Sample records for interference fringe visibility

  1. Optical Layout Analysis of Polarization Interference Imaging Spectrometer by Jones Calculus in View of both Optical Throughput and Interference Fringe Visibility

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Chunmin

    2013-01-01

    A polarization interference imaging spectrometer based on Savart polariscope was presented. Its optical throughput was analyzed by Jones calculus. The throughput expression was given, and clearly showed that the optical throughput mainly depended on the intensity of incident light, transmissivity, refractive index and the layout of optical system. The simulation and analysis gave the optimum layout in view of both optical throughput and interference fringe visibility, and verified that the layout of our former design was optimum. The simulation showed that a small deviation from the optimum layout influenced interference fringe visibility little for the optimum one, but influenced severely for others, so a small deviation is admissible in the optimum, and this can mitigate the manufacture difficulty. These results pave the way for further research and engineering design.

  2. Complementarity and Young's interference fringes from two atoms

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Bollinger, J. J.; Wineland, D. J.; Eichmann, U.; Raizen, M. G.

    1998-06-01

    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. The thermal motion of the atoms is included. Agreement is obtained with experiments [U. Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.

  3. Interference Fringes of Solar Acoustic Waves around Sunspots

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-01

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  4. Temperature dependence of the coherence in polariton condensates

    NASA Astrophysics Data System (ADS)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  5. Spying on photons with photons: quantum interference and information

    NASA Astrophysics Data System (ADS)

    Ataman, Stefan

    2016-07-01

    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.

  6. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  7. Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajda, Mariusz

    2006-02-15

    Using a model many-body wave function I analyze the standard criterion for Bose-Einstein condensation and its relation to coherence properties of the system. I pay special attention to an attractive condensate under such a condition that a characteristic length scale of the spatial extension of its center of mass differs significantly from length scales of relative coordinates. I show that although no interference fringes are produced in the two-slit Young interference experiment performed on this system, fringes of a high visibility can be observed in a conditional simultaneous detection of two particles.

  8. Spatial two-photon interference in a Hong-Ou-Mandel interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Heonoh; Kwon, Osung; Kim, Wonsik

    2006-02-15

    We report the observation of the cosine modulation in the coincidence rates from a Hong-Ou-Mandel (HOM) interferometer. Spatial interference fringes are seen by minute rotations of one mirror about the vertical axis, while the beam splitter is fixed in the center position. The results show that the maximum visibility of the fringe is 0.81, and the photon pairs separated by less than 1.52 mm in the source plane are measured to be indistinguishable. It turns out that it is possible to invert the HOM dips to peaks by the rotation of the mirror.

  9. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager.

    PubMed

    Su, Tiehui; Liu, Guangyao; Badham, Katherine E; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Wuchenich, Danielle; Ogden, Chad; Chriqui, Guy; Feng, Shaoqi; Chun, Jaeyi; Lai, Weicheng; Yoo, S J B

    2018-05-14

    This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.

  10. Axial resonance of periodic patterns by using a Fresnel biprism.

    PubMed

    Doblas, Ana; Saavedra, Genaro; Martinez-Corral, Manuel; Barreiro, Juan C; Sanchez-Ortiga, Emilio; Llavador, Anabel

    2013-01-01

    This paper proposes a method for the generation of high-contrast localized sinusoidal fringes with spatially noncoherent illumination and relatively high light throughput. The method, somehow similar to the classical Lau effect, is based on the use of a Fresnel biprism. It has some advantages over previous methods for the noncoherent production of interference fringes. One is the flexibility of the method, which allows the control of the fringe period by means of a simple axial shift of the biprism. Second is the rapid axial fall-off in visibility around the high-contrast fringe planes. And third is the possibility of creating fringes with increasing or with constant period as the light beam propagates. Experimental verifications of the theoretical statements are also provided.

  11. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  12. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  13. A general theory of interference fringes in x-ray phase grating imaging.

    PubMed

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  14. A bi-prism interferometer for hard x-ray photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isakovic, A.F.; Siddons, D.; Stein, A.

    2010-04-06

    Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material.

  15. Colloidal crystal growth monitored by Bragg diffraction interference fringes.

    PubMed

    Bohn, Justin J; Tikhonov, Alexander; Asher, Sanford A

    2010-10-15

    We monitored the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (1 1 1) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion-driven linear growth is followed by ripening-driven growth. Between 80 and 90 microM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 microm/s until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 microM NaCl concentrations. Increasing NaCl concentrations slow the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall-nucleated CCA, that is determined by the competition between growth of heterogeneously and homogenously nucleated CCA, increases with higher NaCl concentrations. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Fourier optics analysis of grating sensors with tilt errors.

    PubMed

    Ferhanoglu, Onur; Toy, M Fatih; Urey, Hakan

    2011-06-15

    Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0.3 when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility can be compensated by monitoring the interfering portion of the diffracted order light only through detector size reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors with tilt or other deflection modes.

  17. Space beam combiner for long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.

    1999-04-01

    An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.

  18. Parameter estimation by decoherence in the double-slit experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo

    2018-06-01

    We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.

  19. Dual-optical-response photonic crystal fibre interferometer for multi-parameter sensing

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Minkovich, Vladimir P.; Zubia, Joseba

    2014-05-01

    An all-fiber mode interferometer consisting of a short segment of photonic crystal fiber (PCF) fusion spliced to standard single mode optical fiber and pressed on localized regions is proposed for multi-parameter sensing. In our configuration, the physical parameter being sensed changes the fringe contrast (or visibility) of the interference pattern and also causes a shift to the same. To achieve this dual effect the device is pressed on localized regions over a few millimeters. In this manner we introduce losses and effective refractive index changes to the interference modes, hence visibility and shift to the interference pattern. Our interferometer is suitable for monitoring diverse physical parameters such as weight, force, pressure, load, etc. The advantage is that no temperature or power fluctuations compensation is required.

  20. Ronchi test for characterization of X-ray nanofocusing optics and beamlines.

    PubMed

    Uhlén, Fredrik; Rahomäki, Jussi; Nilsson, Daniel; Seiboth, Frank; Sanz, Claude; Wagner, Ulrich; Rau, Christoph; Schroer, Christian G; Vogt, Ulrich

    2014-09-01

    A Ronchi interferometer for hard X-rays is reported in order to characterize the performance of the nanofocusing optics as well as the beamline stability. Characteristic interference fringes yield qualitative data on present aberrations in the optics. Moreover, the visibility of the fringes on the detector gives information on the degree of spatial coherence in the beamline. This enables the possibility to detect sources of instabilities in the beamline like vibrations of components or temperature drift. Examples are shown for two different nanofocusing hard X-ray optics: a compound refractive lens and a zone plate.

  1. Numerical simulation and experimental verification of extended source interferometer

    NASA Astrophysics Data System (ADS)

    Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong

    2013-12-01

    Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.

  2. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  3. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  4. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  5. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  6. Lithography system using quantum entangled photons

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  7. Laser interferometry for the determination of thickness distributions of low absorbing films and their spatial and thickness resolutions.

    PubMed

    Mishima, T; Kao, K C

    1982-03-15

    New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.

  8. Localization of Interference Fringes.

    ERIC Educational Resources Information Center

    Simon, J. M.; Comastri, Silvia A.

    1980-01-01

    Discusses a proof for determining the localized fringes position arrived at when one considers the interference of two extended sources when one is able to observe fringes only at certain points in space. Shows how the localized fringes may be found in a device used to observe Newton's rings. (Author/CS)

  9. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    PubMed Central

    Cárdenas-Sevilla, G.A.; Fávero, Fernando C.; Villatoro, Joel

    2013-01-01

    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (∼40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ∼1.6 × 10−5. PMID:23396192

  10. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  11. PARASITIC INTERFERENCE IN LONG BASELINE OPTICAL INTERFEROMETRY: REQUIREMENTS FOR HOT JUPITER-LIKE PLANET DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matter, A.; Lopez, B.; Lagarde, S.

    2009-12-01

    The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appearsmore » to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from lambda/500 to lambda/5 in the L band (lambda = 3.5 mum), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively lambda/500 approx 2 nm and lambda/30 approx 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to lambda/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appear to be crucial and are presented in this paper.« less

  12. Image Reconstruction from Data Collected with an Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.

    The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.

  13. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  14. Flexible Two-Photon Interference Fringes with Thermal Light.

    PubMed

    Cao, De-Zhong; Ren, Cheng; Ni, Jin-Yang; Zhang, Yan; Zhang, Su-Heng; Wang, Kaige

    2017-05-16

    Flexible interference patterning is an important tool for adaptable measurement precisions. We report on experimental results of controllable two-photon interference fringes with thermal light in an incoherent rotational shearing interferometer. The two incoherent beams in the interferometer are orthogonally polarized, and their wavefront distributions differ only in an angle of rotation. The spacings and directions of the two-photon interference fringes vary with the rotation angle, as illustrated in three cases of two-photon correlation measurements in experiment.

  15. NEW APPROACHES: Demonstration of a dancing interference fringe

    NASA Astrophysics Data System (ADS)

    Kagawa, K.; Yamanaka, H.; Yokoi, S.; Hattori, H.

    1997-11-01

    A unique and amusing piece of laser art is proposed for use in physics education. It is shown that a dynamic and beautiful interference fringe can be produced when a He - Ne laser beam illuminates a droplet, which is called Brandy's tear, on a glass surface. This interference fringe can be explained in terms of the interference of multiple spherical waves scattered by the droplet. This kind of demonstration experiment is very helpful for exciting students' curiosity.

  16. Optical interference fringe reduction in frequency-modulation spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Hjelme, Dag Roar; Neegard, Steinar; Vartdal, Erling

    1995-08-01

    We show both theoretically and experimentally that interference fringe signals can always be suppressed to improve the signal-to-noise ratio, provided that the modulation frequency is of the order of the absorption linewidth or higher. Suppression of optical interference fringes by more than 1 order of magnitude and signal-to-noise ratio enhancement of more than 13 dB is demonstrated by use of a proper choice of laser modulation frequency. A further fringe reduction of 10 dB is possible by adjustment of the local oscillator phase.

  17. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  18. Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber

    PubMed Central

    Statkiewicz-Barabach, Gabriela; Olszewski, Jacek; Mergo, Pawel; Urbanczyk, Waclaw.

    2017-01-01

    We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and −0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure. PMID:28718796

  19. Combined dispersive/interference spectroscopy for producing a vector spectrum

    DOEpatents

    Erskine, David J.

    2002-01-01

    A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.

  20. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation.

    PubMed

    Pang, Zhaoguang; Zhang, Xinping

    2011-04-08

    We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.

  1. Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation

    NASA Astrophysics Data System (ADS)

    Pang, Zhaoguang; Zhang, Xinping

    2011-04-01

    We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.

  2. Three-photon N00N states generated by photon subtraction from double photon pairs.

    PubMed

    Kim, Heonoh; Park, Hee Su; Choi, Sang-Kyung

    2009-10-26

    We describe an experimental demonstration of a novel three-photon N00N state generation scheme using a single source of photons based on spontaneous parametric down-conversion (SPDC). The three-photon entangled state is generated when a photon is subtracted from a double pair of photons and detected by a heralding counter. Interference fringes measured with an emulated three-photon detector reveal the three-photon de Broglie wavelength and exhibit visibility > 70% without background subtraction.

  3. Measurement of the configuration of a concave surface by the interference of reflected light

    NASA Technical Reports Server (NTRS)

    Kumazawa, T.; Sakamoto, T.; Shida, S.

    1985-01-01

    A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.

  4. An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2014-04-01

    We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the framework of our two-dimensional model, the two types of oscillations that have been observationally identified, flare-induced waves and 'decayless' oscillations, can both be attributed to MHD fast waves. The two components of the signal differ only because of the duration and spatial extent of the source that createsmore » them. The flare-induced waves are generated by strong localized sources of short duration, while the decayless background can be excited by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of the interference process without the need for local dissipation.« less

  5. Entangled-Pair Transmission Improvement Using Distributed Phase-Sensitive Amplification

    NASA Astrophysics Data System (ADS)

    Agarwal, Anjali; Dailey, James M.; Toliver, Paul; Peters, Nicholas A.

    2014-10-01

    We demonstrate the transmission of time-bin entangled photon pairs through a distributed optical phase-sensitive amplifier (OPSA). We utilize four-wave mixing at telecom wavelengths in a 5-km dispersion-shifted fiber OPSA operating in the low-gain limit. Measurements of two-photon interference curves show no statistically significant degradation in the fringe visibility at the output of the OPSA. In addition, coincidence counting rates are higher than direct passive transmission because of constructive interference between amplitudes of input photon pairs and those generated in the OPSA. Our results suggest that application of distributed phase-sensitive amplification to transmission of entangled photon pairs could be highly beneficial towards advancing the rate and scalability of future quantum communications systems.

  6. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  7. Interference and partial which-way information: A quantitative test of duality in two-atom resonance

    NASA Astrophysics Data System (ADS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    2000-01-01

    We propose for the experimental verification of an inequality concerning wave-particle duality by Englert [Phys. Rev. Lett. 77, 2154 (1996)] relating (or setting) an upper limit on distinguishability and visibility in a two-way interferometer. The inequality, quantifies the concept of wave-particle duality. The considered two-way interferometer is a Young's double-slit experiment involving two four-level atoms and is a slightly modified version of that of the recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)]. The fringe visibility depends on the detected polarization direction of the scattered light and a read out of the internal state of one of the two atoms provides a partial which-way information.

  8. Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.

    PubMed

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-09-15

    We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

  9. High-visibility photonic crystal fiber interferometer for ultrasensitive refractometric sensing

    NASA Astrophysics Data System (ADS)

    Cárdenas-Sevilla, Guillermo A.; Fávero, Fernando C.; Finazzi, Vittoria; Villatoro, Joel; Pruneri, Valerio

    2011-09-01

    A simple and compact photonic crystal fiber (PCF) interferometer that operates in reflection mode is proposed for refractive index (RI) sensing. The device consists of a ~12mm-long stub of commercially available PCF (LMA-10) fusion spliced to standard optical fiber (SMF-28). The device reflection spectrum exhibits interference patterns with fringe contrast up to 40 dB. One of the excited modes in the PCF is sensitive to external RI therefore the device can be useful for refractrometry. The shift of the interference pattern can be monitored as a function of the external index. In the operating range, from 1.33 to 1.43, the maximum shift is less than the interferometer period, so there is no-ambiguity in the measurements. The maximum sensitivity and resolution achieved were 735 nm per RI units and 7×10-5, respectively. Another approach to measure the external RI consists of monitoring the reflection power located at the quadrature point of the inference pattern in a properly selected wavelength. Consequently the measuring range is narrower but the resolution is higher, up ~7×10-6, thanks to the high fringe contrast.

  10. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  11. Complementarity and path distinguishability: Some recent results concerning photon pairs

    NASA Technical Reports Server (NTRS)

    Shimony, Abner; Jaeger, Gregg

    1994-01-01

    Two results concerning photon pairs, one previously reported and one new, are summarized. It was previously shown that if the two photons are prepared in a quantum state formed from bar-A and bar-A' for photon 1 and bar-B and bar-B' for photon 2, then both one- and two-particle interferometry can be studied. If upsilon(sub i) is the visibility of one-photon interference fringes (i = 1,2) and upsilon(sub 12) is the visibility of two-photon fringes (a concept which we explicitly define), then upsilon(sub i) squared + upsilon(sub 12) squared is less than or equal to 1. The second result concerns the distinguishability of the paths of photon 2, using the known 2-photon state. A proposed measure E for path distinguishability is based upon finding an optimum strategy for betting on the outcome of a path measurement. Mandel has also proposed a measure of distinguishability P(sub D), defined in terms of the density operator rho of photon 2. We show that E is greater than or equal to P(sub D) and that upsilon(sub 2) = (1 - E(exp 2))exp 1/2.

  12. Fringe Formation in Dual-Hologram Interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1989-01-01

    A first order geometrical optics treatment of holograms combined with the generation of interference fringes by two point sources is used to describe reference fringe formation in non-diffuse dual-hologram interferometry.

  13. Optical mapping of surface roughness by implementation of a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Aulbach, Laura; Pöller, Franziska; Lu, Min; Wang, Shengjia; Koch, Alexander W.

    2017-08-01

    It is well-known that the surface roughness of materials plays an important role in the operation and performance of technological systems. The roughness influences key parameters, such as friction and wear, and is directly connected to the functionality and durability of the respective system. Tactile methods are widely used for the measurement of surface roughness, but a destructive measurement procedure and the lack of feasibility of online monitoring are crucial drawbacks. In the last decades, several non-contact, usually optical systems for surface roughness measurements have been developed, e.g., white light interferometry, light scatter analysis, or speckle correlation. These techniques are in turn often unable to assign the roughness to a certain surface area or involve inappropriate adjustment procedures. One promising and straightforward optical measurement method is the surface roughness measurement by analyzing the fringe visibility of an interferometric fringe pattern. In our work, we employed a spatial light modulator in the interferometric setup to vary the fringe visibility and provide a stable and reliable measurement system. In previous research, either the averaged fringe visibility or the fringe visibility along a defined observation profile were analyzed. In this article, the analysis of the fringe visibility is extended to generate a complete roughness map of the measurement target. Thus, surface defects or areas of different roughness can be easily located.

  14. Phase compensation with fiber optic surface profile acquisition and reconstruction system

    NASA Astrophysics Data System (ADS)

    Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting

    2015-02-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.

  15. Interference fringes on GLORIA side-scan sonar images from the Bering Sea and their implications

    USGS Publications Warehouse

    Huggett, Q.J.; Cooper, A. K.; Somers, M.L.; Stubbs, A.R.

    1992-01-01

    GLORIA side-scan sonographs from the Bering Sea Basin show a complex pattern of interference fringes sub-parallel to the ship's track. Surveys along the same trackline made in 1986 and 1987 show nearly identical patterns. It is concluded from this that the interference patterns are caused by features in the shallow subsurface rather than in the water column. The fringes are interpreted as a thin-layer interference effect that occurs when some of the sound reaching the seafloor passes through it and is reflected off a subsurface layer. The backscattered sound interferes (constructively or desctructively) with the reflected sound. Constructive/destructive interference occurs when the difference in the length of the two soundpaths is a whole/half multiple of GLORIA's 25 cm wavelength. Thus as range from the ship increases, sound moves in and out of phase causing bands of greater and lesser intensity on the GLORIA sonograph. Fluctuations (or 'wiggles') of the fringes on the GLORIA sonographs relate to changes in layer thickness. In principle, a simple three dimensional image of the subsurface layer may be obtained using GLORIA and bathymetric data from adjacent (parallel) ship's tracks. These patterns have also been identified in images from two other systems; SeaMARC II (12 kHz) long-range sonar, and TOBI (30 kHz) deep-towed sonar. In these, and other cases world-wide, the fringes do not appear with the same persistence as those seen in the Bering Sea. ?? 1992 Kluwer Academic Publishers.

  16. Wavefront division digital holography

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  17. Evaporative Cooling in a Holographic Atom Trap

    NASA Technical Reports Server (NTRS)

    Newell, Raymond

    2003-01-01

    We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.

  18. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  19. Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Hou, Yuanbin; Sun, Wei

    2015-06-01

    We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.

  20. Ramsey Interference in One-Dimensional Systems: The Full Distribution Function of Fringe Contrast as a Probe of Many-Body Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Takuya; Pielawa, Susanne; Demler, Eugene

    2010-06-25

    We theoretically analyze Ramsey interference experiments in one-dimensional quasicondensates and obtain explicit expressions for the time evolution of full distribution functions of fringe contrast. We show that distribution functions contain unique signatures of the many-body mechanism of decoherence. We argue that Ramsey interference experiments provide a powerful tool for analyzing strongly correlated nature of 1D interacting systems.

  1. Edge Triggered Apparatus and Method for Measuring Strain in Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor)

    2003-01-01

    An apparatus and method for measuring strain of gratings written into an optical fiber. Optical radiation is transmitted over one or more contiguous predetermined wavelength ranges into a reference optical fiber network and an optical fiber network under test to produce a plurality of reference interference fringes and measurement interference fringes, respectively. The reference and measurement fringes are detected, and the reference fringes trigger the sampling of the measurement fringes. This results in the measurement fringes being sampled at 2(pi) increments of the reference fringes. Each sampled measurement fringe of each wavelength sweep is transformed into a spatial domain waveform. The spatial domain waveforms are summed to form a summation spatial domain waveform that is used to determine location of each grating with respect to a reference reflector. A portion of each spatial domain waveform that corresponds to a particular grating is determined and transformed into a corresponding frequency spectrum representation. The strain on the grating at each wavelength of optical radiation is determined by determining the difference between the current wavelength and an earlier, zero-strain wavelength measurement.

  2. Optical fibres in pre-detector signal processing

    NASA Astrophysics Data System (ADS)

    Flinn, A. R.

    The basic form of conventional electro-optic sensors is described. The main drawback of these sensors is their inability to deal with the background radiation which usually accompanies the signal. This 'clutter' limits the sensors performance long before other noise such as 'shot' noise. Pre-detector signal processing using the complex amplitude of the light is introduced as a means to discriminate between the signal and 'clutter'. Further improvements to predetector signal processors can be made by the inclusion of optical fibres allowing radiation to be used with greater efficiency and enabling certain signal processing tasks to be carried out with an ease unequalled by any other method. The theory of optical waveguides and their application in sensors, interferometers, and signal processors is reviewed. Geometrical aspects of the formation of linear and circular interference fringes are described along with temporal and spatial coherence theory and their relationship to Michelson's visibility function. The requirements for efficient coupling of a source into singlemode and multimode fibres are given. We describe interference experiments between beams of light emitted from a few metres of two or more, singlemode or multimode, optical fibres. Fresnel's equation is used to obtain expressions for Fresnel and Fraunhofer diffraction patterns which enable electro-optic (E-0) sensors to be analysed by Fourier optics. Image formation is considered when the aperture plane of an E-0 sensor is illuminated with partially coherent light. This allows sensors to be designed using optical transfer functions which are sensitive to the spatial coherence of the illuminating light. Spatial coherence sensors which use gratings as aperture plane reticles are discussed. By using fibre arrays, spatial coherence processing enables E-0 sensors to discriminate between a spatially coherent source and an incoherent background. The sensors enable the position and wavelength of the source to be determined. Experiments are described which use optical fibre arrays as masks for correlation with spatial distributions of light in image planes of E-0 sensors. Correlations between laser light from different points in a scene is investigated by interfering the light emitted from an array of fibres, placed in the image plane of a sensor, with each other. Temporal signal processing experiments show that the visibility of interference fringes gives information about path differences in a scene or through an optical system. Most E-0 sensors employ wavelength filtering of the detected radiation to improve their discrimination and this is shown to be less selective than temporal coherence filtering which is sensitive to spectral bandwidth. Experiments using fibre interferometers to discriminate between red and blue laser light by their bandwidths are described. In most cases the path difference need only be a few tens of centimetres. We consider spatial and temporal coherence in fibres. We show that high visibility interference fringes can be produced by red and blue laser light transmitted through over 100 metres of singlemode or multimode fibre. The effect of detector size, relative to speckle size, is considered for fringes produced by multimode fibres. The effect of dispersion on the coherence of the light emitted from fibres is considered in terms of correlation and interference between modes. We describe experiments using a spatial light modulator called SIGHT-MOD. The device is used in various systems as a fibre optic switch and as a programmable aperture plane reticle. The contrast of the device is measured using red and green, HeNe, sources. Fourier transform images of patterns on the SIGHT-MOD are obtained and used to demonstrate the geometrical manipulation of images using 2D fibre arrays. Correlation of Fourier transform images of the SIGHT-MOD with 2D fibre arrays is demonstrated.

