD response of filtered CLYC light was always poorer than the response exhibited by unfiltered light because filters always reduced the amount of light available for signal processing.« less

  3. Engineering two-photon high-dimensional states through quantum interference

    PubMed Central

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  4. Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems.

    PubMed

    Li, Zhe; Erkilinc, M Sezer; Galdino, Lidia; Shi, Kai; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I

    2016-12-12

    Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.

  5. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression

    PubMed Central

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-01-01

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient. PMID:28788412

  6. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization

    NASA Astrophysics Data System (ADS)

    Verly, Pierre G.

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  7. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization.

    PubMed

    Verly, Pierre G

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  8. Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system.

    PubMed

    Chen, Hsing-Yu; Kaneda, Noriaki; Lee, Jeffrey; Chen, Jyehong; Chen, Young-Kai

    2017-03-20

    The feasibility of a single sideband (SSB) PAM4 intensity-modulation and direct-detection (IM/DD) transmission based on a CMOS ADC and DAC is experimentally demonstrated in this work. To cost effectively build a >50 Gb/s system as well as to extend the transmission distance, a low cost EML and a passive optical filter are utilized to generate the SSB signal. However, the EML-induced chirp and dispersion-induced power fading limit the requirements of the SSB filter. To separate the effect of signal-signal beating interference, filters with different roll-off factors are employed to demonstrate the performance tolerance at different transmission distance. Moreover, a high resolution spectrum analysis is proposed to depict the system limitation. Experimental results show that a minimum roll-off factor of 7 dB/10GHz is required to achieve a 51.84Gb/s 40-km transmission with only linear feed-forward equalization.

  9. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  10. Research on modeling and conduction disturbance simulation of secondary power system in a device

    NASA Astrophysics Data System (ADS)

    Ding, Xu; Yu, Zhi-Yong; Jin, Rui

    2017-06-01

    To find electromagnetic interference (EMI) and other problems in the secondary power supply system design quickly and effectively, simulations are carried out under the Saber simulation software platform. The DC/DC converter model with complete performance and electromagnetic characteristics is established by combining parametric modeling with Mast language. By using the method of macro modeling, the hall current sensor and power supply filter model are established respectively based on the function, schematic diagram of the components. Also the simulation of the component model and the whole secondary power supply system are carried out. The simulation results show that the proposed model satisfies the functional requirements of the system and has high accuracy. At the same time, due to the ripple characteristics in the DC/DC converter modeling, it can be used as a conducted interference model to simulate the power bus conducted emission CE102 project under the condition that the simulated load is full, which provides a useful reference for the electromagnetic interference suppression of the system.

  11. Tunable all-fiber dissipative-soliton laser with a multimode interference filter.

    PubMed

    Zhang, Lei; Hu, Jinmeng; Wang, Jianhua; Feng, Yan

    2012-09-15

    We report on a tunable all-fiber dissipative-soliton laser with a multimode interference filter that consists of a multimode fiber spliced between two single-mode fibers. By carefully selecting the fiber parameters, a filter with a central wavelength at 1032 nm and a bandwidth of 7.6 nm is constructed and used for spectral filtering in an all-normal-dispersion mode-locked ytterbium-doped fiber laser based on nonlinear polarization evolution. The laser delivers 31 mW of average output power with positively chirped 7 ps pulses. The repetition rate of the pulses is 15.3 MHz, and pulse energy is 2.1 nJ. Tunable dissipative-soliton over 12 nm is achieved by applying tension to the single-mode-multimode-single-mode filter.

  12. Wavelength tuning of multimode interference bandpass filters by mechanical bending: experiment and theory in comparison

    NASA Astrophysics Data System (ADS)

    Walbaum, T.; Fallnich, C.

    2012-07-01

    We present the tuning of multimode interference bandpass filters made of standard fibers by mechanical bending. Our setup allows continuous adjustment of the bending radius from infinity down to about 5 cm. The impact of bending on the transmission spectrum and on polarization is investigated experimentally, and a filter with a continuous tuning range of 13.6 nm and 86 % peak transmission was realized. By use of numerical simulations employing a semi-analytical mode expansion approach, we obtain quantitative understanding of the underlying physics. Further breakdown of the governing equations enables us to identify the fiber parameters that are relevant for the design of customized filters.

  13. Real-time optical multiple object recognition and tracking system and method

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1990-01-01

    System for optically recognizing and tracking a plurality of objects within a field of vision. Laser (46) produces a coherent beam (48). Beam splitter (24) splits the beam into object (26) and reference (28) beams. Beam expanders (50) and collimators (52) transform the beams (26, 28) into coherent collimated light beams (26', 28'). A two-dimensional SLM (54), disposed in the object beam (26'), modulates the object beam with optical information as a function of signals from a first camera (16) which develops X and Y signals reflecting the contents of its field of vision. A hololens (38), positioned in the object beam (26') subsequent to the modulator (54), focuses the object beam at a plurality of focal points (42). A planar transparency-forming film (32), disposed with the focal points on an exposable surface, forms a multiple position interference filter (62) upon exposure of the surface and development processing of the film (32). A reflector (53) directing the reference beam (28') onto the film (32), exposes the surface, with images focused by the hololens (38), to form interference patterns on the surface. There is apparatus (16', 64) for sensing and indicating light passage through respective ones of the positions of the filter (62), whereby recognition of objects corresponding to respective ones of the positions of the filter (62) is affected. For tracking, apparatus (64) focuses light passing through the filter (62) onto a matrix of CCD's in a second camera (16') to form a two-dimensional display of the recognized objects.

  14. Thin film interference optics for imaging the O II 834-A airglow

    NASA Technical Reports Server (NTRS)

    Seely, John F.; Hunter, William R.

    1991-01-01

    Normal incidence thin film interference mirrors and filters have been designed to image the O II 834-A airglow. It is shown that MgF2 is a useful spacer material for this wavelength region. The mirrors consist of thin layers of MgF2 in combination with other materials that are chosen to reflect efficiently in a narrow band centered at 834 A. Peak reflectance of 60 percent can be obtained with a passband 200 A wide. Al/MgF2/Si and Al/MgF2/SiC interference coatings have been designed to reflect 834 A and to absorb the intense H I 1216 A airglow. An In/MgF2/In interference filter is designed to transmit 834 A and attenuate 1216 A radiation. Interference photocathode coatings for rejecting 1216 A radiation are also discussed.

  15. Optimization of an integrated wavelength monitor device

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2011-05-01

    In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.

  16. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  17. Simulated Assessment of Interference Effects in Direct Sequence Spread Spectrum (DSSS) QPSK Receiver

    DTIC Science & Technology

    2014-03-27

    bit error rate BPSK binary phase shift keying CDMA code division multiple access CSI comb spectrum interference CW continuous wave DPSK differential... CDMA ) and GPS systems which is a Gold code. This code is generated by a modulo-2 operation between two different preferred m-sequences. The preferred m...10 SNR Sim (dB) S N R O ut ( dB ) SNR RF SNR DS Figure 3.26: Comparison of input S NRS im and S NROut of the band-pass RF filter (S NRRF) and

  18. An Improved Time-Frequency Analysis Method in Interference Detection for GNSS Receivers

    PubMed Central

    Sun, Kewen; Jin, Tian; Yang, Dongkai

    2015-01-01

    In this paper, an improved joint time-frequency (TF) analysis method based on a reassigned smoothed pseudo Wigner–Ville distribution (RSPWVD) has been proposed in interference detection for Global Navigation Satellite System (GNSS) receivers. In the RSPWVD, the two-dimensional low-pass filtering smoothing function is introduced to eliminate the cross-terms present in the quadratic TF distribution, and at the same time, the reassignment method is adopted to improve the TF concentration properties of the auto-terms of the signal components. This proposed interference detection method is evaluated by experiments on GPS L1 signals in the disturbing scenarios compared to the state-of-the-art interference detection approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-terms problem and also preserves good TF localization properties, which has been proven to be effective and valid to enhance the interference detection performance of the GNSS receivers, particularly in the jamming environments. PMID:25905704

  19. Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias Kalman Filter

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric

    1996-01-01

    Current virtual environment and teleoperator applications are hampered by the need for an accurate, quick-responding head-tracking system with a large working volume. Gyroscopic orientation sensors can overcome problems with jitter, latency, interference, line-of-sight obscurations, and limited range, but suffer from slow drift. Gravimetric inclinometers can detect attitude without drifting, but are slow and sensitive to transverse accelerations. This paper describes the design of a Kalman filter to integrate the data from these two types of sensors in order to achieve the excellent dynamic response of an inertial system without drift, and without the acceleration sensitivity of inclinometers.

  20. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  1. Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric

    1996-01-01

    Current virtual environment and teleoperator applications are hampered by the need for an accurate, quick responding head-tracking system with a large working volume. Gyroscopic orientation sensors can overcome problems with jitter, latency, interference, line-of-sight obscurations, and limited range, but suffer from slow drift. Gravimetric inclinometers can detect attitude without drifting, but are slow and sensitive to transverse accelerations. This paper describes the design of a Kalman filter to integrate the data from these two types of sensors in order to achieve the excellent dynamic response of an inertial system without drift, and without the acceleration sensitivity of inclinometers.

  2. Artifact removal from EEG signals using adaptive filters in cascade

    NASA Astrophysics Data System (ADS)

    Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.

    2007-11-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  3. Properties of multilayer filters

    NASA Technical Reports Server (NTRS)

    Baumeister, P. W.

    1973-01-01

    New methods were investigated of using optical interference coatings to produce bandpass filters for the spectral region 110 nm to 200 nm. The types of filter are: triple cavity metal dielectric filters; all dielectric reflection filters; and all dielectric Fabry Perot type filters. The latter two types use thorium fluoride and either cryolite films or magnesium fluoride films in the stacks. The optical properties of the thorium fluoride were also measured.

  4. Low-pass interference filters for submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Whitcomb, S. E.; Keene, J.

    1980-01-01

    Low-pass (long-wave transmitting) interference filters, suitable for broadband photometric observations, previously have been constructed from series of capacitive grids stretched on thin Mylar. These filters have the desired optical properties of high transmission, sharp cut-ons, and good blocking at short wavelengths. Their designs, however, do not scale from one wavelength to another and their performance can deteriorate at low temperatures due to differential contraction of the dielectric backing and the supporting structure. The deviation of these early filters from the predicted scaling was due primarily to the difference in refractive index between the backing material and the medium between the grids. In the present paper, filters are described in which dielectric spacers are used, instead of air, as the medium between the grids. This technique has improved the scaling and has reduced the distortion from differential contraction.

  5. Interference mitigation for simultaneous transmit and receive applications on digital phased array systems

    NASA Astrophysics Data System (ADS)

    Snow, Trevor M.

    As analog-to-digital (ADC) and digital-to-analog conversion (DAC) technologies become cheaper and digital processing capabilities improve, phased array systems with digital transceivers at every element will become more commonplace. These architectures offer greater capability over traditional analog systems and enable advanced applications such as multiple-input, multiple-output (MIMO) communications, adaptive beamforming, space-time adaptive processing (STAP), and MIMO for radar. Capabilities for such systems are still limited by the need for isolating self-interference from transmitters at co-located receivers. The typical approach of time-sharing the antenna aperture between transmitters and receivers works but leaves the receivers blind for a period of time. For full-duplex operation, some systems use separate frequency bands for transmission and reception, but these require fixed filtering which reduces the system's ability to adapt to its environment and is also an inefficient use of spectral resources. To that end, tunable, high quality-factor filters are used for sub-band isolation and protect receivers while allowing open reception at other frequencies. For more flexibility, another emergent area of related research has focused on co-located spatial isolation using multiple antennas and direct injection of interference cancellation signals into receivers, which enables same-frequency full-duplex operation. With all these methods, self-interference must be reduced by an amount that prevents saturation of the ADC. Intermodulation products generated in the receiver in this process can potentially be problematic, as certain intermodulation products may appear to come from a particular angle and cohere in the beamformer. This work explores various digital phased array architectures and the how the flexibility afforded by an all-digital beamforming architecture, layered with other methods of isolation, can be used to reduce self-interference within the system. Specifically, digital control of coupled energy into receiving elements for planar and cylindrical array symmetries can be significantly reduced using near-field nulling, optimization of transmission frequencies for particular steering angles, and optimization of phase weights over restricted sets, without major impacts to the far-field performance of the system. Finally, a method for reducing in-band intermodulation that would ordinarily cohere in a system's receive beamformer is demonstrated using parallel cross-linearization of adjacent digital receivers in a phased array.

  6. Improvement of silicon solar cell performance through the use of thin film coatings.

    PubMed

    Reynard, D L; Andrew, A

    1966-01-01

    Thin film coatings are used universally in solar cell power systems for spacecraft. Antireflective coatings are used to increase the amount of useful energy reaching the active surface of the cell. Multilayer interference filters are employed to reject unwanted portions of the solar spectrum in order to reduce equilibrium temperature and to prevent ultraviolet damage. Glass covers are used in conjunction with these coatings for the purpose of increasing the thermal emittance of the surface. Appreciable performance increases can be obtained through the uses of these filters and coatings.

  7. High performance gel imaging with a commercial single lens reflex camera

    NASA Astrophysics Data System (ADS)

    Slobodan, J.; Corbett, R.; Wye, N.; Schein, J. E.; Marra, M. A.; Coope, R. J. N.

    2011-03-01

    A high performance gel imaging system was constructed using a digital single lens reflex camera with epi-illumination to image 19 × 23 cm agarose gels with up to 10,000 DNA bands each. It was found to give equivalent performance to a laser scanner in this high throughput DNA fingerprinting application using the fluorophore SYBR Green®. The specificity and sensitivity of the imager and scanner were within 1% using the same band identification software. Low and high cost color filters were also compared and it was found that with care, good results could be obtained with inexpensive dyed acrylic filters in combination with more costly dielectric interference filters, but that very poor combinations were also possible. Methods for determining resolution, dynamic range, and optical efficiency for imagers are also proposed to facilitate comparison between systems.

  8. Coherent-Phase Monitoring Of Cavitation In Turbomachines

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.

  9. A FBG pulse wave demodulation method based on PCF modal interference filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua

    2016-10-01

    Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.

  10. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    PubMed

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  11. Devices based on surface plasmon interference filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2001-01-01

    Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.

  12. [Study for portable dynamic ECG monitor and recorder].

    PubMed

    Yang, Pengcheng; Li, Yongqin; Chen, Bihua

    2012-09-01

    This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.

  13. Monte Carlo study for physiological interference reduction in near-infrared spectroscopy based on empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sun, JinWei; Rolfe, Peter

    2010-12-01

    Near-infrared spectroscopy (NIRS) can be used as the basis of non-invasive neuroimaging that may allow the measurement of haemodynamic changes in the human brain evoked by applied stimuli. Since this technique is very sensitive, physiological interference arising from the cardiac cycle and breathing can significantly affect the signal quality. Such interference is difficult to remove by conventional techniques because it occurs not only in the extracerebral layer but also in the brain tissue itself. Previous work on this problem employing temporal filtering, spatial filtering, and adaptive filtering have exhibited good performance for recovering brain activity data in evoked response studies. However, in this study, we present a time-frequency adaptive method for physiological interference reduction based on the combination of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). Monte Carlo simulations based on a five-layered slab model of a human adult head were implemented to evaluate our methodology. We applied an EMD algorithm to decompose the NIRS time series derived from Monte Carlo simulations into a series of intrinsic mode functions (IMFs). In order to identify the IMFs associated with symmetric interference, the extracted components were then Hilbert transformed from which the instantaneous frequencies could be acquired. By reconstructing the NIRS signal by properly selecting IMFs, we determined that the evoked brain response is effectively filtered out with even higher signal-to-noise ratio (SNR). The results obtained demonstrated that EMD, combined with HSA, can effectively separate, identify and remove the contamination from the evoked brain response obtained with NIRS using a simple single source-detector pair.

  14. Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation

    DTIC Science & Technology

    2017-10-17

    Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF

  15. Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter

    DOEpatents

    Rushford, Michael C.

    1988-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.

  16. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises

    NASA Astrophysics Data System (ADS)

    Zhong, Ke; Lei, Xia; Li, Shaoqian

    2013-12-01

    Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.

  17. Measurements of particle backscatter, extinction, and lidar ratio at 1064 nm with the rotational raman method in Polly-XT

    NASA Astrophysics Data System (ADS)

    Engelmann, Ronny; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Kottas, Michael; Marinou, Eleni

    2018-04-01

    We replaced a 1064-nm interference filter of a Polly-XT lidar system by a 1058-nm filter to observe pure rotational Raman backscattering from atmospheric Nitrogen and Oxygen. Polly-XT is compact Raman lidar with a Nd:YAG laser (20 Hz, 200 mJ at 1064 nm) and a 30-cm telescope mirror which applies photomultipliers in photoncounting mode. We present the first measured signals at 1058 nm and the derived extinction profile from measurements aboard RV Polarstern and in Leipzig. In combination with another Polly-XT system we could also derive particle backscatter and lidar ratio profiles at 1064 nm.

  18. Conceptual design of new polychromator on Thomson scattering system to measure Zeff.

    PubMed

    Lee, Jongha; Oh, Seungtae; Wi, Hanmin; Oh, Youngkook; Yamada, I; Narihara, K; Kawahata, K; Jeon, Jongsu

    2012-10-01

    To measure the Z(eff) with electron temperature (T(e)) and electron density (n(e)) profiles at the same time and the same position in the KSTAR tokamak, we design a new polychromator for Thomson scattering system that has additional function. The additional function is measuring bremsstrahlung intensity to calculate Z(eff) independent of Thomson signals. For this new polychromator, we design and fabricate a collimation lens set, and interference filter that has center wavelength of 523 nm and 2 nm FWHM. Finally, we change the lenses, detector diodes, and add the bremsstrahlung filter on the KSTAR edge Thomson scattering polychromator. Then this new polychromator was tested by Tungsten light and monochromator.

  19. Using recurrent neural networks for adaptive communication channel equalization.

    PubMed

    Kechriotis, G; Zervas, E; Manolakos, E S

    1994-01-01

    Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.

  20. Velocity servo for continuous scan Fourier interference spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1980-01-01

    A velocity servo for continuous scan Fourier interference spectrometer of the double pass retroreflector type having two cat's eye retroreflectors is described. The servo uses an open loop, lead screw drive system for one retroreflector with compensation for any variations in speed of drive of the lead screw provided by sensing any variation in the rate of reference laser fringes, and producing an error signal from such variation used to compensate by energizing a moving coil actuator for the other retroreflector optical path, and energizing (through a highpass filter) piezoelectric actuators for the secondary mirrors of the retroreflectors.

  1. Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong

    2018-01-01

    We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.

  2. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    PubMed Central

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.

    2013-01-01

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434

  3. Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications.

    PubMed

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L

    2013-11-05

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).

  4. Potential Interference from Wireless Water Tank Transmitters at Goldstone

    NASA Astrophysics Data System (ADS)

    Ho, C.

    2008-02-01

    The Deep Space Network (DSN) facility in the Goldstone, California, area is considering installation of a new type of wireless transmitter (M2400S) within the facility. The transmitters will be used to monitor the water levels in several water tanks. Then these water-level signals will be transmitted to the nearby DSN facilities using transmitters operating in the UHF band (900-MHz) or S-band (2.4-GHz). This study is to evaluate the interference effects from the transmitters in adjacent DSN receiving stations. First we perform a terrain profile analysis to identify if there is a line of sight between each transmitter and the nearby DSN stations. After taking into account terrain shielding using high-resolution data, total propagation losses are calculated along each path. Then we perform the link analysis for each site to identify if the interference power exceeds the protection threshold of DSN receiving stations. As a result, we find that, because there is no bandpass filter installed in the transmitter system, interference power from the new transmitter at S-band will greatly exceed the protection criteria of broadband radio astronomy services (RAS) at S-band, such as Deep Space Station (DSS) 12 and DSS 28, by about 50 dB. The interference may also cause problems on all deep-space research stations at S-band, such as the Mars, Apollo, Venus, and Gemini sites. Without a sharp bandpass filter to suppress the out-of-band emissions in the frequency bands that the DSN station and RAS use, the author recommends not installing this type of transmitter within the Goldstone DSN facility area.

  5. Hand-Held Color Meters Based on Interference Filters

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    Small, inexpensive, hand-held optoelectronic color-measuring devices based on metal-film/dielectric-film interference filters are undergoing development. These color meters could be suitable for use in a variety of applications in which there are requirements to quantify or match colors for aesthetic purposes but there is no need for the high spectral resolution of scientific-grade spectrometers. Such applications typically occur in the paint, printing, and cosmetic industries, for example. The figure schematically depicts a color meter of this type being used to measure the color of a sample in terms of the spectrum of light reflected from the sample. Light from a white source (for example, a white light-emitting diode) passes through a collimating lens to the sample. Another lens collects some of the light reflected from the sample and focuses the light onto the input end of optical fiber. Light emerging from the output end of the optical fiber illuminates an array of photodetectors covered with metal/dielectric-film interference filters like those described in Metal/Dielectric-film Interference Color Filters (NPO-20217), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 70. Typically, these are wide-band-pass filters, as shown at the bottom of the figure. The photodetector array need not be of any particular design: it could be something as simple as an assembly containing several photodiodes or something as elaborate as an active-pixel sensor or other imaging device. What is essential is that each of the photodetectors or each of several groups of photodetectors is covered with a metal/dielectric-film filter of a different color. In most applications, it would be desirable to have at least three different filters, each for a spectral band that contains one of the three primary additive red, green, and blue colors. In some applications, it may be necessary to have more than three different color filters in order to characterize subtle differences in color (or in the sensation of color) that cannot be characterized with sufficient precision by use of the primary colors alone.

  6. Effects of proton irradiation on thin-film materials for optical filters

    NASA Astrophysics Data System (ADS)

    Scaglione, Salvatore; Piegari, Angela; Sytchkova, Anna; Jakšić, Milko

    2017-11-01

    The behaviour of interference optical filters for space applications has been investigated under low energy proton irradiation. In order to understand the behaviour of the interference coating subjected to proton irradiation, the interaction of protons with coating and substrate was simulated by the SRIM code. A beam of protons of 60 KeV with an integrated fluence of 1013 p+/cm2 was used. The spectral transmittances of fused silica, TiO2 and HfO2 single layers and interference coatings were measured before and after irradiation and, according to simulations, no significant effects were detected in the visible-near infrared spectrum, while some variations appeared at shorter wavelengths.

  7. An Extension to the Kalman Filter for an Improved Detection of Unknown Behavior

    NASA Technical Reports Server (NTRS)

    Benazera, Emmanuel; Narasimhan, Sriram

    2005-01-01

    The use of Kalman filter (KF) interferes with fault detection algorithms based on the residual between estimated and measured variables, since the measured values are used to update the estimates. This feedback results in the estimates being pulled closer to the measured values, influencing the residuals in the process. Here we present a fault detection scheme for systems that are being tracked by a KF. Our approach combines an open-loop prediction over an adaptive window and an information-based measure of the deviation of the Kalman estimate from the prediction to improve fault detection.

  8. Multiple targets detection method in detection of UWB through-wall radar

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Yang, Chuanfa; Zhao, Xingwen; Tian, Xianzhong

    2017-11-01

    In this paper, the problems and difficulties encountered in the detection of multiple moving targets by UWB radar are analyzed. The experimental environment and the penetrating radar system are established. An adaptive threshold method based on local area is proposed to effectively filter out clutter interference The objective of the moving target is analyzed, and the false target is further filtered out by extracting the target feature. Based on the correlation between the targets, the target matching algorithm is proposed to improve the detection accuracy. Finally, the effectiveness of the above method is verified by practical experiment.

  9. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  10. Hemispherical-field-of-view, nonimaging narrow-band spectral filter.

    PubMed

    Miles, R B; Webb, S G; Griffith, E L

    1981-12-01

    Two compound parabolic concentrators are used to create a 180 degrees -field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  11. IRIS: a novel spectral imaging system for the analysis of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Papadakis, V. M.; Orphanos, Y.; Kogou, S.; Melessanaki, K.; Pouli, P.; Fotakis, C.

    2011-06-01

    A new portable spectral imaging system is herein presented capable of acquiring images of high resolution (2MPixels) ranging from 380 nm up to 950 nm. The system consists of a digital color CCD camera, 15 interference filters covering all the sensitivity range of the detector and a robust filter changing system. The acquisition software has been developed in "LabView" programming language allowing easy handling and modification by end-users. The system has been tested and evaluated on a series of objects of Cultural Heritage (CH) value including paintings, encrusted stonework, ceramics etc. This paper aims to present the system, as well as, its application and advantages in the analysis of artworks with emphasis on the detailed compositional and structural information of layered surfaces based on reflection & fluorescence spectroscopy. Specific examples will be presented and discussed on the basis of system improvements.

  12. Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.

    2003-11-01

    An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.

  13. Fuel Chemistry And Combustion Distribution Effects On Rocket Engine Combustion Stability

    DTIC Science & Technology

    2013-01-01

    105mm F/4.0 Quartz Lens) was attached to the UV intensifier. A Semrock interference filter (FF01-320/40-25) that had a transmission of 74% at 310...associated with combustion. Therefore, the light emitted by this radical can serve as a qualitative measure of local heat release. A Semrock 432/17...to the UV intensifier. A Semrock interference filter (FF01-320/40-25) that had a transmission of 74% at 310 nm was used to transmit OH fluorescence

  14. [Research on the method of interference correction for nondispersive infrared multi-component gas analysis].

    PubMed

    Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man

    2011-10-01

    A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.

  15. Removal of power line interference of space bearing vibration signal based on the morphological filter and blind source separation

    NASA Astrophysics Data System (ADS)

    Dong, Shaojiang; Sun, Dihua; Xu, Xiangyang; Tang, Baoping

    2017-06-01

    Aiming at the problem that it is difficult to extract the feature information from the space bearing vibration signal because of different noise, for example the running trend information, high-frequency noise and especially the existence of lot of power line interference (50Hz) and its octave ingredients of the running space simulated equipment in the ground. This article proposed a combination method to eliminate them. Firstly, the EMD is used to remove the running trend item information of the signal, the running trend that affect the signal processing accuracy is eliminated. Then the morphological filter is used to eliminate high-frequency noise. Finally, the components and characteristics of the power line interference are researched, based on the characteristics of the interference, the revised blind source separation model is used to remove the power line interferences. Through analysis of simulation and practical application, results suggest that the proposed method can effectively eliminate those noise.

  16. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  17. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    NASA Astrophysics Data System (ADS)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  18. A Fixed-Lag Kalman Smoother to Filter Power Line Interference in Electrocardiogram Recordings.

    PubMed

    Warmerdam, G J J; Vullings, R; Schmitt, L; Van Laar, J O E H; Bergmans, J W M

    2017-08-01

    Filtering power line interference (PLI) from electrocardiogram (ECG) recordings can lead to significant distortions of the ECG and mask clinically relevant features in ECG waveform morphology. The objective of this study is to filter PLI from ECG recordings with minimal distortion of the ECG waveform. In this paper, we propose a fixed-lag Kalman smoother with adaptive noise estimation. The performance of this Kalman smoother in filtering PLI is compared to that of a fixed-bandwidth notch filter and several adaptive PLI filters that have been proposed in the literature. To evaluate the performance, we corrupted clean neonatal ECG recordings with various simulated PLI. Furthermore, examples are shown of filtering real PLI from an adult and a fetal ECG recording. The fixed-lag Kalman smoother outperforms other PLI filters in terms of step response settling time (improvements that range from 0.1 to 1 s) and signal-to-noise ratio (improvements that range from 17 to 23 dB). Our fixed-lag Kalman smoother can be used for semi real-time applications with a limited delay of 0.4 s. The fixed-lag Kalman smoother presented in this study outperforms other methods for filtering PLI and leads to minimal distortion of the ECG waveform.

  19. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  20. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    PubMed

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  1. 47 CFR 15.611 - General technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... spectrum by licensed services. These techniques may include adaptive or “notch” filtering, or complete... frequencies below 30 MHz, when a notch filter is used to avoid interference to a specific frequency band, the... below the applicable part 15 limits. (ii) For frequencies above 30 MHz, when a notch filter is used to...

  2. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  3. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  4. An improved algorithm of laser spot center detection in strong noise background

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  5. Interference tables: a useful model for interference analysis in asynchronous multicarrier transmission

    NASA Astrophysics Data System (ADS)

    Medjahdi, Yahia; Terré, Michel; Ruyet, Didier Le; Roviras, Daniel

    2014-12-01

    In this paper, we investigate the impact of timing asynchronism on the performance of multicarrier techniques in a spectrum coexistence context. Two multicarrier schemes are considered: cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM) with a rectangular pulse shape and filter bank-based multicarrier (FBMC) with physical layer for dynamic spectrum access and cognitive radio (PHYDYAS) and isotropic orthogonal transform algorithm (IOTA) waveforms. First, we present the general concept of the so-called power spectral density (PSD)-based interference tables which are commonly used for multicarrier interference characterization in spectrum sharing context. After highlighting the limits of this approach, we propose a new family of interference tables called `instantaneous interference tables'. The proposed tables give the interference power caused by a given interfering subcarrier on a victim one, not only as a function of the spectral distance separating both subcarriers but also with respect to the timing misalignment between the subcarrier holders. In contrast to the PSD-based interference tables, the accuracy of the proposed tables has been validated through different simulation results. Furthermore, due to the better frequency localization of both PHYDYAS and IOTA waveforms, FBMC technique is demonstrated to be more robust to timing asynchronism compared to OFDM one. Such a result makes FBMC a potential candidate for the physical layer of future cognitive radio systems.

  6. Experimental demonstration of an efficient hybrid equalizer for short-reach optical SSB systems

    NASA Astrophysics Data System (ADS)

    Zhu, Mingyue; Ying, Hao; Zhang, Jing; Yi, Xingwen; Qiu, Kun

    2018-02-01

    We propose an efficient enhanced hybrid equalizer combining the feed forward equalization (FFE) with a modified Volterra filter to mitigate the linear and nonlinear interference for the short-reach optical single side-band (SSB) system. The optical SSB signal is generated by a relatively low-cost dual-drive Mach-Zehnder modulator (DDMZM). The two driving signals are a pair of Hilbert signals with Nyquist pulse-shaped four-level pulse amplitude modulation (NPAM-4). After the fiber transmission, the neighboring received symbols are strongly correlated due to the pulse spreading in time domain caused by the chromatic dispersion (CD). At the receiver equalization stage, the FFE followed by higher order terms of modified Volterra filter, which utilizes the forward and backward neighboring symbols to construct the kernels with strong correlation, are used as an enhanced hybrid equalizer to mitigate the inter symbol interference (ISI) and nonlinear distortion due to the interaction of the CD and the square-law detection. We experimentally demonstrate that the optical SSB NPAM-4 signal of 40 Gb/s transmitting over 80 km standard single mode fiber (SSMF) with a bit-error-rate (BER) of 7 . 59 × 10-4.

  7. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    PubMed Central

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than −40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of −20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe ‘ripples’ when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm × 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 °C to 71 °C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging. PMID:20224162

  8. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    PubMed

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 degrees C to 71 degrees C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging.

  9. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-09-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters.

  10. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections.

    PubMed

    Thorman, A; Michael, C; De Bock, M; Howard, J

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  11. Photoelectric photometry of comet Kohoutek (1973f)

    NASA Technical Reports Server (NTRS)

    Kohoutek, L.

    1976-01-01

    Comet Kohoutek was observed with the 50 cm (f/15) reflecting telescope of the European Southern Observatory, La Silla, Chile, on fourteen nights between January 16 and 30, when the heliocentric and geocentric distances of the comet were r=0.66 - 1.00 A.U. and delta=0.81 - 0.96 A.U., respectively. The 40 inch and 80 inch diaphragms were used for the photometry of the cometary head in the UBV system and with six interference filters. The atmospheric conditions were good but the accuracy of observations was low due to large extinction and twilight. The mean error of one measurement of log F in all but Na 5893 A filters can be estimated at plus or minus 0.02, whereas the accuracy through the Na filter was substantially lower.

  12. Superconducting Magnetometry for Cardiovascular Studies and AN Application of Adaptive Filtering.

    NASA Astrophysics Data System (ADS)

    Leifer, Mark Curtis

    Sensitive magnetic detectors utilizing Superconducting Quantum Interference Devices (SQUID's) have been developed and used for studying the cardiovascular system. The theory of magnetic detection of cardiac currents is discussed, and new experimental data supporting the validity of the theory is presented. Measurements on both humans and dogs, in both healthy and diseased states, are presented using the new technique, which is termed vector magnetocardiography. In the next section, a new type of superconducting magnetometer with a room temperature pickup is analyzed, and techniques for optimizing its sensitivity to low-frequency sub-microamp currents are presented. Performance of the actual device displays significantly improved sensitivity in this frequency range, and the ability to measure currents in intact, in vivo biological fibers. The final section reviews the theoretical operation of a digital self-optimizing filter, and presents a four-channel software implementation of the system. The application of the adaptive filter to enhancement of geomagnetic signals for earthquake forecasting is discussed, and the adaptive filter is shown to outperform existing techniques in suppressing noise from geomagnetic records.

  13. Universal filtered multi-carrier system for asynchronous uplink transmission in optical access network

    NASA Astrophysics Data System (ADS)

    Kang, Soo-Min; Kim, Chang-Hun; Han, Sang-Kook

    2016-02-01

    In passive optical network (PON), orthogonal frequency division multiplexing (OFDM) has been studied actively due to its advantages such as high spectra efficiency (SE), dynamic resource allocation in time or frequency domain, and dispersion robustness. However, orthogonal frequency division multiple access (OFDMA)-PON requires tight synchronization among multiple access signals. If not, frequency orthogonality could not be maintained. Also its sidelobe causes inter-channel interference (ICI) to adjacent channel. To prevent ICI caused by high sidelobes, guard band (GB) is usually used which degrades SE. Thus, OFDMA-PON is not suitable for asynchronous uplink transmission in optical access network. In this paper, we propose intensity modulation/direct detection (IM/DD) based universal filtered multi-carrier (UFMC) PON for asynchronous multiple access. The UFMC uses subband filtering to subsets of subcarriers. Since it reduces sidelobe of each subband by applying subband filtering, it could achieve better performance compared to OFDM. For the experimental demonstration, different sample delay was applied to subbands to implement asynchronous transmission condition. As a result, time synchronization robustness of UFMC was verified in asynchronous multiple access system.

  14. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    NASA Astrophysics Data System (ADS)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  15. Adaptive interference cancel filter for evoked potential using high-order cumulants.

    PubMed

    Lin, Bor-Shyh; Lin, Bor-Shing; Chong, Fok-Ching; Lai, Feipei

    2004-01-01

    This paper is to present evoked potential (EP) processing using adaptive interference cancel (AIC) filter with second and high order cumulants. In conventional ensemble averaging method, people have to conduct repetitively experiments to record the required data. Recently, the use of AIC structure with second statistics in processing EP has proved more efficiency than traditional averaging method, but it is sensitive to both of the reference signal statistics and the choice of step size. Thus, we proposed higher order statistics-based AIC method to improve these disadvantages. This study was experimented in somatosensory EP corrupted with EEG. Gradient type algorithm is used in AIC method. Comparisons with AIC filter on second, third, fourth order statistics are also presented in this paper. We observed that AIC filter with third order statistics has better convergent performance for EP processing and is not sensitive to the selection of step size and reference input.

  16. High throughput fabrication of large-area plasmonic color filters by soft-X-ray interference lithography.

    PubMed

    Sun, Libin; Hu, Xiaolin; Wu, Qingjun; Wang, Liansheng; Zhao, Jun; Yang, Shumin; Tai, Renzhong; Fecht, Hans-Jorg; Zhang, Dong-Xian; Wang, Li-Qiang; Jiang, Jian-Zhong

    2016-08-22

    Plasmonic color filters in mass production have been restricted from current fabrication technology, which impede their applications. Soft-X-ray interference lithography (XIL) has recently generated considerable interest as a newly developed technique for the production of periodic nano-structures with resolution theoretically below 4 nm. Here we ameliorate XIL by adding an order sorting aperture and designing the light path properly to achieve perfect-stitching nano-patterns and fast fabrication of large-area color filters. The fill factor of nanostructures prepared on ultrathin Ag films can largely affect the transmission minimum of plasmonic color filters. By changing the fill factor, the color can be controlled flexibly, improving the utilization efficiency of the mask in XIL simultaneously. The calculated data agree well with the experimental results. Finally, an underlying mechanism has been uncovered after systematically analyzing the localized surface plasmon polaritons (LSPPs) coupling in electric field distribution.

  17. Extinction ratio enhancement of SOA-based delayed-interference signal converter using detuned filtering

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Kumar, S.; Yan, L.-S.; Willner, A. E.

    2007-12-01

    We demonstrate experimentally >3 dB extinction ratio improvement at the output of SOA-based delayed-interference signal converter (DISC) using optical off-centered filtering. Through careful modeling of the carrier and the phase dynamics, we explain in detail the origin of sub-pulses in the wavelength converted output, with an emphasis on the time-resolved frequency chirping of the output signal. Through our simulations we conclude that the sub-pulses and the main-pulses are oppositely chirped, which is also verified experimentally by analyzing the output with a chirp form analyzer. We propose and demonstrate an optical off-center filtering technique which effectively suppresses these sub-pulses. The effects of filter detuning and phase bias adjustment in the delayed-interferometer are experimentally characterized and optimized, leading to a >3 dB extinction ratio enhancement of the output signal.

  18. Investigation of signal models and methods for evaluating structures of processing telecommunication information exchange systems under acoustic noise conditions

    NASA Astrophysics Data System (ADS)

    Kropotov, Y. A.; Belov, A. A.; Proskuryakov, A. Y.; Kolpakov, A. A.

    2018-05-01

    The paper considers models and methods for estimating signals during the transmission of information messages in telecommunication systems of audio exchange. One-dimensional probability distribution functions that can be used to isolate useful signals, and acoustic noise interference are presented. An approach to the estimation of the correlation and spectral functions of the parameters of acoustic signals is proposed, based on the parametric representation of acoustic signals and the components of the noise components. The paper suggests an approach to improving the efficiency of interference cancellation and highlighting the necessary information when processing signals from telecommunications systems. In this case, the suppression of acoustic noise is based on the methods of adaptive filtering and adaptive compensation. The work also describes the models of echo signals and the structure of subscriber devices in operational command telecommunications systems.

  19. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  20. 3D digital image correlation using a single 3CCD colour camera and dichroic filter

    NASA Astrophysics Data System (ADS)

    Zhong, F. Q.; Shao, X. X.; Quan, C.

    2018-04-01

    In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.

  1. Fuel Chemistry And Combustion Distribution Effects On Rocket Engine Combustion Stability

    DTIC Science & Technology

    2015-11-19

    UV1054B 105mm F/4.0 Quartz Lens) was attached to the UV intensifier. A Semrock interference filter (FF01-320/40-25) that had a transmission of 74% at 310...associated with combustion. Therefore, the light emitted by this radical can serve as a qualitative measure of local heat release. A Semrock 432/17...UV1054B 105mm F/4.0 Quartz Lens) was attached to the UV intensifier. A Semrock interference filter (FF01-320/40-25) that had a transmission of 74

  2. Image quality, space-qualified UV interference filters

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  3. Design and evaluation of a filter spectrometer concept for facsimile cameras

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Jobson, D. J.; Rowland, C. W.

    1974-01-01

    The facsimile camera is an optical-mechanical scanning device which was selected as the imaging system for the Viking '75 lander missions to Mars. A concept which uses an interference filter-photosensor array to integrate a spectrometric capability with the basic imagery function of this camera was proposed for possible application to future missions. This paper is concerned with the design and evaluation of critical electronic circuits and components that are required to implement this concept. The feasibility of obtaining spectroradiometric data is demonstrated, and the performance of a laboratory model is described in terms of spectral range, angular and spectral resolution, and noise-equivalent radiance.

  4. WDM hybrid microoptical transceiver with Bragg volume grating

    NASA Astrophysics Data System (ADS)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  5. WDM hybrid microoptical transceiver with Bragg volume grating

    NASA Astrophysics Data System (ADS)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2011-09-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  6. Weak beacon detection for air-to-ground optical wireless link establishment.

    PubMed

    Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong

    2010-02-01

    In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.

  7. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  8. Envelope filter sequence to delete blinks and overshoots.

    PubMed

    Merino, Manuel; Gómez, Isabel María; Molina, Alberto J

    2015-05-30

    Eye movements have been used in control interfaces and as indicators of somnolence, workload and concentration. Different techniques can be used to detect them: we focus on the electrooculogram (EOG) in which two kinds of interference occur: blinks and overshoots. While they both draw bell-shaped waveforms, blinks are caused by the eyelid, whereas overshoots occur due to target localization error and are placed on saccade. They need to be extracted from the EOG to increase processing effectiveness. This paper describes off- and online processing implementations based on lower envelope for removing bell-shaped noise; they are compared with a 300-ms-median filter. Techniques were analyzed using two kinds of EOG data: those modeled from our own design, and real signals. Using a model signal allowed to compare filtered outputs with ideal data, so that it was possible to quantify processing precision to remove noise caused by blinks, overshoots, and general interferences. We analyzed the ability to delete blinks and overshoots, and waveform preservation. Our technique had a high capacity for reducing interference amplitudes (>97%), even exceeding median filter (MF) results. However, the MF obtained better waveform preservation, with a smaller dependence on fixation width. The proposed technique is better at deleting blinks and overshoots than the MF in model and real EOG signals.

  9. DOA-informed source extraction in the presence of competing talkers and background noise

    NASA Astrophysics Data System (ADS)

    Taseska, Maja; Habets, Emanuël A. P.

    2017-12-01

    A desired speech signal in hands-free communication systems is often degraded by noise and interfering speech. Even though the number and locations of the interferers are often unknown in practice, it is justified to assume in certain applications that the direction-of-arrival (DOA) of the desired source is approximately known. Using the known DOA, fixed spatial filters such as the delay-and-sum beamformer can be steered to extract the desired source. However, it is well-known that fixed data-independent spatial filters do not provide sufficient reduction of directional interferers. Instead, the DOA information can be used to estimate the statistics of the desired and the undesired signals and to compute optimal data-dependent spatial filters. One way the DOA is exploited for optimal spatial filtering in the literature, is by designing DOA-based narrowband detectors to determine whether a desired or an undesired signal is dominant at each time-frequency (TF) bin. Subsequently, the statistics of the desired and the undesired signals can be estimated during the TF bins where the respective signal is dominant. In a similar manner, a Gaussian signal model-based detector which does not incorporate DOA information has been used in scenarios where the undesired signal consists of stationary background noise. However, when the undesired signal is non-stationary, resulting for example from interfering speakers, such a Gaussian signal model-based detector is unable to robustly distinguish desired from undesired speech. To this end, we propose a DOA model-based detector to determine the dominant source at each TF bin and estimate the desired and undesired signal statistics. We demonstrate that data-dependent spatial filters that use the statistics estimated by the proposed framework achieve very good undesired signal reduction, even when using only three microphones.

  10. Unconventional signal detection techniques with Gaussian probability mixtures adaptation in non-AWGN channels: full resolution receiver

    NASA Astrophysics Data System (ADS)

    Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.

    2011-04-01

    In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.

  11. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  12. HF band filter bank multi-carrier spread spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laraway, Stephen Andrew; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    Abstract—This paper describes modifications to the filter bank multicarrier spread spectrum (FB-MC-SS) system, that was presented in [1] and [2], to enable transmission of this waveform in the HF skywave channel. FB-MC-SS is well suited for the HF channel because it performs well in channels with frequency selective fading and interference. This paper describes new algorithms for packet detection, timing recovery and equalization that are suitable for the HF channel. Also, an algorithm for optimizing the peak to average power ratio (PAPR) of the FBMC- SS waveform is presented. Application of this algorithm results in a waveform with low PAPR.more » Simulation results using a wide band HF channel model demonstrate the robustness of this system over a wide range of delay and Doppler spreads.« less

  13. Pulse transmission transmitter including a higher order time derivate filter

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  14. Digital filter polychromator for Thomson scattering applications

    NASA Astrophysics Data System (ADS)

    Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An

    2018-02-01

    Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.

  15. Rotating wedge filter photometer for high altitude sounding rocket application.

    PubMed

    Holm, C; Maehlum, B N; Narheim, B T

    1972-02-01

    A scanning photometer is described, utilizing a rotating wedge interference filter as the wavelength scanning element around 6300 A. A detailed description of the filter production is given, emphasizing the procedure for in situ wavelength control during fabrication. Subsequently, the complete photometer is briefly described, and some results from its applications on an auroral sounding rocket flight are presented.

  16. FM notch filter in front - and - behind the low noise amplifier of a Callisto Radio Spectrometer in Gauribidanur, India

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    In the framework of IHY2007 a Callisto spectrometer [Benz(2004)] was installed and set into operation at the location of the solar heliograph in Gauribidanur, India. At that time the level of radio frequency interference (RFI) was amazingly low. In recent years more and more FM broadcast transmitters were installed with high power compared to the requirements of radio astronomical observations. So, the spectral observations with Callisto experienced more and more interference by these FM transmitters. Recently an FM-notch filter was installed between the low noise amplifier and Callisto, but it did not work out. The notch filter was then moved to the input of the LNA and the result was much better, as expected from theoretical concepts.

  17. A dense grid of narrow bandpass steep edge filters for the JST/T250 telescope: summary of results

    NASA Astrophysics Data System (ADS)

    Brauneck, U.; Sprengard, R.; Bourquin, S.; Marín-Franch, A.

    2017-09-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) has setup a new wide field telescope, the JST/T250: a 2.55 m telescope with a plate scale of 22.67"/mm and a 3° diameter field of view. To conduct a photometric sky survey, a large format mosaic camera made of 14 individual CCDs is used in combination with filter trays containing 14 filters each of theses 101.7 x 96.5 mm in size. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters which were recently completed. The filter set consists of bandpass filters in the range between 348,5 nm and 910 nm and a longpass filter at 915 nm. Most of the filters have FWHM of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. Inspite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass having a defined overlap with its neighbors. In addition, the blocking of the filters is better than OD5 in the range 250-1050 nm. A high image quality required a low transmitted wavefront error (

  18. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    NASA Technical Reports Server (NTRS)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  19. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  20. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  1. Intensity transform and Wiener filter in measurement of blood flow in arteriography

    NASA Astrophysics Data System (ADS)

    Nunes, Polyana F.; Franco, Marcelo L. N.; Filho, João. B. D.; Patrocínio, Ana C.

    2015-03-01

    Using the arteriography examination, it is possible to check anomalies in blood vessels and diseases such as stroke, stenosis, bleeding and especially in the diagnosis of Encephalic Death in comatose individuals. Encephalic death can be diagnosed only when there is complete interruption of all brain functions, and hence the blood stream. During the examination, there may be some interference on the sensors, such as environmental factors, poor maintenance of equipment, patient movement, among other interference, which can directly affect the noise produced in angiography images. Then, we need to use digital image processing techniques to minimize this noise and improve the pixel count. Therefore, this paper proposes to use median filter and enhancement techniques for transformation of intensity using the sigmoid function together with the Wiener filter so you can get less noisy images. It's been realized two filtering techniques to remove the noise of images, one with the median filter and the other with the Wiener filter along the sigmoid function. For 14 tests quantified, including 7 Encephalic Death and 7 other cases, the technique that achieved a most satisfactory number of pixels quantified, also presenting a lesser amount of noise, is the Wiener filter sigmoid function, and in this case used with 0.03 cuttof.

  2. Beam Splitter For Welding-Torch Vision System

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Compact welding torch equipped with along-the-torch vision system includes cubic beam splitter to direct preview light on weldment and to reflect light coming from welding scene for imaging. Beam splitter integral with torch; requires no external mounting brackets. Rugged and withstands vibrations and wide range of temperatures. Commercially available, reasonably priced, comes in variety of sizes and optical qualities with antireflection and interference-filter coatings on desired faces. Can provide 50 percent transmission and 50 percent reflection of incident light to exhibit minimal ghosting of image.

  3. The calculation of average error probability in a digital fibre optical communication system

    NASA Astrophysics Data System (ADS)

    Rugemalira, R. A. M.

    1980-03-01

    This paper deals with the problem of determining the average error probability in a digital fibre optical communication system, in the presence of message dependent inhomogeneous non-stationary shot noise, additive Gaussian noise and intersymbol interference. A zero-forcing equalization receiver filter is considered. Three techniques for error rate evaluation are compared. The Chernoff bound and the Gram-Charlier series expansion methods are compared to the characteristic function technique. The latter predicts a higher receiver sensitivity

  4. Near-Field Noise Source Localization in the Presence of Interference

    NASA Astrophysics Data System (ADS)

    Liang, Guolong; Han, Bo

    In order to suppress the influence of interference sources on the noise source localization in the near field, the near-field broadband source localization in the presence of interference is studied. Oblique projection is constructed with the array measurements and the steering manifold of interference sources, which is used to filter the interference signals out. 2D-MUSIC algorithm is utilized to deal with the data in each frequency, and then the results of each frequency are averaged to achieve the positioning of the broadband noise sources. The simulations show that this method suppresses the interference sources effectively and is capable of locating the source which is in the same direction with the interference source.

  5. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.

  6. Tunable dual-wavelength fiber laser based on an MMI filter in a cascaded Sagnac loop interferometer

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Kang, Zexin; Qi, Yanhui; Jian, Shuisheng

    2014-04-01

    A widely tunable dual-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop interferometer incorporating a multimode interference filter is proposed and experimentally demonstrated in this paper. The mode selection is implemented by using the cascaded Sagnac loop interferometer with two segments of polarization maintaining fibers, and the wavelength tuning was achieved by using the refractive index characteristic of multimode interference effects. The tunable dual-wavelength fiber laser has a wavelength tuning of about 40 nm with a signal-to-noise ratio of more than 50 dB.

  7. Customized broadband sloan-filters for the JST/T250 and JAST/T80 telescopes: summary of results

    NASA Astrophysics Data System (ADS)

    Brauneck, U.; Sprengard, R.; Bourquin, S.; Marín-Franch, A.