  3. Novel method of detecting movement of the interference fringes using one-dimensional PSD.

    PubMed

    Wang, Qi; Xia, Ji; Liu, Xu; Zhao, Yong

    2015-06-02

    In this paper, a method of using a one-dimensional position-sensitive detector (PSD) by replacing charge-coupled device (CCD) to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z) interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe's phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  4. Solid Freeform Fabrication Proceedings (9th) Held in Austin, Texas on August 10-12 1998

    DTIC Science & Technology

    1998-08-01

    both in-plane and out-of-plane, alter the path length of the light reflected from the region, immediately creating a pattern of optical interference ...fringes on the hologram. The interference fringe pattern can then be analyzed to determine the residual stresses that existed prior to the...of the final shape for each surface. In additive/subtractive SFF, geometry simplification due to decomposition avoids most of the tool interference

  5. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  6. Experimental implementation of a nonlinear beamsplitter based on a phase-sensitive parametric amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yami; Feng, Jingliang; Cao, Leiming

    2016-03-28

    Beamsplitters have played an important role in quantum optics experiments. They are often used to split and combine two beams, especially in the construct of an interferometer. In this letter, we experimentally implement a nonlinear beamsplitter using a phase-sensitive parametric amplifier, which is based on four-wave mixing in hot rubidium vapor. Here we show that, despite the different frequencies of the two input beams, the output ports of the nonlinear beamsplitter exhibit interference phenomena. We make measurements of the interference fringe visibility and study how various parameters, such as the intensity gain of the amplifier, the intensity ratio of themore » two input beams, and the one and two photon detunings, affect the behavior of the nonlinear beamsplitter. It may find potential applications in quantum metrology and quantum information processing.« less

  7. Finite fringe hologram

    NASA Technical Reports Server (NTRS)

    Heflinger, L. O.

    1970-01-01

    In holographic interferometry a small movement of apparatus between exposures causes the background of the reconstructed scene to be covered with interference fringes approximately parallel to each other. The three-dimensional quality of the holographic image is allowable since a mathematical model will give the location of the fringes.

  8. Isotope-selective high-order interferometry with large organic molecules in free fall

    NASA Astrophysics Data System (ADS)

    Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus

    2018-03-01

    Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.

  9. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  10. Examination of tear film smoothness on corneae after refractive surgeries using a noninvasive interferometric method

    NASA Astrophysics Data System (ADS)

    Szczesna, Dorota H.; Kulas, Zbigniew; Kasprzak, Henryk T.; Stenevi, Ulf

    2009-11-01

    A lateral shearing interferometer was used to examine the smoothness of the tear film. The information about the distribution and stability of the precorneal tear film is carried out by the wavefront reflected from the surface of tears and coded in interference fringes. Smooth and regular fringes indicate a smooth tear film surface. On corneae after laser in situ keratomileusis (LASIK) or radial keratotomy (RK) surgery, the interference fringes are seldom regular. The fringes are bent on bright lines, which are interpreted as tear film breakups. The high-intensity pattern seems to appear in similar location on the corneal surface after refractive surgery. Our purpose was to extract information about the pattern existing under the interference fringes and calculate its shape reproducibility over time and following eye blinks. A low-pass filter was applied and correlation coefficient was calculated to compare a selected fragment of the template image to each of the following frames in the recorded sequence. High values of the correlation coefficient suggest that irregularities of the corneal epithelium might influence tear film instability and that tear film breakup may be associated with local irregularities of the corneal topography created after the LASIK and RK surgeries.

  11. Determining thin film properties by fitting optical transmittance

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.; Cogan, S. F.

    1990-08-01

    The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements.

  12. Review and New Results of Local Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2011-10-01

    We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by sunspots. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the sunspot. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the sunspot.

  13. Brewster-plate spoiler - A novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities

    NASA Technical Reports Server (NTRS)

    Webster, C. R.

    1985-01-01

    A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.

  14. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    PubMed

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  15. Investigation on the impact of irregular fringe patterns of a single-fiber Mach-Zehnder interferometer on its sensing capabilities

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Kumar, Ashish

    2018-07-01

    A novel single-mode single-fiber (SMSF) MZI formed by cascading of two non-adiabatic fiber tapers, with stable and repeatable spectrum, has been found to be useful in sensing applications in recent times. A multimode interference based novel simulation approach is proposed to predict the sensing characteristics of SMSF-MZI and is validated with experimental observation. The proposed method includes solving of simultaneous non-homogenous equations for determining the amplitudes of the interfering modes excited in the tapered section of the interferometer. The simulated fringe pattern and the experimental spectral response converge to some important comprehension reported for the first time. A linear shift in output spectral response, of SMSF-MZI, due to change in optical path length induced by temperature/strain etc., is likely to be characterized by three modes interference occurring in the interference region of the interferometer. Whereas if the spectral shift starts saturating at moderately higher temperature/strain, then the formation of interference fringes are possibly governed by two modes interference. Further, it was also explained that a SMSF-MZI with variable fringe widths in its spectral pattern exhibits higher sensitivity than that of the SMSF-MZI having wavelength spectrum with uniform free spectral range. These findings are useful in selecting and predicting the sensitivity of a given SMSF-MZI, based on its spectrum, for sensing applications.

  16. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure

    PubMed Central

    Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.

    2017-01-01

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527

  17. All-Fiber Laser Curvature Sensor Using an In-Fiber Modal Interferometer Based on a Double Clad Fiber and a Multimode Fiber Structure.

    PubMed

    Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A

    2017-11-28

    An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.

  18. Gyroscopic effects in interference of matter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2005-11-15

    A new gyroscopic interference effect stemming from the Galilean translational factor in the matter wave function is pointed out. In contrast to the well-known Sagnac effect that stems from the geometric phase and leads to a shift of interference fringes, this effect causes slanting of the fringes. We illustrate it by calculations for two split cigar-shaped Bose-Einstein condensates under the conditions of a recent experiment, see Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004). Importantly, the measurement of slanting obviates the need of a third reference cloud.

  19. Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses.

    PubMed

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-07-04

    Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.

  20. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    PubMed

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  1. A novel plasmonic interferometry and the potential applications

    NASA Astrophysics Data System (ADS)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.

    2018-03-01

    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  2. Optimized Beam Sculpting with Generalized Fringe-rate Filters

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Cheng, Carina

    2016-03-01

    We generalize the technique of fringe-rate filtering, whereby visibilities measured by a radio interferometer are re-weighted according to their temporal variation. As the Earth rotates, radio sources traverse through an interferometer’s fringe pattern at rates that depend on their position on the sky. Capitalizing on this geometric interpretation of fringe rates, we employ time-domain convolution kernels to enact fringe-rate filters that sculpt the effective primary beam of antennas in an interferometer. As we show, beam sculpting through fringe-rate filtering can be used to optimize measurements for a variety of applications, including mapmaking, minimizing polarization leakage, suppressing instrumental systematics, and enhancing the sensitivity of power-spectrum measurements. We show that fringe-rate filtering arises naturally in minimum variance treatments of many of these problems, enabling optimal visibility-based approaches to analyses of interferometric data that avoid systematics potentially introduced by traditional approaches such as imaging. Our techniques have recently been demonstrated in Ali et al., where new upper limits were placed on the 21 {cm} power spectrum from reionization, showcasing the ability of fringe-rate filtering to successfully boost sensitivity and reduce the impact of systematics in deep observations.

  3. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Divya; P, Vibin Antony; Sajith, V.

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  4. Examination of in vivo tear film stability after eye blink and eye drying

    NASA Astrophysics Data System (ADS)

    Szczesna, Dorota H.; Kulas, Zbigniew; Kasprzak, Henryk T.; Stenevi, Ulf

    2007-07-01

    The purpose of this study is to investigate the kinetics of precorneal tear film stabilization process after eye blink and the process of creating the break-up of the tear film layer. The tear film of patients were examined in vivo by used the lateral shearing interferometer. The information about the distribution and stability of the tear film over the cornea is carried by the wave front reflected from the surface of tears and coded in interference fringes. Smooth and regular fringes indicate the smooth surface of tears over the cornea. Immediately after eye blink the interference fringes are observed on background of bright and dark areas. The contrast of this structure fades with time slowly and after 1-3 sec the background of interference fringes becomes uniform. The vertical orientation and instability of this structure suggests connection with eyelid movement and the spread of tears. If the eye is kept open for a long time, bright lines appear in the background of fringes after a dozen seconds. The slowly appearing structure might signify the tear film break-up. In case of eyes after a LASIK surgery the shape of the background structure has different nature and might be stable in time suggesting the stability of the corneal surface irregularities.

  5. Fringe formation in dual-hologram interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1990-01-01

    Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.

  6. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  7. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  8. Interference Fringes Used to Determine Retinal Ganglion Cell Receptive Field Sizes.

    DTIC Science & Technology

    1982-07-01

    National Technical Informtion -Tvc, b ~ ti I to the general public, including foreign n"atfonals.... This tecinical report has been reviewed and Is...adjusted to satisfy the follow- ing criteria: (a) tachycardia and transient hypertension in response to strong noxious stimuli, and ( b ) stage I or...tube voltage output for drifting interference fringes with a spatial frequency of 11.6 cycles/degree; B shows the histogram of the pulse-height

  9. Bi-dimensional empirical mode decomposition based fringe-like pattern suppression in polarization interference imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Ren, Wenyi; Cao, Qizhi; Wu, Dan; Jiang, Jiangang; Yang, Guoan; Xie, Yingge; Wang, Guodong; Zhang, Sheqi

    2018-01-01

    Many observers using interference imaging spectrometer were plagued by the fringe-like pattern(FP) that occurs for optical wavelengths in red and near-infrared region. It brings us more difficulties in the data processing such as the spectrum calibration, information retrieval, and so on. An adaptive method based on the bi-dimensional empirical mode decomposition was developed to suppress the nonlinear FP in polarization interference imaging spectrometer. The FP and corrected interferogram were separated effectively. Meanwhile, the stripes introduced by CCD mosaic was suppressed. The nonlinear interferogram background removal and the spectrum distortion correction were implemented as well. It provides us an alternative method to adaptively suppress the nonlinear FP without prior experimental data and knowledge. This approach potentially is a powerful tool in the fields of Fourier transform spectroscopy, holographic imaging, optical measurement based on moire fringe, etc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yubo; School of Physics and Electronic Information Science, Gannan Normal University, Ganzhou 341000; Lei, Yunfei

    An image converter tube with a magnetic lens was used to obtain static images of moiré fringes formed by electron beam. These moiré fringes are formed due to the interference between the anode mesh and the photocathode containing slits of various spatial frequencies. Moiré fringes are observed at an accelerating voltage of 3.5 kV requiring the magnetic excitation condition of ∼550 ampere-turns. Not only the features of the fringes are analyzed but also the change of fringe spacing as a function of the rotation angle is investigated. The experimental results are found well in agreement with the theoretical analysis. By changingmore » the rotation angle or adjusting the excitation condition of the magnetic lens, we were able to record parallel moiré and secondary moiré fringes too. The secondary moiré fringes can be observed in the rotation angle range of −39.5° to −50.6°. The theoretical analysis indicates that the secondary moiré is formed by the interference between the photocathode slits and the 2-D periodic structure of the anode mesh. Combining our proposed moiré method with the pulse-dilation technique may potentially open the door for future applications, in various fields including, but not limited to, ultrafast electrical pulse diagnostics.« less

  11. Practical gigahertz quantum key distribution robust against channel disturbance.

    PubMed

    Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; He, De-Yong; Hui, Cong; Hao, Peng-Lei; Fan-Yuan, Guan-Jie; Wang, Chao; Zhang, Li-Jun; Kuang, Jie; Liu, Shu-Feng; Zhou, Zheng; Wang, Yong-Gang; Guo, Guang-Can; Han, Zheng-Fu

    2018-05-01

    Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50 km fiber channel with 30 Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99.35% over 24 h and a stable secure key rate of 306 k bits/s over seven days without active polarization alignment.

  12. Mirror-assisted coherent backscattering from the Mollow sidebands

    NASA Astrophysics Data System (ADS)

    Piovella, N.; Teixeira, R. Celistrino; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.

    2017-11-01

    In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we show here that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers.

  13. Imaging height fluctuations in free-standing graphene membranes

    NASA Astrophysics Data System (ADS)

    Dorsey, Kyle; Miskin, Marc; Barnard, Arthur; Rose, Peter; Cohen, Itai; McEuen, Paul

    We present a technique based on multi-wavelength interference microscopy to measure the heights of observed ripples in free-standing graphene membranes. Graphene membranes released from a transparent substrate produce interference fringes when viewed in the reflection mode of an inverted microscope(Blees et. al. Nature 524 (7564): 204-207 (2015)). The fringes correspond to corrugation of the membrane as it floats near an interface. A single set of fringes is insufficient to uniquely determine the height profile, as a given fringe spacing can correspond to an increase or decrease in height by λ / 2 . Imaging at multiple wavelengths resolves the ambiguities in phase, and enables unique determination of the height profile of the membrane (Schilling et. al.Phys. Rev. E, 69:021901, 2004). We utilize this technique to map out the height fluctuations in free-standing graphene membranes to answer questions about fundamental mechanical properties of two-dimensional materials.

  14. Méthode de traitement des intérferogrammes à deux ondes pour accroître leur sensibilité.

    PubMed

    Roblin, G; Prévost, M

    1980-08-01

    Two-beam interference fringes are not always able to give sufficient information to determine the topography of very weakly deformed wave surfaces. The process described allows us to intercalate several intermediate levels, which vary linearly in terms of the phase, between the brightness extrema of a fringe. The interference pattern is submitted to an optoelectronics treatment where the photoelectric signal is compared with an adjustable electric reference signal.

  15. Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992

    DTIC Science & Technology

    1993-10-01

    constructive and destructive wave interaction that produces interference fringes on the holographic plate. If the object moves more than a fraction of a...wavelength during the duration of the laser exposure these interference fringes are lost and with it the holographic image of the object. However there...interest, it is possible to use magnification optics such as microscope objectives or lithography lenses between the holographic plate and the impact

  16. Coherence and frequency spectrum of a Nd:YAG laser: generation and observation devices

    NASA Astrophysics Data System (ADS)

    Fernández-Guasti, M.; Palafox, H.; Roychoudhuri, C.

    2011-09-01

    The coherence of a Nd:YAG CW laser is analyzed using a Michelson interferometer. Fringe contrast is measured as the path difference is varied by changing the length of one arm. The fringe contrast, as expected, is maximum when there is no path difference between arms. However, the fringe contrast does not decrease monotonically. It decreases and then increases several times before fading away. This behaviour is reminiscent of the fringe contrast depending on aperture and the uncovering of the Fresnel zones. In order to evaluate the mode structure it is necessary to consider the geometric parameters and Q factor of the cavity, the medium gain curve and the type of broadening. The non interference of waves principle requires that two (or more) modes competition or their interference can only take place though matter non linear interaction. Therefore, and in addition, it is important to consider the setup and type of detectors employed to monitor the frequency and/or time dependence. In as much as speckle is recognized as an interference phenomenon taking place at the detector plane, say the retina, the role of the sensing element in the detection of mode beats should also be decisive.

  17. Pulsed coherent population trapping with repeated queries for producing single-peaked high contrast Ramsey interference

    NASA Astrophysics Data System (ADS)

    Warren, Z.; Shahriar, M. S.; Tripathi, R.; Pati, G. S.

    2018-02-01

    A repeated query technique has been demonstrated as a new interrogation method in pulsed coherent population trapping for producing single-peaked Ramsey interference with high contrast. This technique enhances the contrast of the central Ramsey fringe by nearly 1.5 times and significantly suppresses the side fringes by using more query pulses ( >10) in the pulse cycle. Theoretical models have been developed to simulate Ramsey interference and analyze the characteristics of the Ramsey spectrum produced by the repeated query technique. Experiments have also been carried out employing a repeated query technique in a prototype rubidium clock to study its frequency stability performance.

  18. Surface-Finish Measurement with Interference Microscopes,

    DTIC Science & Technology

    1977-02-01

    Microscope 17 Multiple-Beam Interference Microscope .. 25 Fringes of Equal Chromatic Order 27 Nomarski Polarization-Contrast Technique 33...characteristics of each instrument: the double and multiple-beam interferometer, the FECO fringe interferometer, and the Nomarski polarization contrast...328X Beam Reichert 8X 0.15 2.22 87 33X Nomarski 16X 0.25 1.33 52 55X 203X Technique 32X 0.40 0.83 33 87X 395X 45 X 0.65 0.51 20 142X 567 X 80X

  19. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  20. [Research on improving spectrum resolution of optimized Wollaston prism array].

    PubMed

    Zhang, Peng; Wang, Jian-Rong; Zhang, Guo-Chen; Hou, Wen

    2011-11-01

    In order to not affect the image quality of interference fringes on the basis of the structure by increasing the structure angle of Wollaston prism to improve spectrum resolution, the authors optimized the structure of Wollaston prism. Calculating the function of the splitting angle and the structure angle, analysis indicated that taking the isosceles triangle prism with the same nature of the second wedge-shaped prism after the Wollaston prism, which makes the o and e light parallel to the optical axis, and alpha=0 degrees, the imaging interference fringes are no longer affected by changes in the splitting angle. Several optimized Wollaston prisms were made as an array to improve the spectral resolution. Experiments used traditional and optimized Wollaston prism array to detect the spectrum of the 980 nm laser. Experimental data showed that using optimized Wollaston prism array gets a clearer contrast of interference fringes, and the spectral data with Fourier transform are more accurate with DSP.

  1. Phase shifting interferometry based on a vibration sensor - feasibility study on elimination of the depth degeneracy

    NASA Astrophysics Data System (ADS)

    Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo

    2017-04-01

    We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.

  2. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-11-02

    Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.

  3. New approach for identifying the zero-order fringe in variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Litwin, Dariusz; Daszkiewicz, Marek

    2016-12-01

    The family of VAWI techniques (for transmitted and reflected light) is especially efficient for characterizing objects, when in the interference system the optical path difference exceeds a few wavelengths. The classical approach that consists in measuring the deflection of interference fringes fails because of strong edge effects. Broken continuity of interference fringes prevents from correct identification of the zero order fringe, which leads to significant errors. The family of these methods has been proposed originally by Professor Pluta in the 1980s but that time image processing facilities and computers were hardly available. Automated devices unfold a completely new approach to the classical measurement procedures. The Institute team has taken that new opportunity and transformed the technique into fully automated measurement devices offering commercial readiness of industry-grade quality. The method itself has been modified and new solutions and algorithms simultaneously have extended the field of application. This has concerned both construction aspects of the systems and software development in context of creating computerized instruments. The VAWI collection of instruments constitutes now the core of the Institute commercial offer. It is now practically applicable in industrial environment for measuring textile and optical fibers, strips of thin films, testing of wave plates and nonlinear affects in different materials. This paper describes new algorithms for identifying the zero order fringe, which increases the performance of the system as a whole and presents some examples of measurements of optical elements.

  4. Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.

    PubMed

    López, David; Ríos, Susana

    2010-04-20

    A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.

  5. Faraday-Michelson system for quantum cryptography.

    PubMed

    Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can

    2005-10-01

    Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

  6. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  7. Structural, morphological and optical studies of F doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla

    2018-05-01

    Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.

  8. Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation.

    PubMed

    Goto, Kazufumi; Hayasaki, Yoshio

    2015-07-15

    In the twilight-field method for obtaining interference fringes with high contrast in in-line digital holography, only the intensity of the reference light is regulated to be close to the intensity of the object light, which is the ultra-weak scattered light from a nanoparticle, by using a low-frequency attenuation filter. Coherence of the light also strongly affects the contrast of the interference fringes. High coherence causes a lot of undesired coherent noise, which masks the fringes derived from the nanoparticles. Too-low coherence results in fringes with low contrast and a correspondingly low signal-to-noise ratio. Consequently, proper regulation of the coherence of the light source, in this study the spectral width, improves the minimum detectable size in holographic three-dimensional position measurement of nanoparticles. By using these methods, we were able to measure the position of a gold nanoparticle with a minimum diameter of 20 nm.

  9. Optical interference probe of biofilm hydrology: label-free characterization of the dynamic hydration behavior of native biofilms

    NASA Astrophysics Data System (ADS)

    McDonough, Richard T.; Zheng, Hewen; Alila, Mercy A.; Goodisman, Jerry; Chaiken, Joseph

    2017-03-01

    Biofilm produced by Escherichia coli (E. coli) or Pseudomonas aeruginosa (P. aeruginosa) on quartz or polystyrene is removed from the culture medium and drained. Observed optical interference fringes indicate the presence of a layer of uniform thickness with refractive index different from air-dried biofilm. Fringe wavelengths indicate that layer optical thickness is <20 μm or 1 to 2 orders of magnitude thinner than the biofilm as measured by confocal Raman microscopy or fluorescence imaging of the bacteria. Raman shows that films have an alginate-like carbohydrate composition. Fringe amplitudes indicate that the refractive index of the interfering layer is higher than dry alginate. Drying and rehydration nondestructively thins and restores the interfering layer. The strength of the 1451-nm near infrared water absorption varies in unison with thickness. Absorption and layer thickness are proportional for films with different bacteria, substrates, and growth conditions. Formation of the interfering layer is general, possibly depending more on the chemical nature of alginate-like materials than bacterial processes. Films grown during the exponential growth phase produce no observable interference fringes, indicating requirements for layer formation are not met, possibly reflecting bacterial activities at that stage. The interfering layer might provide a protective environment for bacteria when water is scarce.

  10. A quantum radar detection protocol for fringe visibility enhancement

    NASA Astrophysics Data System (ADS)

    Koltenbah, Benjamin; Parazzoli, Claudio; Capron, Barbara

    2016-05-01

    We present analysis of a radar detection technique using a Photon Addition Homodyne Receiver (PAHR) that improves SNR of the interferometer fringes and reduces uncertainty of the phase measurement. This system uses the concept of Photon Addition (PA) in which the coherent photon distribution is altered. We discuss this process first as a purely mathematical concept to introduce PA and illustrate its effect on coherent photon distribution. We then present a notional proof-of-concept experiment involving a parametric down converter (PDC) and probabilistic post-selection of the results. We end with presentation of a more deterministic PAHR concept that is more suitable for development into a working system. Coherent light illuminates a target and the return signal interferes with the local oscillator reference photons to create the desired fringes. The PAHR alters the photon probability distribution of the returned light via interaction between the return photons and atoms. We refer to this technique as "Atom Interaction" or AI. The returning photons are focused at the properly prepared atomic system. The injected atoms into this region are prepared in the desired quantum state. During the interaction time, the initial quantum state evolves in such a way that the photon distribution function changes resulting in higher photon count, lower phase noise and an increase in fringe SNR. The result is a 3-5X increase of fringe SNR. This method is best suited for low light intensity (low photon count, 0.1-5) applications. The detection protocol could extend the range of existing systems without loss of accuracy, or conversely enhance a system's accuracy for given range. We present quantum mathematical analysis of the method to illustrate how both range and angular resolution improve in comparison with standard measurement techniques. We also suggest an experimental path to validate the method which also will lead toward deployment in the field.

  11. Double-Glazing Interferometry

    ERIC Educational Resources Information Center

    Toal, Vincent; Mihaylova, Emilia M.

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…

  12. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  13. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.

    1983-08-31

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  14. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  15. The use of fractional orders in the determination of birefringence of highly dispersive materials by the channelled spectrum method

    NASA Astrophysics Data System (ADS)

    Nagarajan, K.; Shashidharan Nair, C. K.

    2007-07-01

    The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefringence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily. Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders. The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implementing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator (SBC).

  16. The self-calibration method for multiple systems at the CHARA Array

    NASA Astrophysics Data System (ADS)

    O'Brien, David

    The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry

  17. A study of X-ray multiple diffraction by means of section topography.

    PubMed

    Kohn, V G; Smirnova, I A

    2015-09-01

    The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.

  18. X-ray phase contrast imaging at MAMI

    NASA Astrophysics Data System (ADS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical magnification of up to 7.4 high-quality holograms of tiny transparent strings were taken in which the holographic information is contained in up to 18 interference fringes.

  19. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    ERIC Educational Resources Information Center

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  20. Characterization of a fully depleted CCD on high-resistivity silicon

    NASA Astrophysics Data System (ADS)

    Stover, Richard J.; Wei, Mingzhi; Lee, Y.; Gilmore, David K.; Holland, S. E.; Groom, D. E.; Moses, William W.; Perlmutter, Saul; Goldhaber, G.; Pennypacker, C.; Wang, N. W.; Palaio, N.