    2017-09-01

    The Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) will conduct a photometric sky survey with 2 new telescopes recently setup on the Javalambre mountain in Spain: the JST/T250 is a 2.55m telescope with a plate scale of 22.67"/mm and a 3° diameter field of view (FoV) and the auxiliary telescope JAST/T80 with a 82cm primary mirror and a FoV of 2 deg diameter. A multiple CCD (9k-by-9k array size, 10μm pixel size) mosaic camera is used in combination with filter trays or filter wheels, each containing a multitude of filters in dimensions of 101.7x96.5mm or 106.8x106.8mm. For this project, SCHOTT manufactured 56 specially designed narrow band steep edged bandpass interference filters and 5 broadband sloan-filters which were completed only recently. We report here on the results of the broadband sloanfilters with transmission bands of 324-400nm (sloan-u), 400-550nm (sloan-g), 550-700nm (sloan-r), 695-850nm (sloan-i) and 830-1200nm (sloan-z). The filters are composed of SCHOTT filterglasses and clearglass substrates coated with interference filters and represent an improvement of broadband sloan filters commonly used in astronomy. Inspite of the absorptive elements, the filters show maximum possible transmissions achieved by magnetron sputtered filter coatings. In addition the blocking of the filters is better than OD5 in the range 250-1050nm. A high image quality required a low transmitted wavefront error (<λ/8 locally, respectively <λ/2 globally) which was achieved by combining up to 2 substrates. We report on the spectral and interferometric results measured on the filters.

  8. Developments of capacitance stabilised etalon technology

    NASA Astrophysics Data System (ADS)

    Bond, R. A.; Foster, M.; Thwaite, C.; Thompson, C. K.; Rees, D.; Bakalski, I. V.; Pereira do Carmo, J.

    2017-11-01

    This paper describes a high-resolution optical filter (HRF) suitable for narrow bandwidth filtering in LIDAR applications. The filter is composed of a broadband interference filter and a narrowband Fabry-Perot etalon based on the capacitance stabilised concept. The key requirements for the HRF were a bandwidth of less than 40 pm, a tuneable range of over 6 nm and a transmission greater than 50%. These requirements combined with the need for very high out-of-band rejection (greater than 50 dB in the range 300 nm to 1200 nm) drive the design of the filter towards a combination of high transmission broadband filter and high performance tuneable, narrowband filter.

  9. Analysis of the selected mechanical parameters of coating of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz; Kubrak, Janusz

    2017-03-01

    This article presents a comparison of the test results of selected mechanical parameters (hardness, Young's modulus, critical force for delamination) for protective filters intended for eye protection against harmful infrared radiation. Filters with reflective metallic films were studied, as well as interference filters developed at the Central Institute for Labour Protection - National Research Institute (CIOP-PIB). The test results of the selected mechanical parameters were compared with the test results, conducted in accordance with a standardised method, of simulating filter surface destruction that occurs during use.

  10. Achieving pattern uniformity in plasmonic lithography by spatial frequency selection

    NASA Astrophysics Data System (ADS)

    Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay

    2018-01-01

    The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.

  11. Basic EMC (Electromagnetic compatibility) technology advancement for C3 systems. Volume 4D: Modeling crosstalk in balanced twisted pairs

    NASA Astrophysics Data System (ADS)

    Koopman, D. A.; Paul, C. R.

    1984-08-01

    Electrical devices (computers, radar systems, communication radios, etc.) are interconnected by wires on most present systems. Electromagnetic fields produced by the excitation of these wires will cause unintentional coupling of signals onto nearby wires. This undesired electromagnetic coupling is termed crosstalk. It is important to be able to determine whether these crosstalk signals will cause the devices at the ends of the wires to malfunction. Wires are often grouped together in cable bundles or harnesses. The close proximity of wires in these bundles enhances the possibility that the crosstalk levels will be sufficiently large to cause malfunctions. The ability to predict crosstalk levels and the means to control crosstalk when it causes a problem are important to optimum system design. It interference of this type is allowed to surface during final system tests, a costly and time consuming retrofit of the wiring or the addition of filters and other interference control measures may be required.

  12. Off-axis digital holographic camera for quantitative phase microscopy.

    PubMed

    Monemhaghdoust, Zahra; Montfort, Frédéric; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2014-06-01

    We propose and experimentally demonstrate a digital holographic camera which can be attached to the camera port of a conventional microscope for obtaining digital holograms in a self-reference configuration, under short coherence illumination and in a single shot. A thick holographic grating filters the beam containing the sample information in two dimensions through diffraction. The filtered beam creates the reference arm of the interferometer. The spatial filtering method, based on the high angular selectivity of the thick grating, reduces the alignment sensitivity to angular displacements compared with pinhole based Fourier filtering. The addition of a thin holographic grating alters the coherence plane tilt introduced by the thick grating so as to create high-visibility interference over the entire field of view. The acquired full-field off-axis holograms are processed to retrieve the amplitude and phase information of the sample. The system produces phase images of cheek cells qualitatively similar to phase images extracted with a standard commercial DHM.

  13. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  14. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  15. Two-dimensional signal processing using a morphological filter for holographic memory

    NASA Astrophysics Data System (ADS)

    Kondo, Yo; Shigaki, Yusuke; Yamamoto, Manabu

    2012-03-01

    Today, along with the wider use of high-speed information networks and multimedia, it is increasingly necessary to have higher-density and higher-transfer-rate storage devices. Therefore, research and development into holographic memories with three-dimensional storage areas is being carried out to realize next-generation large-capacity memories. However, in holographic memories, interference between bits, which affect the detection characteristics, occurs as a result of aberrations such as the deviation of a wavefront in an optical system. In this study, we pay particular attention to the nonlinear factors that cause bit errors, where filters with a Volterra equalizer and the morphologies are investigated as a means of signal processing.

  16. Fraunhofer filters to reduce solar background for optical communications

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1986-01-01

    A wavelength that lies within a spectral interval of reduced solar emission (a Fraunhofer line) can carry optical communications with reduced interference from direct or reflected background sunlight. Suitable Fraunhofer lines are located within the tuning range of good candidate lasers. The laser should be tunable dynamically to track Doppler shifts in the sunlight incident on any solar system body that may appear in the background as viewed by the receiver. A Fraunhofer filter used with a direct-detection receiver should be tuned to match the Doppler shifts of the source and background. The required tuning calculated here for various situations is also required if, instead, one uses a heterodyne receiver with limited post-detection bandwidth.

  17. A retrospective detection algorithm for extraction of weak targets in clutter and interference environments

    NASA Astrophysics Data System (ADS)

    Prengaman, R. J.; Thurber, R. E.; Bath, W. G.

    The usefulness of radar systems depends on the ability to distinguish between signals returned from desired targets and noise. A retrospective processor uses all contacts (or 'plots') from several past radar scans, taking into account all possible target trajectories formed from stored contacts for each input detection. The processor eliminates many false alarms, while retaining those contacts describing resonable trajectories. The employment of a retrospective processor makes it, therefore, possible to obtain large improvements in detection sensitivity in certain important clutter environments. Attention is given to the retrospective processing concept, a theoretical analysis of the multiscan detection process, the experimental evaluation of retrospective data filter, and aspects of retrospective data filter hardware implementation.

  18. Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform.

    PubMed

    Zhou, Nan; Zheng, Shuang; Long, Yun; Ruan, Zhengsen; Shen, Li; Wang, Jian

    2018-02-19

    We propose and demonstrate a reconfigurable and tunable chip-scale comb filter and (de)interleaver on a silicon platform. The silicon-based photonic integrated device is formed by Sagnac loop mirrors (SLMs) with directional couplers replaced by multi-mode interference (MMI) assisted tunable Mach-Zehnder interferometer (MZI) couplers. The device can be regarded as a large SLM incorporating two small SLMs which form a Fabry-Perot (FP) cavity. By appropriately adjusting the micro-heaters in tunable MZI couplers and cavity, switchable operation between comb filter and (de)interleaver and extinction ratio and wavelength tunable operations of comb filter and (de)interleaver are achievable by thermo-optic tuning. Reconfigurable comb filter and (de)interleaver is demonstrated in the experiment. The central wavelength shifts of comb filter and (de)interleaver are demonstrated with wavelength tuning efficiencies of ~0.0224 nm/mW and ~0.0193 nm/mW, respectively. The 3-dB bandwidth of the comb filter is ~0.032 nm. The 3-dB and 20-dB bandwidths of the (de)interleaver passband are ~0.225 nm and ~0.326 nm. The obtained results indicate that the designed and fabricated device provides switchable comb filtering and interleaving functions together with extinction ratio and wavelength tunabilities. Reconfigurable and tunable silicon-based comb filter and (de)interleaver may find potential applications in robust wavelength-division multiplexing (WDM) optical communication systems.

  19. Suppression of biodynamic interference in head-tracked teleoperation

    NASA Technical Reports Server (NTRS)

    Lifshitz, S.; Merhav, S. J.; Grunwald, A. J.; Tucker, G. E.; Tischler, M. B.

    1991-01-01

    The utility of helmet-tracked sights to provide pointing commands for teleoperation of cameras, lasers, or antennas in aircraft is degraded by the presence of uncommanded, involuntary heat motion, referred to as biodynamic interference. This interference limits the achievable precision required in pointing tasks. The noise contributions due to biodynamic interference consists of an additive component which is correlated with aircraft vibration and an uncorrelated, nonadditive component, referred to as remnant. An experimental simulation study is described which investigated the improvements achievable in pointing and tracking precision using dynamic display shifting in the helmet-mounted display. The experiment was conducted in a six degree of freedom motion base simulator with an emulated helmet-mounted display. Highly experienced pilot subjects performed precision head-pointing tasks while manually flying a visual flight-path tracking task. Four schemes using adaptive and low-pass filtering of the head motion were evaluated to determine their effects on task performance and pilot workload in the presence of whole-body vibration characteristic of helicopter flight. The results indicate that, for tracking tasks involving continuously moving targets, improvements of up to 70 percent can be achieved in percent on-target dwelling time and of up to 35 percent in rms tracking error, with the adaptive plus low-pass filter configuration. The results with the same filter configuration for the task of capturing randomly-positioned, stationary targets show an increase of up to 340 percent in the number of targets captured and an improvement of up to 24 percent in the average capture time. The adaptive plus low-pass filter combination was considered to exhibit the best overall display dynamics by each of the subjects.

  20. Experimental industrial signal acquisition board in a large scientific device

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangzhen; Ren, Bin

    2018-02-01

    In order to measure the industrial signal of neutrino experiment, a set of general-purpose industrial data acquisition board has been designed. It includes the function of switch signal input and output, and the function of analog signal input. The main components are signal isolation amplifier and filter circuit, ADC circuit, microcomputer systems and isolated communication interface circuit. Through the practical experiments, it shows that the system is flexible, reliable, convenient and economical, and the system has characters of high definition and strong anti-interference ability. Thus, the system fully meets the design requirements.

  1. Interference Alignment With Partial CSI Feedback in MIMO Cellular Networks

    NASA Astrophysics Data System (ADS)

    Rao, Xiongbin; Lau, Vincent K. N.

    2014-04-01

    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. However, most existing IA designs require full channel state information (CSI) at the transmitters, which would lead to significant CSI signaling overhead. There are two techniques, namely CSI quantization and CSI feedback filtering, to reduce the CSI feedback overhead. In this paper, we consider IA processing with CSI feedback filtering in MIMO cellular networks. We introduce a novel metric, namely the feedback dimension, to quantify the first order CSI feedback cost associated with the CSI feedback filtering. The CSI feedback filtering poses several important challenges in IA processing. First, there is a hidden partial CSI knowledge constraint in IA precoder design which cannot be handled using conventional IA design methodology. Furthermore, existing results on the feasibility conditions of IA cannot be applied due to the partial CSI knowledge. Finally, it is very challenging to find out how much CSI feedback is actually needed to support IA processing. We shall address the above challenges and propose a new IA feasibility condition under partial CSIT knowledge in MIMO cellular networks. Based on this, we consider the CSI feedback profile design subject to the degrees of freedom requirements, and we derive closed-form trade-off results between the CSI feedback cost and IA performance in MIMO cellular networks.

  2. Conflict-Induced Perceptual Filtering

    ERIC Educational Resources Information Center

    Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2012-01-01

    In a variety of conflict paradigms, target and distractor stimuli are defined in terms of perceptual features. Interference evoked by distractor stimuli tends to be reduced when the ratio of congruent to incongruent trials is decreased, suggesting conflict-induced perceptual filtering (i.e., adjusting the processing weights assigned to stimuli…

  3. Tuning the photon statistics of a strongly coupled nanophotonic system

    NASA Astrophysics Data System (ADS)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Sapra, Neil V.; Vučković, Jelena

    2017-02-01

    We investigate the dynamics of single- and multiphoton emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of nonclassical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Despite the strongly dissipative nature of these systems, we find that by utilizing a self-homodyne interference technique combined with frequency filtering we are able to find a strong two-photon component of the emission in the multiphoton regime. In order to explain our correlation measurements, we propose rate equation models that capture the dominant processes of emission in both the single- and multiphoton regimes. These models are then supported by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system.

  4. An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation

    NASA Astrophysics Data System (ADS)

    Jihai, Duan; Chuang, Lan; Weilin, Xu; Baolin, Wei

    2015-05-01

    A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconductance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 VPP sinusoidal input at 100 Hz, a total harmonic distortion (THD) of -56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  5. Elimination of interference component in Wigner-Ville distribution for the signal with 1/f spectral characteristic.

    PubMed

    Chan, H L; Lin, J L; Huang, H H; Wu, C P

    1997-09-01

    A new technique for interference-term suppression in Wigner-Ville distribution (WVD) is proposed for the signal with 1/f spectrum shape. The spectral characteristic of the signal is altered by f alpha filtering before time-frequency analysis and compensated after analysis. With the utilization of the proposed technique in smoothed pseudo Wigner-Ville distribution, an excellent suppression of interference component can be achieved.

  6. Aperiodic nanoplasmonic devices for directional colour filtering and sensing.

    PubMed

    Davis, Matthew S; Zhu, Wenqi; Xu, Ting; Lee, Jay K; Lezec, Henri J; Agrawal, Amit

    2017-11-07

    Exploiting the wave-nature of light in its simplest form, periodic architectures have enabled a panoply of tunable optical devices with the ability to perform useful functions such as filtering, spectroscopy, and multiplexing. Here, we remove the constraint of structural periodicity to enhance, simultaneously, the performance and functionality of passive plasmonic devices operating at optical frequencies. By using a physically intuitive, first-order interference model of plasmon-light interactions, we demonstrate a simple and efficient route towards designing devices with flexible, multi-spectral optical response, fundamentally not achievable using periodic architectures. Leveraging this approach, we experimentally implement ultra-compact directional light-filters and colour-sorters exhibiting angle- or spectrally-tunable optical responses with high contrast, and low spectral or spatial crosstalk. Expanding the potential of aperiodic systems to implement tailored spectral and angular responses, these results hint at promising applications in solar-energy harvesting, optical signal multiplexing, and integrated sensing.

  7. Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, Marc; Görtz, Björn; Ristau, Detlev

    2006-03-01

    Methods for the manufacture of rugate filters by the ion-beam-sputtering process are presented. The first approach gives an example of a digitized version of a continuous-layer notch filter. This method allows the comparison of the basic theory of interference coatings containing thin layers with practical results. For the other methods, a movable zone target is employed to fabricate graded and gradual rugate filters. The examples demonstrate the potential of broadband optical monitoring in conjunction with the ion-beam-sputtering process. First-characterization results indicate that these types of filter may exhibit higher laser-induced damage-threshold values than those of classical filters.

  8. Photometer for detection of sodium day airglow.

    NASA Technical Reports Server (NTRS)

    Mcmahon, D. J.; Manring, E. R.; Patty, R. R.

    1973-01-01

    Description of a photometer for daytime ground-based measurements of sodium airglow emission. The photometer described can be characterized by the following principal features: (1) a narrow (4.5-A) interference filter for initial discrimination; (2) cooled photomultiplier detector to reduce noise from dark current fluctuations and chopping to eliminate the average dark current; (3) a sodium vapor resonance cell to provide an effective bandpass comparable to the Doppler line width; (4) separate detection of all light transmitted by the interference filter to evaluate the Rayleigh and Mie components within the Doppler width of the resonance cell; and (5) temperature quenching of the resonance cell to evaluate and account for instrumental imperfections.

  9. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  10. Shielded multi-stage EMI noise filter

    DOEpatents

    Kisner, Roger Allen; Fugate, David Lee

    2016-11-08

    Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.

  11. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  12. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2–150 kHz Frequency Range

    PubMed Central

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A.; Muetsch, Steffen

    2018-01-01

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2–150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2–150 kHz frequency range. PMID:29360754

  13. Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2-150 kHz Frequency Range.

    PubMed

    Suarez, Adrian; Victoria, Jorge; Alcarria, Antonio; Torres, Jose; Martinez, Pedro A; Martos, Julio; Soret, Jesus; Garcia-Olcina, Raimundo; Muetsch, Steffen

    2018-01-23

    The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2-150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which involves finding new materials that are able to filter the electromagnetic noise. This contribution is focused on characterizing the performance of a novel material based on nanocrystalline and comparing it to most common material compositions such as MnZn and NiZn. This research is carried out from the point of view of the manufacturing process, magnetic properties and EMI suppression ability. This last item is carried out through two analysis procedures: a theoretical method by determining the attenuation ratio by measuring impedance parameter and proposing a new empirical technique based on measuring directly the insertion loss parameter. Therefore, the main aim of this characterization process is to determine the performance of nanocrystalline compared to traditional cable ferrite compositions to reduce the interferences in this controversial frequency range. From the results obtained, it is possible to deduce that nanocrystalline cable ferrite provides the best performance to filter the electromagnetic noise in the 2-150 kHz frequency range.

  14. Customized broadband Sloan-filters for the JST/T250 and JAST/T80 telescopes: measurement summary

    NASA Astrophysics Data System (ADS)

    Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio

    2018-01-01

    The Centro de Estudios de Fisica del Cosmos de Aragon will conduct a photometric sky survey with two new telescopes recently set up on the Javalambre mountain in Spain: the JST/T250 is a 2.55-m telescope with a plate scale of 22.67 arc⁢sec/mm and a 3-deg-diameter field of view (FoV) and the auxiliary telescope JAST/T80 with a 82-cm primary mirror and an FoV of 2 deg diameter. A multiple CCD (9k-by-9k array size, 10-μm pixel size) mosaic camera is used in combination with filter trays or filter wheels, each containing a multitude of filters in dimensions of 101.7×96.5 mm or 106.8×106.8 mm. For this project, Schott manufactured 56 specially designed narrow band steep-edged bandpass interference filters and five broadband Sloan-filters which were completed only recently. We report here on the results of the broadband Sloan-filters with transmission bands of 324 to 400 nm (Sloan-u), 400 to 550 nm (Sloan-g), 550 to 700 nm (Sloan-r), 695 to 850 nm (Sloan-i), and 830 to 1200 nm (Sloan-z). The filters are composed of Schott filterglasses and clearglass substrates coated with interference filters and represent an improvement of broadband Sloan filters commonly used in astronomy. In spite of the absorptive elements, the filters show maximum possible transmissions achieved by magnetron sputtered filter coatings. In addition, the blocking of the filters is better than OD5 (transmission <10 to -5) in the range 250 to 1050 nm which was achieved by combining up to three substrates. A high image quality required a low transmitted wavefront error (<λ/8 locally, respectively <λ/2 globally). We report on the spectral and interferometric results measured on the filters.

  15. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure

    PubMed Central

    Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.

    2017-01-01

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527

  16. Low-cost, high-fidelity, adaptive cancellation of periodic 60 Hz noise.

    PubMed

    Wesson, Kyle D; Ochshorn, Robert M; Land, Bruce R

    2009-12-15

    A common method to eliminate unwanted power line interference in neurobiology laboratories where sensitive electronic signals are measured is with a notch filter. However a fixed-frequency notch filter cannot remove all power line noise contamination since inherent frequency and phase variations exist in the contaminating signal. One way to overcome the limitations of a fixed-frequency notch filter is with adaptive noise cancellation. Adaptive noise cancellation is an active approach that uses feedback to create a signal that when summed with the contaminated signal destructively interferes with the noise component leaving only the desired signal. We have implemented an optimized least mean square adaptive noise cancellation algorithm on a low-cost 16 MHz, 8-bit microcontroller to adaptively cancel periodic 60 Hz noise. In our implementation, we achieve between 20 and 25 dB of cancellation of the fundamental 60 Hz noise component.

  17. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure.

    PubMed

    Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A

    2017-11-28

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.

  18. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  19. TPH detection in groundwater: Identification and elimination of positive interferences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.; Synowiec, K.A.

    1996-01-01

    Groundwater assessment programs frequently require total petroleum hydrocarbon (TPH) analyses (Methods 8015M and 418.1). TPH analyses are often unreliable indicators of water quality because these methods are not constituent-specific and are vulnerable to significant sources of positive interferences. These positive interferences include: (a) non-dissolved petroleum constituents; (b) soluble, non-petroleum hydrocarbons (e.g., biodegradation products); and (c) turbidity, commonly introduced into water samples during sample collection. In this paper, we show that the portion of a TPH concentration not directly the result of water-soluble petroleum constituents can be attributed solely to these positive interferences. To demonstrate the impact of these interferences, wemore » conducted a field experiment at a site affected by degraded crude oil. Although TPH was consistently detected in groundwater samples, BTEX was not detected. PNAs were not detected, except for very low concentrations of fluorene (<5 ug/1). Filtering and silica gel cleanup steps were added to sampling and analyses to remove particulates and biogenic by-products. Results showed that filtering lowered the Method 8015M concentrations and reduced the Method 418.1 concentrations to non-detectable. Silica gel cleanup reduced the Method 8015M concentrations to non-detectable. We conclude from this study that the TPH results from groundwater samples are artifacts of positive interferences caused by both particulates and biogenic materials and do not represent dissolved-phase petroleum constituents.« less

  20. TPH detection in groundwater: Identification and elimination of positive interferences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.; Synowiec, K.A.

    1996-12-31

    Groundwater assessment programs frequently require total petroleum hydrocarbon (TPH) analyses (Methods 8015M and 418.1). TPH analyses are often unreliable indicators of water quality because these methods are not constituent-specific and are vulnerable to significant sources of positive interferences. These positive interferences include: (a) non-dissolved petroleum constituents; (b) soluble, non-petroleum hydrocarbons (e.g., biodegradation products); and (c) turbidity, commonly introduced into water samples during sample collection. In this paper, we show that the portion of a TPH concentration not directly the result of water-soluble petroleum constituents can be attributed solely to these positive interferences. To demonstrate the impact of these interferences, wemore » conducted a field experiment at a site affected by degraded crude oil. Although TPH was consistently detected in groundwater samples, BTEX was not detected. PNAs were not detected, except for very low concentrations of fluorene (<5 ug/1). Filtering and silica gel cleanup steps were added to sampling and analyses to remove particulates and biogenic by-products. Results showed that filtering lowered the Method 8015M concentrations and reduced the Method 418.1 concentrations to non-detectable. Silica gel cleanup reduced the Method 8015M concentrations to non-detectable. We conclude from this study that the TPH results from groundwater samples are artifacts of positive interferences caused by both particulates and biogenic materials and do not represent dissolved-phase petroleum constituents.« less

  1. A study of GPS measurement errors due to noise and multipath interference for CGADS

    NASA Technical Reports Server (NTRS)

    Axelrad, Penina; MacDoran, Peter F.; Comp, Christopher J.

    1996-01-01

    This report describes a study performed by the Colorado Center for Astrodynamics Research (CCAR) on GPS measurement errors in the Codeless GPS Attitude Determination System (CGADS) due to noise and multipath interference. Preliminary simulation models fo the CGADS receiver and orbital multipath are described. The standard FFT algorithms for processing the codeless data is described and two alternative algorithms - an auto-regressive/least squares (AR-LS) method, and a combined adaptive notch filter/least squares (ANF-ALS) method, are also presented. Effects of system noise, quantization, baseband frequency selection, and Doppler rates on the accuracy of phase estimates with each of the processing methods are shown. Typical electrical phase errors for the AR-LS method are 0.2 degrees, compared to 0.3 and 0.5 degrees for the FFT and ANF-ALS algorithms, respectively. Doppler rate was found to have the largest effect on the performance.

  2. Kalman Filtering Approach to Blind Equalization

    DTIC Science & Technology

    1993-12-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California •GR AD13 DTIC 94-07381 AR 0C199 THESIS S 0 LECTE4u KALMAN FILTERING APPROACH TO BLIND EQUALIZATION by...FILTERING APPROACH 5. FUNDING NUMBERS TO BLIND EQUALIZATION S. AUTHOR(S) Mehmet Kutlu 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S...which introduces errors due to intersymbol interference. The solution to this problem is provided by equalizers which use a training sequence to adapt to

  3. Microscopy with spatial filtering for sorting particles and monitoring subcellular morphology

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Yi; Qian, Zhen; Pasternack, Robert M.; Boustany, Nada N.

    2009-02-01

    Optical scatter imaging (OSI) was developed to non-invasively track real-time changes in particle morphology with submicron sensitivity in situ without exogenous labeling, cell fixing, or organelle isolation. For spherical particles, the intensity ratio of wide-to-narrow angle scatter (OSIR, Optical Scatter Image Ratio) was shown to decrease monotonically with diameter and agree with Mie theory. In living cells, we recently reported this technique is able to detect mitochondrial morphological alterations, which were mediated by the Bcl-xL transmembrane domain, and could not be observed by fluorescence or differential interference contrast images. Here we further extend the ability of morphology assessment by adopting a digital micromirror device (DMD) for Fourier filtering. When placed in the Fourier plane the DMD can be used to select scattering intensities at desired combination of scattering angles. We designed an optical filter bank consisting of Gabor-like filters with various scales and rotations based on Gabor filters, which have been widely used for localization of spatial and frequency information in digital images and texture analysis. Using a model system consisting of mixtures of polystyrene spheres and bacteria, we show how this system can be used to sort particles on a microscopic slide based on their size, orientation and aspect ratio. We are currently applying this technique to characterize the morphology of subcellular organelles to help understand fundamental biological processes.