    1997-04-01

    Most scientific CCD imagers are fabricated on 30-50 (Omega) - cm epitaxial silicon. When illuminated form the front side of the device they generally have low quantum efficiency in the blue region of the visible spectrum because of strong absorption in the polycrystalline silicon gates as well as poor quantum efficiency in the far red and near infrared region of the spectrum because of the shallow depletion depth of the low-resistivity silicon. To enhance the blue response of scientific CCDs they are often thinned and illuminated from the back side. While blue response is greatly enhanced by this process, it is expensive and it introduces additional problems for the red end of the spectrum. A typical thinned CCD is 15 to 25 micrometers thick, and at wavelengths beyond about 800 nm the absorption depth becomes comparable to the thickness of the device, leading to interference fringes from reflected light. Because these interference fringes are of high order, the spatial pattern of the fringes is extremely sensitive to small changes in the optical illumination of the detector. Calibration and removal of the effects of the fringes is one of the primary limitations on the performance of astronomical images taken at wavelengths of 800 nm or more. In this paper we present results from the characterization of a CCD which promises to address many of the problems of typical thinned CCDs. The CCD reported on here was fabricated at Lawrence Berkeley National Laboratory (LBNL) on a 10-12 K$OMega-cm n-type silicon substrate.THe CCD is a 200 by 200 15-micrometers square pixel array, and due to the very high resistivity of the starting material, the entire 300 micrometers substrate is depleted. Full depletion works because of the gettering technology developed at LBNL which keeps leakage current down. Both front-side illuminated and backside illuminated devices have been tested. We have measured quantum efficiency, read-noise, full-well, charge-transfer efficiency, and leakage current. We have also observed the effects of clocking waveform shapes on spurious charge generation. While these new CCDs promise to be a major advance in CD technology, they too have limitations such as charge spreading and cosmic-ray effects. These limitations have been characterized and are presented. Examples of astronomical observations obtained with the backside CCD on the 1-meter reflector at Lick Observatory are presented.

  1. Digital holographic microscope with low-frequency attenuation filter for position measurement of a nanoparticle.

    PubMed

    Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio

    2012-10-01

    We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.

  2. Fringing in MonoCam Y4 filter images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.; Fisher-Levine, M.; Nomerotski, A.

    Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less

  3. Fringing in MonoCam Y4 filter images

    DOE PAGES

    Brooks, J.; Fisher-Levine, M.; Nomerotski, A.

    2017-05-05

    Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less

  4. Simulating interfering fringe displacements by lateral shifts of a camera for educational purposes

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel

    2018-07-01

    In this manuscript we propose a simple method to emulate fringe displacements in a fringe pattern, due to the interference of two plane waves, by using lateral shifts of a CMOS detector under the scheme of a Twyman–Green interferometric setup, avoiding unwanted vibrations and the need for specific and expensive devices in order to accomplish the task. The simplicity of the proposed experimental setup allows it to be easily replicated and used for teaching or demonstrative purposes, essentially for undergraduate students.

  5. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  6. Analysis of localized fringes in the holographic optical Schlieren system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1980-01-01

    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  7. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  8. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  9. An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement

    NASA Astrophysics Data System (ADS)

    Pullteap, S.; Seat, H. C.

    2015-03-01

    A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.

  10. A novel design measuring method based on linearly polarized laser interference

    NASA Astrophysics Data System (ADS)

    Cao, Yanbo; Ai, Hua; Zhao, Nan

    2013-09-01

    The interferometric method is widely used in the precision measurement, including the surface quality of the large-aperture mirror. The laser interference technology has been developing rapidly as the laser sources become more and more mature and reliable. We adopted the laser diode as the source for the sake of the short coherent wavelength of it for the optical path difference of the system is quite shorter as several wavelengths, and the power of laser diode is sufficient for measurement and safe to human eye. The 673nm linearly laser was selected and we construct a novel form of interferometric system as we called `Closed Loop', comprised of polarizing optical components, such as polarizing prism and quartz wave plate, the light from the source split by which into measuring beam and referencing beam, they've both reflected by the measuring mirror, after the two beams transforming into circular polarization and spinning in the opposite directions we induced the polarized light synchronous phase shift interference technology to get the detecting fringes, which transfers the phase shifting in time domain to space, so that we did not need to consider the precise-controlled shift of optical path difference, which will introduce the disturbance of the air current and vibration. We got the interference fringes from four different CCD cameras well-alignment, and the fringes are shifted into four different phases of 0, π/2, π, and 3π/2 in time. After obtaining the images from the CCD cameras, we need to align the interference fringes pixel to pixel from different CCD cameras, and synthesis the rough morphology, after getting rid of systematic error, we could calculate the surface accuracy of the measuring mirror. This novel design detecting method could be applied into measuring the optical system aberration, and it would develop into the setup of the portable structural interferometer and widely used in different measuring circumstances.

  11. An accurate surface topography restoration algorithm for white light interferometry

    NASA Astrophysics Data System (ADS)

    Yuan, He; Zhang, Xiangchao; Xu, Min

    2017-10-01

    As an important measuring technique, white light interferometry can realize fast and non-contact measurement, thus it is now widely used in the field of ultra-precision engineering. However, the traditional recovery algorithms of surface topographies have flaws and limits. In this paper, we propose a new algorithm to solve these problems. It is a combination of Fourier transform and improved polynomial fitting method. Because the white light interference signal is usually expressed as a cosine signal whose amplitude is modulated by a Gaussian function, its fringe visibility is not constant and varies with different scanning positions. The interference signal is processed first by Fourier transform, then the positive frequency part is selected and moved back to the center of the amplitude-frequency curve. In order to restore the surface morphology, a polynomial fitting method is used to fit the amplitude curve after inverse Fourier transform and obtain the corresponding topography information. The new method is then compared to the traditional algorithms. It is proved that the aforementioned drawbacks can be effectively overcome. The relative error is less than 0.8%.

  12. Metrology of semiconductor structures using novel Fabry Perot fringe stretching system

    NASA Astrophysics Data System (ADS)

    Walecki, Wojtek J.; Pravdivtsev, Alexander

    2017-08-01

    We describe patent pending fiber optic apparatus for measurements of thicknesses and distance employing low resolution spectrometer and etalon. The application of an additional known reference etalon "stretches fringes" and allows us to use Fabry Perot interference to investigate thick samples and large distances which would not be possible when using the low resolution spectrometer alone.

  13. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  14. Theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Han, Ming

    In this dissertation, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either have less resolution, or are not capable of absolute measurement. Previous mathematical models for MMF-EFPI sensors are all based on geometric optics; therefore their applications have many limitations. In this dissertation, a modal theory is developed that can be used in any situations and is more accurate. The mathematical description of the spectral fringes of MMF-EFPI sensors is obtained by the modal theory. Effect on the fringe visibility of system parameters, including the sensor head structure, the fiber parameters, and the mode power distribution in the MMF of the MMF-EFPI sensors, is analyzed. Experiments were carried out to validate the theory. Fundamental mechanism that causes the degradation of the fringe visibility in MMF-EFPI sensors are revealed. It is shown that, in some situations at which the fringe visibility is important and difficult to achieve, a simple method of launching the light into the MMF-EFPI sensor system from the output of a SMF could be used to improve the fringe visibility and to ease the fabrication difficulties of MMF-EFPI sensors. Signal processing methods that are well-understood in white-light SMF-EFPI sensor systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor systems. This dissertation reveals that the variations of mode power distribution (MPD) in the MMF could cause phase variations of the spectral fringes from a MMF-EFPI sensor and introduce measurement errors for a signal processing method in which the phase information is used. This MPD effect on the wavelength-tracking method in white-light MMF-EFPI sensors is theoretically analyzed. The fringe phases changes caused by MPD variations were experimentally observed and thus the MFD effect is validated.

  15. Modeling and Observations of Phase-Mask Trapezoidal Profiles with Grating-Fiber Image Reproduction

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Lindesay, James V.; Lee, Hyung R.; Ndlela, Zolili U.; Thompso, Erica J.

    2000-01-01

    We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 microns are modeled and investigated.

  16. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  17. Directly Measuring the Degree of Quantum Coherence using Interference Fringes.

    PubMed

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-13

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  18. Novel Semi-Parametric Algorithm for Interference-Immune Tunable Absorption Spectroscopy Gas Sensing

    PubMed Central

    Michelucci, Umberto; Venturini, Francesca

    2017-01-01

    One of the most common limits to gas sensor performance is the presence of unwanted interference fringes arising, for example, from multiple reflections between surfaces in the optical path. Additionally, since the amplitude and the frequency of these interferences depend on the distance and alignment of the optical elements, they are affected by temperature changes and mechanical disturbances, giving rise to a drift of the signal. In this work, we present a novel semi-parametric algorithm that allows the extraction of a signal, like the spectroscopic absorption line of a gas molecule, from a background containing arbitrary disturbances, without having to make any assumption on the functional form of these disturbances. The algorithm is applied first to simulated data and then to oxygen absorption measurements in the presence of strong fringes.To the best of the authors’ knowledge, the algorithm enables an unprecedented accuracy particularly if the fringes have a free spectral range and amplitude comparable to those of the signal to be detected. The described method presents the advantage of being based purely on post processing, and to be of extremely straightforward implementation if the functional form of the Fourier transform of the signal is known. Therefore, it has the potential to enable interference-immune absorption spectroscopy. Finally, its relevance goes beyond absorption spectroscopy for gas sensing, since it can be applied to any kind of spectroscopic data. PMID:28991161

  19. Multifunction interferometry using the electron mobility visibility and mean free path relationship.

    PubMed

    Pornsuwancharoen, N; Youplao, P; Amiri, I S; Aziz, M S; Tran, Q L; Ali, J; Yupapin, P; Grattan, K T V

    2018-05-08

    A conventional Michelson interferometer is modified and used to form the various types of interferometers. The basic system consists of a conventional Michelson interferometer with silicon-graphene-gold embedded between layers on the ports. When light from the monochromatic source is input into the system via the input port (silicon waveguide), the change in optical path difference (OPD) of light traveling in the stacked layers introduces the change in the optical phase, which affects to the electron mean free path within the gold layer, induces the change in the overall electron mobility can be seen by the interferometer output visibility. Further plasmonic waves are introduced on the graphene thin film and the electron mobility occurred within the gold layer, in which the light-electron energy conversion in terms of the electron mobility can be observed, the gold layer length is 100 nm. The measurement resolution in terms of the OPD of ∼50 nm is achieved. In applications, the outputs of the drop port device of the modified Michelson interferometer can be arranged by the different detectors, where the polarized light outputs, the photon outputs, the electron spin outputs can be obtained by the interference fringe visibility, mobility visibility and the spin up-down splitting output energies. The modified Michelson interferometer theory and the detection schemes are given in details. © 2018 Wiley Periodicals, Inc.

  20. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  1. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo; Noriega, Sergio; Vallo, Claudia; Duchowicz, Ricardo

    2007-03-01

    A fiber optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring linear polymerization shrinkage in dental restoratives. This technique offers several advantages over the conventional methods of measuring polymerization contraction. This simple, compact, non-invasive and self-calibrating system competes with both conventional and other high-resolution bulk interferometric techniques. In this work, an analysis of the quality of interference signal and fringes visibility was performed in order to characterize their resolution and application range. The measurements of percent linear contraction as a function of the sample thickness were carried out in this study on two dental composites: Filtek P60 (3M ESPE) Posterior Restorer and Filtek Z250 (3M ESPE) Universal Restorer. The results were discussed with respect to others obtained employing alternative techniques.

  2. On-Line Fringe Tracking and Prediction at IOTA

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)

    1999-01-01

    The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.

  3. Ground-based hyperspectral imaging and analysis of Jupiter’s atmosphere during the Juno era

    NASA Astrophysics Data System (ADS)

    Dahl, Emma; Chanover, Nancy J.; Voelz, David; Kuehn, David M.; Wijerathna, Erandi; Hull, Robert; Strycker, Paul D.; Baines, Kevin H.

    2017-10-01

    The Juno mission to Jupiter has presented ground-based observers with a unique opportunity to collect data while the spacecraft is simultaneously measuring the planet and its atmosphere. Data collected in conjunction with Juno measurements have the capability to complement and enhance wavelength regimes already covered by Juno instruments.In order to enrich Juno’s scientific returns in the visible regime, we use the New Mexico State University Acousto-optic Imaging Camera (NAIC) to obtain hyperspectral image cubes of Jupiter from 470-950 nm with an average spectral resolution (λ/dλ) of 242. We use NAIC with the Apache Point Observatory 3.5-m telescope to image Jupiter’s atmosphere during Juno’s perijove flybys. With these timely, high spectral resolution measurements, we can derive the properties of cloud and haze particulates and estimate cloud heights. We present geometrically and photometrically calibrated spectra of representative regions of Jupiter’s atmosphere to be compared with previous work and laboratory measurements of candidate chromophore materials. The data we present are from the night of March 26th, 2017, captured during Juno’s 5th perijove flyby. We discuss preliminary analyses of these spectra, including implications for future work regarding atmospheric modeling.For the aforementioned observations, NAIC was equipped with a thinned, back-illuminated CCD. Because of the narrow bandwidths NAIC’s spectral tuning element produces, this chip design resulted in etaloning, or “fringing,” in images at wavelengths longer than ~720 nm. We discuss our methodology for correcting the fringing and the progress of a general-use model for correcting fringing in CCDs. Such a model requires the extraction of chip characteristics from monochromatic flats, which can be then be used to model exactly how the interference of light inside the chip results in the fringing pattern. This artificial fringing image can then be removed from images, thereby correcting the effect.This work is supported by Research Support Agreement 1569980 from the Jet Propulsion Laboratory, as a subaward of a NASA/Solar System Observations grant.

  4. Low-coherence interferometric sensor system utilizing an integrated optics configuration

    NASA Astrophysics Data System (ADS)

    Plissi, M. V.; Rogers, A. J.; Brassington, D. J.; Wilson, M. G. F.

    1995-08-01

    The implementation of a twin Mach-Zehnder reference interferometer in an integrated optics substrate is described. From measurements of the fringe visibilities, an identification of the fringe order is attempted as a way to provide an absolute sensor for any parameter capable of modifying the difference in path length between two interfering optical paths.

  5. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  6. White-Light, Dispersed-Fringe Interferometric Keratometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B.; Baroth, Edmund C.

    1992-01-01

    Proposed keratometer based on scheme involving spectral dispersal of white-light interference fringes. Instrument operates in "snapshot" mode: no scanning necessary, not necessary to immobilize patient's eye. Insensitive to vibration, involves no phase shifting, and has variable sensitivity. Intended primarily for use in medical assessments of human corneas, also used to measure shapes of animal corneas, lenses, and other aspherical or spherical reflective or partly reflective surfaces.

  7. Adaptive correction to the speckle correlation fringes by using a twisted-nematic liquid-crystal display.

    PubMed

    Hack, Erwin; Gundu, Phanindra Narayan; Rastogi, Pramod

    2005-05-10

    An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.

  8. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system

    NASA Astrophysics Data System (ADS)

    Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.

    2018-05-01

    The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.

  9. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  10. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  11. Engineering optical properties of gold-coated nanoporous anodic alumina for biosensing

    NASA Astrophysics Data System (ADS)

    Hernández-Eguía, Laura P.; Ferré-Borrull, Josep; Macias, Gerard; Pallarès, Josep; Marsal, Lluís F.

    2014-08-01

    The effect in the Fabry-Pérot optical interferences of nanoporous anodic alumina films coated with gold is studied as a function of the porosity and of the gold thickness by means of reflectance spectroscopy. Samples with porosities between 14 and 70% and gold thicknesses (10 and 20 nm) were considered. The sputtering of gold on the nanoporous anodic alumina (NAA) films results in an increase of the fringe intensity of the oscillations in the spectra resulting from Fabry-Pérot interferences in the porous layer, with a reduction in the maximum reflectance in the UV-visible region. For the thicker gold layer, sharp valleys appear in the near-infrared (IR) range that can be useful for accurate spectral shift measurements in optical biosensing. A theoretical model for the optical behavior has also been proposed. The model shows a very good agreement with the experimental measurements, what makes it useful for design and optimization of devices based on this material. This material capability is enormous for using it as an accurate and sensitive optical sensor, since gold owns a well-known surface chemistry with certain molecules, most of them biomolecules.

  12. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  13. Long working distance incoherent interference microscope

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; De Boer, Maarten P [Albuquerque, NM

    2006-04-25

    A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

  14. Interferometric angle monitor

    NASA Technical Reports Server (NTRS)

    Minott, P. O. (Inventor)

    1983-01-01

    Two mutually coherent light beams formed from a single monochromatic light source were directed to a reflecting surface of a rotatable object. They were reflected into an imaging optical lens having a focal plane optically at infinity. A series of interference fringes were formed in the focal plane which were translated linearly in response to angular rotation of the object. Photodetectors were located adjacent the focal plane to detect the fringe translation and output a signal in response to the translation. The signal was fed to a signal processor which was adapted to count the number of fringes detected and develop a measure of the angular rotation and direction of the object.

  15. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    PubMed

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  16. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber

    PubMed Central

    Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.

    2017-01-01

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421

  17. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    PubMed

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  18. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    NASA Technical Reports Server (NTRS)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  19. Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)

    1994-01-01

    An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.

  20. Automatic evaluation of interferograms

    NASA Technical Reports Server (NTRS)

    Becker, F.

    1982-01-01

    A system for the evaluation of interference patterns was developed. For digitizing and processing of the interferograms from classical and holographic interferometers a picture analysis system based upon a computer with a television digitizer was installed. Depending on the quality of the interferograms, four different picture enhancement operations may be used: Signal averaging; spatial smoothing, subtraction of the overlayed intensity function and the removal of distortion-patterns using a spatial filtering technique in the frequency spectrum of the interferograms. The extraction of fringe loci from the digitized interferograms is performed by a foating-threshold method. The fringes are numbered using a special scheme after the removal of any fringe disconnections which appeared if there was insufficient contrast in the holograms. The reconstruction of the object function from the fringe field uses least squares approximation with spline fit. Applications are given.

  1. Photoelasticity Without Polaroids

    ERIC Educational Resources Information Center

    Bond, M. M.; Hadley, D. W.

    1974-01-01

    Reports interference fringes that appear when a loaded plate of transparent non-crystalline plastic is placed between crossed polars; describes polarization of light sources and the origin of the analyzing polarizer. (GS)

  2. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  3. The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed

    NASA Technical Reports Server (NTRS)

    Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.

    2006-01-01

    The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.

  4. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV measurements. A fiber-fed version of the prototype with R~5600 was tested with starlight at the Lick 1 m telescope and demonstrated ~7 m s-1 RV precision at 340 Å bandwidth. The increased velocity noise is attributed to the lower spectral resolution, lower fringe visibility, and uncontrolled instrument environment.

  5. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  6. Scattering of a Tightly Focused Beam by an Optically Trapped Particle

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Wrbanek, Susan Y.; Weiland, Kenneth E.

    2006-01-01

    Near-forward scattering of an optically trapped 5 m radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.

  7. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.

    PubMed

    Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui

    2018-04-16

    A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

  8. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    ERIC Educational Resources Information Center

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  9. Quantum Effects of Electric Fields and Potentials on Electron Motion: An Introduction to Theoretical and Practical Aspects

    ERIC Educational Resources Information Center

    Matteucci, G.

    2007-01-01

    In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…

  10. Focus detection by shearing interference of vortex beams for non-imaging systems.

    PubMed

    Li, Xiongfeng; Zhan, Shichao; Liang, Yiyong

    2018-02-10

    In focus detection of non-imaging systems, the common image-based methods are not available. Also, interference techniques are seldom used because only the degree with hardly any direction of defocus can be derived from the fringe spacing. In this paper, we propose a vortex-beam-based shearing interference system to do focus detection for a focused laser direct-writing system, where a vortex beam is already involved. Both simulated and experimental results show that fork-like features are added in the interference patterns due to the existence of an optical vortex, which makes it possible to distinguish the degree and direction of defocus simultaneously. The theoretical fringe spacing and resolution of this method are derived. A resolution of 0.79 μm can be achieved under the experimental combination of parameters, and it can be further improved with the help of the image processing algorithm and closed-loop controlling in the future. Finally, the influence of incomplete collimation and the wedge angle of the shear plate is discussed. This focus detection approach is extremely appropriate for those non-imaging systems containing one or more focused vortex beams.

  11. Relevance of Bose-Einstein condensation to the interference of two independent Bose gases

    NASA Astrophysics Data System (ADS)

    Iazzi, Mauro; Yuasa, Kazuya

    2011-03-01

    Interference of two independently prepared ideal Bose gases is discussed, on the basis of the idea of measurement-induced interference. It is known that, even if the number of atoms in each gas is individually fixed finite and the symmetry of the system is not broken, an interference pattern is observed on each single snapshot. The key role is played by the Hanbury Brown and Twiss effect, which leads to an oscillating pattern of the cloud of identical atoms. Then, how essential is the Bose-Einstein condensation to the interference? In this work, we describe two ideal Bose gases trapped in two separate three-dimensional harmonic traps at a finite temperature T, using the canonical ensembles (with fixed numbers of atoms). We compute the full statistics of the snapshot profiles of the expanding and overlapping gases released from the traps. We obtain a simple formula valid for finite T, which shows that the average fringe spectrum (average fringe contrast) is given by the purity of each gas. The purity is known to be a good measure of condensation, and the formula clarifies the relevance of the condensation to the interference. The results for T=0, previously known in the literature, can be recovered from our analysis. The fluctuation of the interference spectrum is also studied, and it is shown that the fluctuation is vanishingly small only below the critical temperature Tc, meaning that interference pattern is certainly observed on every snapshot below Tc. The fact that the number of atoms is fixed in the canonical ensemble is crucial to this vanishing fluctuation.

  12. Use of the babinet compensator for anomalous dispersion measurements.

    PubMed

    Izatt, J R; Boyle, L J

    1973-01-01

    Reorientation of the optical elements in a standard experimental setup that utilizes a Babinet compensator to measure the anomalous dispersion of a birefringent mediumn results in a useful trade-off between the intensity and visibility of the polarization fringes produced by the apparatus. The fringe pattern is analyzed and numerical results are presented that illustrate the nature of the trade-off and its application to measurements near the center of a strong absorption line.

  13. Distance measurement using frequency scanning interferometry with mode-hoped laser

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  14. Young's double-slit interference with two-color biphotons.

    PubMed

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  15. Diffraction of a Gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes

    NASA Astrophysics Data System (ADS)

    Zeylikovich, Iosif; Nikitin, Aleksandr

    2018-04-01

    The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.

  16. Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi

    2013-10-01

    The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.

  17. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  18. Birefringence dispersion compensation demodulation algorithm for polarized low-coherence interferometry.

    PubMed

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan

    2013-08-15

    A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2 π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry-Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.

  19. Vertical high-precision Michelson wavemeter

    NASA Astrophysics Data System (ADS)

    Morales, A.; de Urquijo, J.; Mendoza, A.

    1993-01-01

    We have designed and tested a traveling, Michelson-type vertical wavemeter for the wavelength measurement of tunable continuous-wave lasers in the visible part of the spectrum. The interferometer has two movable corner cubes, suspending vertically from a driving setup resembling Atwood's machine. To reduce the fraction-of-fringe error, a vernier-type coincidence circuit was used. Although simple, this wavemeter has a relative precision of 3.2 parts in 109 for an overall fringe count of about 7×106.

  20. Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline.

    PubMed

    Hruszkewycz, S O; Holt, M V; Maser, J; Murray, C E; Highland, M J; Folkman, C M; Fuoss, P H

    2014-03-06

    Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.

  1. Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline

    PubMed Central

    Hruszkewycz, S. O.; Holt, M. V.; Maser, J.; Murray, C. E.; Highland, M. J.; Folkman, C. M.; Fuoss, P. H.

    2014-01-01

    Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques. PMID:24470418

  2. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  3. Science Notes.

    ERIC Educational Resources Information Center

    Piearce, Trevor; And Others

    1988-01-01

    Provides explanations of 15 experiments, laboratory activities, demonstrations, and lessons for use in instruction. Includes information on Daphnia, wild garlic, crystals, gas chromatographs, bleaches, alcohols, reactivity series, chemistry formula, electronic keyboards and waveforms, interference and diffraction gravity, Moire fringe patterns,…

  4. Interferometric rotation sensor

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.

    1972-01-01

    Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.

  5. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array.

    PubMed

    Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas

    2017-05-01

    High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.

  6. Remote ultrasound detection with a quasi-balanced confocal Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Roither, J.; Berer, T.; Hornhuber, C.; Burgholzer, P.

    2011-09-01

    In this article, we show the benefits of a quasi-balanced fringe hopping confocal Fabry-Perot interferometer (CFPI) with broadband common mode rejection ratio (CMRR) for remote ultrasound detection. In laser ultrasound, the ultrasonic information, in general, lies in the phase modulation of laser light which in this case is demodulated using the CFPI at a certain working point on a fringe. By hopping from the positive to the negative slope on the same fringe, the detected ultrasonic signals are inverted. In contrary, interference signals - such crosstalk from the generation, ghosts or noise correlated to pulse laser excitation - are not influenced and hence get rejected by subtracting the signals measured at both slopes. Hence, a minimum of two measurements is needed for common mode rejection. The fringe hopping from the positive to the negative slope is done by changing the distance of the CFPI mirrors with a precise piezoelectric-stack and a fast high-resolution digital controller. As only one photodetector with a transimpedance amplifier is needed, a high CMRR can be accomplished. The CMRR is not affected by the symmetry of the fringe but only by pulse-to-pulse energy fluctuations of the generation laser. We show that with fringe hopping and averaging the signal-to-noise ratio increases much faster than with averaging without fringe hopping. This is due to the correlation of the quasi-noise with the generation cycle.

  7. Rejection of crosstalk and noise by a quasi balanced CFPI for remote ultrasound detection

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Berer, T.; Hornhuber, C.; Burgholzer, P.

    2011-01-01

    In this paper we show the benefits of a quasi balanced fringe hopping CFPI (confocal Fabry-Pérot interferometer) with broadband CMRR (common mode rejection ratio) for remote ultrasound detection. Ultrasonic information in general lies in the phase modulation of laser light which in this case is demodulated by using the CFPI at a certain working point on a fringe. By hopping from the positive to the negative slope on the same fringe the detected ultrasonic signals are inverted. In contrary interference signals like crosstalk from the generation, ghosts, or noise correlated to pulse laser excitation are not influenced and hence get rejected by subtracting the signals from both slopes. Hence, a minimum of two measurements is needed for common mode rejection. The fringe hopping from the positive to the negative slope is done by changing the distance of the CFPI mirrors with a precise piezoelectric-stack and a fast high resolution digital controller. As only one photo-detector with a transimpedance-amplifier is needed a high CMRR can be accomplished which is not affected by the symmetry of the fringe but only by pulse to pulse energy fluctuations of the generation laser. We show that with fringe hopping and averaging the signal to noise ratio increases much faster than with averaging without fringe hopping. This is due to the correlation of the quasi-noise with the generation cycle.

  8. A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing

    PubMed Central

    Zhao, Longjiang; Jiang, Lan; Wang, Sumei; Xiao, Hai; Lu, Yongfeng; Tsai, Hai-Lung

    2011-01-01

    During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ∼ 875 °C with a step of 25 °C. PMID:22346567

  9. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines several laboratory procedures and demonstrations including electric fields using sawdust, experiments with capacitors, particle spacing in a vapor and a liquid, metrology, momentum, Moire patterns and interference fringes, equipping for practical electronics, and using programmable calculators for rapid plotting of graphs. (DS)

  10. On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes

    NASA Technical Reports Server (NTRS)

    Bachmann, Brian O. (Inventor); Bornhop, Darryl J. (Inventor); Dotson, Stephen (Inventor)

    2012-01-01

    A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.

  11. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure.

    PubMed

    Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne

    2009-01-15

    A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).

  12. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, D.; Carcagno, R.; Nogiec, J.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less

  13. Electronic heterodyne recording of interference patterns

    NASA Technical Reports Server (NTRS)

    Merat, F. L.; Claspy, P. C.

    1979-01-01

    An electronic heterodyne technique is being investigated for video (i.e., television rate and format) recording of interference patterns. In the heterodyne technique electro-optic modulation is used to introduce a sinusoidal phase shift between the beams of an interferometer. For phase modulation frequencies between 0.1 and 15 MHz an image dissector camera may be used to scan the resulting temporally modulated interference pattern. Heterodyne detection of the camera output is used to selectively record the interference pattern. An advantage of such synchronous recording is that it permits recording of low-contrast fringes in high ambient light conditions. The application of this technique to the recording of holograms is discussed.

  14. Fiber-optic projected-fringe digital interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1990-01-01

    A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.

  15. Theoretical study of the properties of X-ray diffraction moiré fringes. I

    PubMed Central

    Yoshimura, Jun-ichi

    2015-01-01

    A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general. PMID:25970298

  16. Communication: Development of standing evanescent-wave fluorescence correlation spectroscopy and its application to the lateral diffusion of lipids in a supported lipid bilayer

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Yamaguchi, Shoichi

    2017-07-01

    We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.

  17. The Michelson Stellar Interferometer Error Budget for Triple Triple-Satellite Configuration

    NASA Technical Reports Server (NTRS)

    Marathay, Arvind S.; Shiefman, Joe

    1996-01-01

    This report presents the results of a study of the instrumentation tolerances for a conventional style Michelson stellar interferometer (MSI). The method used to determine the tolerances was to determine the change, due to the instrument errors, in the measured fringe visibility and phase relative to the ideal values. The ideal values are those values of fringe visibility and phase that would be measured by a perfect MSI and are attributable solely to the object being detected. Once the functional relationship for changes in visibility and phase as a function of various instrument errors is understood it is then possible to set limits on the instrument errors in order to ensure that the measured visibility and phase are different from the ideal values by no more than some specified amount. This was done as part of this study. The limits we obtained are based on a visibility error of no more than 1% and a phase error of no more than 0.063 radians (this comes from 1% of 2(pi) radians). The choice of these 1% limits is supported in the literture. The approach employed in the study involved the use of ASAP (Advanced System Analysis Program) software provided by Breault Research Organization, Inc., in conjunction with parallel analytical calculations. The interferometer accepts object radiation into two separate arms each consisting of an outer mirror, an inner mirror, a delay line (made up of two moveable mirrors and two static mirrors), and a 10:1 afocal reduction telescope. The radiation coming out of both arms is incident on a slit plane which is opaque with two openings (slits). One of the two slits is centered directly under one of the two arms of the interferometer and the other slit is centered directly under the other arm. The slit plane is followed immediately by an ideal combining lens which images the radiation in the fringe plane (also referred to subsequently as the detector plane).

  18. Method and apparatus for removing unwanted reflections from an interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)

    1994-01-01

    A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.

  19. DIY physics - the paper scraper paper

    NASA Astrophysics Data System (ADS)

    Graham, G. R.

    1989-01-01

    A wallpaper scraper is made the subject of a number of simple experiments. Interference fringes are used to measure the thickness and refractive index of a surface coating and vibrations of the blade are studied using both traditional and modern methods.

  20. Modulation transfer function measurement of microbolometer focal plane array by Lloyd's mirror method

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Rommeluere, Sylvain; Viale, Thibault; Guerineau, Nicolas; Ribet-Mohamed, Isabelle; Crastes, Arnaud; Durand, Alain; Taboury, Jean

    2014-05-01

    Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.

  1. Study on influence of vibration behavior of composite material damage by holography

    NASA Astrophysics Data System (ADS)

    Guo, Linfeng; Zhao, Zhimin; Gao, Mingjuan; Zhuang, Xianzhong

    2006-01-01

    Composite material has been applied widely in aeronautics, astronautics and some other fields due to their high strength, light weight and antifatigue and etc. But in the application, composite material may be destroyed or damaged, which may have impact on its further applications. Therefore, study on the influence of behavior of composite material damage becomes a hot research. In this paper, the common composite material for aircraft is used as the test object, and a study is conducted to investigate the influence of vibration behavior of composite material damage. The authors adopt the method of light-carrier wave and time-average holography. Compared the interference fringes of composite materials before and after damage, the width of the interference fringes of hologram of the damaged composite material is narrower than that of the fringes before. It means that the off-plane displacement of each point on the test object is larger than before. Based on the elastic mechanics theory, the off-plane displacement is inverse to the bending stiffness, and the bending stiffness of the test object will decrease after it is damaged. In other words, the vibration property of the composite material changes after damages occur. The research results of the paper show that the results accord with the analysis of theory.

  2. Two-Particle Interference of Electron Pairs on a Molecular Level

    DOE PAGES

    Waitz, M.; Metz, D.; Lower, J.; ...

    2016-08-15

    Here, wWe investigate the photodouble ionization of H 2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. Conversely, the quasiparticle consisting of both electrons (i.e., the "dielectron") does. The work highlights the fact that nonlocal effects are embedded everywhere in nature where many-particle processes are involved.

  3. Optical fiber sensor technique for strain measurement during materials deposition, chemical reaction, and relaxation

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1988-01-21

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study. 9 figs.

  4. Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuai; Yuan, Yibao; Yin, Zhehao

    2017-10-01

    This study concerns an orthogonal diffraction grating-based nanometer displacement sensor. In this study, we performed calculation of displacements in the XYZ directions. In the optical measured path part, we used a two-dimensional orthogonal motion grating and a two-dimensional orthogonal reference grating with the pitch of 0.5um to measure the displacement of XYZ in three directions by detecting ±1st diffraction fringes. The self-collimated structure of the grating greatly extended the Z-axis range. We also simulated the optical path of the sensor with ZEMAX software and verified the feasibility of the scheme. For signal subdivision and processing, we combined large number counting (completed grating line) with small number counting (digital subdivision), realizing high multiples of subdivision of grating interference signals. We used PC to process the interference fringes and greatly improved the processing speed. In the scheme, the theoretical multiples of subdivision could reach 1024 with 10-bit AD conversion, but the actual multiples of subdivision was limited by the quality of the grating interference signals. So we introduced an orthogonal compensation circuit and a filter circuit to improve the signal quality.

  5. Digital reconstruction of Young's fringes using Fresnel transformation

    NASA Astrophysics Data System (ADS)

    Kulenovic, Rudi; Song, Yaozu; Renninger, P.; Groll, Manfred

    1997-11-01

    This paper deals with the digital numerical reconstruction of Young's fringes from laser speckle photography by means of the Fresnel-transformation. The physical model of the optical reconstruction of a specklegram is a near-field Fresnel-diffraction phenomenon which can be mathematically described by the Fresnel-transformation. Therefore, the interference phenomena can be directly calculated by a microcomputer.If additional a CCD-camera is used for specklegram recording the measurement procedure and evaluation process can be completely carried out in a digital way. Compared with conventional laser speckle photography no holographic plates, no wet development process and no optical specklegram reconstruction are needed. These advantages reveal a wide future in scientific and engineering applications. The basic principle of the numerical reconstruction is described, the effects of experimental parameters of Young's fringes are analyzed and representative results are presented.

  6. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  7. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Jorgensen, A.; Schmitt, H. R.; van Belle, G. T.; Hutter, Clark; Mozurkewich, D.; Armstrong, J. T.; Baines, E. K.; Restaino, S. R.

    The Navy Precision Optical Interferometer (NPOI) has a unique layout which is particularly well-suited for high-resolution interferometric imaging. By combining the NPOI layout with a new data acquisition and fringe tracking system we are progressing toward a imaging capability which will exceed any other interferometer in operation. The project, funded by the National Science Foundation, combines several existing advances and infrastructure at NPOI with modest enhancements. For optimal imaging there are several requirements that should be fulfilled. The observatory should be capable of measuring visibilities on a wide range of baseline lengths and orientations, providing complete UV coverage in a short period of time. It should measure visibility amplitudes with good SNR on all baselines as critical imaging information is often contained in low-amplitude visibilities. It should measure the visibility phase on all baselines. The technologies which can achieve this are the NPOI Y-shaped array with (nearly) equal spacing between telescopes and an ability for rapid configuration. Placing 6-telescopes in a row makes it possible to measure visibilities into the 4th lobe of the visibility function. By arranging the available telescopes carefully we will be able to switch, every few days, between 3 different 6-station chains which provide symmetric coverage in the UV (Fourier) plane without moving any telescopes, only by moving beam relay mirrors. The 6-station chains are important to achieve the highest imaging resolution, and switching rapidly between station chains provides uniform coverage. Coherent integration techniques can be used to obtain good SNR on very small visibilities. Coherently integrated visibilities can be used for imaging with standard radio imaging packages such as AIPS. The commissioning of one additional station, the use of new data acquisition hardware and fringe tracking algorithms are the enhancements which make this project possible.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrow, O.; Carroll, A.; Chattopadhyay, S.

    A cold atom interferometer is being developed using 85Rb atoms towards a search for the dark contents of the vacuum, and as a test stand for inertial sensing applications. Here we outline the current status of the experiment and report the observation of Ramsey interference fringes in the apparatus.

  9. Holographic evaluation of fatigue cracks by a compressive stress (HYSTERESIS) technique

    NASA Technical Reports Server (NTRS)

    Freska, S. A.; Rummel, W. D.

    1974-01-01

    Holographic interferometry compares unknown field of optical waves with known one. Differences are displayed as interference bands or fringes. Technique was evaluated on fatigue-cracked 2219-T87 aluminum-alloy panels. Small cracks were detected when specimen was incrementally unloaded.

  10. Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision.

    PubMed

    Cheney, Frank; Thibos, Larry; Bradley, Arthur

    2015-01-01

    We examined the effect of transverse chromatic aberration (TCA) on detection acuity for white-light interference fringes seen in Maxwellian view at various orientations and locations in the visual field. A circular patch (3.5° diameter, 3.2 log Trolands) of nominally high-contrast fringes was produced on the retina by a commercial instrument (the Lotmar Visometer, Haag Streit) mounted on a gimbal for controlled positioning of the stimulus in the visual field from 0° to 35° eccentricity. Detection acuity for white light fringes for all meridians and eccentricities ≥15° was maximum when fringes were oriented parallel to the visual meridian line. This meridional effect disappeared when a narrow-band filter was used to eliminate TCA. The meridional effect also disappeared when the interferometric stimulator was displaced laterally to align the instrument with the eye's local achromatic axis. Modelling confirmed that TCA is the major factor responsible for white-light meridional bias, with minor contribution arising from higher-order monochromatic aberrations and neural factors. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  11. Isogyres - Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  12. Isogyres - Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference.

    PubMed

    Samlan, C T; Naik, Dinesh N; Viswanathan, Nirmal K

    2016-09-14

    Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.

  13. Image restoration method based on Hilbert transform for full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2008-01-01

    A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

  14. Precision pointing and tracking through random media by exploitation of the enhanced backscatter phenomenon.

    PubMed

    Harvey, J E; Reddy, S P; Phillips, R L

    1996-07-20

    The active illumination of a target through a turbulent medium with a monostatic transmitter-receiver results in a naturally occurring conjugate wave caused by reciprocal scattering paths that experience identical phase variations. This reciprocal path-scattering phenomenon produces an enhanced backscatter in the retroverse direction (precisely along the boresight of the pointing telescope). A dual aperture causes this intensity enhancement to take the form of Young's interference fringes. Interference fringes produced by the reciprocal path-scattering phenomenon are temporally stable even in the presence of time-varying turbulence. Choosing the width-to-separation ratio of the dual apertures appropriately and utilizing orthogonal polarizations to suppress the time-varying common-path scattered radiation allow one to achieve interferometric sensitivity in pointing accuracy through a random medium or turbulent atmosphere. Computer simulations are compared with laboratory experimental data. This new precision pointing and tracking technique has potential applications in ground-to-space laser communications, laser power beaming to satellites, and theater missile defense scenarios.

  15. Two-photon interference between disparate sources for quantum networking

    PubMed Central

    McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.

    2013-01-01

    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 ± 4%, which paves the way to hybrid universal quantum networks. PMID:23783585

  16. Single-photon interference experiment for high schools

    NASA Astrophysics Data System (ADS)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  17. A quantum trampoline for ultra-cold atoms

    NASA Astrophysics Data System (ADS)

    Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.

    2010-01-01

    We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.

  18. Essential features of residual stress determination in thin-walled plane structures in a base of whole field interferometric measurements

    NASA Astrophysics Data System (ADS)

    Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.

    2003-05-01

    Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.

  19. Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons

    DOE PAGES

    Hu, F.; Luan, Y.; Fei, Z.; ...

    2017-08-14

    Here, we report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. And with rigorous simulations, wemore » reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Moreover, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.« less

  20. The Design and Implementation of the Wide-Angle Michelson Interferometer to Observe Thermospheric Winds.

    NASA Astrophysics Data System (ADS)

    Ward, William Edmund

    The design and implementation of a Wide-Angle Michelson interferometer (WAMI) as a high spectral resolution device for measuring Doppler shifts and temperatures in the thermosphere is discussed in detail. A general theoretical framework is developed to describe the behavior of interferometers and is applied to the WAMI. Notions concerning the optical coupling of various surfaces within an interferometer are developed and used to investigate the effects of misalignments in the WAMI optics. In addition, these notions in combination with ideas on the polarization behavior of interferometers are used to suggest how complex multisurfaced interferometers might be developed, what features affect their behavior most strongly, and how this behavior might be controlled. Those aspects of the Michelson interferometer important to its use as a high resolution spectral device are outlined and expressions relating the physical features of the interferometer and the spectral features of the radiation passing through the instrument, to the form of the observed interference pattern are derived. The sensitivity of the WAMI to misalignments in its optical components is explored, and quantitative estimations of the effects of these misalignments made. A working WAMI with cube corners instead of plane mirrors was constructed and is described. The theoretical notions outlined above are applied to this instrument and found to account for most of its features. A general digital procedure is developed for the analysis of the observed interference fringes which permits an estimation of the amplitude, visibility and phase of the fringes. This instrument was taken to Bird, northern Manitoba as part of the ground based support for the Auroral Rocket and Image Excitation Study (ARIES) rocket campaign. Doppler shifts and linewidth variations in O(^1 D) and O(^1S) emissions in the aurora were observed during several nights and constitute the first synoptic wind measurements taken with a WAMI. The results from an eight hour period of O(^1 D) observations are analysed and found to be similar to those obtained with Fabry-Perot interferometers. Higher temporal resolution data than any previously published were obtained, and suggest the presence of previously undetected small scale structures in the wind and temperature data. (Abstract shortened with permission of author.).

  1. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.

  2. Videotaping the Lifespan of a Soap Bubble.

    ERIC Educational Resources Information Center

    Ramme, Goran

    1995-01-01

    Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)

  3. Simultaneous strain and temperature measure based on a single suspended core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; López-Amo, M.; Kobelke, J.; Schuster, K.; Santos, J. L.; Frazão, O.

    2014-05-01

    In this work a simultaneous strain and temperature sensor based on a suspended core fiber is proposed. The sensor comprises a 3mm suspended core PCF between SMFs and is based on the combination of two multimodal interferences with different frequency fringe patterns. The interference of the both signal has different sensitivity responses to strain and temperature. Thought a low-pass frequency filtering of the detected spectrum, the wavelength shift of the two interferences can be measured allowing the discrimination of strain and temperature simultaneously. The resolutions of this sensor are 0.45 ºC and 4.02 μɛ.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with amore » simple, solid, and compact structure.« less

  5. Compact photonic crystal fiber refractometer based on modal interference

    NASA Astrophysics Data System (ADS)

    Wong, Wei Chang; Chan, Chi Chiu; Tou, Zhi Qiang; Chen, Li Han; Leong, Kam Chew

    2011-05-01

    A compact photonic crystal fiber (PCF) refractometer based on modal interference has been proposed by the use of commercial fusion splicer to collapse the holes of PCF to form a Mach Zehnder interferometer by splitting the fundamental core mode into cladding and core modes in the PCF. Collapsed of holes was done at the interface between the single mode fiber and PCF, and the PCF's end. The shift of the interference fringes was measured when the sensor was placed into different refractive index liquid. High linear sensitivity of 253.13nm/RIU with resolution of 3.950×10-5RIU was obtained.

  6. Measurement of infrared optical constants with visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid

    2018-04-01

    We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.

  7. Apparatus for the remote detection of sounds caused by leaks

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Alwar, Vijayaraghavan (Inventor)

    1990-01-01

    Two laser beams derived from a laser pass through a furnace and are superposed in a laser spot to produce interference fringes having the same pitch as that of a Ronchi grating printed on a retroreflecting screen. Minute fluctuations of the laser beams caused by sound waves from leaks result in intensity fluctuations of the laser spot when the laser fringes move past the fixed grating. A telescope and photocell arrangement detects the light variations to produce an electrical signal which is amplified and filtered to detect the sound of leaks. This non-contact laser Schlieren microphone is sensitive to sounds all along the path of the beams.

  8. Single shot white light interference microscopy with colour fringe analysis for quantitative phase imaging of biological cells

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Mehta, D. S.

    2013-02-01

    To quantitatively obtain the phase map of Onion and human red blood cell (RBC) from white light interferogram we used Hilbert transform color fringe analysis technique. The three Red, Blue and Green color components are decomposed from single white light interferogram and Refractive index profile for Red, Blue and Green colour were computed in a completely non-invasive manner for Onion and human RBC. The present technique might be useful for non-invasive determination of the refractive index variation within cells and tissues and morphological features of sample with ease of operation and low cost.

  9. Synthesis and characterization of spin-coated ZnS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  10. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator.

    PubMed

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel S; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  11. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  12. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Optical interference with noncoherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon

    2003-03-01

    We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors' readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where themore » currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources.« less

  14. Group Delay Tracking with the Sydney University Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.

    1994-08-01

    The Sydney University Stellar Interferometer (SUSI) is a long baseline optical interferometer, located at the Paul Wild Observatory near Narrabri, in northern New South Wales, Australia. It is designed to measure stellar angular diameters using light collected from a pair of siderostats, with 11 fixed siderostats giving separations between 5 and 640 m. Apertures smaller than Fried's coherence length, r_0, are used and active tilt-compensation is employed. This ensures that when the beams are combined in the pupil plane the wavefronts are parallel. Fringes are detected when the optical path-difference between the arriving wavefronts is less than tne coherence length of light used for the observation. While observing a star it is necessary to compensate for the changes in pathlength due to the earth's rotation. It is also highly desirable to compensate for path changes due to the effects of atmospheric turbulence. Tracking the path-difference permits an accurate calibration of the fringe visibility, allows larger bandwidths to be used, and therefore improves the sensitivity of the instrument. I describe a fringe tracking system which I developed for SUSI, based on group delay tracking with a PAPA (Precision Analog Photon Address) detector. The method uses short exposure images of fringes, 1-10 ms, detected in the dispersed spectra of the combined starlight. The number of fringes across a fixed bandwidth of channeled spectrum is directly proportional to the path-difference between the arriving wavefronts. A Fast Fourier Transform, implemented in hardware, is used to calculate the spatial power spectrum of the fringes, thereby locating the delay. The visibility loss due to a non-constant fringe spacing on the detector is investigated, and the improvements obtained from rebinning the photon data are shown. The low light level limitations of group delay tracking are determined theoretically with emphasis on the probability of tracking error, rather than the signal-to-noise ratio. Experimental results from both laboratory studies and stellar observations are presented. These show the first closed-loop operation of a fringe tracking system based on observations of group delay with a stellar interferometer. The Sydney University PAPA camera, a photon counting array detector developed for use in this work, is also described. The design principles of the PAPA camera are outlined and the potential sources of image artifacts are identified. The artifacts arise from the use of optical encoding with Gray coded masks, and teh new camera is distinguished by its mask-plate, which was designed to overcome artifacts due to vignetting. Nw lens mounts are also presented which permit a simplified optical alignment without the need for tilt-plates. The performance of the camera is described. (SECTION: Dissertation Summaries)

  15. Meter-wavelength observations of pulsars using very long baseline interferometry. Ph.D. Thesis - Maryland Univ., College Park; [with particular attention to the Crab nebula

    NASA Technical Reports Server (NTRS)

    Vandenberg, N. R.

    1974-01-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.

  16. High-resolution interference-monochromator for hard X-rays.

    PubMed

    Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Lee, Kun-Yuan; Liu, Shih-Lun; Chang, Shih-Lin

    2016-12-26

    An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.

  17. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    NASA Astrophysics Data System (ADS)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  18. Undersampled digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.

    2008-04-01

    In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.