  4. Documentation for the machine-readable version of OAO 2 filter photometry of 531 stars of diverse types

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    A magnetic tape version of the ultraviolet photometry of 531 stars observed with the Wisconsin Experiment Package aboard the Orbiting Astronomical Observatory (OAO 2) is described. The data were obtained with medium band interference filters and were reduced to a uniform magnitude system. They represent a subset of partially reduced data currently on file at the National Space Science Data Center. The document is intended to enable users of the tape file to read and process data without problems or guesswork. For technical details concerning the observations, instrumentation limitations, and interpretation of the data the reference publication should be consulted. This document was designed for distribution with any machine-readable version of the OAO 2 photometric data.

  5. Filtering algorithm for dotted interferences

    NASA Astrophysics Data System (ADS)

    Osterloh, K.; Bücherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.

    2011-09-01

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  6. A wavelength-tunable fiber laser using a novel filter based on a compound interference effect

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao

    2015-01-01

    A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2  ×  2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.

  7. A study of glasses-type color CGH using a color filter considering reduction of blurring

    NASA Astrophysics Data System (ADS)

    Iwami, Saki; Sakamoto, Yuji

    2009-02-01

    We have developed a glasses-type color computer generated hologram (CGH) by using a color filter. The proposed glasses consist of two "lenses" made of overlapping holograms and color filters. The holograms, which are calculated to reconstruct images in each primary color, are divided to small areas, which we called cells, and superimposed on one hologram. In the same way, colors of the filter correspond to the hologram cells. We can configure it very simply without a complex optical system, and the configuration yields a small and light weight system suitable for glasses. When the cell is small enough, the colors are mixed and reconstructed color images are observed. In addition, color expression of reconstruction images improves, too. However, using small cells blurrs reconstructed images because of the following reasons: (1) interference between cells because of the correlation with the cells, and (2) reduction of resolution caused by the size of the cell hologram. We are investigating in order to make a hologram that has high resolution reconstructed color images without ghost images. In this paper, we discuss (1) the details of the proposed glasses-type color CGH, (2) appropriate cell size for an eye system, (3) effects of cell shape on the reconstructed images, and (4) a new method to reduce the blurring of the images.

  8. Fast, automatically darkening welding filter offering an improved level of safety.

    PubMed

    Palmer, S

    1996-03-01

    A mode of operation is introduced for the standard 90° twisted nematic (TN) liquid-crystal cell when placed together with an interference filter and positioned between crossed polarizers such that a small stimulating voltage of between ±2.0 and ±13.0 V is required in order to attain the light state. Further incrementation of the driving electronics reverts the system back to a darker phase. Such cells offer advantages over those of the standard 90° TN device operating in the normally white mode, in that the unit maintains the fast response time from the light to the dark state associated with the employment of TN cells placed between crossed polarizers. In addition, a low transmittance state is achieved when the unit is in the inactivated phase; this is an effect usually correlated with the normally black mode of operation. These cells are therefore ideal candidates for incorporation into fast, automatically darkening, welding filters that are designed to change rapidly from the light to the dark protective state, while offering an improved level of safety by not holding in a potentially hazardous light state should the controlling electronics malfunction. The requirement for this phenomenon to be observed is that the cell displays a low optical transmittance over the green wavelengths of the visible spectrum when in the inactivated phase and placed between crossed polarizers. The presence of an interference filter that possesses a peak transmittance over the central part of the visible spectrum is also necessary. It is shown that there are only two possible cell types that satisfy this criteria, and the optical properties of such cells are analyzed in some detail.

  9. Backside imaging of a microcontroller with common-path digital holography

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Gerhardt, Nils C.; Hofmann, Martin

    2017-03-01

    The investigation of integrated circuits (ICs), such as microcontrollers (MCUs) and system on a chip (SoCs) devices is a topic with growing interests. The need for fast and non-destructive imaging methods is given by the increasing importance of hardware Trojans, reverse engineering and further security related analysis of integrated cryptographic devices. In the field of side-channel attacks, for instance, the precise spot for laser fault attacks is important and could be determined by using modern high resolution microscopy methods. Digital holographic microscopy (DHM) is a promising technique to achieve high resolution phase images of surface structures. These phase images provide information about the change of the refractive index in the media and the topography. For enabling a high phase stability, we use the common-path geometry to create the interference pattern. The interference pattern, or hologram, is captured with a water cooled sCMOS camera. This provides a fast readout while maintaining a low level of noise. A challenge for these types of holograms is the interference of the reflected waves from the different interfaces inside the media. To distinguish between the phase signals from the buried layer and the surface reflection we use specific numeric filters. For demonstrating the performance of our setup we show results with devices under test (DUT), using a 1064 nm laser diode as light source. The DUTs are modern microcontrollers thinned to different levels of thickness of the Si-substrate. The effect of the numeric filter compared to unfiltered images is analyzed.

  10. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1979-01-01

    The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.

  11. An 8-PSK TDMA uplink modulation and coding system

    NASA Technical Reports Server (NTRS)

    Ames, S. A.

    1992-01-01

    The combination of 8-phase shift keying (8PSK) modulation and greater than 2 bits/sec/Hz drove the design of the Nyquist filter to one specified to have a rolloff factor of 0.2. This filter when built and tested was found to produce too much intersymbol interference and was abandoned for a design with a rolloff factor of 0.4. The preamble is limited to 100 bit periods of the uncoded bit period of 5 ns for a maximum preamble length of 500 ns or 40 8PSK symbol times at 12.5 ns per symbol. For 8PSK modulation, the required maximum degradation of 1 dB in -20 dB cochannel interference (CCI) drove the requirement for forward error correction coding. In this contract, the funding was not sufficient to develop the proposed codec so the codec was limited to a paper design during the preliminary design phase. The mechanization of the demodulator is digital, starting from the output of the analog to digital converters which quantize the outputs of the quadrature phase detectors. This approach is amenable to an application specific integrated circuit (ASIC) replacement in the next phase of development.

  12. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  13. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, P.

    1996-12-31

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.

  14. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, P.

    1995-10-10

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal-to-noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.

  15. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    NASA Astrophysics Data System (ADS)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  16. SPS pilot signal design and power transponder analysis, volume 2, phase 3

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Scholtz, R. A.; Chie, C. M.

    1980-01-01

    The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled.

  17. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, Peter

    1995-01-01

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.

  18. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, Peter

    1996-01-01

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.

  19. Neural control of enhanced filtering demands in a combined Flanker and Garner conflict task.

    PubMed

    Berron, David; Frühholz, Sascha; Herrmann, Manfred

    2015-01-01

    Several studies demonstrated that visual filtering mechanisms might underlie both conflict resolution of the Flanker conflict and the control of the Garner effect. However, it remains unclear whether the mechanisms involved in the processing of both effects depend on similar filter mechanisms, such that especially the Garner effect is able to modulate filtering needs in the Flanker conflict. In the present experiment twenty-four subjects participated in a combined Garner and Flanker task during two runs of functional magnetic resonance imaging (fMRI) recordings. Behavioral data showed a significant Flanker but no Garner effect. A run-wise analysis, however, revealed a Flanker effect in the Garner filtering condition in the first experimental run, while we found a Flanker effect in the Garner baseline condition in the second experimental run. The fMRI data revealed a fronto-parietal network involved in the processing of both types of effects. Flanker interference was associated with activity in the inferior frontal gyrus, the anterior cingulate cortex, the precuneus as well as the inferior (IPL) and superior parietal lobule (SPL). Garner interference was associated with activation in middle frontal and middle temporal gyrus, the lingual gyrus as well as the IPL and SPL. Interaction analyses between the Garner and the Flanker effect additionally revealed differences between the two experimental runs. In the first experimental run, activity specifically related to the interaction of effects was found in frontal and parietal regions, while in the second run we found activity in the hippocampus, the parahippocampal cortex and the basal ganglia. This shift in activity for the interaction effects might be associated with a task-related learning process to control filtering demands. Especially perceptual learning mechanisms might play a crucial role in the present Flanker and Garner task design and, therefore, increased performance in the second experimental run could be the reason for the lack of behavioral Garner interference on the level of the whole experiment.

  20. Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter.

    PubMed

    Tilsch, Markus; Hendrix, Karen

    2008-05-01

    A triple bandpass filter (28 solutions received) and a nonpolarizing beam splitter (23 solutions received) were the subjects of the design contest held in conjunction with the 2007 Optical Interference Coatings topical meeting of the Optical Society of America. Fifteen designers participated using a wide spectrum of design approaches and optimization strategies to create the submissions. The results differ significantly, but all meet the contest requirements. Fabien Lemarchand wins both contests by submitting the thinnest (6254 nm) triple bandpass design and the widest (61.7 nm) nonpolarizing beam-splitter design. Michael Trubetskov is in second place, followed by Vladimir Pervak in both contests. The submitted designs are described and evaluated.

  1. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  2. Franson Interference Generated by a Two-Level System

    NASA Astrophysics Data System (ADS)

    Peiris, M.; Konthasinghe, K.; Muller, A.

    2017-01-01

    We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).

  3. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

  4. Bloodstain detection and discrimination impacted by spectral shift when using an interference filter-based visible and near-infrared multispectral crime scene imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Messinger, David W.; Dube, Roger R.

    2018-03-01

    Bloodstain detection and discrimination from nonblood substances on various substrates are critical in forensic science as bloodstains are a critical source for confirmatory DNA tests. Conventional bloodstain detection methods often involve time-consuming sample preparation, a chance of harm to investigators, the possibility of destruction of blood samples, and acquisition of too little data at crime scenes either in the field or in the laboratory. An imaging method has the advantages of being nondestructive, noncontact, real-time, and covering a large field-of-view. The abundant spectral information provided by multispectral imaging makes it a potential presumptive bloodstain detection and discrimination method. This article proposes an interference filter (IF) based area scanning three-spectral-band crime scene imaging system used for forensic bloodstain detection and discrimination. The impact of large angle of views on the spectral shift of calibrated IFs is determined, for both detecting and discriminating bloodstains from visually similar substances on multiple substrates. Spectral features in the visible and near-infrared portion employed by the relative band depth method are used. This study shows that 1 ml bloodstain on black felt, gray felt, red felt, white cotton, white polyester, and raw wood can be detected. Bloodstains on the above substrates can be discriminated from cola, coffee, ketchup, orange juice, red wine, and green tea.

  5. Line edge roughness (LER) mitigation studies specific to interference-like lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Estroff, Andrew; Xie, Peng; Smith, Bruce W.

    2013-04-01

    Line edge roughness (LER) is a common problem to most lithography approaches and is seen as the main resolution limiter for advanced technology nodes1. There are several contributors to LER such as chemical/optical shot noise, random nature of acid diffusion, development process, and concentration of acid generator/base quencher. Since interference-like lithography (IL) is used to define one directional gridded patterns, some LER mitigation approaches specific to IL-like imaging can be explored. Two methods investigated in this work for this goal are (i) translational image averaging along the line direction and (ii) pupil plane filtering. Experiments regarding the former were performed on both interferometric and projection lithography systems. Projection lithography experiments showed a small amount of reduction in low/mid frequency LER value for image averaged cases at pitch of 150 nm (193 nm illumination, 0.93 NA) with less change for smaller pitches. Aerial image smearing did not significantly increase LER since it was directional. Simulation showed less than 1% reduction in NILS (compared to a static, smooth mask equivalent) with ideal alignment. In addition, description of pupil plane filtering on the transfer of mask roughness is given. When astigmatism-like aberrations were introduced in the pupil, transfer of mask roughness is decreased at best focus. It is important to exclude main diffraction orders from the filtering to prevent contrast and NILS loss. These ideas can be valuable as projection lithography approaches to conditions similar to IL (e.g. strong RET methods).

  6. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.

  7. Design and manufacture of super-multilayer optical filters based on PARMS technology

    NASA Astrophysics Data System (ADS)

    Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun

    2018-04-01

    Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.

  8. Dense grid of narrow bandpass filters for the JST/T250 telescope: summary of results

    NASA Astrophysics Data System (ADS)

    Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio

    2018-01-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon has setup two telescopes, the JST/T250 and the JAST/T80. The JAST/T80 telescope integrates T80Cam, a large format, single CCD camera while the JST/T250 will mount the JPCam instrument, a 1.2Gpix camera equipped with a 14-CCD mosaic using the new large format e2v 9.2k×9.2k 10-μm pixel detectors. Both T80Cam and JPCam integrate a large number of filters in dimensions of 106.8×106.8 mm2 and 101.7×95.5 mm2, respectively. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters, which were recently completed. The filter set consists of bandpass filters in the range between 348.5 and 910 nm and a longpass filter at 915 nm. Most of the filters have full-width at half-maximum (FWHM) of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. In spite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass has a defined overlap with its neighbors. A high image quality required a low transmitted wavefront error (<λ/4 locally and <λ/2 on the whole aperture), which was achieved even by combining two or three substrates. We report on the spectral and interferometric results measured on the whole set of filters.

  9. Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System

    NASA Astrophysics Data System (ADS)

    Toh, Keat Beng; Tachikawa, Shin'ichi

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.

  10. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  11. Raman lidar characterization using a reference lamp

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  12. Nonlinear multilayers as optical limiters

    NASA Astrophysics Data System (ADS)

    Turner-Valle, Jennifer Anne

    1998-10-01

    In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.

  13. Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems

    NASA Technical Reports Server (NTRS)

    Cubukcu, Erkin

    2012-01-01

    This presentation briefly discusses application of the Root Raised Cosine (RRC) pulse shaping in the space telecommunication. Use of the RRC filtering (i.e., pulse shaping) is adopted in commercial communications, such as cellular technology, and used extensively. However, its use in space communication is still relatively new. This will possibly change as the crowding of the frequency spectrum used in the space communication becomes a problem. The two conflicting requirements in telecommunication are the demand for high data rates per channel (or user) and need for more channels, i.e., more users. Theoretically as the channel bandwidth is increased to provide higher data rates the number of channels allocated in a fixed spectrum must be reduced. Tackling these two conflicting requirements at the same time led to the development of the RRC filters. More channels with wider bandwidth might be tightly packed in the frequency spectrum achieving the desired goals. A link model with the RRC filters has been developed and simulated. Using 90% power Bandwidth (BW) measurement definition showed that the RRC filtering might improve spectrum efficiency by more than 75%. Furthermore using the matching RRC filters both in the transmitter and receiver provides the improved Bit Error Rate (BER) performance. In this presentation the theory of three related concepts, namely pulse shaping, Inter Symbol Interference (ISI), and Bandwidth (BW) will be touched upon. Additionally the concept of the RRC filtering and some facts about the RRC filters will be presented

  14. Novel Ultrahigh Vacuum System for Chip-Scale Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Chen, Shaw-Pin; Trapped Team

    2011-05-01

    This presentation reports the experimental results of an ultrahigh vacuum (UHV) system as a scheme to implement scalable trapped-ion quantum computers that use micro-fabricated ion traps as fundamental building blocks. The novelty of this system resides in our design, material selection, mechanical liability, low complexity of assembly, and reduced signal interference between DC and RF electrodes. Our system utilizes RF isolation and onsite-filtering topologies to attenuate AC signals generated from the resonator. We use a UHV compatible printed circuit board (PCB) material to perform DC routing, while the RF high and RF ground received separated routing via wire-wrapping. The standard PCB fabrication process enabled us to implement ceramic-based filter components adjacent to the chip trap. The DC electrodes are connected to air-side electrical feed through using four 25D adaptors made with polyether ether ketone (PEEK). The assembly process of this system is straight forward and in-chamber structure is self-supporting. We report on initial testing of this concept with a linear chip trap fabricated by the Sandia National Labs.

  15. Adaptive data rate SSMA system for personal and mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Takahashi, Takashi; Arakaki, Yoshiya; Wakana, Hiromitsu

    1995-01-01

    An adaptive data rate SSMA (spread spectrum multiple access) system is proposed for mobile and personal multimedia satellite communications without the aid of system control earth stations. This system has a constant occupied bandwidth and has variable data rates and processing gains to mitigate communication link impairments such as fading, rain attenuation and interference as well as to handle variable data rate on demand. Proof of concept hardware for 6MHz bandwidth transponder is developed, that uses offset-QPSK (quadrature phase shift keying) and MSK (minimum shift keying) for direct sequence spread spectrum modulation and handle data rates of 4k to 64kbps. The RS422 data interface, low rate voice and H.261 video codecs are installed. The receiver is designed with coherent matched filter technique to achieve fast code acquisition, AFC (automatic frequency control) and coherent detection with minimum hardware losses in a single matched filter circuit. This receiver structure facilitates variable data rate on demand during a call. This paper shows the outline of the proposed system and the performance of the prototype equipment.

  16. Noise and Speech Interference: Proceedings of Minisymposium

    NASA Technical Reports Server (NTRS)

    Shepherd, W. T. (Editor)

    1975-01-01

    Several papers are presented which deal with the psychophysical effects of interference with speech and listening activities by different forms of noise masking and filtering. Special attention was given to the annoyance such interruptions cause, particularly that due to aircraft flyover noises. Activities such as telephone listening and television watching were studied. A number of experimental investigations are described and the results are analyzed.

  17. The Power Plant Operating Data Based on Real-time Digital Filtration Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie

    2018-03-01

    Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.

  18. Quantum interference of electrically generated single photons from a quantum dot.

    PubMed

    Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2010-07-09

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

  19. Interaction of Object Binding Cues in Binaural Masking Pattern Experiments.

    PubMed

    Verhey, Jesko L; Lübken, Björn; van de Par, Steven

    2016-01-01

    Object binding cues such as binaural and across-frequency modulation cues are likely to be used by the auditory system to separate sounds from different sources in complex auditory scenes. The present study investigates the interaction of these cues in a binaural masking pattern paradigm where a sinusoidal target is masked by a narrowband noise. It was hypothesised that beating between signal and masker may contribute to signal detection when signal and masker do not spectrally overlap but that this cue could not be used in combination with interaural cues. To test this hypothesis an additional sinusoidal interferer was added to the noise masker with a lower frequency than the noise whereas the target had a higher frequency than the noise. Thresholds increase when the interferer is added. This effect is largest when the spectral interferer-masker and masker-target distances are equal. The result supports the hypothesis that modulation cues contribute to signal detection in the classical masking paradigm and that these are analysed with modulation bandpass filters. A monaural model including an across-frequency modulation process is presented that account for this effect. Interestingly, the interferer also affects dichotic thresholds indicating that modulation cues also play a role in binaural processing.

  20. Speckle Interferometry with the OCA Kuhn 22" Telescope

    NASA Astrophysics Data System (ADS)

    Wasson, Rick

    2018-04-01

    Speckle interferometry measurements of double stars were made in 2015 and 2016, using the Kuhn 22-inch classical Cassegrain telescope of the Orange County Astronomers, a Point Grey Blackfly CMOS camera, and three interference filters. 272 observations are reported for 177 systems, with separations ranging from 0.29" to 2.9". Data reduction was by means of the REDUC and Speckle Tool Box programs. Equipment, observing procedures, calibration, data reduction, and analysis are described, and unusual results for 11 stars are discussed in detail.

  1. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  2. Polychromator for the edge Thomson scattering system in ITER.

    PubMed

    Yatsuka, E; Hatae, T; Fujie, D; Kurokawa, A; Kusama, Y

    2012-10-01

    A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.

  3. Method of decontaminating a contaminated fluid by using photocatalytic particles

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald (Inventor); Ratcliff, Matthew A. (Inventor)

    1994-01-01

    A system for decontaminating the contaminated fluid by using photocatalytic particles. The system includes a reactor tank for holding the contaminated fluid and the photocatalytic particles suspended in the contaminated fluid to form a slurry. Light irradiates the surface of the slurry, thereby activating the photocatalytic properties of the particles. The system also includes stirring blades for continuously agitating the irradiated fluid surface and for maintaining the particles in a suspended state within the fluid. The system also includes a cross flow filter for segregating the fluid (after decomposition) from the semiconductor powder. The cross flow filter is occasionally back flushed to remove any semiconductor powder that might have caked on the filter. The semiconductor powder may be recirculated back to the tank for reuse, or may be stored for future use. A series of such systems may be used to gradually decompose a chemical in the fluid. Preferably, the fluid is pretreated to remove certain metal ions which interfere with the photocatalytic process. Such pretreatment may be accomplished by dispersing semiconductor particles within the fluid, which adsorb ions or photodeposit the metal as the free metal or its insoluble oxide or hydroxide, and then removing the semiconductor particles together with the adsorbed metal ions/oxides/hydroxide/free metal from the fluid. A method of decontaminating a contaminated fluid is also disclosed.

  4. Design of a Mechanical-Tunable Filter Spectrometer for Noninvasive Glucose Measurement

    NASA Astrophysics Data System (ADS)

    Saptari, Vidi; Youcef-Toumi, Kamal

    2004-05-01

    The development of an accurate and reliable noninvasive near-infrared (NIR) glucose sensor hinges on the success in addressing the sensitivity and the specificity problems associated with the weak glucose signals and the overlapping NIR spectra. Spectroscopic hardware parameters most relevant to noninvasive blood glucose measurement are discussed, which include the optical throughput, integration time, spectral range, and the spectral resolution. We propose a unique spectroscopic system using a continuously rotating interference filter, which produces a signal-to-noise ratio of the order of 10^5 and is estimated to be the minimum required for successful in vivo glucose sensing. Using a classical least-squares algorithm and a spectral range between 2180 and 2312 nm, we extracted clinically relevant glucose concentrations in multicomponent solutions containing bovine serum albumin, triacetin, lactate, and urea.

  5. Time-frequency model for echo-delay resolution in wideband biosonar.

    PubMed

    Neretti, Nicola; Sanderson, Mark I; Intrator, Nathan; Simmons, James A

    2003-04-01

    A time/frequency model of the bat's auditory system was developed to examine the basis for the fine (approximately 2 micros) echo-delay resolution of big brown bats (Eptesicus fuscus), and its performance at resolving closely spaced FM sonar echoes in the bat's 20-100-kHz band at different signal-to-noise ratios was computed. The model uses parallel bandpass filters spaced over this band to generate envelopes that individually can have much lower bandwidth than the bat's ultrasonic sonar sounds and still achieve fine delay resolution. Because fine delay separations are inside the integration time of the model's filters (approximately 250-300 micros), resolving them means using interference patterns along the frequency dimension (spectral peaks and notches). The low bandwidth content of the filter outputs is suitable for relay of information to higher auditory areas that have intrinsically poor temporal response properties. If implemented in fully parallel analog-digital hardware, the model is computationally extremely efficient and would improve resolution in military and industrial sonar receivers.

  6. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    PubMed

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  7. A simple integrated ratiometric wavelength monitor based on multimode interference structure

    NASA Astrophysics Data System (ADS)

    Hatta, Agus Muhamad; Farrell, Gerald; Wang, Qian

    2008-09-01

    Wavelength measurement or monitoring can be implemented using a ratiometric power measurement technique. A ratiometric wavelength monitor normally consists of a Y-branch splitter with two arms: an edge filter arm with a well defined spectral response and a reference arm or alternatively, two edge filters arms with opposite slope spectral responses. In this paper, a simple configuration for an integrated ratiometric wavelength monitor based on a single multimode interference structure is proposed. By optimizing the length of the MMI and the two output port positions, opposite spectral responses for the two output ports can be achieved. The designed structure demonstrates a spectral response suitable for wavelength measurement with potentially a 10 pm resolution over a 100 nm wavelength range.

  8. Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.

    PubMed

    Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted

    2014-12-01

    A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.

  9. Multimodal transmission property in a liquid-filled photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Miao, Yinping; Song, Binbin; Zhang, Hao; Liu, Bo; Liu, Yange; Yan, Donglin

    2015-02-01

    The multimode interference (MMI) effect in a liquid-filled photonic crystal fiber (PCF) has been experimentally demonstrated by fully infiltrating the air-hole cladding of a solid-core PCF with the refractive index (RI) matching liquid whose RI is close to the silica background. Due to the weak mode confinement capability of the cladding region, several high-order modes are excited to establish the multimode interference effect. The multimode interferometer shows a good temperature tunability of 12.30 nm/K, which makes it a good candidate for a highly tunable optical filtering as well as temperature sensing applications. Furthermore, this MMI effect would have great promise in various applications such as highly sensitive multi-parameter sensing, tunable optically filtering, and surface-enhanced Raman scattering.

  10. On performing of interference technique based on self-adjusting Zernike filters (SA-AVT method) to investigate flows and validate 3D flow numerical simulations

    NASA Astrophysics Data System (ADS)

    Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.