  19. Surface flatness measurement of quasi-parallel plates employing three-beam interference with strong reference beam

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2016-12-01

    A big challenge for standard interferogram analysis methods such as Temporal Phase Shifting or Fourier Transform is a parasitic set of fringes which might occur in the analyzed fringe pattern intensity distribution. It is encountered, for example, when transparent glass plates with quasi-parallel surfaces are tested in Fizeau or Twyman-Green interferometers. Besides the beams reflected from the plate front surface and the interferometer reference the beam reflected from the plate rear surface also plays important role; its amplitude is comparable with the amplitude of other beams. In result we face three families of fringes of high contrast which cannot be easily separated. Earlier we proposed a competitive solution for flatness measurements which relies on eliminating one of those fringe sets from the three-beam interferogram and separating two remaining ones with the use of 2D Continuous Wavelet Transform. In this work we cover the case when the intensity of the reference beam is significantly higher than the intensities of two object beams. The main advantage of differentiating beam intensities is the change in contrast of individual fringe families. Processing of such three-beam interferograms is modified but also takes advantage of 2D CWT. We show how to implement this method in Twyman-Green and Fizeau setups and compare this processing path and measurement procedures with previously proposed solutions.

  20. Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements.

    PubMed

    Roos, Peter; Quraishi, Qudsia; Cundiff, Steven; Bhat, Ravi; Sipe, J

    2003-08-25

    We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.

  1. Measuring the effective pixel positions for the HARPS3 CCD

    NASA Astrophysics Data System (ADS)

    Hall, Richard D.; Thompson, Samantha; Queloz, Didier

    2016-07-01

    We present preliminary results from an experiment designed to measure the effective pixel positions of a CCD to sub-pixel precision. This technique will be used to characterise the 4k x 4k CCD destined for the HARPS-3 spectrograph. The principle of coherent beam interference is used to create intensity fringes along one axis of the CCD. By sweeping the physical parameters of the experiment, the geometry of the fringes can be altered which is used to probe the pixel structure. We also present the limitations of the current experimental set-up and suggest what will be implemented in the future to vastly improve the precision of the measurements.

  2. Comparison of Computational-Model and Experimental-Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  3. Comparison of Computational, Model and Experimental, Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  4. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  5. Simple and versatile heterodyne whole-field interferometer for phase optics characterization.

    PubMed

    Silva, D M; Barbosa, E A; Wetter, N U

    2012-10-01

    A wavefront sensor for thermally induced lens and passive lens characterization based on low-coherence digital speckle interferometry was developed and studied. By illuminating the optical setup with two slightly detuned red diode lasers, whole-field contour interference fringes were generated according to the resulting synthetic wavelength. For fringe pattern visualization the optical setup used the light transmitted through a ground glass plate as object beam. The performance of the sensor was investigated and its versatility was demonstrated by measuring the thermal lens induced in an Er-doped glass sample pumped by a 1.76-W diode laser emitting at 976 nm and by evaluating the wavefront distortion introduced by an ophthalmic progressive lens.

  6. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  7. Control of femtosecond laser interference ejection with angle and polarisation

    NASA Astrophysics Data System (ADS)

    Roper, David M.; Ho, Stephen; Haque, Moez; Herman, Peter R.

    2017-03-01

    The nonlinear interactions of femtosecond lasers are driving multiple new application directions for nanopatterning and structuring of thin transparent dielectric films that serve in range of technological fields. Fresnel reflections generated by film interfaces were recently shown to confine strong nonlinear interactions at the Fabry-Perot fringe maxima to generate thin nanoscale plasma disks of 20 to 40 nm thickness stacked on half wavelength spacing, λ/2nfilm, inside a film (refractive index, nfilm). The following phase-explosion and ablation dynamics have resulted in a novel means for intrafilm processing that includes `quantized' half-wavelength machining steps and formation of blisters with embedded nanocavities. This paper presents an extension in the control of interferometric laser processing around our past study of Si3N4 and SiOx thin films at 515 nm, 800 nm, and 1044 nm laser wavelengths. The role of laser polarization and incident angle is explored on fringe visibility and improving interferometric processing inside the film to dominate over interface and / or surface ablation. SiOx thin films of 1 μm thickness on silicon substrates were irradiated with a 515 nm wavelength, 280 fs duration laser pulses at 0° to 65° incident angles. A significant transition in ablation region from complete film removal to structured quantized ejection is reported for p- and s-polarised light that is promising to improve control and expand the versatility of the technique to a wider range of applications and materials. The research is aimed at creating novel bio-engineered surfaces for cell culture, bacterial studies and regenerative medicine, and nanofluidic structures that underpin lab-in-a-film. Similarly, the formation of intrafilm blisters and nanocavities offers new opportunities in structuring existing thin film devices, such as CMOS microelectronics, LED, lab-on-chips, and MEMS.

  8. CO.sub.2 optically pumped distributed feedback diode laser

    DOEpatents

    Rockwood, Stephen D.

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  9. Sensitivity of Heterointerfaces on Emission Wavelength in Quantum Cascade Lasers

    DTIC Science & Technology

    2016-08-18

    sharp satellite peaks and highly resolved thickness interference fringes. The full-width at 4 half-maximum of the n=0 peak is nominally similar... Watanabe , M. Sugiyama, and Y. Nakano, "Effect of hetero-interfaces on in situ wafer curvature behavior in InGaAs/GaAsP strain-balanced MQWs

  10. Sensitivity of Heterointerfaces on Emission Wavelength in Quantum Cascade Lasers

    DTIC Science & Technology

    2016-10-31

    as expected, and all scans exhibit sharp satellite peaks and highly resolved thickness interference fringes. The full- width at half-maximum of the n...K. Watanabe , M. Sugiyama, and Y. Nakano, "Effect of hetero-interfaces on in situ wafer curvature behavior in InGaAs/GaAsP strain-balanced MQWs

  11. Peculiarities of section topograms for the multiple diffraction of X rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G., E-mail: kohnvict@yandex.ru; Smirnova, I. A.

    The distortion of interference fringes on the section topograms of single crystal due to the multiple diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal angles for the 400 reflection and MoK{sub α} radiation, while the topogram for the 220 reflection demonstrates two cases of multiple diffraction. All these cases correspond to different combinations of reciprocalmore » lattice vectors. Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have been performed for the first time. The section topograms exhibit two different distortion regions. The distortions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be observed even with a laboratory X-ray source.« less

  12. Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyang; Zhao, Daomu

    2016-08-01

    Based on the first-order Born approximation, the scattering of an electromagnetic plane wave from a relatively more realistic random medium, a quasi-homogeneous medium with semisoft boundary, has been investigated. The analytic expressions for the spectral density, the spectral degree of coherence and the spectral degree of polarization have been derived, and the effects of the characteristics of the medium and the polarization of the incident light wave on the far-zone scattered field are determined. The numerical simulations indicate that, with the increasing of the edge softness M of the medium, the spectral density presents a pattern with interference fringes, and the number, position and width of interference fringes can be modified by the parameter. It is also found that there is an obvious value saltation in the coherence profile. Besides, unlike the intensity and the coherence are significantly affected by the properties of the medium, the polarization of the scattered field is irrelevant to them due to the quasi-homogeneity and isotropy of the medium, and it is only connected with the polarization of the incident light.

  13. Features of the amplitude-height-frequency characteristics of midlatitude sporadic-E layer

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2012-07-01

    At early investigation of an ionosphere the vertical pulse sounding was without separation magnetoionic components and such conditions allowed to observe interferential beatings or polarized fading over frequencies where traces of various magnetoionic component was crossing (overlapping). The beatings in F layer traces are often observed and their origin easily are explain by an interference o - and x-mode whereas in sporadic-E layer traces even observability of beatings of o- and x-modes is in doubt. Absence of experimental evidences of beatings is explain that measurements did not manage to be performed over the necessary time moment because of randomness and a rarity of occurrence high-intensity sporadic-E layers (without properties of scattering on small scale irregularities) and because of high labour input at recording and processing of amplitude-frequency characteristics. The direct observation of interferential beatings became problematic when ionosondes with separations of magnetoionic components appeared. Moreover because of relative vicinity of gyro and background plasma frequencies and also the steep electron profile gradient the beatings in sporadic-E traces should occur between two o-modes because in typical diurnal low-intensity sporadic-E layers (foEs<5MHz) x-mode will be strongly absorbed and the steep gradient on the bottom of sporadic-E layer will strengthen magnetoionic coupling (between o- and x-modes) and lead occurrence of so-called z-mode. The z-mode (extraordinary mode with ordinary polarization) reflected in higher height again takes the form of ordinary mode after passage of height of reflection of ordinary mode and interferes with ordinary mode. However our observations show that beating in sporadic-E traces mostly occur because of interference about o- and x-modes. For detailed research of interference conditions the approximation of width of interference fringes (distance between consecutive minima in interference pattern) as a function of sounding frequency was performed. This information can be also applied to determination of parameters of the height electron profile used in IRI model. For exact profile restoration it is necessary to use all information from ionogram. Besides the specified approximation of width of interference fringes it is necessary to determine also frequency dependences of the virtual height of reflection of sporadic-E layers for o- and x-modes accurate within 300 m. First of all it concerns to cusp in the beginning of sporadic-E traces. For approximation of this dependence the modernized model of a parabolic layer for o- and x-modes with various half-thickness of layer has been used. Comparison with experimental data gives half-thickness are approximately equal 5 and 25 km accordingly. All three approximations of interference fringe widths and of reflection heights will be used for determination of height electron density profile with improved precision below maximum of sporadic-E layer.

  14. Coherence and visibility for vectorial light.

    PubMed

    Luis, Alfredo

    2010-08-01

    Two-path interference of transversal vectorial waves is embedded within a larger scheme: this is four-path interference between four scalar waves. This comprises previous approaches to coherence between vectorial waves and restores the equivalence between correlation-based coherence and visibility.

  15. Apparatus for providing a servo drive signal in a high-speed stepping interferometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1979-01-01

    An analog voltage approximately linearly proportional to a desired offset from the present null position of a moving mirror in an interferometer is applied to the mirror moving means. As the mirror moves to the next null position, as determined by the analog voltage, the fringes of a laser reference interference pattern are detected. At the occurrence of each fringe the analog voltage is reduced proportionally so that when the next null position is reached, this driving analog is effectively zero. A binary up/down counter, by its internal count, causes a digital/analog converter to supply the analog voltage to the mirror moving means. Fringe detection and direction of movement logic cause the binary up/down counter to be decremented from its offset count as the mirror is moved to the new null position. Undesirable movement of the mirror due to vibration or other sources causes a correcting drive signal to be applied to the mirror moving means that is proportional to the distance of movement.

  16. Large-mirror testing facility at the National Optical Astronomy Observatories.

    NASA Astrophysics Data System (ADS)

    Barr, L. D.; Coudé du Foresto, V.; Fox, J.; Poczulp, G. A.; Richardson, J.; Roddier, C.; Roddier, F.

    1991-09-01

    A method for testing the surfaces of large mirrors has been developed to be used even when conditions of vibration and thermal turbulence in the light path cannot be eliminated. The full aperture of the mirror under test is examined by means of a scatterplate interferometer that has the property of being a quasi-common-path method, although any means for obtaining interference fringes will do. The method uses a remotely operated CCD camera system to record the fringe pattern from the workpiece. The typical test is done with a camera exposure of about a millisecond to "freeze" the fringe pattern on the detector. Averaging up to 10 separate exposures effectively eliminates the turbulence effects. The method described provides the optician with complete numerical information and visual plots for the surface under test and the diffracted image the method will produce, all within a few minutes, to an accuracy of 0.01 μm measured peak-to-valley.

  17. Improving image-quality of interference fringes of out-of-plane vibration using temporal speckle pattern interferometry and standard deviation for piezoelectric plates.

    PubMed

    Chien-Ching Ma; Ching-Yuan Chang

    2013-07-01

    Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.

  18. On the Presentation of Wave Phenomena of Electrons with the Young-Feynman Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio

    2011-01-01

    The Young-Feynman two-hole interferometer is widely used to present electron wave-particle duality and, in particular, the buildup of interference fringes with single electrons. The teaching approach consists of two steps: (i) electrons come through only one hole but diffraction effects are disregarded and (ii) electrons come through both holes…

  19. Quantification of absolute blood velocity using LDA

    NASA Astrophysics Data System (ADS)

    Borozdova, M. A.; Fedosov, I. V.; Tuchin, V. V.

    2018-04-01

    We developed novel schematics of a Laser Doppler anemometer where measuring volume is comparable with the red blood cell (RBC) size and a small period of interference fringes improves device resolution. The technique was used to estimate Doppler frequency shift at flow velocity measurements. It has been shown that technique is applicable for measurements in whole blood.

  20. Single-pulse interference caused by temporal reflection at moving refractive-index boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    Here, we show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by adjusting the propagation length in amore » process similar to the Talbot effect.« less

  1. Single-pulse interference caused by temporal reflection at moving refractive-index boundaries

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2017-09-29

    Here, we show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by adjusting the propagation length in amore » process similar to the Talbot effect.« less

  2. Compact component for integrated quantum optic processing

    PubMed Central

    Sahu, Partha Pratim

    2015-01-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1–2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler. PMID:26584759

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Yuichi, E-mail: nakamura@ee.tut.ac.jp; Takagi, Hiroyuki; Lim, Pang Boey

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective tomore » achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.« less

  4. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-01

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  5. NAOMI: a low-order adaptive optics system for the VLT interferometer

    NASA Astrophysics Data System (ADS)

    Gonté, Frédéric Yves J.; Alonso, Jaime; Aller-Carpentier, Emmanuel; Andolfato, Luigi; Berger, Jean-Philippe; Cortes, Angela; Delplancke-Strobele, Françoise; Donaldson, Rob; Dorn, Reinhold J.; Dupuy, Christophe; Egner, Sebastian E.; Huber, Stefan; Hubin, Norbert; Kirchbauer, Jean-Paul; Le Louarn, Miska; Lilley, Paul; Jolley, Paul; Martis, Alessandro; Paufique, Jérôme; Pasquini, Luca; Quentin, Jutta; Ridings, Robert; Reyes, Javier; Shchkaturov, Pavel; Suarez, Marcos; Phan Duc, Thanh; Valdes, Guillermo; Woillez, Julien; Le Bouquin, Jean-Baptiste; Beuzit, Jean-Luc; Rochat, Sylvain; Vérinaud, Christophe; Moulin, Thibaut; Delboulbé, Alain; Michaud, Laurence; Correia, Jean-Jacques; Roux, Alain; Maurel, Didier; Stadler, Eric; Magnard, Yves

    2016-08-01

    The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack- Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.

  6. Velocity servo for continuous scan Fourier interference spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1980-01-01

    A velocity servo for continuous scan Fourier interference spectrometer of the double pass retroreflector type having two cat's eye retroreflectors is described. The servo uses an open loop, lead screw drive system for one retroreflector with compensation for any variations in speed of drive of the lead screw provided by sensing any variation in the rate of reference laser fringes, and producing an error signal from such variation used to compensate by energizing a moving coil actuator for the other retroreflector optical path, and energizing (through a highpass filter) piezoelectric actuators for the secondary mirrors of the retroreflectors.

  7. Photoelectron interference fringes by super intense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2009-09-01

    The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  8. Nanoplasmonic Phenomena at Electronic Boundaries in Graphene

    DOE PAGES

    Fei, Zhe; Ni, Guang -Xin; Jiang, Bor -Yuan; ...

    2017-06-30

    Here, we review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moiré patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlyingmore » physics of the EBs. Potential plasmonic applications associated with these EBs are also briefly discussed.« less

  9. Nanoplasmonic Phenomena at Electronic Boundaries in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Zhe; Ni, Guang -Xin; Jiang, Bor -Yuan

    Here, we review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moiré patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlyingmore » physics of the EBs. Potential plasmonic applications associated with these EBs are also briefly discussed.« less

  10. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  11. Research on the Application of Fast-steering Mirror in Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.

    2017-07-01

    For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.

  12. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.

    PubMed

    Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T

    2006-03-10

    Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

  13. A study of a space-station-associated multiple spacecraft Michelson spatial interferometer

    NASA Technical Reports Server (NTRS)

    Stachnik, R. V.

    1983-01-01

    One approach to Michelson spatial interferometry at optical wavelengths involves use of an array of spacecraft in which two widely-separated telescopes collect light from a star and direct it to a third, centrally-located, device which combines the beams in order to detect and measure interference fringes. The original version of a spacecraft array for Michelson spatial interferometry (SAMSI) was modified so that the system uses the fuel resupply capability of a space station. The combination of this fuel resupply capability with a method of obtaining image Fourier transform phase information, necessary for full image reconstruction, permits SAMSI to be used to synthesize images equivalent to those produced by huge apertures in space. Synthesis of apertures in the 100 to 500 meter range is discussed. Reconstruction can be performed to a visual magnitude of at least 8 for a 100 A passband in 9 hours. Data are simultaneously collected for image generation from 0.1 micron to 18 microns. In the one-dimensional mode, measurements can be made every 90 minutes (including acquisition and repointing time) for objects as faint as 19th magnitude in the visible.

  14. On Hilbert-Huang Transform Based Synthesis of a Signal Contaminated by Radio Frequency Interference or Fringes

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Shiri, Ron S.; Vootukuru, Meg; Coletti, Alessandro

    2015-01-01

    Norden E. Huang et al. had proposed and published the Hilbert-Huang Transform (HHT) concept correspondently in 1996, 1998. The HHT is a novel method for adaptive spectral analysis of non-linear and non-stationary signals. The HHT comprises two components: - the Huang Empirical Mode Decomposition (EMD), resulting in an adaptive data-derived basis of Intrinsic Mode functions (IMFs), and the Hilbert Spectral Analysis (HSA1) based on the Hilbert Transform for 1-dimension (1D) applied to the EMD IMF's outcome. Although paper describes the HHT concept in great depth, it does not contain all needed methodology to implement the HHT computer code. In 2004, Semion Kizhner and Karin Blank implemented the reference digital HHT real-time data processing system for 1D (HHT-DPS Version 1.4). The case for 2-Dimension (2D) (HHT2) proved to be difficult due to the computational complexity of EMD for 2D (EMD2) and absence of a suitable Hilbert Transform for 2D spectral analysis (HSA2). The real-time EMD2 and HSA2 comprise the real-time HHT2. Kizhner completed the real-time EMD2 and the HSA2 reference digital implementations respectively in 2013 & 2014. Still, the HHT2 outcome synthesis remains an active research area. This paper presents the initial concepts and preliminary results of HHT2-based synthesis and its application to processing of signals contaminated by Radio-Frequency Interference (RFI), as well as optical systems' fringe detection and mitigation at design stage. The Soil Moisture Active Passive (SMAP mission (SMAP) carries a radiometer instrument that measures Earth soil moisture at L1 frequency (1.4 GHz polarimetric - H, V, 3rd and 4th Stokes parameters). There is abundant RFI at L1 and because soil moisture is a strategic parameter, it is important to be able to recover the RFI-contaminated measurement samples (15% of telemetry). State-of-the-art only allows RFI detection and removes RFI-contaminated measurements. The HHT-based analysis and synthesis facilitates recovery of measurements contaminated by all kinds of RFI, including jamming [7-8]. The fringes are inherent in optical systems and multi-layer complex contour expensive coatings are employed to remove the unwanted fringes. HHT2-based analysis allows test image decomposition to analyze and detect fringes, and HHT2-based synthesis of useful image.

  15. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  16. Ramsey-type spectroscopy in the XUV spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirri, A.; European Laboratory for Nonlinear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino; Sali, E.

    2010-02-02

    We report an experimental and theoretical investigation of Ramsey-type spectroscopy with high-order harmonic generation applied to autoionizing states of Krypton. The ionization yield, detected by an ion-mass spectrometer, shows the characteristic quantum interference pattern. The behaviour of the fringe contrast was interpreted on the basis of a simple analytic model, which reproduces the experimental data without any free parameter.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waitz, M.; Metz, D.; Lower, J.

    Here, wWe investigate the photodouble ionization of H 2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. Conversely, the quasiparticle consisting of both electrons (i.e., the "dielectron") does. The work highlights the fact that nonlocal effects are embedded everywhere in nature where many-particle processes are involved.

  18. Gyroscope and Micromirror Design Using Vertical-Axis CMOS-MEMS Actuation and Sensing

    DTIC Science & Technology

    2002-01-01

    Interference pattern around the upper anchor (each fringe occurs at 310 nm vertical displacement...described above require extra lithography step(s) other than standard CMOS lithography steps and/or deposition of structural and sacrificial materials...Instruments’ dig- ital mirror device ( DMD ) [43]. The aluminum thin-film technology with vertical parallel- plate actuation has difficulty in achieving

  19. Acquisition of a full-resolution image and aliasing reduction for a spatially modulated imaging polarimeter with two snapshots

    PubMed Central

    Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu

    2018-01-01

    A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224

  20. Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Makoto, E-mail: kuwahara@esi.nagoya-u.ac.jp; Saitoh, Koh; Tanaka, Nobuo

    2014-11-10

    The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had amore » high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.« less

  1. Application of an optical interferometer for measuring the surface contour of micro-components

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Tay, C. J.

    2006-04-01

    The application of an optical interferometric system using a Mireau objective to measure the surface profile of micro-components is described. The proposed system produces a uniform monochromatic illumination over the test area and introduces an interference fringe pattern localized near the test surface. Both the interference fringes and the 2D image of the test surface can be focused by an infinity microscope system consisting of a Mireau objective and a tube lens. A piezoelectric transducer (PZT) attached to the Mireau objective can move precisely along the optical axis of the objective. This enables the implementation of phase-shifting interferometry without changing the focus of a CCD sensor as the combination of the Mireau objective and the tube lens provides a depth of focus which is deep in comparison to the phase-shifting step. Experimental results from surface profilometry of the protrusion/undercut of a polished fibre within an optical connector and of the curved surface of a micromirror demonstrate that features in the order of nanometres are measurable. Measurements on standard blocks also show that the accuracy of the proposed system is comparable to an existing commercial white-light interferometer and a stylus profilometer.

  2. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    PubMed

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  3. Computer simulation of reconstructed image for computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.

  4. Generation of mechanical interference fringes by multi-photon counting

    NASA Astrophysics Data System (ADS)

    Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.

    2018-05-01

    Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.

  5. Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.

    2017-04-01

    The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.

  6. 3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique

    NASA Astrophysics Data System (ADS)

    Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet

    2018-06-01

    A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.

  7. Detection of nerve agent stimulants based on photoluminescent porous silicon interferometer

    NASA Astrophysics Data System (ADS)

    Kim, Seongwoong; Cho, Bomin; Sohn, Honglae

    2012-09-01

    Porous silicon (PSi) exhibiting dual optical properties, both Fabry-Pérot fringe and photolumincence, was developed and used as chemical sensors. PSi samples were prepared by an electrochemical etch of p-type silicon under the illumination of 300-W tungsten lamp during the etch process. The surface of PSi was characterized by cold field-emission scanning electron microscope. PSi samples exhibited a strong visible orange photoluminescence at 610 nm with an excitation wavelength of 460 nm as well as Fabry-Pérot fringe with a tungsten light source. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organophosphate vapors. An increase of optical thickness and quenching photoluminescences under the exposure of various organophosphate vapors were observed.

  8. Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi

    2017-10-01

    Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.

  9. Ronchi test for characterization of nanofocusing optics at a hard x-ray free-electron laser.

    PubMed

    Nilsson, Daniel; Uhlén, Fredrik; Holmberg, Anders; Hertz, Hans M; Schropp, Andreas; Patommel, Jens; Hoppe, Robert; Seiboth, Frank; Meier, Vivienne; Schroer, Christian G; Galtier, Eric; Nagler, Bob; Lee, Hae Ja; Vogt, Ulrich

    2012-12-15

    We demonstrate the use of the classical Ronchi test to characterize aberrations in focusing optics at a hard x-ray free-electron laser. A grating is placed close to the focus and the interference between the different orders after the grating is observed in the far field. Any aberrations in the beam or the optics will distort the interference fringes. The method is simple to implement and can provide single-shot information about the focusing quality. We used the Ronchi test to measure the aberrations in a nanofocusing Fresnel zone plate at the Linac Coherent Light Source at 8.194 keV.