    2017-10-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  11. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A. (Inventor); Mukai, Ryan (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  12. Laser- and Multi-Spectral Monitoring of Natural Objects from UAVs

    NASA Astrophysics Data System (ADS)

    Reiterer, Alexander; Frey, Simon; Koch, Barbara; Stemmler, Simon; Weinacker, Holger; Hoffmann, Annemarie; Weiler, Markus; Hergarten, Stefan

    2016-04-01

    The paper describes the research, development and evaluation of a lightweight sensor system for UAVs. The system is composed of three main components: (1) a laser scanning module, (2) a multi-spectral camera system, and (3) a processing/storage unit. All three components are newly developed. Beside measurement precision and frequency, the low weight has been one of the challenging tasks. The current system has a total weight of about 2.5 kg and is designed as a self-contained unit (incl. storage and battery units). The main features of the system are: laser-based multi-echo 3D measurement by a wavelength of 905 nm (totally eye save), measurement range up to 200 m, measurement frequency of 40 kHz, scanning frequency of 16 Hz, relative distance accuracy of 10 mm. The system is equipped with both GNSS and IMU. Alternatively, a multi-visual-odometry system has been integrated to estimate the trajectory of the UAV by image features (based on this system a calculation of 3D-coordinates without GNSS is possible). The integrated multi-spectral camera system is based on conventional CMOS-image-chips equipped with a special sets of band-pass interference filters with a full width half maximum (FWHM) of 50 nm. Good results for calculating the normalized difference vegetation index (NDVI) and the wide dynamic range vegetation index (WDRVI) have been achieved using the band-pass interference filter-set with a FWHM of 50 nm and an exposure times between 5.000 μs and 7.000 μs. The system is currently used for monitoring of natural objects and surfaces, like forest, as well as for geo-risk analysis (landslides). By measuring 3D-geometric and multi-spectral information a reliable monitoring and interpretation of the data-set is possible. The paper gives an overview about the development steps, the system, the evaluation and first results.

  13. Global optimization of multimode interference structure for ratiometric wavelength measurement

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Farrell, Gerald; Hatta, Agus Muhamad

    2007-07-01

    The multimode interference structure is conventionally used as a splitter/combiner. In this paper, it is optimised as an edge filter for ratiometric wavelength measurement, which can be used in demodulation of fiber Bragg grating sensing. The global optimization algorithm-adaptive simulated annealing is introduced in the design of multimode interference structure including the length and width of the multimode waveguide section, and positions of the input and output waveguides. The designed structure shows a suitable spectral response for wavelength measurement and a good fabrication tolerance.

  14. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  15. Wide range optofluidically tunable multimode interference fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; LiKamWa, P.; May-Arrioja, D. A.

    2014-08-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range.

  16. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications.

    PubMed

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-05-17

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.

  17. Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications

    PubMed Central

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-01-01

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142

  18. A low-cost through-the-wall FMCW radar for stand-off operation and activity detection

    NASA Astrophysics Data System (ADS)

    Chetty, Kevin; Chen, Qingchao; Ritchie, Matthew; Woodbridge, Karl

    2017-05-01

    In this paper we present a new through-wall (TW) FMCW radar system. The architecture of the radar enables both high sensitivity and range resolutions of <1.5 m. Moreover, the radar employs moving target indication (MTI) signal processing to remove the problematic primary wall reflection, allowing higher signal-to- noise and signal-to-interference ratios, which can be traded-off for increased operational stand-off. The TW radar operates at 5.8 GHz with a 200 MHz bandwidth. Its dual-frequency design minimises interference from signal leakage, and permits a baseband output after deramping which is digitized using an inexpensive 24-bit off-the-shelf sound card. The system is therefore an order of magnitude lower in cost than competitor ultrawideband (UWB) TW systems. The high sensitivity afforded by this wide dynamic range has allowed us to develop a wall removal technique whereby high-order digital filters provide a flexible means of MTI filtering based on the phases of the returned echoes. Experimental data demonstrates through-wall detection of individuals and groups of people in various scenarios. Target positions were located to within +/-1.25 m in range, allowing us distinguish between two closely separated targets. Furthermore, at 8.5 m standoff, our wall removal technique can recover target responses that would have otherwise been masked by the primary wall reflection, thus increasing the stand-off capability of the radar. Using phase processing, our experimental data also reveals a clear difference in the micro-Doppler signatures across various types of everyday actions

  19. Bench study of the accuracy of a commercial AED arrhythmia analysis algorithm in the presence of electromagnetic interferences.

    PubMed

    Jekova, Irena; Krasteva, Vessela; Ménétré, Sarah; Stoyanov, Todor; Christov, Ivaylo; Fleischhackl, Roman; Schmid, Johann-Jakob; Didon, Jean-Philippe

    2009-07-01

    This paper presents a bench study on a commercial automated external defibrillator (AED). The objective was to evaluate the performance of the defibrillation advisory system and its robustness against electromagnetic interferences (EMI) with central frequencies of 16.7, 50 and 60 Hz. The shock advisory system uses two 50 and 60 Hz band-pass filters, an adaptive filter to identify and suppress 16.7 Hz interference, and a software technique for arrhythmia analysis based on morphology and frequency ECG parameters. The testing process includes noise-free ECG strips from the internationally recognized MIT-VFDB ECG database that were superimposed with simulated EMI artifacts and supplied to the shock advisory system embedded in a real AED. Measurements under special consideration of the allowed variation of EMI frequency (15.7-17.4, 47-52, 58-62 Hz) and amplitude (1 and 8 mV) were performed to optimize external validity. The accuracy was reported using the American Heart Association (AHA) recommendations for arrhythmia analysis performance. In the case of artifact-free signals, the AHA performance goals were exceeded for both sensitivity and specificity: 99% for ventricular fibrillation (VF), 98% for rapid ventricular tachycardia (VT), 90% for slow VT, 100% for normal sinus rhythm, 100% for asystole and 99% for other non-shockable rhythms. In the presence of EMI, the specificity for some non-shockable rhythms (NSR, N) may be affected in some specific cases of a low signal-to-noise ratio and extreme frequencies, leading to a drop in the specificity with no more than 7% point. The specificity for asystole and the sensitivity for VF and rapid VT in the presence of any kind of 16.7, 50 or 60 Hz EMI simulated artifact were shown to reach the equivalence of sensitivity required for non-noisy signals. In conclusion, we proved that the shock advisory system working in a real AED operates accurately according to the AHA recommendations without artifacts and in the presence of EMI. The results may be affected for specificity in the case of a low signal-to-noise ratio or in some extreme frequency setting.

  20. Highly Selective and Rapid Breath Isoprene Sensing Enabled by Activated Alumina Filter.

    PubMed

    van den Broek, Jan; Güntner, Andreas T; Pratsinis, Sotiris E

    2018-03-23

    Isoprene is a versatile breath marker for noninvasive monitoring of high blood cholesterol levels as well as for influenza, end-stage renal disease, muscle activity, lung cancer, and liver disease with advanced fibrosis. Its selective detection in complex human breath by portable devices (e.g., metal-oxide gas sensors), however, is still challenging. Here, we present a new filter concept based on activated alumina powder enabling fast and highly selective detection of isoprene at the ppb level and high humidity. The filter contains high surface area adsorbents that retain hydrophilic compounds (e.g., ketones, alcohols, ammonia) representing major interferants in breath while hydrophobic isoprene is not affected. As a proof-of-concept, filters of commercial activated alumina powder are combined with highly sensitive but rather nonspecific, nanostructured Pt-doped SnO 2 sensors. This results in fast (10 s) measurement of isoprene down to 5 ppb at 90% relative humidity with outstanding selectivity (>100) to breath-relevant acetone, ammonia, ethanol, and methanol, superior to state-of-the-art isoprene sensors. Most importantly, when exposed continuously to simulated breath mixtures (four analytes) for 8 days, this filter-sensor system showed stable performance. It can be incorporated readily into a portable breath isoprene analyzer promising for simple-in-use monitoring of blood cholesterol or other patho/physiological conditions.

  1. Mobile indoor localization using Kalman filter and trilateration technique

    NASA Astrophysics Data System (ADS)

    Wahid, Abdul; Kim, Su Mi; Choi, Jaeho

    2015-12-01

    In this paper, an indoor localization method based on Kalman filtered RSSI is presented. The indoor communications environment however is rather harsh to the mobiles since there is a substantial number of objects distorting the RSSI signals; fading and interference are main sources of the distortion. In this paper, a Kalman filter is adopted to filter the RSSI signals and the trilateration method is applied to obtain the robust and accurate coordinates of the mobile station. From the indoor experiments using the WiFi stations, we have found that the proposed algorithm can provide a higher accuracy with relatively lower power consumption in comparison to a conventional method.

  2. Identification of Small-Molecule Frequent Hitters of Glutathione S-Transferase-Glutathione Interaction.

    PubMed

    Brenke, Jara K; Salmina, Elena S; Ringelstetter, Larissa; Dornauer, Scarlett; Kuzikov, Maria; Rothenaigner, Ina; Schorpp, Kenji; Giehler, Fabian; Gopalakrishnan, Jay; Kieser, Arnd; Gul, Sheraz; Tetko, Igor V; Hadian, Kamyar

    2016-07-01

    In high-throughput screening (HTS) campaigns, the binding of glutathione S-transferase (GST) to glutathione (GSH) is used for detection of GST-tagged proteins in protein-protein interactions or enzyme assays. However, many false-positives, so-called frequent hitters (FH), arise that either prevent GST/GSH interaction or interfere with assay signal generation or detection. To identify GST-FH compounds, we analyzed the data of five independent AlphaScreen-based screening campaigns to classify compounds that inhibit the GST/GSH interaction. We identified 53 compounds affecting GST/GSH binding but not influencing His-tag/Ni(2+)-NTA interaction and general AlphaScreen signals. The structures of these 53 experimentally identified GST-FHs were analyzed in chemoinformatic studies to categorize substructural features that promote interference with GST/GSH binding. Here, we confirmed several existing chemoinformatic filters and more importantly extended them as well as added novel filters that specify compounds with anti-GST/GSH activity. Selected compounds were also tested using different antibody-based GST detection technologies and exhibited no interference clearly demonstrating specificity toward their GST/GSH interaction. Thus, these newly described GST-FH will further contribute to the identification of FH compounds containing promiscuous substructures. The developed filters were uploaded to the OCHEM website (http://ochem.eu) and are publicly accessible for analysis of future HTS results. © 2016 Society for Laboratory Automation and Screening.

  3. Spectrum sensing and resource allocation for multicarrier cognitive radio systems under interference and power constraints

    NASA Astrophysics Data System (ADS)

    Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku

    2014-12-01

    Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.

  4. Development of new near-infrared and leuco-dye optical systems for forensic and crime fighting applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda

    2004-12-01

    New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.

  5. Flatness-based model inverse for feed-forward braking control

    NASA Astrophysics Data System (ADS)

    de Vries, Edwin; Fehn, Achim; Rixen, Daniel

    2010-12-01

    For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.

  6. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.

    PubMed

    Xu, He; Ding, Ye; Li, Peng; Wang, Ruchuan; Li, Yizhu

    2017-08-05

    The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K -Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

  7. Interferometry-based free space communication and information processing

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil Arshad

    This dissertation studies, analyzes, and experimentally demonstrates the innovative use of interference phenomenon in the field of opto-electronic information processing and optical communications. A number of optical systems using interferometric techniques both in the optical and the electronic domains has been demonstrated in the filed of signal transmission and processing, optical metrology, defense, and physical sensors. Specifically it has been shown that the interference of waves in the form of holography can be exploited to realize a novel optical scanner called Code Multiplexed Optical Scanner (C-MOS). The C-MOS features large aperture, wide scan angles, 3-D beam control, no moving parts, and high beam scanning resolution. A C-MOS based free space optical transceiver for bi-directional communication has also been experimentally demonstrated. For high speed, large bandwidth, and high frequency operation, an optically implemented reconfigurable RF transversal filter design is presented that implements wide range of filtering algorithms. A number of techniques using heterodyne interferometry via acousto-optic device for optical path length measurements have been described. Finally, a whole new class of interferometric sensors for optical metrology and sensing applications is presented. A non-traditional interferometric output signal processing scheme has been developed. Applications include, for example, temperature sensors for harsh environments for a wide temperature range from room temperature to 1000°C.

  8. InP-based compact transversal filter for monolithically integrated light source array.

    PubMed

    Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki

    2014-04-07

    We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.

  9. Design issues for directional coupler- and MMI-based optical microring resonator filters on InP

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michalis; Rajarajan, Muttukrishnan; Rahman, B. M. A.; Grattan, Kenneth T. V.

    2004-08-01

    The characterization and optimization of optical microring resonator-based optical filters on deeply etched GaInAsP-Inp waveguides, using the finite element-based beam propagation approach is presented here. Design issues for directional coupler- and multimode interference coupler-based devices, such as field evolution, optical power, phase, fabrication tolerance and wavelength dependence have been investigated.

  10. On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors.

    PubMed

    Frey, Laurent; Masarotto, Lilian; D'Aillon, Patrick Gros; Pellé, Catherine; Armand, Marilyn; Marty, Michel; Jamin-Mornet, Clémence; Lhostis, Sandrine; Le Briz, Olivier

    2014-07-10

    Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal-dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

  11. Effect of spatial filtering on crosstalk reduction in surface EMG recordings.

    PubMed

    Mesin, Luca; Smith, Stuart; Hugo, Suzanne; Viljoen, Suretha; Hanekom, Tania

    2009-04-01

    Increasing the selectivity of the detection system in surface electromyography (EMG) is beneficial in the collection of information of a specific portion of the investigated muscle and to reduce the contribution of undesired components, such as non-propagating components (due to generation or end-of-fibre effects) or crosstalk from nearby muscles. A comparison of the ability of different spatial filters to reduce the amount of crosstalk in surface EMG measurements was conducted in this paper using simulated signals. It focused on the influence of different properties of the muscle anatomy (changing subcutaneous layer thickness, skin conductivity, fibre length) and detection system (single, double and normal double differential, with two inter-electrode distances - IED) on the amount of crosstalk present in the measurements. A cylindrical multilayer (skin, subcutaneous tissue, muscle, bone) analytical model was used to simulate single fibre action potentials (SFAPs). Fibres were grouped together in motor units (MUs) and motor unit action potentials (MUAPs) were obtained by adding the SFAPs of the corresponding fibres. Interference surface EMG signals were obtained, modelling the recruitment of MUs and rate coding. The average rectified value (ARV) and mean frequency (MNF) content of the EMG signals were studied and used as a basis for determining the selectivity of each spatial filter. From these results it was found that the selectivity of each spatial filter varies depending on the transversal location of the measurement electrodes and on the anatomy. An increase in skin conductivity favourably affects the selectivity of normal double differential filters as does an increase in subcutaneous layer thickness. An increase in IED decreases the selectivity of all the analysed filters.

  12. Optical filter selection for high confidence discrimination of strongly overlapping infrared chemical spectra.

    PubMed

    Major, Kevin J; Poutous, Menelaos K; Ewing, Kenneth J; Dunnill, Kevin F; Sanghera, Jasbinder S; Aggarwal, Ishwar D

    2015-09-01

    Optical filter-based chemical sensing techniques provide a new avenue to develop low-cost infrared sensors. These methods utilize multiple infrared optical filters to selectively measure different response functions for various chemicals, dependent on each chemical's infrared absorption. Rather than identifying distinct spectral features, which can then be used to determine the identity of a target chemical, optical filter-based approaches rely on measuring differences in the ensemble response between a given filter set and specific chemicals of interest. Therefore, the results of such methods are highly dependent on the original optical filter choice, which will dictate the selectivity, sensitivity, and stability of any filter-based sensing method. Recently, a method has been developed that utilizes unique detection vector operations defined by optical multifilter responses, to discriminate between volatile chemical vapors. This method, comparative-discrimination spectral detection (CDSD), is a technique which employs broadband optical filters to selectively discriminate between chemicals with highly overlapping infrared absorption spectra. CDSD has been shown to correctly distinguish between similar chemicals in the carbon-hydrogen stretch region of the infrared absorption spectra from 2800-3100 cm(-1). A key challenge to this approach is how to determine which optical filter sets should be utilized to achieve the greatest discrimination between target chemicals. Previous studies used empirical approaches to select the optical filter set; however this is insufficient to determine the optimum selectivity between strongly overlapping chemical spectra. Here we present a numerical approach to systematically study the effects of filter positioning and bandwidth on a number of three-chemical systems. We describe how both the filter properties, as well as the chemicals in each set, affect the CDSD results and subsequent discrimination. These results demonstrate the importance of choosing the proper filter set and chemicals for comparative discrimination, in order to identify the target chemical of interest in the presence of closely matched chemical interferents. These findings are an integral step in the development of experimental prototype sensors, which will utilize CDSD.

  13. Improving immunization of programmable logic controllers using weighted median filters.

    PubMed

    Paredes, José L; Díaz, Dhionel

    2005-04-01

    This paper addresses the problem of improving immunization of programmable logic controllers (PLC's) to electromagnetic interference with impulsive characteristics. A filtering structure, based on weighted median filters, that does not require additional hardware and can be implemented in legacy PLC's is proposed. The filtering operation is implemented in the binary domain and removes the impulsive noise presented in the discrete input adding thus robustness to PLC's. By modifying the sampling clock structure, two variants of the filter are obtained. Both structures exploit the cyclic nature of the PLC to form an N-sample observation window of the discrete input, hence a status change on it is determined by the filter output taking into account all the N samples avoiding thus that a single impulse affects the PLC functionality. A comparative study, based on a statistical analysis, of the different filters' performances is presented.

  14. Stabilizing low-frequency oscillation with two-stage filter in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Han, Liang; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-07-01

    The use of a filter is the most common method to suppress low-frequency discharge current oscillation in Hall thrusters. The only form of filter in actual use involves RLC networks, which serve the purpose of reducing the level of conducted electromagnetic interference returning to the power processing unit, which is the function of a filter. Recently, the role of the filter in the oscillation control was introduced. It has been noted that the filter regulates the voltage across itself according to the variation of discharge current so as to decrease its fluctuation in the discharge circuit, which is the function of a controller. Therefore, a kind of two-stage filter is proposed to fulfill these two purposes, filtering and controlling, and the detailed design methods are discussed and verified. A current oscillation attenuation ratio of 10 was achieved by different capacitance and inductance combinations of the filter stage, and the standard deviation of low-frequency oscillations decreased from 3 A-1 A by the control stage in our experiment.

  15. Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.

    2002-01-01

    Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

  16. Light refocusing with up-scalable resonant waveguide gratings in confocal prolate spheroid arrangements

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin

    2018-01-01

    Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.

  17. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems

    NASA Astrophysics Data System (ADS)

    Namasivayam, Vijay; Lin, Rongsheng; Johnson, Brian; Brahmasandra, Sundaresh; Razzacki, Zafar; Burke, David T.; Burns, Mark A.

    2004-01-01

    Microfabrication techniques have become increasingly popular in the development of next generation DNA analysis devices. Improved on-chip fluorescence detection systems may have applications in developing portable hand-held instruments for point-of-care diagnostics. Miniaturization of fluorescence detection involves construction of ultra-sensitive photodetectors that can be integrated onto a fluidic platform combined with the appropriate optical emission filters. We have previously demonstrated integration PIN photodiodes onto a microfabricated electrophoresis channel for separation and detection of DNA fragments. In this work, we present an improved detector structure that uses a PINN+ photodiode with an on-chip interference filter and a robust liquid barrier layer. This new design yields high sensitivity (detection limit of 0.9 ng µl-1 of DNA), low-noise (S/N ~ 100/1) and enhanced quantum efficiencies (>80%) over the entire visible spectrum. Applications of these photodiodes in various areas of DNA analysis such as microreactions (PCR), separations (electrophoresis) and microfluidics (drop sensing) are presented.

  18. Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach

    PubMed Central

    Vahabi, Zahra; Kermani, Saeed

    2012-01-01

    Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810

  19. Development of low optical cross talk filters for VIIRS (JPSS)

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  20. Evidence for selective inhibitory impairment in individuals with autism spectrum disorder.

    PubMed

    Christ, Shawn E; Kester, Lindsay E; Bodner, Kimberly E; Miles, Judith H

    2011-11-01

    The social and communicative challenges faced by individuals with autism spectrum disorder (ASD) are often compounded by additional difficulties with executive function. It remains unclear, however, to what the extent individuals with ASD experienced impairment in inhibitory control. The objective of the present study was to assess the three main subtypes of executive inhibitory control within a single ASD sample thus providing new insight into the unique ASD-related pattern of sparing and impairment observed across different aspects of inhibitory control. A sample of 28 children with ASD (mean age = 13.1 years) and a comparison group of 49 neurologically uncompromised children (mean age = 13.3 years) participated. A prepotent response inhibition task, a flanker visual filtering task, and a proactive interference memory task were used to evaluate prepotent response inhibition, resistance to distracter interference, and resistance to proactive interference, respectively. After accounting for individual differences in noninhibition abilities (e.g., processing speed) and overall level of functioning, there was no evidence of group-related differences in inhibitory performance on the prepotent response inhibition test or proactive interference test. ASD-related impairments in inhibitory control were evident, however, on the flanker visual filtering task. Taken together, the present findings indicate that ASD is associated with impairments in some, but not all, aspects of inhibitory control. Individuals with ASD appear to have difficulty ignoring distracting visual information, but prepotent response inhibition and resistance to proactive interference are relatively intact. The current findings also provide support for a multitype model of inhibitory control.

  1. Design principles of the LVT-2 model laser instrument for the measurement of visual characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Wende

    1989-10-01

    As far as the LVT-2 model laser visual acuity measuring instrument, after its model improvement, is concerned, it not only is capable of measuring the visual acuity of retina (LVA), but also capable of measuring the MTF of retina. The light path system of the instrument has three sections. One is a double light bundle common path interference system making use of double Dufu prisms to divide bundles. In conjunction with this, it uses the movement of a reflection lens M2 in order to change the interval distance of the two mutually interfering bundles. As a result of this, it changes the spacial frequency of the interference bands. This acts as the light path to measure LVA. The second is the background light set composed of such components as the tungsten filament lamp T sub L, the interference filter optical plate OF, and the polarization lens P2. It is used in order to form, on the retina, a uniform background base light. In conjunction with this, through adjustments of the dispersion prism B in the light path, adjustments are made in the degree of contrast change I sub O/I sub u measuring the MTF of the retina.

  2. Design of Thomson scattering diagnostic system on J-TEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yinan; Gao, Li, E-mail: gaoli@hust.edu.cn; Huang, Jiefeng

    2016-11-15

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT atmore » present and in the near future. A detailed description of the system design is presented in this paper.« less

  3. Novel measurement techniques (development and analysis of silicon solar cells near 20% effciency)

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Newhouse, M.

    1986-01-01

    Work in identifying, developing, and analyzing techniques for measuring bulk recombination rates, and surface recombination velocities and rates in all regions of high-efficiency silicon solar cells is presented. The accuracy of the previously developed DC measurement system was improved by adding blocked interference filters. The system was further automated by writing software that completely samples the unkown solar cell regions with data of numerous recombination velocity and lifetime pairs. The results can be displayed in three dimensions and the best fit can be found numerically using the simplex minimization algorithm. Also described is a theoretical methodology to analyze and compare existing dynamic measurement techniques.

  4. Design of two wheel self balancing car

    NASA Astrophysics Data System (ADS)

    He, Chun-hong; Ren, Bin

    2018-02-01

    This paper proposes a design scheme of the two-wheel self-balancing dolly, the integration of the gyroscope and accelerometer MPU6050 constitutes the car position detection device.System selects 32-bit MCU stmicroelectronics company as the control core, completed the processing of sensor signals, the realization of the filtering algorithm, motion control and human-computer interaction. Produced and debugging in the whole system is completed, the car can realize the independent balance under the condition of no intervention. The introduction of a suitable amount of interference, the car can adjust quickly to recover and steady state. Through remote control car bluetooth module complete forward, backward, turn left and other basic action..

  5. Novel measurement techniques (development and analysis of silicon solar cells near 20% effciency)

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Newhouse, M.

    Work in identifying, developing, and analyzing techniques for measuring bulk recombination rates, and surface recombination velocities and rates in all regions of high-efficiency silicon solar cells is presented. The accuracy of the previously developed DC measurement system was improved by adding blocked interference filters. The system was further automated by writing software that completely samples the unkown solar cell regions with data of numerous recombination velocity and lifetime pairs. The results can be displayed in three dimensions and the best fit can be found numerically using the simplex minimization algorithm. Also described is a theoretical methodology to analyze and compare existing dynamic measurement techniques.

  6. Adaptive spread spectrum receiver using acoustic surface wave technology

    NASA Astrophysics Data System (ADS)

    Das, P.; Milstein, L. B.

    1984-05-01

    This technical report summarizes the results of the research we have been engaged in regarding the use of surface acoustic wave devices in direct sequence spread spectrum receivers. The heart of this research has been the use of the device as a real-time Fourier transformer. A system of this type is sometimes referred to as a compressive receiver, and our use of the system has been primarily as a means to implement a narrowband interference rejection filter. In addition, we have studied many other topics such as rapid acquisition, Hilbert transform generation, etc. and these topics are all overviewed in this report.

  7. What does distractibility in ADHD reveal about mechanisms for top-down attentional control?

    PubMed

    Friedman-Hill, Stacia R; Wagman, Meryl R; Gex, Saskia E; Pine, Daniel S; Leibenluft, Ellen; Ungerleider, Leslie G

    2010-04-01

    In this study, we attempted to clarify whether distractibility in ADHD might arise from increased sensory-driven interference or from inefficient top-down control. We employed an attentional filtering paradigm in which discrimination difficulty and distractor salience (amount of image "graying") were parametrically manipulated. Increased discrimination difficulty should add to the load of top-down processes, whereas increased distractor salience should produce stronger sensory interference. We found an unexpected interaction of discrimination difficulty and distractor salience. For difficult discriminations, ADHD children filtered distractors as efficiently as healthy children and adults; as expected, all three groups were slower to respond with high vs. low salience distractors. In contrast, for easy discriminations, robust between-group differences emerged: ADHD children were much slower and made more errors than either healthy children or adults. For easy discriminations, healthy children and adults filtered out high salience distractors as easily as low salience distractors, but ADHD children were slower to respond on trials with low salience distractors than they did on trials with high salience distractors. These initial results from a small sample of ADHD children have implications for models of attentional control, and ways in which it can malfunction. The fact that ADHD children exhibited efficient attentional filtering when task demands were high, but showed deficient and atypical distractor filtering under low task demands suggests that attention deficits in ADHD may stem from a failure to efficiently engage top-down control rather than an inability to implement filtering in sensory processing regions. Published by Elsevier B.V.

  8. Do radio frequencies of medical instruments common in the operating room interfere with near-infrared spectroscopy signals?

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Molavi, Behnam; Reid, W. D.; Dumont, Guy; Macnab, Andrew J.

    2010-02-01

    Background: Medical and diagnostic applications of near infrared spectroscopy (NIRS) are increasing, especially in operating rooms (OR). Since NIRS is an optical technique, radio frequency (RF) interference from other instruments is unlikely to affect the raw optical data, however, NIRS data processing and signal output could be affected. Methods: We investigated the potential for three common OR instruments: an electrical cautery, an orthopaedic drill and an imaging system, to generate electromagnetic interference (EMI) that could potentially influence NIRS signals. The time of onset and duration of every operation of each device was recorded during surgery. To remove the effects of slow changing physiological variables, we first used a lowpass filter and then selected 2 windows with variable lengths around the moment of device onset. For each instant, variances (energy) and means of the signals in the 2 windows were compared. Results: Twenty patients were studied during ankle surgery. Analysis shows no statistically significant difference in the means and variance of the NIRS signals (p < 0.01) during operation of any of the three devices for all surgeries. Conclusion: This method confirms the instruments evaluated caused no significant interference. NIRS can potentially be used without EMI in clinical environments such as the OR.

  9. Power adaptive multi-filter carrierless amplitude and phase access scheme for visible light communication network

    NASA Astrophysics Data System (ADS)

    Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng

    2018-04-01

    Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.

  10. Electronic heterodyne recording and processing of optical holograms using phase modulated reference waves

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Pao, Y.-H.; Claspy, P. C.

    1978-01-01

    The use of a phase-modulated reference wave for the electronic heterodyne recording and processing of a hologram is described. Heterodyne recording is used to eliminate the self-interference terms of a hologram and to create a Leith-Upatnieks hologram with coaxial object and reference waves. Phase modulation is also shown to be the foundation of a multiple-view hologram system. When combined with hologram scale transformations, heterodyne recording is the key to general optical processing. Spatial filtering is treated as an example.

  11. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.

    PubMed

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-29

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  12. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-01

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  13. Construction of a Magnetic Induction Antenna to Detect Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Fernald, Trevr; Bowers, Alexis; Cossel, Raquel; McIntyre, Maxwell; Reid, John, , Dr.

    2016-03-01

    An antenna was designed and built to detect magnetic field changes in the form of Schumann resonances. This was done in hopes of eventually being able to correlate data with sprite occurrence. A square loop was constructed with one meter sides using 2x4s and was wrapped with six hundred turns of 0.2mm thick copper wire. The antenna was tested in a rural location in northern Pennsylvania, chosen for its isolation and expectations of low electrical noise. Detected signals were filtered using a band-pass filter and observed using an oscilloscope. The signal had too much interference to make it possible to see any unmistakably Schumann character, but a Fourier Transform function made it possible to see the contribution of each component frequency to the overall interference. This function revealed possible presence of Schumann character in the signal, indicating mostly 2nd and 3rd mode Schumann frequencies. The fundamental mode may have been observed as well, but was less consistent and pronounced than the other frequencies. The performance of the filter was somewhat questionable and electrical noise was evident, so further experimentation is necessary.

  14. A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.

    2018-02-01

    Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.

  15. A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Lonn, Frederick

    1998-01-01

    A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.

  16. Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference (Preprint)

    DTIC Science & Technology

    2015-10-01

    scheduling for extended targets in radar using information theoretic measures , tracking etc can be seen in [45]–[50], [51]–[56], and the references...range gate, the measured snapshot vector consists of the target returns and the undesired returns, i.e. clutter returns, interference and noise. The...D. Cochran, S. Suvorova, S. Howard, and W. Moran, “Waveform libraries: Measures of effectiveness for radar scheduling,” IEEE Signal Processing

  17. Optimization of an optically implemented on-board FDMA demultiplexer

    NASA Technical Reports Server (NTRS)

    Fargnoli, J.; Riddle, L.

    1991-01-01

    Performance of a 30 GHz frequency division multiple access (FDMA) uplink to a processing satellite is modelled for the case where the onboard demultiplexer is implemented optically. Included in the performance model are the effects of adjacent channel interference, intersymbol interference, and spurious signals associated with the optical implementation. Demultiplexer parameters are optimized to provide the minimum bit error probability at a given bandwidth efficiency when filtered QPSK modulation is employed.

  18. Applications in Energy, Optics and Electronics.

    ERIC Educational Resources Information Center

    Rosenberg, Robert; And Others

    1980-01-01

    Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)

  19. On the role of dimensionality and sample size for unstructured and structured covariance matrix estimation

    NASA Technical Reports Server (NTRS)

    Morgera, S. D.; Cooper, D. B.

    1976-01-01

    The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.

  20. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  1. Excitation-emission fluorimeter based on linear interference filters.

    PubMed

    Gouzman, Michael; Lifshitz, Nadia; Luryi, Serge; Semyonov, Oleg; Gavrilov, Dmitry; Kuzminskiy, Vyacheslav

    2004-05-20

    We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.

  2. Reception of Multiple Telemetry Signals via One Dish Antenna

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Vilnrotter, Victor

    2010-01-01

    A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates.

  3. Quantitative evaluation of phase processing approaches in susceptibility weighted imaging

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Wang, Wen-Tung; Sati, Pascal; Pham, Dzung L.; Butman, John A.

    2012-03-01

    Susceptibility weighted imaging (SWI) takes advantage of the local variation in susceptibility between different tissues to enable highly detailed visualization of the cerebral venous system and sensitive detection of intracranial hemorrhages. Thus, it has been increasingly used in magnetic resonance imaging studies of traumatic brain injury as well as other intracranial pathologies. In SWI, magnitude information is combined with phase information to enhance the susceptibility induced image contrast. Because of global susceptibility variations across the image, the rate of phase accumulation varies widely across the image resulting in phase wrapping artifacts that interfere with the local assessment of phase variation. Homodyne filtering is a common approach to eliminate this global phase variation. However, filter size requires careful selection in order to preserve image contrast and avoid errors resulting from residual phase wraps. An alternative approach is to apply phase unwrapping prior to high pass filtering. A suitable phase unwrapping algorithm guarantees no residual phase wraps but additional computational steps are required. In this work, we quantitatively evaluate these two phase processing approaches on both simulated and real data using different filters and cutoff frequencies. Our analysis leads to an improved understanding of the relationship between phase wraps, susceptibility effects, and acquisition parameters. Although homodyne filtering approaches are faster and more straightforward, phase unwrapping approaches perform more accurately in a wider variety of acquisition scenarios.

  4. Exposure to space radiation of high-performance infrared multilayer filters

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hawkins, G. J.; Hunneman, R.

    1991-01-01

    The University of Reading experiment exposed IR interference filters and crystal substrates on identical earth facing and leading-edge sites of the Long Duration Exposure Facility (LDEF). Filters mostly comprised multilayer coatings of lead telluride (PbTe)/II-IV on germanium (Ge) and other substrates: crystals comprised CdTe, MgF2, sapphire, quartz, silicon, and some softer materials. Identical control samples were maintained in the laboratory throughout the experiment. The filters were novel in their design, construction and manufacture, and categorized high-performance because of their ability to resolve emission spectra of the important atmospheric gases for various purposes in remote sensing. No significant changes were found in the spectra of the hard-coated filters or in the harder crystals (the softer materials were degraded to an extent). By virtue of this well-documented and long exposure in LDEF, the qualification of the filter type is significantly improved for its future requirements.

  5. Minimum Energy-Variance Filters for the detection of compact sources in crowded astronomical images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Sanz, J. L.; López-Caniego, M.; González-Nuevo, J.

    2006-10-01

    In this paper we address the common problem of the detection and identification of compact sources, such as stars or far galaxies, in Astronomical images. The common approach, that consist in applying a matched filter to the data in order to remove noise and to search for intensity peaks above a certain detection threshold, does not work well when the sources to be detected appear in large number over small regions of the sky due to the effect of source overlapping and interferences among the filtered profiles of the sources. A new class of filter that balances noise removal with signal spatial concentration is introduced, then it is applied to simulated astronomical images of the sky at 857 GHz. We show that with the new filter it is possible to improve the ratio between true detections and false alarms with respect to the matched filter. For low detection thresholds, the improvement is ~ 40%.

  6. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  7. Use of Preservative Agents and Antibiotics for Increased Poliovirus Survival on Positively Charged Filters.

    PubMed

    Fagnant, Christine Susan; Kossik, Alexandra Lynn; Zhou, Nicolette Angela; Sánchez-Gonzalez, Liliana; Falman, Jill Christin; Keim, Erika Karen; Linden, Yarrow; Scheibe, Alana; Barnes, Kilala Sayisha; Beck, Nicola Koren; Boyle, David S; Meschke, John Scott

    2017-12-01

    Environmental surveillance of poliovirus (PV) and other non-enveloped viruses can help identify silent circulation and is necessary to certify eradication. The bag-mediated filtration system is an efficient method to filter large volumes of environmental waters at field sites for monitoring the presence of viruses. As filters may require long transit times to off-site laboratories for processing, viral inactivation or overgrowth of bacteria and fungi can interfere with virus detection and quantification (Miki and Jacquet in Aquatic Microb Ecol 51(2):195-208, 2008). To evaluate virus survival over time on ViroCap ™ filters, the filters were seeded with PV type 1 (PV1) and/or MS2 and then dosed with preservatives or antibiotics prior to storage and elution. These filters were stored at various temperatures and time periods, and then eluted for PV1 and MS2 recovery quantification. Filters dosed with the preservative combination of 2% sodium benzoate and 0.2% calcium propionate had increased virus survival over time when stored at 25 °C, compared to samples stored at 25 °C with no preservatives. While elution within 24 h of filtration is recommended, if storage or shipping is required then this preservative mixture can help preserve sample integrity. Addition of an antibiotic cocktail containing cephapirin, gentamicin, and Proclin ™ 300 increased recovery after storage at 4 and 25 °C, when compared to storage with no antibiotics. The antibiotic cocktail can aid sample preservation if access to appropriate antibiotics storage is available and sample cold chain is unreliable. This study demonstrated that the use of preservatives or antibiotics is a simple, cost-effective method to improve virus detection from ViroCap cartridge filters over time.

  8. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  9. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  10. Toehold-mediated internal control to probe the near-field interaction between the metallic nanoparticle and the fluorophore

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Yung, L. Y. L.

    2014-10-01

    Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near-field interaction from far-field interference is established by the use of the DNA toehold concept to mediate the in situ assembly and disassembly of the MNP-fluorophore conjugate. A model gold nanoparticle (AuNP)-Cy3 system is used to investigate our proposed toehold-mediated internal control system. The maximum fluorescence enhancement is obtained for large-sized AuNP (58 nm) separated from Cy3 at an intermediate distance of 6.8 nm, while fluorescence quenching is observed for smaller-sized AuNP (11 nm and 23 nm), which is in agreement with the theoretical values reported in the literature. This work shows that the toehold-mediated internal control design can serve as a central system for evaluating the near-field interaction of other MNP-fluorophore combinations and facilitate the rational design of specific MNP-fluorophore systems for various applications.Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near-field interaction from far-field interference is established by the use of the DNA toehold concept to mediate the in situ assembly and disassembly of the MNP-fluorophore conjugate. A model gold nanoparticle (AuNP)-Cy3 system is used to investigate our proposed toehold-mediated internal control system. The maximum fluorescence enhancement is obtained for large-sized AuNP (58 nm) separated from Cy3 at an intermediate distance of 6.8 nm, while fluorescence quenching is observed for smaller-sized AuNP (11 nm and 23 nm), which is in agreement with the theoretical values reported in the literature. This work shows that the toehold-mediated internal control design can serve as a central system for evaluating the near-field interaction of other MNP-fluorophore combinations and facilitate the rational design of specific MNP-fluorophore systems for various applications. Electronic supplementary information (ESI) available: DNA sequences, size distribution analysis, photobleaching background and optical characterization. See DOI: 10.1039/c4nr03643c

  11. Simultaneous strain and temperature measure based on a single suspended core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; López-Amo, M.; Kobelke, J.; Schuster, K.; Santos, J. L.; Frazão, O.

    2014-05-01

    In this work a simultaneous strain and temperature sensor based on a suspended core fiber is proposed. The sensor comprises a 3mm suspended core PCF between SMFs and is based on the combination of two multimodal interferences with different frequency fringe patterns. The interference of the both signal has different sensitivity responses to strain and temperature. Thought a low-pass frequency filtering of the detected spectrum, the wavelength shift of the two interferences can be measured allowing the discrimination of strain and temperature simultaneously. The resolutions of this sensor are 0.45 ºC and 4.02 μɛ.

  12. Practice-related improvement in working memory is modulated by changes in processing external interference.

    PubMed

    Berry, Anne S; Zanto, Theodore P; Rutman, Aaron M; Clapp, Wesley C; Gazzaley, Adam

    2009-09-01

    Working memory (WM) performance is impaired by the presence of external interference. Accordingly, more efficient processing of intervening stimuli with practice may lead to enhanced WM performance. To explore the role of practice on the impact that interference has on WM performance, we studied young adults with electroencephalographic (EEG) recordings as they performed three motion-direction, delayed-recognition tasks. One task was presented without interference, whereas two tasks introduced different types of interference during the interval of memory maintenance: distractors and interruptors. Distractors were to be ignored, whereas interruptors demanded attention based on task instructions for a perceptual discrimination. We show that WM performance was disrupted by both types of interference, but interference-induced disruption abated across a single experimental session through rapid learning. WM accuracy and response time improved in a manner that was correlated with changes in early neural measures of interference processing in visual cortex (i.e., P1 suppression and N1 enhancement). These results suggest practice-related changes in processing interference exert a positive influence on WM performance, highlighting the importance of filtering irrelevant information and the dynamic interactions that exist between neural processes of perception, attention, and WM during learning.

  13. Expert system constant false alarm rate processor

    NASA Astrophysics Data System (ADS)

    Baldygo, William J., Jr.; Wicks, Michael C.

    1993-10-01

    The requirements for high detection probability and low false alarm probability in modern wide area surveillance radars are rarely met due to spatial variations in clutter characteristics. Many filtering and CFAR detection algorithms have been developed to effectively deal with these variations; however, any single algorithm is likely to exhibit excessive false alarms and intolerably low detection probabilities in a dynamically changing environment. A great deal of research has led to advances in the state of the art in Artificial Intelligence (AI) and numerous areas have been identified for application to radar signal processing. The approach suggested here, discussed in a patent application submitted by the authors, is to intelligently select the filtering and CFAR detection algorithms being executed at any given time, based upon the observed characteristics of the interference environment. This approach requires sensing the environment, employing the most suitable algorithms, and applying an appropriate multiple algorithm fusion scheme or consensus algorithm to produce a global detection decision.

  14. Multidimensional signaling via wavelet packets

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  15. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  16. Electromagnetic Interference in a Private Swimming Pool: Case report.

    PubMed

    Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya

    2015-01-01

    Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool.

  17. Detection Acuity in the Peripheral Retina

    DTIC Science & Technology

    1989-09-01

    1 B . Basis for Current Investigation ...................................................... 1 1. Selective Filtering - A Way to...14 B . Procedure ........................................................................... 15 1. White Light Experiment...Meridional Effect .......................... 28 3. Quantative Analysis of the Oblique Effect ............................. 28 B . 550 nm Interference

  18. Second Workshop on Improvements to Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William J. (Editor)

    1988-01-01

    The papers in these proceedings show that a major effort is under way to improve all aspects of photometry. Astronomical multichannel photometry, photodiodes, analog-to-digital converters, data reduction techniques, interference filters and optical fibers are discussed.

  19. Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Lo Cicero, Ugo; Sciortino, Luisa; Parodi, Giancarlo; D'Anca, Fabio; Giglio, Paolo; Ferruggia Bonura, Salvatore; Nuzzo, Flavio; Jimenez Escobar, Antonio; Ciaravella, Angela; Collura, Alfonso; Varisco, Salvatore; Samain, Valerie

    2018-05-01

    The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing characterization tests.

  20. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.

    PubMed

    Park, Chulhee; Kang, Moon Gi

    2016-05-18

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.

  1. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition

    PubMed Central

    Park, Chulhee; Kang, Moon Gi

    2016-01-01

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. PMID:27213381

  2. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.

    PubMed

    Hua, Dengxin; Uchida, Masaru; Kobayashi, Takao

    2005-03-01

    A UV Rayleigh-Mie scattering lidar has been developed for daytime measurement of temperature and aerosol optical properties in the troposphere. The transmitter is a narrowband, injection-seeded, pulsed, third-harmonic Nd:YAG laser at an eye-safe wavelength of 355 nm. Two Fabry-Perot etalons (FPEs) with a dual-pass optical layout filter the molecular Rayleigh scattering components spectrally for retrieval of the temperature and provide a high rejection rate for aerosol Mie scattering in excess of 43 dB. The Mie signal is filtered with a third FPE filter for direct profiling of aerosol optical properties. The Mie scattering component in the Rayleigh signals, which will have influence on temperature measurements, is corrected by using a measure of aerosol scattering because of the relative insufficiency of Mie rejection of Rayleigh filters in the presence of dense aerosols or clouds, and the Mie rejection capability of system is thus improved. A narrowband interference filter is incorporated with the FPEs to block solar radiation. Also, the small field of view (0.1 mrad) of the receiver and the UV wavelength used enhance the ability of the lidar to suppress the solar background signal in daytime measurement. The system is relatively compact, with a power-aperture product of 0.18 W m(-2), and has a high sensitivity to temperature change (0.62%/K). Lidar measurements taken under different weather conditions (winter and summer) are demonstrated. Good agreement between the lidar and the radiosonde measurements was obtained in terms of lapse rates and inversions. Statistical temperature errors of less than 1 K up to a height of 2 km are obtainable, with an averaging time of approximately 12 min for daytime measurements.

  3. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  4. Performance Analysis of HF Band FB-MC-SS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussein Moradi; Stephen Andrew Laraway; Behrouz Farhang-Boroujeny

    Abstract—In a recent paper [1] the filter bank multicarrier spread spectrum (FB-MC-SS) waveform was proposed for wideband spread spectrum HF communications. A significant benefit of this waveform is robustness against narrow and partial band interference. Simulation results in [1] demonstrated good performance in a wideband HF channel over a wide range of conditions. In this paper we present a theoretical analysis of the bit error probably for this system. Our analysis tailors the results from [2] where BER performance was analyzed for maximum ration combining systems that accounted for correlation between subcarriers and channel estimation error. Equations are give formore » BER that closely match the simulated performance in most situations.« less

  5. Radiation Hardened Low Power Digital Signal Processor

    DTIC Science & Technology

    2005-04-15

    Image Figure 53.0 Point Spread Function PSF Figure 54.0 Restored Image and Restored PSF Figure 55.0 Newly Created Array Figure 56.0 Deblurred Image and... noise and interference rejection. WOA’s of 32-taps and greater are easily managed by the TCSP. An architecture that could efficiently perform filter...to quickly calculate a Remez filter impulse response to be used in place of the window function. Using the Remez exchange algorithm to calculate the

  6. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  7. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.

    PubMed

    Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel

    2011-08-01

    Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable. The method studied has now been published in ISO 21438-2:2009.

  8. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    NASA Astrophysics Data System (ADS)

    Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  9. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    PubMed

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  10. UHF FM receiver having improved frequency stability and low RFI emission

    DOEpatents

    Lupinetti, Francesco

    1990-02-27

    A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.

  11. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  12. Adaptive measurement selection for progressive damage estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Wenfan; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Chattopadhyay, Aditi; Peralta, Pedro

    2011-04-01

    Noise and interference in sensor measurements degrade the quality of data and have a negative impact on the performance of structural damage diagnosis systems. In this paper, a novel adaptive measurement screening approach is presented to automatically select the most informative measurements and use them intelligently for structural damage estimation. The method is implemented efficiently in a sequential Monte Carlo (SMC) setting using particle filtering. The noise suppression and improved damage estimation capability of the proposed method is demonstrated by an application to the problem of estimating progressive fatigue damage in an aluminum compact-tension (CT) sample using noisy PZT sensor measurements.

  13. Matched spectral filter based on reflection holograms for analyte identification.

    PubMed

    Cao, Liangcai; Gu, Claire

    2009-12-20

    A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO(3) crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025 degrees . Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter's reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.

  14. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  15. The costly filtering of potential distraction: evidence for a supramodal mechanism.

    PubMed

    Marini, Francesco; Chelazzi, Leonardo; Maravita, Angelo

    2013-08-01

    When dealing with significant sensory stimuli, performance can be hampered by distracting events. Attention mechanisms lessen such negative effects, enabling selection of relevant information while blocking potential distraction. Recent work shows that preparatory brain activity, occurring before a critical stimulus, may reflect mechanisms of attentional control aimed to filter upcoming distracters. However, it is unknown whether the engagement of these filtering mechanisms to counteract distraction in itself taxes cognitive-brain systems, leading to performance costs. Here we address this question and, specifically, seek the behavioral signature of a mechanism for the filtering of potential distraction within and between sensory modalities. We show that, in potentially distracting contexts, a filtering mechanism is engaged to cope with forthcoming distraction, causing a dramatic behavioral cost in no-distracter trials during a speeded tactile discrimination task. We thus demonstrate an impaired processing caused by a potential, yet absent, distracter. This effect generalizes across different sensory modalities, such as vision and audition, and across different manipulations of the context, such as the distracter's sensory modality and pertinence to the task. Moreover, activation of the filtering mechanism relies on both strategic and reactive processes, as shown by its dynamic dependence on probabilistic and cross-trial contingencies. Crucially, across participants, the observed strategic cost is inversely related to the interference exerted by a distracter on distracter-present trials. These results attest to a mechanism for the monitoring and filtering of potential distraction in the human brain. Although its activation is indisputably beneficial when distraction occurs, it leads to robust costs when distraction is actually expected but currently absent. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.

    PubMed

    Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G

    2011-04-10

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America

  17. Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System

    NASA Astrophysics Data System (ADS)

    Dory, C.; Fischer, K. A.; Müller, K.; Lagoudakis, K. G.; Sarmiento, T.; Rundquist, A.; Zhang, J. L.; Kelaita, Y.; Sapra, N. V.; Vučković, J.

    Strongly coupled quantum-dot-photonic-crystal cavity systems provide a nonlinear ladder of hybridized light-matter states, which are a promising platform for non-classical light generation. The transmission of light through such systems enables light generation with tunable photon counting statistics. By detuning the frequencies of quantum emitter and cavity, we can tune the transmission of light to strongly enhance either single- or two-photon emission processes. However, these nanophotonic systems show a strongly dissipative nature and classical light obscures any quantum character of the emission. In this work, we utilize a self-homodyne interference technique combined with frequency-filtering to overcome this obstacle. This allows us to generate emission with a strong two-photon component in the multi-photon regime, where we measure a second-order coherence value of g (2) [ 0 ] = 1 . 490 +/- 0 . 034 . We propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes and support them by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system. Finally, we simulate a third-order coherence value of g (3) [ 0 ] = 0 . 872 +/- 0 . 021 . Army Research Office (ARO) (W911NF1310309), National Science Foundation (1503759), Stanford Graduate Fellowship.

  18. Upgrading and performance of the SAO laser ranging system in Matera

    NASA Technical Reports Server (NTRS)

    Maddox, J.; Pearlman, M.; Throp, J.; Wohn, J.

    1983-01-01

    The performance of the SAO lasers was improved considerably in terms of accuracy, range noise, data yield, and reliability. With the narrower laser pulse (2.5-3.0 nsec) and a new analog pulse processing system, the systematic range errors were reduced to 3-5 cm and range noise has been reduced to 5-15 cm on low satellites and 10-18 cm on Lageos. Pulse repetition rate was increased to 30 ppm and considerable improvement has been made in signal-to-noise ratio by using a 3 Angstrom interference filter and by reducing the range gate window down to 200-400 nsec. The first upgraded system was installed in Arequipa, Peru in the spring of 1982. The second upgraded system is now in operation in Matera, Italy. The third system is expected to be installed in Israel during 1984.

  19. The Thomson scattering system at Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  20. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.

    PubMed

    Chakravorty, Subhas J; Chan, James; Greenwood, Marie Nicole; Popa-Burke, Ioana; Remlinger, Katja S; Pickett, Stephen D; Green, Darren V S; Fillmore, Martin C; Dean, Tony W; Luengo, Juan I; Macarrón, Ricardo

    2018-07-01

    High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.

  1. Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters.