  10. Fabry-Perot enhanced Faraday rotation in graphene.

    PubMed

    Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B

    2013-10-21

    We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

  11. VizieR Online Data Catalog: delta Cep VEGA/CHARA observing log (Nardetto+, 2016)

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Merand, A.; Mourard, D.; Storm, J.; Gieren, W.; Fouque, P.; Gallenne, A.; Graczyk, D.; Kervella, P.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Breitfelder, J.; Berio, P.; Challouf, M.; Clausse, J.-M.; Ligi, R.; Mathias, P.; Meilland, A.; Perraut, K.; Poretti, E.; Rainer, M.; Spang, A.; Stee, P.; Tallon-Bosc, I.; Ten Brummelaar, T.

    2016-07-01

    The columns give, respectively, the date, the RJD, the hour angle (HA), the minimum and maximum wavelengths over which the squared visibility is calculated, the projected baseline length Bp and its orientation PA, the signal-to-noise ratio on the fringe peak; the last column provides the calibrated squared visibility V2 together with the statistic error on V2, and the systematic error on V2 (see text for details). The data are available on the Jean-Marie Mariotti Center OiDB service (Available at http://oidb.jmmc.fr). (1 data file).

  12. Terrestrial Planet Finder cryogenic delay line development

    NASA Technical Reports Server (NTRS)

    Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.

    2004-01-01

    Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.

  13. Recording of interference fringe structure by femtosecond laser pulses in samples of silver-containing porous glass and thick slabs of dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.

    2002-05-01

    The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.

  14. Influence of fiber bending on wavelength demodulation of fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-14

    In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Phase locking of the radiation of ring waveguide CO2 lasers

    NASA Astrophysics Data System (ADS)

    Glova, A. F.; Lebedev, E. A.; Lysikov, A. Yu; Shchetnikov, S. B.

    1999-12-01

    Phase locking of the radiation of two ring waveguide CO2 lasers with a common cavity and unidirectional lasing was achieved for an output power of about 20 W. Measurements of the fringe visibility of the radiation intensity distributions in the far-field zone agreed qualitatively with the calculations for plane waves.

  16. Research Progress on F-P Interference—Based Fiber-Optic Sensors

    PubMed Central

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  17. Analysis of standing sound waves using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.; Parker, David E.; Hughes, Russell S.

    2009-08-01

    Optical holographic interferometry was used to study standing sound waves in air inside a resonance tube driven by a small loudspeaker at one end. The front face of the resonance tube was constructed with plexiglass, allowing optical interrogation of the tube interior. The object beam of the holographic setup was directed through the plexiglass and reflected off the back wall of the resonator. When driven at resonance, the fluctuations in the air density at the antinodes altered the refractive index of the air in the tube, causing interference patterns in the resulting holographic images. Real-time holography was used to determine resonance frequencies and to measure the wavelengths of the standing waves. Time-average holography was used to observe the effect of increasing the sound pressure level on the resulting fringe pattern. A simple theory was developed to successfully predict the fringe pattern.

  18. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.

    PubMed

    Liu, Liqin; Luo, Yunfei; Zhao, Zeyu; Zhang, Wei; Gao, Guohan; Zeng, Bo; Wang, Changtao; Luo, Xiangang

    2016-07-28

    In this paper, large area and deep sub-wavelength interference patterns are realized experimentally by using odd surface plasmon modes in the metal/insulator/metal structure. Theoretical investigation shows that the odd modes possesses much higher transversal wave vector and great inhibition of tangential electric field components, facilitating surface plasmon interference fringes with high resolution and contrast in the measure of electric field intensity. Interference resist patterns with 45 nm (∼λ/8) half-pitch, 50 nm depth, and area size up to 20 mm × 20 mm were obtained by using 20 nm Al/50 nm photo resist/50 nm Al films with greatly reduced surface roughness and 180 nm pitch exciting grating fabricated with conventional laser interference lithography. Much deeper resolution down to 19.5 nm is also feasible by decreasing the thickness of PR. Considering that no requirement of expensive EBL or FIB tools are employed, it provides a cost-effective way for large area and nano-scale fabrication.

  19. Development of a Grazing Incidence X-Ray Interferometer

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Cash, Webster; Osterman, Steve; Joy, Marshall; Carter, James

    1999-01-01

    A grazing incidence x-ray interferometer design capable of micro-arcsecond level resolution is discussed. This practical design employs a Michelson Stellar interferometer approach to create x-ray interference fringes without the use of Wolter style optics or diffraction crystals. Design solutions accommodating alignment, vibration, and thermal constraints are reviewed. We present the development and demonstration of a working experiment along with tolerance studies, data analysis, and results.

  20. Phase comparator apparatus and method

    DOEpatents

    Coffield, F.E.

    1985-02-01

    This invention finds especially useful application for interferometer measurements made in plasma fusion devices (e.g., for measuring the line integral of electron density in the plasma). Such interferometers typically use very high intermediate frequencies (e.g., on the order of 10 to 70 MHz) and therefore the phase comparison circuitry should be a high speed circuit with a linear transfer characteristic so as to accurately differentiate between small fractions of interference fringes.

  1. Coplanar three-beam interference and phase edge dislocations

    NASA Astrophysics Data System (ADS)

    Patorski, Krzysztof; SłuŻewski, Łukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2016-12-01

    We present a comprehensive analysis of grating three-beam interference to discover a broad range of the ratio of amplitudes A of +/-1 diffraction orders and the zero order amplitude C providing phase edge dislocations. We derive a condition A/C > 0.5 for the occurrence of phase edge dislocations in three-beam interference self-image planes. In the boundary case A/C = 0.5 singularity conditions are met in those planes (once per interference field period), but the zero amplitude condition is not accompanied by an abrupt phase change. For A/C > 0.5 two adjacent singularities in a single field period show opposite sign topological charges. The occurrence of edge dislocations for selected values of A/C was verified by processing fork fringes obtained by introducing the fourth beam in the plane perpendicular to the one containing three coplanar diffraction orders. Two fork pattern processing methods are described, 2D CWT (two-dimensional continuous wavelet transform) and 2D spatial differentiation.

  2. Real-time trichromatic holographic interferometry: preliminary study

    NASA Astrophysics Data System (ADS)

    Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.

    1998-08-01

    In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.

  3. Density patterns in metal films produced by laser interference.

    PubMed

    Peláez, R J; Afonso, C N; Škereň, M; Bulíř, J

    2015-01-26

    Fringed periodic patterns have been produced by laser interference at 193 nm in an almost continuous 9.5 nm-thick Ag film that exhibits a number density of ≈189 μm(-2) holes. Patterns with four periods in the range of 1.8-10.2 μm were produced by changing the projection optics. At high fluences, the film breaks up into nanostructures around the regions exposed to intensity maxima due to laser-induced melting. At low fluences, a new process is observed that is triggered at the initial holes of the film by solid-state dewetting. Once the fluence is high enough to prevent the temperature balance across the pattern, mass transport from cold to hot regions is observed, leading to film densification in regions around intensity maxima sites. The novel patterns are thus formed by fringes of material that is more/less dense than the as-grown film, each of which is located at intensity maxima/minima sites, and have negligible topography. Comparing the present results to earlier reports in the literature shows that the thermal gradient across the pattern is influenced by the initial film microstructure, rather than by the thickness. The existence of a minimum period, which is achievable depending on the thermal continuity of the film, is also discussed.

  4. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  5. Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Dalip; Srivastava, Vishal

    2012-11-01

    We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.

  6. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Smith, R F; Bolme, C

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less

  7. Gladstone-Dale constant for CF4. [experimental design

    NASA Technical Reports Server (NTRS)

    Burner, A. W., Jr.; Goad, W. K.

    1980-01-01

    The Gladstone-Dale constant, which relates the refractive index to density, was measured for CF4 by counting fringes of a two-beam interferometer, one beam of which passes through a cell containing the test gas. The experimental approach and sources of systematic and imprecision errors are discussed. The constant for CF4 was measured at several wavelengths in the visible region of the spectrum. A value of 0.122 cu cm/g with an uncertainty of plus or minus 0.001 cu cm/g was determined for use in the visible region. A procedure for noting the departure of the gas density from the ideal-gas law is discussed.

  8. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    NASA Astrophysics Data System (ADS)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarella, G.; Toigo, F.; Salasnich, L.

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibilitymore » {alpha} of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and {alpha} to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.« less

  10. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less

  11. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization.

    PubMed

    Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian

    2018-03-20

    The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.

  12. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  13. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  14. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    NASA Technical Reports Server (NTRS)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  15. Surface profiling interferometer

    DOEpatents

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  16. Fringe chasing by three-point spatial phase shifting for discrimination of the motion direction in the long-range homodyne laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Daemi, Mohammad Hossein; Rasouli, Saifollah

    2018-07-01

    In this work, a three-point spatial phase shifting (SPS) method is implemented for chasing of the moving interference fringes in the homodyne laser Doppler vibrometry (HoLDV). By the use of SPS method, we remove disability of the HoLDV in the discrimination of the motion direction for long-range displacements. From the phase increments histogram, phase unwrapping tolerance value is selected, and adequacy of the data acquisition rate and required bandwidth limit are determined. Also in this paper, a detailed investigation on the effect of detectors positioning errors and influence of the Gaussian profile of the interfering beams on the measurements are presented. Performance of the method is verified by measuring a given harmonic vibration produced by a loudspeaker. Also, by the proposed method, vibration of mounting system of a disk laser gain medium is characterized.

  17. Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement.

    PubMed

    Tian, Fei; Kanka, Jiri; Du, Henry

    2012-09-10

    Regular and cascaded long period gratings (LPG, C-LPG) of periods ranging from 460 to 590 μm were inscribed in an endlessly single mode photonic crystal fiber (PCF) using CO(2) laser for sensing measurements of helium, argon and acetylene. High index sensitivities in excess of 1700 nm/RIU were achieved in both grating schemes with a period of 460 μm. The sharp interference fringes in the transmission spectrum of C-PCF-LPG afforded not only greatly enhanced sensing resolution, but also accuracy when the phase-shift of the fringe pattern is determined through spectral processing. Comparative numerical and experimental studies indicated LP(01) to LP(03) mode coupling as the principal coupling step for both PCF-LPG and C-PCF-LPG with emergence of multi-mode coupling at shorter grating periods or longer resonance wavelengths.

  18. Imaging with New Classic and Vision at the NPOI

    NASA Astrophysics Data System (ADS)

    Jorgensen, Anders

    2018-04-01

    The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.

  19. HRTEMFringeAnalyzer a free python module for an automated analysis of fringe pattern in transmission electron micrographs.

    PubMed

    Alxneit, Ivo

    2018-03-30

    A python module (HRTEMFringeAnalyzer) is reported to evaluate the local crystallinity of samples from high-resolution transmission electron microscopy images in a mostly automated fashion. The user only selects the size of a square analyser window and a step size which translates the window in the micrograph. Together they define the resolution of the results obtained. Regions where fringe patterns are visible are identified and their lattice spacing d and direction ϕ as well as the corresponding mean errors σ determined. 1/σd is proportional to the coherence length of the structure, whereas σφ is a measure of how well the direction of the fringes is defined. Maps of these four indicators are computed. The performance of the program is demonstrated on two very different samples: ill-crystalline carbon deposits on a coked Ni/LFNO (reduced LaFe 0.8 Ni 0.2 O3±δ) catalyst and well-crystallized nanoparticles of zinc doped ceria. In the latter case, the automatic segmentation of large aggregates into individual crystalline domains is achieved by ϕ maps. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  20. Spatial modelling of landscape aesthetic potential in urban-rural fringes.

    PubMed

    Sahraoui, Yohan; Clauzel, Céline; Foltête, Jean-Christophe

    2016-10-01

    The aesthetic potential of landscape has to be modelled to provide tools for land-use planning. This involves identifying landscape attributes and revealing individuals' landscape preferences. Landscape aesthetic judgments of individuals (n = 1420) were studied by means of a photo-based survey. A set of landscape visibility metrics was created to measure landscape composition and configuration in each photograph using spatial data. These metrics were used as explanatory variables in multiple linear regressions to explain aesthetic judgments. We demonstrate that landscape aesthetic judgments may be synthesized in three consensus groups. The statistical results obtained show that landscape visibility metrics have good explanatory power. Ultimately, we propose a spatial modelling of landscape aesthetic potential based on these results combined with systematic computation of visibility metrics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  2. Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits.

    PubMed

    Li, Xing; Gao, Yaru; Jiang, Shuna; Ma, Li; Liu, Chunxiang; Cheng, Chuanfu

    2015-02-09

    Using an L-shaped metal nanoslit to generate waves of the pure photonic and plasmonic modes simultaneously, we perform an experimental solution for the scattered imaging of the interference of the two waves. From the fringe data of interference, the amplitudes and the wavevector components of the two waves are obtained. The initial phases of the two waves are obtained from the phase map reconstructed with the interference of the scattered image and the reference wave in the interferometer. The difference in the wavevector components gives rise to an additional phase delay. We introduce the scattering theory under Kirchhoff's approximation to metal slit regime and explain the wavevector difference reasonably. The solution of the quantities is a comprehensive reflection of excitation, scattering and interference of the two waves. By decomposing the polarized incident field with respect to the slit element, the scattered image produced by slit of arbitrary shape can be solved with the nanoscale Huygens-Fresnel principle. This is demonstrated by the experimental intensity pattern and phase map produced by a ring-slit and its consistency with the calculated results.

  3. Imaging electron wave functions inside open quantum rings.

    PubMed

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  4. Dual-beam skin friction interferometer

    NASA Technical Reports Server (NTRS)

    Monson, D. J. (Inventor)

    1981-01-01

    A portable dual-laser beam interferometer is described that nonintrusively measures skin friction by monitoring the thickness change of an oil film at two locations while said oil film is subjected to shear stress. An interferometer flat is utilized to develop the two beams. Light detectors sense the beam reflections from the oil film and the surface thereunder. The signals from the detectors are recorded so that the number of interference fringes produced over a given time span may be counted.

  5. High-speed polarization sensitive optical coherence tomography for retinal diagnostics

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.

    2012-01-01

    We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.

  6. Color, contrast sensitivity, and the cone mosaic.

    PubMed Central

    Williams, D; Sekiguchi, N; Brainard, D

    1993-01-01

    This paper evaluates the role of various stages in the human visual system in the detection of spatial patterns. Contrast sensitivity measurements were made for interference fringe stimuli in three directions in color space with a psychophysical technique that avoided blurring by the eye's optics including chromatic aberration. These measurements were compared with the performance of an ideal observer that incorporated optical factors, such as photon catch in the cone mosaic, that influence the detection of interference fringes. The comparison of human and ideal observer performance showed that neural factors influence the shape as well as the height of the foveal contrast sensitivity function for all color directions, including those that involve luminance modulation. Furthermore, when optical factors are taken into account, the neural visual system has the same contrast sensitivity for isoluminant stimuli seen by the middle-wavelength-sensitive (M) and long-wavelength-sensitive (L) cones and isoluminant stimuli seen by the short-wavelength-sensitive (S) cones. Though the cone submosaics that feed these chromatic mechanisms have very different spatial properties, the later neural stages apparently have similar spatial properties. Finally, we review the evidence that cone sampling can produce aliasing distortion for gratings with spatial frequencies exceeding the resolution limit. Aliasing can be observed with gratings modulated in any of the three directions in color space we used. We discuss mechanisms that prevent aliasing in most ordinary viewing conditions. Images Fig. 1 Fig. 8 PMID:8234313

  7. Positioning the actual interference fringe pattern on the tooth flank in measuring gear tooth flanks by laser interferometry

    NASA Astrophysics Data System (ADS)

    Fang, Suping; Wang, Leijie; Liu, Shiqiao; Komori, Masaharu; Kubo, Aizoh

    2011-05-01

    In measuring form deviation of gear tooth flanks by laser interferometry, the collected interference fringe pattern (IFP) is badly distorted, in the case of shape, relative to the actual tooth flank. Meanwhile, a clear and definite mapping relationship between the collected IFP and the actual tooth flank is indispensable for both transforming phase differences into deviation values and positioning the measurement result on the actual tooth flank. In order to solve these problems, this paper proposes a method using the simulation tooth image as a bridge connecting the actual tooth flank and the collected IFP. The mapping relationship between the simulation tooth image and the actual tooth flank has been obtained by ray tracing methods [Fang et al., Appl. Opt. 49(33), 6409-6415 (2010)]. This paper mainly discusses how to build the relationship between the simulation tooth image and the collected IFP by using a matching algorithm of two characteristic point sets. With the combination of the two above-mentioned assistant mapping relationships, the mapping relationship between the collected IFP and the actual tooth flank can be built; the collected IFP can be positioned on the actual tooth flank. Finally, the proposed method is employed in a measurement of the form deviation of a gear tooth flank and the result proves the feasibility of the proposed method.

  8. A real-time 3D range image sensor based on a novel tip-tilt-piston micromirror and dual frequency phase shifting

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor

    2015-03-01

    Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.

  9. Study of Fabry-Perot Etalon Stability and Tuning for Spectroscopic Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Mielke-Fagan, Amy F.; Elam, Kristie A.

    2010-01-01

    The Fabry-Perot interferometer is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating flow properties such as gas velocity and temperature. Rayleigh scattered light from a focused laser beam can be directly imaged through a solid Fabry-Perot etalon onto a CCD detector to provide the spectral content of the scattered light. The spatial resolution of the measurements is governed by the locations of interference fringes. The location of the fringes can be changed by altering the etalon?s physical characteristics, such as thickness and index of refraction. For a fused silica solid etalon the physical properties can be adjusted by changing the etalon temperature; hence changing the order of the interference pattern and the physical fringe locations. Controlling the temperature of the etalon can provide for a slow time-response spatial scanning method for this type of etalon system. A custom designed liquid crystal Fabry-Perot (LCFP) can provide for a fast time-response method of scanning the etalon system. Voltage applied to the liquid crystal interface sets the etalon?s properties allowing Rayleigh measurements to be acquired at varying spatial locations across the image of the laser beam over a very short time period. A standard fused silica etalon and a tunable LCFP etalon are characterized to select the system that is best suited for Rayleigh scattering measurements in subsonic and supersonic flow regimes. A frequency-stabilized laser is used to investigate the apparent frequency stability and temperature sensitivity of the etalon systems. Frequency stability and temperature sensitivity data of the fused silica and LCFP etalon systems are presented in this paper, along with measurements of the LCFP etalon?s tuning capabilities. Rayleigh scattering velocity measurements with both etalon systems are presented, in an effort to determine which etalon is better suited to provide optical flow measurements of velocity, temperature, and density.

  10. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    PubMed

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  11. Navy Prototype Optical Interferometer observations of geosynchronous satellites.

    PubMed

    Hindsley, Robert B; Armstrong, J Thomas; Schmitt, Henrique R; Andrews, Jonathan R; Restaino, Sergio R; Wilcox, Christopher C; Vrba, Frederick J; Benson, James A; DiVittorio, Michael E; Hutter, Donald J; Shankland, Paul D; Gregory, Steven A

    2011-06-10

    Using a 15.9  m baseline at the Navy Prototype Optical Interferometer (NPOI), we have successfully detected interferometric fringes in observations of the geosynchronous satellite (geosat) DirecTV-9S while it glinted on two nights in March 2009. The fringe visibilities can be fitted by a model consisting of two components, one resolved (≳3.7  m) and one unresolved (∼1.1  m). Both the length of the glint and the specular albedos are consistent with the notion that the glinting surfaces are not completely flat and scatter reflected sunlight into an opening angle of roughly 15°. Enhancements to the NPOI that would improve geosat observations include adding an infrared capability, which could extend the glint season, and adding larger, adaptive-optics equipped telescopes. Future work may test the feasibility of observing geosats with aperture-masked large telescopes and of developing an array of six to nine elements.

  12. High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboussouan, Pierre; Alibart, Olivier; Ostrowsky, Daniel B.

    We report on a two-photon interference experiment in a quantum relay configuration using two picosecond regime periodically poled lithium niobate (PPLN) waveguide based sources emitting paired photons at 1550 nm. The results show that the picosecond regime associated with a guided-wave scheme should have important repercussions for quantum relay implementations in real conditions, essential for improving both the working distance and the efficiency of quantum cryptography and networking systems. In contrast to already reported regimes, namely, femtosecond and CW, it allows achieving a 99% net visibility two-photon interference while maintaining a high effective photon pair rate using only standard telecommore » components and detectors.« less

  13. Continuously active interferometer stabilization and control for time-bin entanglement distribution

    DOE PAGES

    Toliver, Paul; Dailey, James M.; Agarwal, Anjali; ...

    2015-02-10

    In this study, we describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. In addition, the co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.

  14. Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid.

    PubMed

    Goblot, V; Nguyen, H S; Carusotto, I; Galopin, E; Lemaître, A; Sagnes, I; Amo, A; Bloch, J

    2016-11-18

    We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.

  15. Method and apparatus for checking the stability of a setup for making reflection type holograms

    NASA Technical Reports Server (NTRS)

    Lackner, H. G. (Inventor)

    1974-01-01

    A method and apparatus are described for checking the stability of a setup for recording reflection-type (white light) holograms. Two sets of interference fringes are simultaneously obtained, one giving information about coherence and stability of the setup alone and the other demonstrating coherence of the entire system, including the holographic recording plate. Special emphasis is given to the stability of the plate, due to the fact that any minute vibration might severely degrade or completely destroy the recording.

  16. Inkjet printing of TiO2/AlOOH heterostructures for the formation of interference color images with high optical visibility

    PubMed Central

    Yakovlev, Aleksandr V.; Milichko, Valentin A.; Pidko, Evgeny A.; Vinogradov, Vladimir V.; Vinogradov, Alexandr V.

    2016-01-01

    This paper describes a practical approach for the fabrication of highly visible interference color images using sol-gel ink technique and a common desktop inkjet printer. We show the potential of titania-boehmite inks for the production of optical heterostructures on various surfaces, which after drying on air produce optical solid layers with low and high refractive index. The optical properties of the surface heterostructures were adjusted following the principles of antireflection coating resulting in the enhancement of the interference color optical visibility of the prints by as much as 32%. Finally, the presented technique was optimized following the insights into the mechanisms of the drop-surface interactions and the drop-on-surface coalescence to make it suitable for the production of even thickness coatings suitable for printing at a large scale. We propose that the technology described herein is a promising new green and sustainable approach for color printing. PMID:27848979

  17. Double-slit experiment in momentum space

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  18. Wave-particle dualism and complementarity unraveled by a different mode

    PubMed Central

    Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P.

    2012-01-01

    The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr’s principle of complementarity when applied to the paradigm of wave-particle dualism—that is, to Young’s double-slit experiment—implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spontaneous parametric down-conversion where we observe interference in the signal photon despite the fact that we have located it in one of the slits due to its entanglement with the idler photon. This surprising aspect of complementarity comes to light by our special choice of the TEM01 pump mode. According to quantum field theory the signal photon is then in a coherent superposition of two distinct wave vectors giving rise to interference fringes analogous to two mechanical slits. PMID:22628561

  19. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  20. Removing interference-based effects from the infrared transflectance spectra of thin films on metallic substrates: a fast and wave optics conform solution.

    PubMed

    Mayerhöfer, Thomas G; Pahlow, Susanne; Hübner, Uwe; Popp, Jürgen

    2018-06-25

    A hybrid formalism combining elements from Kramers-Kronig based analyses and dispersion analysis was developed, which allows removing interference-based effects in the infrared spectra of layers on highly reflecting substrates. In order to enable a highly convenient application, the correction procedure is fully automatized and usually requires less than a minute with non-optimized software on a typical office PC. The formalism was tested with both synthetic and experimental spectra of poly(methyl methacrylate) on gold. The results confirmed the usefulness of the formalism: apparent peak ratios as well as the interference fringes in the original spectra were successfully corrected. Accordingly, the introduced formalism makes it possible to use inexpensive and robust highly reflecting substrates for routine infrared spectroscopic investigations of layers or films the thickness of which is limited by the imperative that reflectance absorbance must be smaller than about 1. For thicker films the formalism is still useful, but requires estimates for the optical constants.