    PubMed

    Kedawat, Garima; Srivastava, Subodh; Jain, Vipin Kumar; Kumar, Pawan; Kataria, Vanjula; Agrawal, Yogyata; Gupta, Bipin Kumar; Vijay, Yogesh K

    2013-06-12

    We report a design and fabrication strategy for creating an artificially stacked multilayered optical filters using a thermal evaporation technique. We have selectively chosen a zinc sulphide (ZnS) lattice for the high refractive index (n = 2.35) layer and a magnesium fluoride (MgF2) lattice as the low refractive index (n = 1.38) layer. Furthermore, the microstructures of the ZnS/MgF2 multilayer films are also investigated through TEM and HRTEM imaging. The fabricated filters consist of high and low refractive 7 and 13 alternating layers, which exhibit a reflectance of 89.60% and 99%, respectively. The optical microcavity achieved an average transmittance of 85.13% within the visible range. The obtained results suggest that these filters could be an exceptional choice for next-generation antireflection coatings, high-reflection mirrors, and polarized interference filters.

  2. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, canmore » have potential for diverse applications ranging from color display devices to the image sensors.« less

  3. Multisource least-squares reverse-time migration with structure-oriented filtering

    NASA Astrophysics Data System (ADS)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  4. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    PubMed

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  5. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.

  6. Thin-film optical pass band filters based on new photo-lithographic process for CaSSIS FPA detector on Exomars TGO mission: development, integration, and test

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Piazza, D.; Gerber, M.; Pommerol, A.; Roloff, V.; Ziethe, R.; Zimmermann, C.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Marinai, M.; Di Carmine, E.; Bauer, T.; Moebius, P.; Thomas, N.

    2016-08-01

    A new technique based on photolithographic processes of thin-film optical pass band coatings on a monolithic substrate has been applied to the filters of the Focal Plane Assembly (FPA) of the Colour and Stereo Surface Imaging System (CaSSIS) that will fly onboard of the ExoMars Trace Gas Orbiter to be launched in March 2016 by ESA. The FPA including is one of the spare components of the Simbio-Sys instrument of the Italian Space Agency (ASI) that will fly on ESA's Bepi Colombo mission to Mercury. The detector, developed by Raytheon Vision Systems, is a 2kx2k hybrid Si-PIN array with a 10 μm pixel. The detector is housed within a block and has filters deposited directly on the entrance window. The window is a 1 mm thick monolithic plate of fused silica. The Filter Strip Assembly (FSA) is produced by Optics Balzers Jena GmbH and integrated on the focal plane by Leonardo-Finmeccanica SpA (under TAS-I responsibility). It is based on dielectric multilayer interference coatings, 4 colour bands selected with average in-band transmission greater than 95 percent within wavelength range (400-1100 nm), giving multispectral images on the same detector and thus allows CaSSIS to operate in push-frame mode. The Field of View (FOV) of each colour band on the detector is surrounded by a mask of low reflective chromium (LRC), which also provides with the straylight suppression required (an out-of-band transmission of less than 10-5/nm). The mask has been shown to deal effectively with cross-talk from multiple reflections between the detector surface and the filter. This paper shows the manufacturing and optical properties of the FSA filters and the FPA preliminary on-ground calibration results.

  7. Chaos-based wireless communication resisting multipath effects.

    PubMed

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  8. Chaos-based wireless communication resisting multipath effects

    NASA Astrophysics Data System (ADS)

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  9. A novel low-complexity digital filter design for wearable ECG devices

    PubMed Central

    Mehrnia, Alireza

    2017-01-01

    Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters. PMID:28384272

  10. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas

    NASA Astrophysics Data System (ADS)

    López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand

    2010-03-01

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  11. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas.

    PubMed

    López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand

    2010-03-24

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  12. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  13. A novel low-complexity digital filter design for wearable ECG devices.

    PubMed

    Asgari, Shadnaz; Mehrnia, Alireza

    2017-01-01

    Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters.

  14. Design of a 32-Channel EEG System for Brain Control Interface Applications

    PubMed Central

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545

  15. Design of a 32-channel EEG system for brain control interface applications.

    PubMed

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  16. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  17. Complex apodized Bragg grating filters without circulators in silicon-on-insulator.

    PubMed

    Simard, Alexandre D; LaRochelle, Sophie

    2015-06-29

    Bragg gratings operating in reflection are versatile filters that are an important building block of photonic circuits but, so far, their use has been limited due to the absence of CMOS compatible integrated circulators. In this paper, we propose to introduce two identical Bragg gratings in the arms of a Mach-Zehnder interferometer built with multimode interference 2 x 2 couplers to provide a reflective filter without circulator. We show that this structure has unique properties that significantly reduce phase noise distortions, avoid the need for thermal phase tuning, and make it compatible with complex apodization functions implemented through superposition apodization. We experimentally demonstrate several Bragg grating filters with high quality reflection spectra. For example, we successfully fabricated a 4 nm dispersion-less square-shaped filter having a sidelobe suppression ratio better than 15 dB and an in-band phase response with a group delay standard deviation of 2.0 ps. This result will enable the fabrication of grating based narrowband reflective filters having sharp spectral responses, which represents a major improvement in the filtering capability of the silicon platform.

  18. High performance incandescent lighting using a selective emitter and nanophotonic filters

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-09-01

    Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.

  19. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  20. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  1. Experimental research of digital image correlation system in high temperature test

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Yonghong; Dan, Xizuo; Xiao, Ying; Yang, Lianxiang

    2016-01-01

    Digital Image Correlation (DIC) is a full-field technique based on white-light illumination for displacement and strain measurement. But radiation on the specimen surface at high temperature affects the quality of acquired speckle pattern images for traditional DIC measurement. In order to minimize the radiation effect in high temperature measurement, this paper proposes a two-dimensional ultraviolet digital image correlation system (2D UV-DIC) containing UV LED and UV band-pass filter. It is confirmed by experiments that images acquired by this system saturate at higher temperature in comparison with DIC using filtered blue light imaging system. And the UV-DIC remains minimally affected by radiation at the temperature which is nearing the specimen's maximum working temperature (about 1250°C). In addition, considering the heat disturbance that can't be ignored in actual high temperature measurement, this paper also proposes a method using an air controller in combination with image average algorithm, and the method was then used to obtain the thermal expansion coefficient of the Austenitic chromium-nickel stainless steel specimen at different temperatures. By comparing the coefficients with the results calculated by other method, it shows that this comprehensive method has the advantages of strong anti-interference ability and high precision.

  2. Binaural segregation in multisource reverberant environments.

    PubMed

    Roman, Nicoleta; Srinivasan, Soundararajan; Wang, DeLiang

    2006-12-01

    In a natural environment, speech signals are degraded by both reverberation and concurrent noise sources. While human listening is robust under these conditions using only two ears, current two-microphone algorithms perform poorly. The psychological process of figure-ground segregation suggests that the target signal is perceived as a foreground while the remaining stimuli are perceived as a background. Accordingly, the goal is to estimate an ideal time-frequency (T-F) binary mask, which selects the target if it is stronger than the interference in a local T-F unit. In this paper, a binaural segregation system that extracts the reverberant target signal from multisource reverberant mixtures by utilizing only the location information of target source is proposed. The proposed system combines target cancellation through adaptive filtering and a binary decision rule to estimate the ideal T-F binary mask. The main observation in this work is that the target attenuation in a T-F unit resulting from adaptive filtering is correlated with the relative strength of target to mixture. A comprehensive evaluation shows that the proposed system results in large SNR gains. In addition, comparisons using SNR as well as automatic speech recognition measures show that this system outperforms standard two-microphone beamforming approaches and a recent binaural processor.

  3. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic beamformer. The solution is two-part. A novel highly-scalable photonic beamformer is first proposed and experimentally verified. A "blind" search algorithm called the guided accelerated random search (GARS) algorithm is then shown. A maximum cancellation of 37 dB is achieved within 50 iterations, a real-world time of 1-3 seconds, while the presence of a signal of interest (SOI) is maintained.

  4. Comparison of different shielding methods in acquisition of physiological signals.

    PubMed

    Yanbing Jiang; Ning Ji; Hui Wang; Xueyu Liu; Yanjuan Geng; Peng Li; Shixiong Chen; Guanglin Li

    2017-07-01

    Power line interference in the surrounding environment could usually introduce many difficulties when collecting and analyzing physiological signals. Since power line interference is usually several orders of amplitude larger than the physiological electrical signals, methods of suppressing power line interference should be considered during the signal acquisition. Many studies used a hardware or software band-stop filter to suppress power line interference but it could easily cause attenuations and distortions to the signal of interest. In this study, two kinds of methods that used different signals to drive the shields of the electrodes were proposed to reduce the impacts of power line interference. Three channels of two physiological signals (ECG and EMG) were simultaneously collected when the electrodes were not shielded (No-Shield), shielded by ground signals (GND-Shield) and shielded by buffered signals of the corresponding electrodes (Active-Shield), respectively, on a custom hardware platform based on TI ADS1299. The results showed that power line interference would be significantly suppressed when using shielding approaches, and the Active-Shield method could achieve the best performance with a power line interference reduction up to 36dB. The study suggested that the Active-Shield method at the analog front-end was a great candidate to reduce power line interference in routine acquisitions of physiological signals.

  5. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  6. Interference of Multi-Mode Gaussian States and "non Appearance" of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Olivares, Stefano

    2012-01-01

    We theoretically investigate bilinear, mode-mixing interactions involving two modes of uncorrelated multi-mode Gaussian states. In particular, we introduce the notion of "locally the same states" (LSS) and prove that two uncorrelated LSS modes are invariant under the mode mixing, i.e. the interaction does not lead to the birth of correlations between the outgoing modes. We also study the interference of orthogonally polarized Gaussian states by means of an interferometric scheme based on a beam splitter, rotators of polarization and polarization filters.

  7. Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Besse, P. A.; Melchior, H.

    1995-10-01

    Overlapping-image multimode interference (MMI) couplers, a new class of devices, permit uniform and nonuniform power splitting. A theoretical description directly relates coupler geometry to image intensities, positions, and phases. Among many possibilities of nonuniform power splitting, examples of 1 \\times 2 couplers with ratios of 15:85 and 28:72 are given. An analysis of uniform power splitters includes the well-known 2 \\times N and 1 \\times N MMI couplers. Applications of MMI couplers include mode filters, mode splitters-combiners, and mode converters.

  8. Application of filtering techniques in preprocessing magnetic data

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Yi, Yongping; Yang, Hongxia; Hu, Guochuang; Liu, Guoming

    2010-08-01

    High precision magnetic exploration is a popular geophysical technique for its simplicity and its effectiveness. The explanation in high precision magnetic exploration is always a difficulty because of the existence of noise and disturbance factors, so it is necessary to find an effective preprocessing method to get rid of the affection of interference factors before further processing. The common way to do this work is by filtering. There are many kinds of filtering methods. In this paper we introduced in detail three popular kinds of filtering techniques including regularized filtering technique, sliding averages filtering technique, compensation smoothing filtering technique. Then we designed the work flow of filtering program based on these techniques and realized it with the help of DELPHI. To check it we applied it to preprocess magnetic data of a certain place in China. Comparing the initial contour map with the filtered contour map, we can see clearly the perfect effect our program. The contour map processed by our program is very smooth and the high frequency parts of data are disappeared. After filtering, we separated useful signals and noisy signals, minor anomaly and major anomaly, local anomaly and regional anomaly. It made us easily to focus on the useful information. Our program can be used to preprocess magnetic data. The results showed the effectiveness of our program.

  9. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, Y. L.; Lee, J. H.; Shin, W.

    2016-05-01

    We proposed a multimode interference (MMI) fiber based saturable absorber using bismuth telluride at  ∼2 μm region. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The MMI functioned as both wavelength fixed filter and saturable absorber. The 3 dB bandwidth and insertion loss of MMI were 42 nm and 3.4 dB at wavelength of 1958 nm, respectively. We have also reported a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm using a multimode interference. A temporal bandwidth of  ∼46 ps was experimentally obtained at a repetition rate of 8.58 MHz.

  10. Art in a new light: Design and assessment of illuminants to reduce photochemical degradation of works of art

    NASA Astrophysics Data System (ADS)

    Delgado Ramos, Monica Fabiola

    The purpose of this research is to design the best lighting that will minimize long term photochemical degradation of Old Master Drawings and/or other works of art, while maintaining the patron's appreciation of the object's color and detail. The present approach is a technological refinement to the basic underlying earlier work on fluorescent lighting by W. A. Thornton, W.A. at General Electric1. Thin-film dielectric, multi-coating technology is used to create filters that eliminate ultraviolet light, near infrared light and significant unnecessary parts from the visible spectrum, thus maximizing the reduction in photochemical degradation, while maintaining optimal color rendering. Three interference filters, were designed and manufactured successfully. The filters are designated Mark 1, Mark 2, & Mark 3. In this dissertation, the filters are analyzed with regard to their performance parameters. This includes color rendering, retardation in fading or color change, beam angle effects, filter stability, perceived brightness, and visual appreciation parameters. To a high confidence level, all three filters are perceived as being indistinguishable from Unfiltered light with regard to the color confusion index parameter (CCI). Subjective assessments by tests subjects suggest the Mark 3 filter may display some distinguishability with a confidence level for distinguishability of 35% for the overall satisfaction parameter. The Mark 3 filter is the most complex three-color type spectral profile and this might be expected due to beam angle effects or departures in accuracy of color theory. Beam angle affects suggest that the Mark 1 and Mark 2 filters do not display significant color rendering aberrations due to Newton's colors interference effects, except possibly at the periphery of the broadest (55-60+°) beam angle lamps. Filtered and Unfiltered light are effectively of the same perceived brightness, though to a low confidence level, Unfiltered light might be perceived brighter. Accelerated aging studies of the filters indicate useful mean time before failures of >20 years. In fact, no failure was observed in any of the accelerated studies, The Mark 2 and Mark 3 filters were evaluated in equal-luminosity studies with regard to their effect on limiting fading of both standard fading samples such as the ISO Blue Wool series, and also other commercial pigments or stains. Within experimental error, the Mark 2 filter either slowed fading or had no effect on fading for all pigments relative to Unfiltered light and OptivexRTM filtered light, OptivexRTM being a common commercial filter used to protect works of art. Mark 3 protected in many cases, but for some pigments it was less protective than OptivexRTM filtered light. This failure is interpreted in terms of the wavelength dependence of the excess light in certain wavelength regions on an equal luminosity condition, and suggests that more subtle wavelength dependent optimizations have to be undertaken for filters which possess significant band separation.

  11. All-fiber bandpass filter based on asymmetrical modes exciting and coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min

    2013-01-01

    A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.

  12. Determination of the Ability to Measure Traces of Water in Dehydrated Residues of Waste Water by IR Diffuse Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.

    2018-01-01

    Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.

  13. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.

    PubMed

    Wykowska, Agnieszka; Schubö, Anna

    2011-03-01

    It is not clear how salient distractors affect visual processing. The debate concerning the issue of whether irrelevant salient items capture spatial attention [e.g., Theeuwes, J., Atchley, P., & Kramer, A. F. On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive performance (pp. 105-124). Cambridge, MA: MIT Press, 2000] or produce only nonspatial interference in the form of, for example, filtering costs [Folk, Ch. L., & Remington, R. Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445-465, 2006] has not yet been settled. The present ERP study examined deployment of attention in visual search displays that contained an additional irrelevant singleton. Display-locked N2pc showed that attention was allocated to the target and not to the irrelevant singleton. However, the onset of the N2pc to the target was delayed when the irrelevant singleton was presented in the opposite hemifield relative to the same hemifield. Thus, although attention was successfully focused on the target, the irrelevant singleton produced some interference resulting in a delayed allocation of attention to the target. A subsequent probe discrimination task allowed for locking ERPs to probe onsets and investigating the dynamics of sensory gain control for probes appearing at relevant (target) or irrelevant (singleton distractor) positions. Probe-locked P1 showed sensory gain for probes positioned at the target location but no such effect for irrelevant singletons in the additional singleton condition. Taken together, the present data support the claim that irrelevant singletons do not capture attention. If they produce any interference, it is rather due to nonspatial filtering costs.

  14. A short-range optical wireless transmission method based on LED

    NASA Astrophysics Data System (ADS)

    Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu

    2016-10-01

    As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.

  15. Design, fabrication and testing of hierarchical micro-optical structures and systems

    NASA Astrophysics Data System (ADS)

    Cannistra, Aaron Thomas

    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist application to curved surfaces combined with interference lithography is also investigated. Using this technique, we generate polarizers on curved surfaces and measure their performance. This work furthers an understanding of how combining multiple optical components affects the performance of each component, the final integrated devices, and leads towards realization of biomimetically inspired imaging systems.

  16. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    PubMed

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  17. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  18. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  19. Partial least-squares with residual bilinearization for the spectrofluorimetric determination of pesticides. A solution of the problems of inner-filter effects and matrix interferents.

    PubMed

    Piccirilli, Gisela N; Escandar, Graciela M

    2006-09-01

    This paper demonstrates for the first time the power of a chemometric second-order algorithm for predicting, in a simple way and using spectrofluorimetric data, the concentration of analytes in the presence of both the inner-filter effect and unsuspected species. The simultaneous determination of the systemic fungicides carbendazim and thiabendazole was achieved and employed for the discussion of the scopes of the applied second-order chemometric tools: parallel factor analysis (PARAFAC) and partial least-squares with residual bilinearization (PLS/RBL). The chemometric study was performed using fluorescence excitation-emission matrices obtained after the extraction of the analytes over a C18-membrane surface. The ability of PLS/RBL to recognize and overcome the significant changes produced by thiabendazole in both the excitation and emission spectra of carbendazim is demonstrated. The high performance of the selected PLS/RBL method was established with the determination of both pesticides in artificial and real samples.

  20. A Frequency-Domain Adaptive Matched Filter for Active Sonar Detection.

    PubMed

    Zhao, Zhishan; Zhao, Anbang; Hui, Juan; Hou, Baochun; Sotudeh, Reza; Niu, Fang

    2017-07-04

    The most classical detector of active sonar and radar is the matched filter (MF), which is the optimal processor under ideal conditions. Aiming at the problem of active sonar detection, we propose a frequency-domain adaptive matched filter (FDAMF) with the use of a frequency-domain adaptive line enhancer (ALE). The FDAMF is an improved MF. In the simulations in this paper, the signal to noise ratio (SNR) gain of the FDAMF is about 18.6 dB higher than that of the classical MF when the input SNR is -10 dB. In order to improve the performance of the FDAMF with a low input SNR, we propose a pre-processing method, which is called frequency-domain time reversal convolution and interference suppression (TRC-IS). Compared with the classical MF, the FDAMF combined with the TRC-IS method obtains higher SNR gain, a lower detection threshold, and a better receiver operating characteristic (ROC) in the simulations in this paper. The simulation results show that the FDAMF has higher processing gain and better detection performance than the classical MF under ideal conditions. The experimental results indicate that the FDAMF does improve the performance of the MF, and can adapt to actual interference in a way. In addition, the TRC-IS preprocessing method works well in an actual noisy ocean environment.

  1. Metal biosorption-flotation. Application to cadmium removal.

    PubMed

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  2. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1980-01-01

    Presents two experimental set-ups. The first demonstrates the law of Malus using a pair of Polaroid polarizers and a monochromatic light source with an interference filter. The second describes a modification of Hilton's apparatus to demonstrate the effects of the magnetic hysteresis on an overhead projector. (CS)

  3. An Optimized Centrifugal Method for Separation of Semen from Superabsorbent Polymers for Forensic Analysis.

    PubMed

    Camarena, Lucy R; Glasscock, Bailey K; Daniels, Demi; Ackley, Nicolle; Sciarretta, Marybeth; Seashols-Williams, Sarah J

    2017-03-01

    Connection of a perpetrator to a sexual assault is best performed through the confirmed presence of semen, thereby proving sexual contact. Evidentiary items can include sanitary napkins or diapers containing superabsorbent polymers (SAPs), complicating spermatozoa visualization and DNA analysis. In this report, we evaluated the impact of SAPS on the current forensic DNA workflow, developing an efficient centrifugal protocol for separating spermatozoa from SAP material. The optimized filtration method was compared to common practices of excising the top layer only, resulting in significantly higher sperm yields when a core sample of the substrate was taken. Direct isolation of the SAP-containing materials without filtering resulted in 20% sample failure; additionally, SAP material was observed in the final eluted DNA samples, causing physical interference. Thus, use of the described centrifugal-filtering method is a simple preliminary step that improves spermatozoa visualization and enables more consistent DNA yields, while also avoiding SAP interference. © 2016 American Academy of Forensic Sciences.

  4. Application of adaptive filters in denoising magnetocardiogram signals

    NASA Astrophysics Data System (ADS)

    Khan, Pathan Fayaz; Patel, Rajesh; Sengottuvel, S.; Saipriya, S.; Swain, Pragyna Parimita; Gireesan, K.

    2017-05-01

    Magnetocardiography (MCG) is the measurement of weak magnetic fields from the heart using Superconducting QUantum Interference Devices (SQUID). Though the measurements are performed inside magnetically shielded rooms (MSR) to reduce external electromagnetic disturbances, interferences which are caused by sources inside the shielded room could not be attenuated. The work presented here reports the application of adaptive filters to denoise MCG signals. Two adaptive noise cancellation approaches namely least mean squared (LMS) algorithm and recursive least squared (RLS) algorithm are applied to denoise MCG signals and the results are compared. It is found that both the algorithms effectively remove noisy wiggles from MCG traces; significantly improving the quality of the cardiac features in MCG traces. The calculated signal-to-noise ratio (SNR) for the denoised MCG traces is found to be slightly higher in the LMS algorithm as compared to the RLS algorithm. The results encourage the use of adaptive techniques to suppress noise due to power line frequency and its harmonics which occur frequently in biomedical measurements.

  5. Rapid Detection of Pathogenic Bacteria from Fresh Produce by Filtration and Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Han, Caiqin; Chen, Jing; Huang, Yao-Wen; Zhao, Yiping

    2016-04-01

    The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.

  6. Flat-topped broadband rugate filters.

    PubMed

    Imenes, Anne G; McKenzie, David R

    2006-10-20

    A method of creating rugate interference filters that have flat-topped reflectance across an extended spectral region is presented. The method applies known relations from the classical coupled wave theory to develop a set of equations that gives the spatial frequency distribution of rugate cycles to achieve constant reflectance across a given spectral region. Two examples of the application of this method are discussed: a highly reflective coating for eye protection against harmful laser radiation incident from normal to 45 degrees , and a spectral beam splitter for efficient solar power conversion.

  7. Deterministic filtering of breakdown flashing at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Marini, Loris; Camphausen, Robin; Eggleton, Benjamin J.; Palomba, Stefano

    2017-11-01

    Breakdown flashes are undesired photo-emissions from the active area of single-photon avalanche photo-diodes. They arise from radiative recombinations of hot carriers generated during an avalanche and can induce crosstalk, compromise the measurement of optical quantum states, and hinder the security of quantum communications. Although the spectrum of this emission extends over hundreds of nanometers, active quenching may lead to a smaller uncertainty in the time of emission, thus enabling deterministic filtering. Our results pave the way to broadband interference mitigation in time-correlated single-photon applications.

  8. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  9. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No

    2016-05-01

    Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.

  10. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations.

    PubMed

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Ni, Zhenjie; Zou, Ye; Yang, Jie; Wang, Lifeng; Sun, Yanqiu; Guo, Yunlong; Hu, Wenping; Liu, Yunqi

    2017-08-01

    Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Collaborative recall in face-to-face and electronic groups.

    PubMed

    Ekeocha, Justina Ohaeri; Brennan, Susan E

    2008-04-01

    When people remember shared experiences, the amount they recall as a collaborating group is less than the amount obtained by pooling their individual memories. We tested the hypothesis that reduced group productivity can be attributed, at least in part, to content filtering, where information is omitted from group products either because individuals fail to retrieve it or choose to withhold it (self-filtering), or because groups reject or fail to incorporate it (group-filtering). Three-person groups viewed a movie clip together and recalled it, first individually, then in face-to-face or electronic groups, and finally individually again. Although both kinds of groups recalled equal amounts, group-filtering occurred more often face-to-face, while self-filtering occurred more often electronically. This suggests that reduced group productivity is due not only to intrapersonal factors stemming from cognitive interference, but also to interpersonal costs of coordinating the group product. Finally, face-to-face group interaction facilitated subsequent individual recall.

  12. Waveguide bandpass filter with easily adjustable transmission zeros and 3-dB bandwidth

    NASA Astrophysics Data System (ADS)

    Bage, Amit; Das, Sushrut; Murmu, Lakhindar; Pattapu, Udayabhaskar; Biswal, Sonika

    2018-07-01

    This paper presents a compact waveguide bandpass filter with adjustable transmission zeros (TZs) and bandwidth. The design provides the flexibility to place the TZs at the desired locations for better interference rejection. To demonstrate, initially a three-pole bandpass filter has been designed by placing three single slot resonator structures inside a WR-90 waveguide. Next, two additional asymmetrical slot structures have been used with each of the above resonators to generate two TZs, one on each side of the passband. Since three resonators were used, this process results in six asymmetric slot structures those results in six TZs. The final filter operates at 9.98 GHz with a 3-dB bandwidth of 1.02 GHz and TZs at 8.23/8.70/9.16/10.9/11.6 and 13.115 GHz. Equivalent circuits and necessary design equations have been provided. To validate the simulation, the proposed filter has been fabricated and measured. The measured data show good agreement with simulated data.