  1. Nanoscale probing of image-dipole interactions in a metallic nanostructure

    PubMed Central

    Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo

    2015-01-01

    An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228

  2. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  3. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  4. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  5. Holographic Lens for Pilot’s Head-Up Display

    DTIC Science & Technology

    1976-02-01

    holog; rdm lens. The dynamically-stabilized recording apparatus for the full- scale transmission hologram lens was designed and assembled in Phase 2...8217LjI for which the fringe visibility measured is 0.707 ........... 25 3 Coherence lengjth for TEMQ is 3.5 cm........27 4 Masured sinkile frequency...horizontal focal surfaces ofthe T90-N8-21.9 hologram lens . . . . . . . 118 41 Chief ray efficiency measured as a function of vertical and horizontal field

  6. VLBA Archive &Distribution Architecture

    NASA Astrophysics Data System (ADS)

    Wells, D. C.

    1994-01-01

    Signals from the 10 antennas of NRAO's VLBA [Very Long Baseline Array] are processed by a Correlator. The complex fringe visibilities produced by the Correlator are archived on magnetic cartridges using a low-cost architecture which is capable of scaling and evolving. Archive files are copied to magnetic media to be distributed to users in FITS format, using the BINTABLE extension. Archive files are labelled using SQL INSERT statements, in order to bind the DBMS-based archive catalog to the archive media.

  7. First 2.2 micrometer results from the iota interferometer

    NASA Technical Reports Server (NTRS)

    Dyck, H. M.; Benson, J. A.; Carlton, N. P.; Coldwell, C.; Lacasse, M. G.; Nisenson, P.; Panasyuk, A.; Papaliolios, C.; Pearlman, R. D.; Reasenberg, R. D.

    1995-01-01

    We present the first infrared fringe visibility measurements made with the Infrared Optical Telescope Array on Mt. Hopkins. Effective temperatures are derived for RX Boo, RS Cnc, and Beta Peg. RX Boo is the coolest small-amplitude variable giant star to have an effective temperature determination. We compare the size of its photosphere at infrared wavelengths with the sizes of its SiO and H20 radio emission regions. We also discuss initial performance parameters for the interferometer.

  8. Second-order non-linear optical studies on CdS microcrystallite-doped alkali borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Qiming; Wang, Mingliang; Zhao, Xiujian

    2007-05-01

    CdS microcrystal-doped alkali borosilicate glasses were prepared by conventional fusion and heat-treatment method. Utilizing Maker fringe method, second-harmonic generation (SHG) was both observed from CdS-doped glasses before and after certain thermal/electrical poling. While because the direction of polarization axes of CdS crystals formed in the samples is random or insufficient interferences of generated SH waves occur, the fringe patterns obtained in samples without poling treatments showed no fine structures. For the poled samples, larger SH intensity has been obtained than that of the samples without any poling treatments. It was considered that the increase of an amount of hexagonal CdS in the anode surface layer caused by the applied dc field increased the SH intensity. The second-order non-linearity χ(2) was estimated to be 1.23 pm/V for the sample poled with 2.5 kV at 360 °C for 30 min.

  9. Grating-assisted demodulation of interferometric optical sensors.

    PubMed

    Yu, Bing; Wang, Anbo

    2003-12-01

    Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.

  10. Quality inspection of anisotropic scintillating lead tungstate (PbWO 4) crystals through measurement of interferometric fringe pattern parameters

    NASA Astrophysics Data System (ADS)

    Cocozzella, N.; Lebeau, M.; Majni, G.; Paone, N.; Rinaldi, D.

    2001-08-01

    Scintillating crystals are widely used as detectors in radiographic systems, computerized axial tomography devices and in calorimeters employed in high-energy physics. This paper results from a project motivated by the development of the CMS calorimeter at CERN, which will make use of a large number of scintillating crystals. In order to prevent crystals from breaking because of internal residual stress, a quality control system based on optic inspection of interference fringe patterns was developed. The principle of measurement procedures was theoretically modelled, and then a dedicated polariscope was designed and built, in order to observe the crystals under induced stresses or to evaluate the residual internal stresses. The results are innovative and open a new perspective for scintillating crystals quality control: the photoelastic constant normal to the optic axis of the lead tungstate crystals (PbWO 4) was measured, and the inspection procedure developed is applicable to mass production, not only to optimize the crystal processing, but also to establish a quality inspection procedure.

  11. A Fast Radio Burst Search Method for VLBI Observation

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li

    2018-02-01

    We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.

  12. Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing Coral Reef: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Ogston, A.S.; Field, M.E.

    2010-01-01

    Accelerating sea-level rise associated with global climate change will affect sedimentary processes on coral reefs and other shoreline environments by increasing energy and sediment resuspension. On reefs, sedimentation is known to increase coral stress and bleaching as particles that settle on coral surfaces interfere with photosynthesis and feeding, and turbidity induced by suspended sediment reduces incident light levels. Using relationships developed from observations of wave orbital velocity, water-surface elevation, and suspended-sediment concentration on a fringing reef flat of Molokai, Hawaii, predictions of the average daily maximum in suspended-sediment concentration increase from ~11 mg/l to ~20 mg/l with 20 cm sea-level rise. The duration of time concentrations exceeds 10 mg/l increases from 9 to 37. An evaluation of the reduction of wave energy flux through breaking and frictional dissipation across the reef flat shows an increase of ~80 relative to the present will potentially reach the shoreline as sea level increases by 20 cm. Where the shoreline exists on low, flat terrain, the increased energy could cause significant erosion of the shoreline. Considering the sediment budget, the sediment flux is predicted to increase and removal of fine-grained sediment may be expedited on some fringing reefs, and sediment in storage on the inner reef could ultimately be reduced. However, increased shoreline erosion may add sediment and offset removal from the reef flat. The shifts in sediment availability and transport that will occur as result of a modest increase in sea level have wide application to fringing coral reefs elsewhere, as well as other shoreline environments. ?? 2010 the Coastal Education & Research Foundation (CERF).

  13. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  14. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  15. Potential accuracy of methods of laser Doppler anemometry in the single-particle scattering mode

    NASA Astrophysics Data System (ADS)

    Sobolev, V. S.; Kashcheeva, G. A.

    2017-05-01

    Potential accuracy of methods of laser Doppler anemometry is determined for the singleparticle scattering mode where the only disturbing factor is shot noise generated by the optical signal itself. The problem is solved by means of computer simulations with the maximum likelihood method. The initial parameters of simulations are chosen to be the number of real or virtual interference fringes in the measurement volume of the anemometer, the signal discretization frequency, and some typical values of the signal/shot noise ratio. The parameters to be estimated are the Doppler frequency as the basic parameter carrying information about the process velocity, the signal amplitude containing information about the size and concentration of scattering particles, and the instant when the particles arrive at the center of the measurement volume of the anemometer, which is needed for reconstruction of the examined flow velocity as a function of time. The estimates obtained in this study show that shot noise produces a minor effect (0.004-0.04%) on the frequency determination accuracy in the entire range of chosen values of the initial parameters. For the signal amplitude and the instant when the particles arrive at the center of the measurement volume of the anemometer, the errors induced by shot noise are in the interval of 0.2-3.5%; if the number of interference fringes is sufficiently large (more than 20), the errors do not exceed 0.2% regardless of the shot noise level.

  16. High contrast stellar observations within the diffraction limit at the Palomar Hale telescope

    NASA Astrophysics Data System (ADS)

    Mennesson, B.; Hanot, C.; Serabyn, E.; Martin, S. R.; Liewer, K.; Loya, F.; Mawet, D.

    2010-07-01

    We report on high-accuracy, high-resolution (< 20mas) stellar measurements obtained in the near infrared ( 2.2 microns) at the Palomar 200 inch telescope using two elliptical (3m x 1.5m) sub-apertures located 3.4m apart. Our interferometric coronagraph, known as the "Palomar Fiber Nuller" (PFN), is located downstream of the Palomar adaptive optics (AO) system and recombines the two separate beams into a common singlemode fiber. The AO system acts as a "fringe tracker", maintaining the optical path difference (OPD) between the beams around an adjustable value, which is set to the central dark interference fringe. AO correction ensures high efficiency and stable injection of the beams into the single-mode fiber. A chopper wheel and a fast photometer are used to record short (< 50ms per beam) interleaved sequences of background, individual beam and interferometric signals. In order to analyze these chopped null data sequences, we developed a new statistical method, baptized "Null Self-Calibration" (NSC), which provides astrophysical null measurements at the 0.001 level, with 1 σ uncertainties as low as 0.0003. Such accuracy translates into a dynamic range greater than 1000:1 within the diffraction limit, demonstrating that the approach effectively bridges the traditional gap between regular coronagraphs, limited in angular resolution, and long baseline visibility interferometers, whose dynamic range is restricted to 100:1. As our measurements are extremely sensitive to the brightness distribution very close to the optical axis, we were able to constrain the stellar diameters and amounts of circumstellar emission for a sample of very bright stars. With the improvement expected when the PALM-3000 extreme AO system comes on-line at Palomar, the same instrument now equipped with a state of the art low noise fast read-out near IR camera, will yield 10-4 to 10-3 contrast as close as 30 mas for stars with K magnitude brighter than 6. Such a system will provide a unique and ideal tool for the detection of young (<100 Myr) self-luminous planets and hot debris disks in the immediate vicinity (0.1 to a few AUs) of nearby (< 50pc) stars.

  17. Interferometric measurements of the tear film irregularities on the human cornea

    NASA Astrophysics Data System (ADS)

    Szczesna, Dorota H.; Jaronski, Jaroslaw; Kasprzak, Henryk T.; Stenevi, Ulf

    2005-09-01

    The pre-ocular tear film is the most anterior refractive surface of the eye. Its stability plays an important role in the condition of vision from the optical and physiological point of view. If the eye is opened for a significantly long time or suffers from an anormalities in tear production, there appear isolated dry islands - break-ups - with a random distribution in the continuous lacrimal film. We applied an interferometric method - Lateral Shearing Technique for investigating the tear film stability and the smoothness of the tear film surface. This method is non-invasive and it is characterised by the high accuracy and sensitivity. Interferometry allows dynamic measurements of the tear film stability in real time by observation of interference fringes. The evaporation of tears and appearance of the breakups causes changes in the fringe geometry. Fast Fourier Transform has been used for quantitative assessment of the fringe smoothness and as a consequence of the tear film surface geometry. This paper presents the method used for quantitative evaluation of the tear film distribution on the cornea. Examples of interferograms recorded on eyes of patients with healthy eyes, suffering from dry eye syndrome and wearing contact lenses are also given. With our technique we were able to observe distinct differences in stability of the tear film between healthy and dry eyes, and the tear film on contact lenses.

  18. [Research on lateral shearing interferometer for field monitoring of natural gas pipeline leak].

    PubMed

    Zhang, Xue-Feng; Gao, Yu-Bin

    2012-09-01

    Aimed at the mechanical scanning spectroscopy equipment with poor anti-interference and anti-jamming ability, which affects the accuracy of its natural gas pipeline leak detection in the wild, a new type of lateral shearing interferometer system was designed. The system uses a beam splitter to get optical path difference by a mechanical scanning part, and it cancel the introduction of external vibration interference through the linkage between the two beam splitterw. The interference intensity of interference fringes produced was calculated, and analysis of a rotating beam splitter corresponds to the angle of the optical path difference function, solving for the maximum angle of the forward rotation and reverse rotation, which is the maximum optical path range. Experiments using the gas tank deflated simulated natural gas pipeline leak process, in the interference conditions, and the test data of the type WQF530 spectrometer and the new type of lateral shearing interferometer system were comparedt. The experimental results show that the relative error of both systems is about 1% in indoor conditions without interference. However, in interference environment, the error of WQF530 type spectrometer becomes larger, more than 10%, but the error of the new type of lateral shearing interferometer system is still below 5%. The detection accuracy of the type WQF530 spectrometer decreased significantly due to the environment. Therefore, the seismic design of the system can effectively offset power deviation and half-width increases of center wavelength caused by external interference, and compared to conventional mechanical scanning interferometer devices the new system is more suitable for field detection.

  19. Experimental demonstration of counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ren, M.; Wu, G.; Wu, E.; Zeng, H.

    2011-04-01

    Counterfactual quantum key distribution provides natural advantage against the eavesdropping on the actual signal particles. It can prevent the photon-number-splitting attack when a weak coherent light source is used for the practical implementation. We experimentally realized the counterfactual quantum key distribution in an unbalanced Mach-Zehnder interferometer of 12.5-km-long quantum channel with a high-fringe visibility of 97.4%. According to the security analysis, the system was robust against the photon-number-splitting attack. The article is published in the original.

  20. A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency.

    PubMed

    Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie

    2012-07-30

    A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.

  1. Experimental research on the stability and the multilongitudinal mode interference of bidirectional outputs of LD-pumped solid state ring laser

    NASA Astrophysics Data System (ADS)

    Wan, Shunping; Tian, Qian; Sun, Liqun; Yao, Minyan; Mao, Xianhui; Qiu, Hongyun

    2004-05-01

    This paper reports an experimental research on the stability of bidirectional outputs and multi-longitudinal mode interference of laser diode end-pumped Nd:YVO4 solid-state ring laser (DPSSL). The bidirectional, multi-longitudinal and TEM00 mode continuous wave outputs are obtained and the output powers are measured and their stabilities are analyzed respectively. The spectral characteristic of the outputs is measured. The interfering pattern of the bidirectional longitudinal mode outputs is obtained and analyzed in the condition of the ring cavity with rotation velocity. The movement of the interfering fringe of the multi-longitudinal modes is very sensitive to the deformation of the setup base and the fluctuation of the intracavity air, but is stationary or randomly dithers when the stage is rotating.

  2. Transient diffraction grating measurements of molecular diffusion in the undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Spiegel, Daniel R.; Tuli, Santona

    2011-07-01

    Diffusion is a central process in many biological, chemical, and physical systems. We describe an experiment that employs the interference of laser beams to allow the measurement of molecular diffusion on submillimeter length scales. The interference fringes of two intersecting pump beams within a dye solution create a sinusoidal distribution of long-lived molecular excited states. A third probe beam is incident at a wavelength at which the indices of refraction of the ground and excited states are different, so the probe beam diffracts from the spatially periodic excited-state pattern. After the pump beams are switched off, the excited-state periodicity washes out as the system diffuses back to equilibrium. The molecular diffusion constant is obtained from the rate constant of the exponential decay of the diffracted beam. It is also possible to measure the excited-state lifetime.

  3. Visualized measurement of the acoustic levitation field based on digital holography with phase multiplication

    NASA Astrophysics Data System (ADS)

    Zheng, Puchao; Li, Enpu; Zhao, Jianlin; Di, Jianglei; Zhou, Wangmin; Wang, Hao; Zhang, Ruifeng

    2009-11-01

    By using digital holographic interferometory with phase multiplication, the visualized measurement of the acoustic levitation field (ALF) with single axis is carried out. The digital holograms of the ALF under different conditions are recorded by use of CCD. The corresponding digital holographic interferograms reflecting the sound pressure distribution and the interference phase distribution are obtained by numerical reconstruction and phase subtraction, which are consistent with the theoretical results. It indicates that the proposed digital holographic interferometory with phase multiplication can successfully double the fringe number of the interference phase patterns of the ALF and improve the measurement precision. Compared with the conventional optical holographic interferometory, digital holographic interferometory has the merits of quasi real-time, more exactitude and convenient operation, and it provides an effective way for studying the sound pressure distribution of the ALF.

  4. Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Mengfei; Jean, Joel; Bulović, Vladimir; Baldo, Marc A.

    2017-05-01

    Infrared-to-visible photon upconversion has potential applications in photovoltaics, sensing, and bioimaging. We demonstrate a solid-state thin-film device that utilizes sensitized triplet-triplet exciton annihilation, converting infrared photons absorbed by colloidal lead sulfide nanocrystals (NCs) into visible photons emitted from a luminescent dopant in rubrene at low incident light intensities. A typical bilayer device consisting of a monolayer of NCs and a doped film of rubrene is limited by low infrared absorption in the thin NC film. Here, we augment the bilayer with an optical spacer layer and a silver-film back reflector, resulting in interference effects that enhance the optical field and thus the absorption in the NC film. The interference-enhanced device shows an order-of-magnitude increase in the upconverted emission at the wavelength of λ = 610 nm when excited at λ = 980 nm. At incident light intensities above 1.1 W/cm2, the device attains maximum efficiency, converting (1.6 ± 0.2)% of absorbed infrared photons into higher-energy singlet excitons in rubrene.

  5. In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.

    PubMed

    Hoppmann, Christian; Maslennikov, Innokentiy; Choe, Senyon; Wang, Lei

    2015-09-09

    Optical modulation of proteins provides superior spatiotemporal resolution for understanding biological processes, and photoswitches built on light-sensitive proteins have been significantly advancing neuronal and cellular studies. Small molecule photoswitches could complement protein-based switches by mitigating potential interference and affording high specificity for modulation sites. However, genetic encodability and responsiveness to nonultraviolet light, two desired properties possessed by protein photoswitches, are challenging to be engineered into small molecule photoswitches. Here we developed a small molecule photoswitch that can be genetically installed onto proteins in situ and controlled by visible light. A pentafluoro azobenzene-based photoswitchable click amino acid (F-PSCaa) was designed to isomerize in response to visible light. After genetic incorporation into proteins via the expansion of the genetic code, F-PSCaa reacts with a nearby cysteine within the protein generating an azo bridge in situ. The resultant bridge is switchable by visible light and allows conformation and binding of CaM to be regulated by such light. This photoswitch should prove valuable in optobiology for its minimal interference, site flexibility, genetic encodability, and response to the more biocompatible visible light.

  6. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.

    PubMed

    Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E

    2004-01-07

    We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.

  7. Speckle techniques for determining stresses in moving objects

    NASA Technical Reports Server (NTRS)

    Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.

    1978-01-01

    Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.

  8. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  9. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

  10. Electric current heating calibration of a laser holographic nondestructive test system

    NASA Technical Reports Server (NTRS)

    Liu, H.-K.; Kurtz, R. L.

    1975-01-01

    Holographic NDT was used to measure small surface displacements controlled by electric heating by detecting the difference of the interference fringe patterns as viewed through the hologram on a real time basis. A perforated aluminum test plate, with the holes used to position thin metal foils, was used in the experiment. One of the foils was connected to an electric power source and small displacements of the foil were caused and controlled by Ohmic heating. An He-Ne laser was used to perform the holography.

  11. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.

    PubMed

    Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  12. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  13. Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka'i, Hawai'i over the last several decades

    USGS Publications Warehouse

    Prouty, N.G.; Field, M.E.; Stock, J.D.; Jupiter, S.D.; McCulloch, M.

    2010-01-01

    The fringing reef of southern Moloka’i is perceived to be in decline because of land-based pollution. In the absence of historical records of sediment pollution, ratios of coral Ba/Ca were used to test the hypothesis that sedimentation has increased over time. Baseline Ba/Ca ratios co-vary with the abundance of red, terrigenous sediment visible in recent imagery. The highest values at One Ali’i are near one of the muddiest parts of the reef. This co-varies with the lowest growth rate of all the sites, perhaps because the upstream Kawela watershed was historically leveed all the way to the nearshore, providing a fast-path for sediment delivery. Sites adjacent to small, steep watersheds have ∼decadal periodicities whereas sites adjacent to mangrove forests have shorter-period fluctuations that correspond to the periodicity of sediment transport in the nearshore, rather than the watershed. All four sites show a statistically significant upward trend in Ba/Ca.

  14. Interference stabilization of atoms in a strong laser field for obtaining inversion and lasing in the visible and VUV frequency ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogatskaya, A. V., E-mail: annabogatskaya@gmail.com; Volkova, E. A.; Popov, A. M.

    2016-09-15

    The interference stabilization of Rydberg atoms in strong laser fields is proposed for producing a plasma channel with the inverse population. Inversion between a group of Rydberg levels and low-lying excited levels and the ground state permits amplification and lasing in the IR, visible, and VUV frequency ranges. The lasing and light amplification processes in the plasma channel are analyzed using rate equations and the efficiency of this method is compared with that in the usual method for high harmonic generation during rescattering of electrons by a parent ion.

  15. Interferometric visibility and coherence

    NASA Astrophysics Data System (ADS)

    Biswas, Tanmoy; García Díaz, María; Winter, Andreas

    2017-07-01

    Recently, the basic concept of quantum coherence (or superposition) has gained a lot of renewed attention, after Baumgratz et al. (Phys. Rev. Lett. 113, 140401. (doi:10.1103/PhysRevLett.113.140401)), following Åberg (http://arxiv.org/abs/quant-ph/0612146), have proposed a resource theoretic approach to quantify it. This has resulted in a large number of papers and preprints exploring various coherence monotones, and debating possible forms for the resource theory. Here, we take the view that the operational foundation of coherence in a state, be it quantum or otherwise wave mechanical, lies in the observation of interference effects. Our approach here is to consider an idealized multi-path interferometer, with a suitable detector, in such a way that the visibility of the interference pattern provides a quantitative expression of the amount of coherence in a given probe state. We present a general framework of deriving coherence measures from visibility, and demonstrate it by analysing several concrete visibility parameters, recovering some known coherence measures and obtaining some new ones.

  16. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from human fingers.

  17. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    NASA Technical Reports Server (NTRS)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  18. Optical vortex knots – one photon at a time

    PubMed Central

    Tempone-Wiltshire, Sebastien J.; Johnstone, Shaun P.; Helmerson, Kristian

    2016-01-01

    Feynman described the double slit experiment as “a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics”. The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot – one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing. PMID:27087642

  19. Quantum interference of independently generated telecom-band single photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  20. Status of the development of Brazilian Decimetric Array (BDA)

    NASA Astrophysics Data System (ADS)

    Sawant, Hanumant; Fernandes, Francisco; Chellasamy, Ebenezer; Cecatto, Jose R.; Costa, D. Joaquim; Sirothia, Sandeep Kumar; Subramanian, Koovapady

    BDA will consists of 38 antennas of 4 meters diameter, capable of operating at frequency range of (1.2-1.7, 2.8 and 5.6) GHz. The array will be spread over the distances 2 x 1 km in a T shape with longest base line in E-W direction, having spatial resolution of ~10 sec of arc at 5.6 GHz. The visibility data can be processed to provide two dimensional images at a time resolution of 100 ms (or higher). In the second phase of the BDA, almost all systems of the 26 antennas are installed. LO of 10 MHz is send from receiver room to each receiver located in the each antenna tower. This receiver operates in the frequency range of 1-6 GHz and converts received signal to 70 MHz. Fiber optical system is partially installed in tower converts 70 MHz signal to optical signal and send to receiver room with low loss and phase compensation of 100 ps, where it is converted back to 70 MHz and processed to give output of 0-5 MHz bandpass and further processed by the correlator. Tracking system, with Dual feed back facility has tracking accuracy of +/- 3 arc minutes. All safety features are installed, with on line offset adjustment. Data logging and event logging for future investigations are available. Tracking system was tested for one month with 8 hours tracking and results of these will also be presented. Field programmable Gate Array based complex correlator system capable of producing all four Stokes parameters was designed and developed for correlating base band outputs from 38 antennas. The correlator produces delay and fringe corrected, visibility correlations between any two signal channels of the same polarizations from any given pair of antennas, providing visibility data. Fringes using this system have been obtained for baseline combinations of 12 fully installed antennas. Simulations of the UV coverage and imaging were carried out for the full synthesis observations of sources at different configurations and various declinations in -70 to +23 degrees range. The current system can image the Sun with spatial resolution of 3.40 x 4.54 arc min at 1.4 GHz. Results of the each of the above systems along with the observed fringes from the FPGA based complex correlator system from non redundant 12 antennas in two dimensions will be presented. BDA phase II will be operational shortly.

  1. Holographic interferometry of oil films and droplets in water with a single-beam mirror-type scheme.

    PubMed

    Kukhtarev, Nickolai; Kukhtareva, Tatiana; Gallegos, Sonia C

    2011-03-01

    Application of single-beam reflective laser optical interferometry for oil films and droplets in water detection and characterization is discussed. Oil films can be detected by the appearance of characteristic interference patterns. Analytical expressions describing intensity distribution in these interference patterns allow determination of oil film thickness, size of oil droplets, and distance to the oil film from the observation plane. Results from these analyses indicate that oil spill aging and breakup can be monitored in real time by analyzing time-dependent holographic fringe patterns. Interferometric methods of oil spill detection and characterization can be automated using digital holography with three-dimensional reconstruction of the time-changing oil spill topography. In this effort, the interferometric methods were applied to samples from Chevron oil and British Petroleum MC252 oil obtained during the Deep Water Horizon oil spill in the Gulf of Mexico. © 2011 Optical Society of America

  2. Characterization of a remote optical element with bi-photons

    NASA Astrophysics Data System (ADS)

    Puhlmann, D.; Henkel, C.; Heuer, A.; Pieplow, G.; Menzel, R.