  13. All-dielectric band stop filter at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Yin, Shan; Chen, Lin

    2018-01-01

    We design all-dielectric band stop filters with silicon subwavelength rod and block arrays at terahertz frequencies. Supporting magnetic dipole resonances originated from the Mia resonance, the all-dielectric filters can modulate the working band by simply varying the structural geometry, while eliminating the ohmic loss induced by the traditional metallic metamaterials and uninvolved with the complicated mechanism. The nature of the resonance in the silicon arrays is clarified, which is attributed to the destructive interference between the directly transmitted waves and the waves emitted from the magnetic dipole resonances, and the resonance frequency is determined by the dielectric structure. By particularly designing the geometrical parameters, the profile of the transmission spectrum can be tailored, and the step-like band edge can be obtained. The all-dielectric filters can realize 93% modulation of the transmission within 0.04 THz, and maintain the bandwidth of 0.05 THz. This work provides a method to develop THz functional devices, such as filters, switches and sensors.

  14. Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain,more » as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.« less

  15. A high temperature superconductor notch filter for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bolli, Pietro; Cresci, Luca; Huang, Frederick; Mariotti, Sergio; Panella, Dario

    2018-04-01

    A High Temperature Superconductor filter operating in the C-band between 4200 and 5600 MHz has been developed for one of the radio astronomical receivers of the Sardinia Radio Telescope. The motivation was to attenuate an interference from a weather radar at 5640 MHz, whose power level exceeds the linear region of the first active stages of the receiver. A very sharp transition after the nominal maximum passband frequency is reached by combining a 6th order band-pass filter with a 6th order stop-band. This solution is competitive with an alternative layout based on a cascaded triplet filter. Three units of the filter have been measured with two different calibration approaches to investigate pros and cons of each, and data repeatability. The final performance figures of the filters are: ohmic losses of the order of 0.15-0.25 dB, matching better than -15 dB, and -30 dB attenuation at 5640 MHz. Finally, a more accurate model of the connection between external connector and microstrip shows a better agreement between simulations and experimental data.

  16. Solid optical ring interferometer for high-throughput feedback-free spectral analysis and filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrak, B.; Peiris, M.; Muller, A., E-mail: mullera@usf.edu

    2015-02-15

    We describe a simple and inexpensive optical ring interferometer for use in high-resolution spectral analysis and filtering. It consists of a solid cuboid, reflection-coated on two opposite sides, in which constructive interference occurs for waves in a rhombic trajectory. Due to its monolithic design, the interferometer’s resonance frequencies are insensitive to environmental disturbances over time. Additional advantages are its simplicity of alignment, high-throughput, and feedback-free operation. If desired, it can be stabilized with a secondary laser without disturbance of the primary signal. We illustrate the use of the interferometer for the measurement of the spectral Mollow triplet from a quantummore » dot and characterize its long-term stability for filtering applications.« less

  17. Full-disk Solar H-alpha Images From GONG

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Bolding, J.; Clark, R.; Hauth, D.; Hill, F.; Kroll, R.; Luis, G.; Mills, N.; Purdy, T.; Henney, C.; Holland, D.; Winter, J.

    2011-05-01

    Since mid-2010 the Global Oscillation Network Group (GONG) has collected H-alpha images at six sites around the world. These images provide a near real-time solar activity patrol for use in space weather applications and also an archive for research purposes. Images are collected once per minute, dark, smear, and flat corrected, compressed and then sent via the Internet to a 'cloud' server where reduction is completed. Various reduced images are usually available within a minute after exposure. The H-alpha system is an add-on to the normal GONG helioseismology instrument and does not interfere with regular observations. A polarizing beamsplitter sends otherwise unused 656 nm light through two lenses to a Daystar 0.04 nm mica etalon filter. The filter is matched to an image of the GONG light feed entrance pupil and sees an image of the Sun at infinity. Two lenses behind the filter form the solar image on a DVC-4000 2k x 2k interline transfer CCD camera. Exposure times are automatically adjusted to maintain the quiet disk center at 20% of full dynamic range to avoid saturation by bright flares. Image resolution is limited by diffraction, seeing and some high-order wavefront errors in the filters. A unique dual-heater system was developed by Daystar to homogenize the passband characteristics of the mica etalons. The data are in regular use for space weather forecasting by the U.S. Air Force Weather Agency, which funded construction and installation of the instruments. Operational and reduction improvements are underway and archived data are already being used for research projects. The Web site URL is http://halpha.nso.edu.

  18. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.

    PubMed

    Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I

    2015-09-01

    A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.

  19. Cooled optical filters for Q-band infrared astronomy (15-40 μm)

    NASA Astrophysics Data System (ADS)

    Hawkins, Gary J.; Sherwood, Richard E.; Djotni, Karim; Threadgold, Timothy M.

    2016-07-01

    With a growing interest in mid- and far-infrared astronomy using cooled imaging and spectrometer instruments in highaltitude observatories and spaceflight telescopes, it is becoming increasingly important to characterise and assess the spectral performance of cooled multilayer filters across the Q-band atmospheric window. This region contains spectral features emitted by many astrophysical phenomena and objects fundamental to circumstellar and planetary formation theories. However extending interference filtering to isolate radiation at progressively longer wavelengths and improve photometric accuracy is an area of ongoing and challenging thin-film research. We have successfully fabricated cooled bandpass and edge filters with high durability for operation across the 15-30 μm Q-band region. In this paper we describe the rationale for selection of optical materials and properties of fabricated thin-film coatings for this region, together with FTIR spectral measurements and assessment of environmental durability.

  20. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  1. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.

  2. A digital correlator upgrade for the Arcminute MicroKelvin Imager

    NASA Astrophysics Data System (ADS)

    Hickish, Jack; Razavi-Ghods, Nima; Perrott, Yvette C.; Titterington, David J.; Carey, Steve H.; Scott, Paul F.; Grainge, Keith J. B.; Scaife, Anna M. M.; Alexander, Paul; Saunders, Richard D. E.; Crofts, Mike; Javid, Kamran; Rumsey, Clare; Jin, Terry Z.; Ely, John A.; Shaw, Clive; Northrop, Ian G.; Pooley, Guy; D'Alessandro, Robert; Doherty, Peter; Willatt, Greg P.

    2018-04-01

    The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly that from geostationary satellites which are visible from the AMI site when observing at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators - one for each of AMI's two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two sub-bands, each of which are filtered to a width of 2.3 GHz and digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.

  3. Hyperspectral proximal sensing of Salix Alba trees in the Sacco river valley (Latium, Italy).

    PubMed

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-10-29

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are 'healthier' than those downstream.

  4. NONLINEAR AND FIBER OPTICS: Analysis of the mode noise in interference fiber channels used for the distribution of microwave signals

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1991-03-01

    The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.

  5. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  6. Integrated strategy for identifying minor components in complex samples combining mass defect, diagnostic ions and neutral loss information based on ultra-performance liquid chromatography-high resolution mass spectrometry platform: Folium Artemisiae Argyi as a case study.

    PubMed

    Ren, Dabing; Ran, Lu; Yang, Chong; Xu, Meilin; Yi, Lunzhao

    2018-05-18

    Ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) has been used as a powerful tool to profile chemicals in traditional Chinese medicines. However, identification of potentially bioactive compounds is still a challenging work because of the large amount of information contained in the raw UPLC-HRMS data. Especially the ubiquitous matrix interference makes it more difficult to characterize the minor components. Therefore, rapid recognition and efficient extraction of the corresponding parent ions is critically important for identifying the attractive compounds in complex samples. Herein, we propose an integrated filtering strategy to remove un-related or interference MS 1 ions from the raw UPLC-HRMS data, which helps to retain the MS features of the target components and expose the compounds of interest as effective as possible. The proposed strategy is based on the use of a combination of different filtering methods, including nitrogen rule, mass defect, and neutral loss/diagnostic fragment ions filtering. The strategy was validated by rapid screening and identification of 16 methoxylated flavonoids and 55 chlorogenic acids analogues from the raw UPLC-HRMS dataset of Folium Artemisiae Argyi. Particularly, successful detection of several minor components indicated that the integrated strategy has obvious advantages over individual filtering methods, and it can be used as a promising method for screening and identifying compounds from complex samples, such as herbal medicines. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Layered video transmission over multirate DS-CDMA wireless systems

    NASA Astrophysics Data System (ADS)

    Kondi, Lisimachos P.; Srinivasan, Deepika; Pados, Dimitris A.; Batalama, Stella N.

    2003-05-01

    n this paper, we consider the transmission of video over wireless direct-sequence code-division multiple access (DS-CDMA) channels. A layered (scalable) video source codec is used and each layer is transmitted over a different CDMA channel. Spreading codes with different lengths are allowed for each CDMA channel (multirate CDMA). Thus, a different number of chips per bit can be used for the transmission of each scalable layer. For a given fixed energy value per chip and chip rate, the selection of a spreading code length affects the transmitted energy per bit and bit rate for each scalable layer. An MPEG-4 source encoder is used to provide a two-layer SNR scalable bitstream. Each of the two layers is channel-coded using Rate-Compatible Punctured Convolutional (RCPC) codes. Then, the data are interleaved, spread, carrier-modulated and transmitted over the wireless channel. A multipath Rayleigh fading channel is assumed. At the other end, we assume the presence of an antenna array receiver. After carrier demodulation, multiple-access-interference suppressing despreading is performed using space-time auxiliary vector (AV) filtering. The choice of the AV receiver is dictated by realistic channel fading rates that limit the data record available for receiver adaptation and redesign. Indeed, AV filter short-data-record estimators have been shown to exhibit superior bit-error-rate performance in comparison with LMS, RLS, SMI, or 'multistage nested Wiener' adaptive filter implementations. Our experimental results demonstrate the effectiveness of multirate DS-CDMA systems for wireless video transmission.

  8. Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-03-01

    This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.

  9. Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.

    PubMed

    de Cheveigné, Alain; Arzounian, Dorothée

    2018-05-15

    Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact. This paper offers a set of useful techniques for this purpose: robust detrending, robust rereferencing, outlier detection, data interpolation (inpainting), step removal, and filter ringing artifact removal. These techniques provide a less wasteful alternative to discarding corrupted trials or channels, and they are relatively immune to artifacts that disrupt alternative approaches such as filtering. Robust detrending allows slow drifts and common mode signals to be factored out while avoiding the deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts on the reference. Inpainting allows corrupt data to be interpolated from intact parts based on the correlation structure estimated over the intact parts. Outlier detection allows the corrupt parts to be identified. Step removal fixes the high-amplitude flux jump artifacts that are common with some MEG systems. Ringing removal allows the ringing response of the antialiasing filter to glitches (steps, pulses) to be suppressed. The performance of the methods is illustrated and evaluated using synthetic data and data from real EEG and MEG systems. These methods, which are mainly automatic and require little tuning, can greatly improve the quality of the data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  11. Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex

    NASA Astrophysics Data System (ADS)

    Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.

    2018-03-01

    We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.

  12. Multi-band filter design with less total film thickness for short-wave infrared

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang

    2017-08-01

    A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition process and black matrix coating, the optical device processes were completed.

  13. Compact tunable and reconfigurable microwave photonic filter for satellite payloads

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Yoosefi, O.

    2017-11-01

    The trend towards the photonic processing of electrical signals at microwave frequencies for satellite payloads is increasing at a breathtaking pace, mainly spurred by prospects of wide electrical bandwidth operation, low mass and volume, reduced electrical noise levels, immunity to electromagnetic interferences and resistance to both temperature and radiation.

  14. What Does Distractibility in ADHD Reveal about Mechanisms for Top-Down Attentional Control?

    ERIC Educational Resources Information Center

    Friedman-Hill, Stacia R.; Wagman, Meryl R.; Gex, Saskia E.; Pine, Daniel S.; Leibenluft, Ellen; Ungerleider, Leslie G.

    2010-01-01

    In this study, we attempted to clarify whether distractibility in ADHD might arise from increased sensory-driven interference or from inefficient top-down control. We employed an attentional filtering paradigm in which discrimination difficulty and distractor salience (amount of image "graying") were parametrically manipulated. Increased…

  15. Modeling of a field-widened Michelson interferometric filter for application in a high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Hostetler, Chris; Cook, Anthony; Miller, Ian; Hair, Johnathan

    2011-11-01

    High spectral resolution lidars (HSRLs) are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. A compact, monolithic field-widened Michelson interferometer is being developed as the spectral discrimination filter for an HSRL system at NASA Langley Research Center. The interferometer consists of a cubic beam splitter, a solid glass arm, and an air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to optimize thermal compensation such that the maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, a comprehensive radiometric model for the field-widened Michelson interferometeric spectral filter is presented. The model incorporates the angular distribution and finite cross sectional area of the light source, reflectance of all surfaces, loss of absorption, and lack of parallelism between the air-arm and solid arm, etc. The model can be used to assess the performance of the interferometer and thus it is a useful tool to evaluate performance budgets and to set optical specifications for new designs of the same basic interferometer type.

  16. Atmospheric transformation of plant volatiles disrupts host plant finding

    NASA Astrophysics Data System (ADS)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  17. Atmospheric transformation of plant volatiles disrupts host plant finding

    PubMed Central

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-01-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions. PMID:27651113

  18. Multilayer MgB{sub 2} superconducting quantum interference filter magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.

    2016-04-25

    We report two types of all-MgB{sub 2} superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB{sub 2} superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm{sup 2}. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ∼16 V/T at 3 K and a field noise of ∼110 pT/Hz{sup 1/2} above 100 Hz at 10 K. In a second configuration, themore » SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm{sup 2} to 25 μm{sup 2} and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ∼70 pT/Hz{sup 1/2} above 100 Hz at 20 K.« less

  19. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  20. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.

    2016-12-01

    In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As the demand for spectrum for mobile applications increases, operators of hazard networks may need to consider the impact of RF interference on data quality and continuity. UNAVCO's participation ensures that our high precision GNSS community interests are represented in the future spectrum allocation decisions.

  1. Interferometers adaptations to lidars

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    To perform daytime measurements of the density and temperature by Rayleigh lidar, it is necessary to select the wavelength with a very narrow spectral system. This filter is composed by an interference filter and a Fabry Perot etalon. The Fabry Perot etalon is the more performent compound, and it is necessary to build a specific optic around it. The image of the entrance pupil or the field diaphragm is at the infinite and the other diaphragm is on the etalon. The optical quality of the optical system is linked to the spectral resolution of the system to optimize the reduction of the field of view. The resolution is given by the formula: R = 8(xD/Fd)exp 2 where R = lambda/delta(lambda), x = diameter of the field diaphragm, D = diameter of the reception mirror, F = focal length of the telescope, and d = useful diameter of the etalon. In the Doppler Rayleigh lidars, the PF interferometer is the main part of the experiment and the exact spectral adaptation is the most critical problem. In the spectral adaptation of interferometers, the transmittance of the system will be acceptable if the etalon is exactly adjusted to the wavelength of the laser. It is necessary to work with a monomode laser, and adjust the shift to the bandpass of the interferometer. We are working with an interferometer built with molecular optical contact. This interferometer is put in a special pressure closed chamber.

  2. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  3. Ultrasonic control of terahertz radiation via lattice anharmonicity in LiNbO3

    NASA Astrophysics Data System (ADS)

    Poolman, R. H.; Ivanov, A. L.; Muljarov, E. A.

    2011-06-01

    We propose a tunable terahertz (THz) filter using the resonant acousto-optic (RAO) effect. We present a design based on a transverse optical (TO) phonon mediated interaction between a coherent acoustic wave and the THz field in LiNbO3. We predict a tunable range for the filter of up to 4 THz via the variation of the acoustic frequency between 0.1 and 1 GHz. The RAO effect in this case is due to cubic and quartic anharmonicities between TO phonons and the acoustic field. The effect of the interference between the anharmonicities is also discussed.

  4. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    NASA Astrophysics Data System (ADS)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  5. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    PubMed

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  6. Performance Evaluation of MIMO-UWB Systems Using Measured Propagation Data and Proposal of Timing Control Scheme in LOS Environments

    NASA Astrophysics Data System (ADS)

    Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo

    Ultrawide-band impulse radio (UWB-IR) technology and multiple-input multiple-output (MIMO) systems have attracted interest regarding their use in next-generation high-speed radio communication. We have studied the use of MIMO ultrawide-band (MIMO-UWB) systems to enable higher-speed radio communication. We used frequency-domain equalization based on the minimum mean square error criterion (MMSE-FDE) to reduce intersymbol interference (ISI) and co-channel interference (CCI) in MIMO-UWB systems. Because UWB systems are expected to be used for short-range wireless communication, MIMO-UWB systems will usually operate in line-of-sight (LOS) environments and direct waves will be received at the receiver side. Direct waves have high power and cause high correlations between antennas in such environments. Thus, it is thought that direct waves will adversely affect the performance of spatial filtering and equalization techniques used to enhance signal detection. To examine the feasibility of MIMO-UWB systems, we conducted MIMO-UWB system propagation measurements in LOS environments. From the measurements, we found that the arrival time of direct waves from different transmitting antennas depends on the MIMO configuration. Because we can obtain high power from the direct waves, direct wave reception is critical for maximizing transmission performance. In this paper, we present our measurement results, and propose a way to improve performance using a method of transmit (Tx) and receive (Rx) timing control. We evaluate the bit error rate (BER) performance for this form of timing control using measured channel data.

  7. Iterative deblending of simultaneous-source data using a coherency-pass shaping operator

    NASA Astrophysics Data System (ADS)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Zhang, Dong; Li, Chao; Pan, Xiao; Chen, Yangkang

    2017-10-01

    Simultaneous-source acquisition helps greatly boost an economic saving, while it brings an unprecedented challenge of removing the crosstalk interference in the recorded seismic data. In this paper, we propose a novel iterative method to separate the simultaneous source data based on a coherency-pass shaping operator. The coherency-pass filter is used to constrain the model, that is, the unblended data to be estimated, in the shaping regularization framework. In the simultaneous source survey, the incoherent interference from adjacent shots greatly increases the rank of the frequency domain Hankel matrix that is formed from the blended record. Thus, the method based on rank reduction is capable of separating the blended record to some extent. However, the shortcoming is that it may cause residual noise when there is strong blending interference. We propose to cascade the rank reduction and thresholding operators to deal with this issue. In the initial iterations, we adopt a small rank to severely separate the blended interference and a large thresholding value as strong constraints to remove the residual noise in the time domain. In the later iterations, since more and more events have been recovered, we weaken the constraint by increasing the rank and shrinking the threshold to recover weak events and to guarantee the convergence. In this way, the combined rank reduction and thresholding strategy acts as a coherency-pass filter, which only passes the coherent high-amplitude component after rank reduction instead of passing both signal and noise in traditional rank reduction based approaches. Two synthetic examples are tested to demonstrate the performance of the proposed method. In addition, the application on two field data sets (common receiver gathers and stacked profiles) further validate the effectiveness of the proposed method.

  8. Signal conditioning units for vibration measurement in HUMS

    NASA Astrophysics Data System (ADS)

    Wu, Kaizhi; Liu, Tingting; Yu, Zirong; Chen, Lijuan; Huang, Xinjie

    2018-03-01

    A signal conditioning units for vibration measurement in HUMS is proposed in the paper. Due to the frequency of vibrations caused by components in helicopter are different, two steps amplifier and programmable anti-aliasing filter are designed to meet the measurement of different types of helicopter. Vibration signals are converted into measurable electrical signals combing with ICP driver firstly. Then pre-amplifier and programmable gain amplifier is applied to magnify the weak electrical signals. In addition, programmable anti-aliasing filter is utilized to filter the interference of noise. The units were tested using function signal generator and oscilloscope. The experimental results have demonstrated the effectiveness of our proposed method in quantitatively and qualitatively. The method presented in this paper can meet the measurement requirement for different types of helicopter.

  9. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.

    PubMed

    Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli

    2016-03-15

    A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.

  10. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  11. Power connect safety and connection interlock

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1992-01-01

    A power connect safety and connection interlock system is shown for use with inverters and other DC loads (16) which include capacitor filter banks (14) at their DC inputs. A safety circuit (20) operates a spring (26) biased, solenoid (22) driven mechanical connection interference (24) which prevents mating and therefore electrical connection between the power contactor halves (11, 13) of the main power contacts (12) until the capacitor bank is safely precharged through auxiliary contacts (18). When the DC load (16) is shut down, the capacitor bank (14) is automatically discharged through a discharging power resistor (66) by a MOSFET transistor (60) through a discharging power resistor (66) only when both the main power contacts and auxiliary contacts are disconnected.

  12. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  13. Interference-induced angle-independent acoustical transparency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less

  14. Method and apparatus for instantaneous band ratioing in a reflectance radiometer

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H. (Inventor); Machida, Richard A. (Inventor)

    1982-01-01

    A hand-held instrument is provided to compare information from selected infrared and visible bands in the 0.4 to 2.5 micrometer range, to perform ratioing via a dividing circuit (17) and to directly read out, via a display system (18), ratio values in a continuous digital display. The dual-beam, ratioing radiometer contains two optical trains (10, 12), each having two repeater lenses (L1a, L1b and L2a, L2b) and a cooled lead sulfide detector (D1, D2). One of the trains (10) is pivotal to facilitate measurements at distances ranging from about 1 meter to infinity. The optical trains are intersected by a set of two coaxially-mounted filter wheels (F1, F2), each containing up to five interference filters and slits to pass radiation filtered by the other. Filters with band passes as narrow as 0.01 micrometer are used in the region 0.4 to 2.5 micrometers. The total time for a calibration and measurement is only a few seconds. It is known from previous field studies using prior art devices, that materials, e.g., clay minerals, and carbonate minerals such as limestone, have unique spectral properties in the 2.0 to 2.5 micrometer region. Using properly chosen spectral filters, and ratioing the signals to remove the effect of topography on the brightness measured, the instrument can be used for real-time analysis of reflecting materials in the field. Other materials in the broader range of 0.4 to 2.5 micrometers (and even beyond) could be similarly identified once the reflectance spectrum of the material is established by any means.

  15. a Study of the Interferences with the On-Line Radioiodine Measurement Under Nuclear Accident Conditions

    NASA Astrophysics Data System (ADS)

    Tseng, Tung-Tse

    In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.

  16. High speed infrared radiation thermometer, system, and method

    DOEpatents

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  17. Phase Sensitive Demodulation in Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Fisher, Walt G.; Piston, David W.; Wachter, Eric A.

    2002-06-01

    Multiphoton laser scanning microscopy offers advantages in depth of penetration into intact samples over other optical sectioning techniques. To achieve these advantages it is necessary to detect the emitted light without spatial filtering. In this nondescanned (nonconfocal) approach, ambient room light can easily contaminate the signal, forcing experiments to be performed in absolute darkness. For multiphoton microscope systems employing mode-locked lasers, signal processing can be used to reduce such problems by taking advantage of the pulsed characteristics of such lasers. Specifically, by recovering fluorescence generated at the mode-locked frequency, interference from stray light and other ambient noise sources can be significantly reduced. This technology can be adapted to existing microscopes by inserting demodulation circuitry between the detector and data collection system. The improvement in signal-to-noise ratio afforded by this approach yields a more robust microscope system and opens the possibility of moving multiphoton microscopy from the research lab to more demanding settings, such as the clinic.

  18. Research on fully distributed optical fiber sensing security system localization algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen

    2013-12-01

    A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.

  19. Signal extraction and wave field separation in tunnel seismic prediction by independent component analysis

    NASA Astrophysics Data System (ADS)

    Yue, Y.; Jiang, T.; Zhou, Q.

    2017-12-01

    In order to ensure the rationality and the safety of tunnel excavation, the advanced geological prediction has been become an indispensable step in tunneling. However, the extraction of signal and the separation of P and S waves directly influence the accuracy of geological prediction. Generally, the raw data collected in TSP system is low quality because of the numerous disturb factors in tunnel projects, such as the power interference and machine vibration interference. It's difficult for traditional method (band-pass filtering) to remove interference effectively as well as bring little loss to signal. The power interference, machine vibration interference and the signal are original variables and x, y, z component as observation signals, each component of the representation is a linear combination of the original variables, which satisfy applicable conditions of independent component analysis (ICA). We perform finite-difference simulations of elastic wave propagation to synthetic a tunnel seismic reflection record. The method of ICA was adopted to process the three-component data, and the results show that extract the estimates of signal and the signals are highly correlated (the coefficient correlation is up to more than 0.93). In addition, the estimates of interference that separated from ICA and the interference signals are also highly correlated, and the coefficient correlation is up to more than 0.99. Thus, simulation results showed that the ICA is an ideal method for extracting high quality data from mixed signals. For the separation of P and S waves, the conventional separation techniques are based on physical characteristics of wave propagation, which require knowledge of the near-surface P and S waves velocities and density. Whereas the ICA approach is entirely based on statistical differences between P and S waves, and the statistical technique does not require a priori information. The concrete results of the wave field separation will be presented in the meeting. In summary, we can safely draw the conclusion that ICA can not only extract high quality data from the mixed signals, but also can separate P and S waves effectively.

  20. Measurement of the Mutual Interference Between Independent Bluetooth Devices

    NASA Astrophysics Data System (ADS)

    Schoof, Adrien; Ter Haseborg, Jan Luiken

    In this paper the field superposition of commercial Bluetooth transmitters is examined. The superposition is measured for miscellaneous analyzer filter bandwidths, transmitter combinations and numbers. Also the commonness of the collisions is measured. Finally the spatial field distributions of standalone and Bluetooth equipped devices are measured and will be presented and discussed.

Top