    2016-02-01

    We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach-Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.

  3. Exotic looped trajectories of photons in three-slit interference

    PubMed Central

    Magaña-Loaiza, Omar S; De Leon, Israel; Mirhosseini, Mohammad; Fickler, Robert; Safari, Akbar; Mick, Uwe; McIntyre, Brian; Banzer, Peter; Rodenburg, Brandon; Leuchs, Gerd; Boyd, Robert W.

    2016-01-01

    The validity of the superposition principle and of Born's rule are well-accepted tenants of quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small, thus rendering them extremely difficult to measure. Here we confirm the validity of Born's rule and present the first experimental observation of exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process increases the probability of occurrence of these exotic trajectories, demonstrating that they are related to the near-field component of the photon's wavefunction. PMID:28008907

  4. Exotic looped trajectories of photons in three-slit interference.

    PubMed

    Magaña-Loaiza, Omar S; De Leon, Israel; Mirhosseini, Mohammad; Fickler, Robert; Safari, Akbar; Mick, Uwe; McIntyre, Brian; Banzer, Peter; Rodenburg, Brandon; Leuchs, Gerd; Boyd, Robert W

    2016-12-23

    The validity of the superposition principle and of Born's rule are well-accepted tenants of quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small, thus rendering them extremely difficult to measure. Here we confirm the validity of Born's rule and present the first experimental observation of exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process increases the probability of occurrence of these exotic trajectories, demonstrating that they are related to the near-field component of the photon's wavefunction.

  5. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  6. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  7. Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2017-01-15

    We developed a new technology that uses backscattering interferometry (BSI) to quantitatively measure nematic liquid crystal (NLC)-based biosensors, those usually relied on texture reading for on/off signals. The LC-based BSI comprised an octadecyltrichlorosilane (OTS)-coated square capillary filled with 4-cyano-4'-pentylbiphenyl (5CB, a nematic LC at room temperature). The LC/water interface in the capillary was functionalized by a coating of poly(acrylicacid-b-4-cyanobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and immobilized with the enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) through covalent linkage to the PAA chains (5CB PAA-GOx:HRP ) for glucose detection. Laser irradiation of the LC near the LC/water interface resulted in backscattered fringes with high contrast. The change in the spatial position of the fringes (because of the change in the orientation of the LC caused by the GOx:HRP enzymatic reaction of glucose) altered the output voltage of the photodetector when its active area was aligned with the edge of one of the fringes. The change in the intensity at the photodetector allowed the detection limit of the instrument to be as low as 0.008mM with a linear range of 0.02-9mM in a short response time (~60s). This LC-based BSI technique allows for quantitative, sensitive, selective, reproducible, easily obtainable, and interference-free detection in a large linear dynamic range and for practical applications with human serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Statistics of Data Fitting: Flaws and Fixes of Polynomial Analysis of Channeled Spectra

    NASA Astrophysics Data System (ADS)

    Karstens, William; Smith, David

    2013-03-01

    Starting from general statistical principles, we have critically examined Baumeister's procedure* for determining the refractive index of thin films from channeled spectra. Briefly, the method assumes that the index and interference fringe order may be approximated by polynomials quadratic and cubic in photon energy, respectively. The coefficients of the polynomials are related by differentiation, which is equivalent to comparing energy differences between fringes. However, we find that when the fringe order is calculated from the published IR index for silicon* and then analyzed with Baumeister's procedure, the results do not reproduce the original index. This problem has been traced to 1. Use of unphysical powers in the polynomials (e.g., time-reversal invariance requires that the index is an even function of photon energy), and 2. Use of insufficient terms of the correct parity. Exclusion of unphysical terms and addition of quartic and quintic terms to the index and order polynomials yields significantly better fits with fewer parameters. This represents a specific example of using statistics to determine if the assumed fitting model adequately captures the physics contained in experimental data. The use of analysis of variance (ANOVA) and the Durbin-Watson statistic to test criteria for the validity of least-squares fitting will be discussed. *D.F. Edwards and E. Ochoa, Appl. Opt. 19, 4130 (1980). Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  9. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.

    PubMed

    Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G

    2011-04-10

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America

  10. The Drainage of Thin, Vertical, Model Polyurethane Liquid Films

    NASA Astrophysics Data System (ADS)

    Snow, Steven; Pernisz, Udo; Braun, Richard; Naire, Shailesh

    1999-11-01

    We have successfully measured the drainage rate of thin, vertically-aligned, liquid films prepared from model polyurethane foam formulations. The pattern of interference fringes in these films was consistent with a wedge-shaped film profile. The time evolution of this wedge shape (the ``collapsing wedge") obeyed a power law relationship between fringe density s and time t of s = k t^m. Experimentally, m ranged from -0.47 to -0.92. The lower bound for m represented a case where the surface viscosity of the film was very high (a ``rigid" surface). Theoretical modeling of this case yielded m = -0.5, in excellent agreement with experiment. Instantaneous film drainage rate (dV/dt) could be extracted from the ``Collapsing Wedge" model. As expected, dV/dt scaled inversely with bulk viscosity. As surfactant concentration was varied at constant bulk viscosity, dV/dt passed through a maximum value, consistent with a model where the rigidity of the surface was a function of both the intensity of surface tension gradients and the surface viscosity of the film. The influence of surface viscosity on dV/dt was also modeled theoretically.

  11. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  12. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    PubMed

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  13. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  14. Hybrid sol-gel planar optics for astronomy.

    PubMed

    Ghasempour, A; Leite, A M P; Reynaud, F; Marques, P V S; Garcia, P J V; Alexandre, D; Moreira, P J

    2009-02-02

    Hybrid sol-gel planar optics devices for astronomy are produced for the first time. This material system can operate from the visible (0.5 microm) up to the edge of astronomical J-band (1.4 microm). The design, fabrication and characterization results of a coaxial three beam combiner are given as an example. Fringe contrasts above 94% are obtained with a source with spectral bandwidth of 50 nm. These results demonstrate that hybrid sol-gel technology can produce devices with high quality, opening the possibility of rapid prototyping of new designs and concepts for astronomical applications.

  15. Cultural Resource Reconnaissance of U.S. Army Corps of Engineers Land Alongside Lake Sakakawea in Mountrail County, North Dakota. Volume 1. Main Report

    DTIC Science & Technology

    1987-02-11

    western wheatgrass, fringed sagewort, foxtail barley . Ground surface visibility (%): 90-100% when originally recorded. Nearest water: 500m. Intermittent...base, fragment of glass jar base, two sherds of a glass jar top, a metal canister - rusted through, a glazed ceramic sherd and a 1938 automobile license...32MN286. e) A metal canister, rusted , apparently for insecticide, from 32MN223. f) Automobile license plates from 32MN223 and 32MN281. g) A probable

  16. Torsion sensing setup based on a Mach-Zehnder interferometer with photonics crystal fiber

    NASA Astrophysics Data System (ADS)

    Pacheco-Chacon, Eliana I.; Gallegos-Arellano, E.; Sierra-Hernandez, Juan M.; Rojas-Laguna, Roberto; Estudillo-Ayala, Julian M.; Hernandez, Emmanuel; Jauregui-Vazquez, D.; Hernandez-Garcia, J. C.

    2017-02-01

    A torsion experimental sensing setup based on a Mach-Zehnder interferometer (MZI) with photonics crystal fiber is presented. The MZI was fabricated by fusion splicing a piece of photonic crystal fiber (PCF) between two segments of a single-mode fiber (SMF). Here, a spectral MZI fringe shifting is induced by applying torsion over the SMF-PCF-SMF. As a result a torsion sensitivity of 35.79 pm/ and a high visibility of 10 dB were achieved. Finally, it is shown that the sensing arrangement is compact and robust.

  17. Polar-interferometry: what can be learnt from the IOTA/IONIC experiment

    NASA Astrophysics Data System (ADS)

    Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe; Herwats, Emilie; Benisty, Myriam; Absil, Olivier; Defrere, Denis; Monnier, John; Traub, Wesley

    2008-07-01

    We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners.

  18. Two-Laser Interference Visible to the Naked Eye

    ERIC Educational Resources Information Center

    Kawalec, Tomasz; Bartoszek-Bober, Dobroslawa

    2012-01-01

    An experimental setup allowing the observation of two-laser interference by the naked eye is described. The key concept is the use of an electronic phase lock between two external cavity diode lasers. The experiment is suitable both for undergraduate and graduate students, mainly in atomic physics laboratories. It gives an opportunity for…

  19. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    PubMed

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  20. Method for measuring residual stresses in materials by plastically deforming the material and interference pattern comparison

    DOEpatents

    Pechersky, Martin J.

    1995-01-01

    A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.

  1. Signal-chip microcomputer control system for a diffraction grating ruling engine

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Zhang, Yuhua; Yang, Houmin; Guo, Du

    1998-08-01

    A control system with a chip of 8031 single-chip microcomputer as its nucleus for a diffraction grating ruling engine has been developed, its hardware and software are presented in this paper. A series of techniques such as program-controlled amplifier and interference fringes subdivision as well as motor velocity step governing are adopted to improve the control accuracy. With this control system, 8 kinds of gratings of different spacings can be ruled, the positioning precision of the diffraction grating ruling engine (sigma) equals 3.6 nm, and the maximum positioning error is less than 14.6 nm.

  2. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Fürstenau, N

    1999-05-01

    A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.

  3. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  4. 2ND International Workshop on Adaptive Optics for Industry and Medicine.

    DTIC Science & Technology

    2000-02-08

    The spots are well-separated, and there are only very weak interference peaks between adjacent spots, so identification of the spots is easy and...for transmission through an interference filter, a polarizing filter, the SLM, and a 12 mm diameter aperture to mask the active area in the SLM. A... interfere greatly with the visibility of the primary image. However, as the SLM power increases so does the contrast of the secondary images and

  5. Separated fringe packet observations with the Chara Array. II. ω Andromeda, HD 178911, and ξ Cephei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, C. D.; Ten Brummelaar, T. A.; Turner, N. H.

    When observed with optical long-baseline interferometers, components of a binary star that are sufficiently separated produce their own interferometric fringe packets; these are referred to as separated fringe packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and themore » SFPs can provide an accurate vector separation. In this paper, we apply the SFP approach to ω Andromeda, HD 178911, and ξ Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963 ± 0.049 M {sub ☉} and 0.860 ± 0.051 M {sub ☉} and 39.54 ± 1.85 mas for ω Andromeda, for HD 178911 of 0.802 ± 0.055 M {sub ☉} and 0.622 ± 0.053 M {sub ☉} with 28.26 ± 1.70 mas, and masses of 1.045 ± 0.031 M {sub ☉} and 0.408 ± 0.066 M {sub ☉} and 38.10 ± 2.81 mas for ξ Cephei.« less

  6. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  7. High temperature fiber sensor using the interference effect within a suspended core microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Nguyen, Linh V.; Warren-Smith, Stephen C.; Ebendorff-Heidepriem, Heike; Monro, Tanya M.

    2016-04-01

    We report a high temperature fiber sensor based on the multimode interference effect within a suspended core microstructured optical fiber (SCF). By splicing a short section of SCF with a lead-in single-mode fiber (SMF), the sensor head was formed. A complex interference pattern was obtained in the reflection spectrum as the result of the multiple excited modes in the SCF. The complexity of the interference indicates that there are more than two dominantly excited modes in the SCF, as resolved by Fast Fourier Transform (FFT) analysis of the interference. The proposed sensor was subjected to temperature variation from 20°C to 1100°C. The fringe of the filtered spectrum red-shifted linearly with respect to temperature varying between 20°C and 1100°C, with similar temperature sensitivity for increasing and decreasing temperature. Phase monitoring was used for an extended temperature experiment (80 hours) in which the sensor was subjected to several different temperature variation conditions namely (i) step-wise increase/decrease with 100°C steps between 20°C and 1100°C, (ii) dwelling overnight at 400°C, (iii) free fall from 1100°C to 132°C, and (iv) continuous increase of temperature from 132°C to 1100°C. Our approach serves as a simple and cost-effective alternative to the better-known high temperature fiber sensors such as the fiber Bragg grating (FBG) in sapphire fibers or regenerated FBG in photosensitive optical fibers.

  8. Snapshot imaging polarimeters using spatial modulation

    NASA Astrophysics Data System (ADS)

    Luo, Haitao

    The recent demonstration of a novel snapshot imaging polarimeter using the fringe modulation technique shows a promise in building a compact and moving-parts-free device. As just demonstrated in principle, this technique has not been adequately studied. In the effort of advancing this technique, we build a complete theory framework that can address the key issues regarding the polarization aberrations caused by using the functional elements. With this model, we can have the necessary knowledge in designing, analyzing and optimizing the systems. Also, we propose a broader technique that uses arbitrary modulation instead of sinusoidal fringes, which can give us more engineering freedom and can be the solution of achromatizing the system. In the hardware aspect, several important progresses are made. We extend the polarimeter technique from visible to middle wavelength infrared by using the yttrium vanadate crystals. Also, we incorporate a Savart Plate polarimter into a fundus camera to measure the human eye's retinal retardance, useful information for glaucoma diagnosis. Thirdly, a world-smallest imaging polarimeter is proposed and demonstrated, which may open many applications in security, remote sensing and bioscience.

  9. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inches) or other audible alarm that has an equivalent sound level and that is mounted at the control unit... section. (4) Non-interference. The control unit shall be so arranged as to permit one or any number of... the visible alarm to remain until the trouble has been corrected. (3) Non-interference. The control...

  10. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inches) or other audible alarm that has an equivalent sound level and that is mounted at the control unit... section. (4) Non-interference. The control unit shall be so arranged as to permit one or any number of... the visible alarm to remain until the trouble has been corrected. (3) Non-interference. The control...

  11. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inches) or other audible alarm that has an equivalent sound level and that is mounted at the control unit... section. (4) Non-interference. The control unit shall be so arranged as to permit one or any number of... the visible alarm to remain until the trouble has been corrected. (3) Non-interference. The control...

  12. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inches) or other audible alarm that has an equivalent sound level and that is mounted at the control unit... section. (4) Non-interference. The control unit shall be so arranged as to permit one or any number of... the visible alarm to remain until the trouble has been corrected. (3) Non-interference. The control...

  13. Tunable quantum interference in a 3D integrated circuit.

    PubMed

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  14. Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.

    PubMed

    Kuo, Paulina S; Gerrits, Thomas; Verma, Varun B; Nam, Sae Woo

    2016-11-01

    We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.

  15. Electric current generation in photorefractive bismuth silicon oxide without application of external electric field

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Kukhtarev, Nickolai; Kukhtareva, Tatiana; Edwards, Matthew E.; Reagan, Michael A.; Lyuksyutov, Sergei F.

    2003-10-01

    A holographic radial diffraction grating (HRDG) is an efficient optical element for splitting single laser beam on three 0, -1st, and +1st- diffraction order beams. The rotation of the grating at certain velocity allows a window for quality control over the frequency detuning between -1st, and +1st diffracted beams. The running interference fringes produced by the beams and projected on photorefractive crystal induce running holographic gratings in the crystal. This simple configuration is an effective tool for the study of such phenomena as space charge waves [1], domains motion [2], and electric current generation [3]. Specifics of photorefractive mechanism in cubic photorefractive crystals (BSO, BTO) normally require a use of external electric field to produce reasonable degree of refractive index modulation to observe associated with it phenomena. In this work we provide a direct experimental observation of the electric current generated in photorefractive BSO using running grating technique without an applied electric field. Moving interference fringes modulate a photoconductivity and an electric field in photorefractive crystal thus creating the photo electro-motive force (emf) and the current. The magnitude of the current varies between 1 and 10 nA depending on the rotation speed of HRDG. The peculiarities of the current behavior include a backward current flow, and current oscillations. The holographic current generated through this technique can find applications in non-destructive testing for ultra-sensitive vibrometry, materials characterization, and for motion sensors. References [1] S.F. Lyuksyutov, P. Buchhave, and M.V. Vasnetsov, Physical Review Letters, 79, No.1, 67-70 (1997) [2] P. Buchhave, S. Lyuksyutov, M. Vasnetsov, and C. Heyde, Journal Optical Society of America B, 13, No.11 2595-2602 (1996) [3] M. Vasnetsov, P. Buchhave, and S. Lyuksyutov Optics Communications, 137, 181-191 (1997)

  16. High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.

    2007-01-01

    We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.

  17. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary-function generator (that is, a signal generator), an oscilloscope, a trigger filter, and an advanced charge-coupled-device (CCD) camera. The optical components are positioned to form a pupil image of the mirror under test on the CCD chip, so that the interference pattern representative of the instantaneous mirror shape is imaged on the CCD chip.

  18. Quantum interference of electrically generated single photons from a quantum dot.

    PubMed

    Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2010-07-09

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

  19. High-order dispersion effects in two-photon interference

    NASA Astrophysics Data System (ADS)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  20. A power allocation method for 2 × 2 VLC-MIMO indoor communication

    NASA Astrophysics Data System (ADS)

    Dai, Mingjun; Yuan, Jing; Feng, Renhai; Wang, Hui; Chen, Bin; Lin, Xiaohui

    2016-08-01

    Visible light communication (VLC) has been a promising field of optical communications which focuses on visible light spectrum that humans can see. Unlike existing studies which mainly discuss point-to-point communication, in this paper, we consider a VLC network, in particular a 2 × 2 system. Our focus is on dealing with interference in this network. The objective is to maximize the signal to interference plus noise ratio (SINR) of one receiver for a given SINR of another receiver. We formulate a power allocation optimization problem to deal with such interference, and introduce dichotomy to solve this optimization problem. Simulation results have twofold meaning: First, SINR_1 increases with the growth of SINR_2, which are the SINR of the two receivers, respectively. Second, our proposed scheme outperforms the classical time-division multiple access technique in terms of transmit powers of both light sources when the data rate for these two schemes are set to be identical for each user, respectively.

  1. Narrow-angle Astrometry with SUSI

    NASA Astrophysics Data System (ADS)

    Kok, Y.; Ireland, M. J.; Robertson, J. G.; Tuthill, P. G.; Warrington, B. A.; Tango, W. J.

    2014-09-01

    SUSI (Sydney University Stellar Interferometer) is currently being fitted with a 2nd beam combiner, MUSCA (Micro-arcsecond University of Sydney Companion Astrometry), for the purpose of narrow-angle astrometry. With an aim to achieve ˜10 micro-arcseconds of angular resolution at its best, MUSCA allows SUSI to search for planets around bright binary stars, which are its primary targets. While the first beam combiner, PAVO (Precision Astronomical Visible Observations), is used to track stellar fringes during an observation, MUSCA will be used to measure separations of binary stars. MUSCA is a Michelson interferometer and its setup at SUSI will be described in this poster.

  2. Measurement of strains at high temperatures by means of a portable holographic moire camera

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Bhat, G.; Shao, Y.

    Electronic holographic moire is utilized to measure strains at temperatures up to 1000 C. A CW laser operating at 50 mW and at the wavelength of 632.8 nm is used to illuminate the objects under study. The main variables influencing the fringe patterns visibility are discussed and measurements are performed to obtain the values of these variables in the performed experiments. The coefficient of expansion of an alloy is measured at temperatures ranging from 797 C to 986 C. Excellent agreement is found between the measured values and those provided by the manufacturer.

  3. Measurement of strains at high temperatures by means of a portable holographic moire camera

    NASA Technical Reports Server (NTRS)

    Sciammarella, C. A.; Bhat, G.; Shao, Y.

    1989-01-01

    Electronic holographic moire is utilized to measure strains at temperatures up to 1000 C. A CW laser operating at 50 mW and at the wavelength of 632.8 nm is used to illuminate the objects under study. The main variables influencing the fringe patterns visibility are discussed and measurements are performed to obtain the values of these variables in the performed experiments. The coefficient of expansion of an alloy is measured at temperatures ranging from 797 C to 986 C. Excellent agreement is found between the measured values and those provided by the manufacturer.

  4. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  5. Restoration of singularities in reconstructed phase of crystal image in electron holography.

    PubMed

    Li, Wei; Tanji, Takayoshi

    2014-12-01

    Off-axis electron holography can be used to measure the inner potential of a specimen from its reconstructed phase image and is thus a powerful technique for materials scientists. However, abrupt reversals of contrast from white to black may sometimes occur in a digitally reconstructed phase image, which results in inaccurate information. Such phase distortion is mainly due to the digital reconstruction process and weak electron wave amplitude in some areas of the specimen. Therefore, digital image processing can be applied to the reconstruction and restoration of phase images. In this paper, fringe reconnection processing is applied to phase image restoration of a crystal structure image. The disconnection and wrong connection of interference fringes in the hologram that directly cause a 2π phase jump imperfection are correctly reconnected. Experimental results show that the phase distortion is significantly reduced after the processing. The quality of the reconstructed phase image was improved by the removal of imperfections in the final phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi; Song, Furong

    2017-12-01

    An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is -136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about -1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it's also convenient for automatic and fast signal processing in real-time monitoring of RI.

  7. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  8. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less

  9. Uniformity of cylindrical imploding underwater shockwaves at very small radii

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.

    2017-11-01

    We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.

  10. An interferometric strain-displacement measurement system

    NASA Technical Reports Server (NTRS)

    Sharpe, William N., Jr.

    1989-01-01

    A system for measuring the relative in-plane displacement over a gage length as short as 100 micrometers is described. Two closely spaced indentations are placed in a reflective specimen surface with a Vickers microhardness tester. Interference fringes are generated when they are illuminated with a He-Ne laser. As the distance between the indentations expands or contracts with applied load, the fringes move. This motion is monitored with a minicomputer-controlled system using linear diode arrays as sensors. Characteristics of the system are: (1) gage length ranging from 50 to 500 micrometers, but 100 micrometers is typical; (2) least-count resolution of approximately 0.0025 micrometer; and (3) sampling rate of 13 points per second. In addition, the measurement technique is non-contacting and non-reinforcing. It is useful for strain measurements over small gage lengths and for crack opening displacement measurements near crack tips. This report is a detailed description of a new system recently installed in the Mechanisms of Materials Branch at the NASA Langley Research Center. The intent is to enable a prospective user to evaluate the applicability of the system to a particular problem and assemble one if needed.

  11. Simultaneous manipulation and observation of multiple ro-vibrational eigenstates in solid para-hydrogen.

    PubMed

    Katsuki, Hiroyuki; Ohmori, Kenji

    2016-09-28

    We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.

  12. A Fiber-Optic Sensor for Leak Detection in a Space Environment

    NASA Technical Reports Server (NTRS)

    Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.

    2009-01-01

    A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.

  13. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules

    PubMed Central

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei

    2011-01-01

    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber’s first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair. PMID:22163821

  14. Tapered optical fiber sensor for label-free detection of biomolecules.

    PubMed

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Wang, Xingwei

    2011-01-01

    This paper presents a fast, highly sensitive and low-cost tapered optical fiber biosensor that enables the label-free detection of biomolecules. The sensor takes advantage of the interference effect between the fiber's first two propagation modes along the taper waist region. The biomolecules bonded on the taper surface were determined by demodulating the transmission spectrum phase shift. Because of the sharp spectrum fringe signals, as well as a relatively long biomolecule testing region, the sensor displayed a fast response and was highly sensitive. To better understand the influence of various biomolecules on the sensor, a numerical simulation that varied biolayer parameters such as thickness and refractive index was performed. The results showed that the spectrum fringe shift was obvious to be measured even when the biolayer was only nanometers thick. A microchannel chip was designed and fabricated for the protection of the sensor and biotesting. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. A tapered optical fiber biosensor was fabricated and evaluated with an Immune globulin G (IgG) antibody-antigen pair.

  15. Blind operation of optical astronomical interferometers options and predicted performance

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.

    1991-01-01

    Maximum sensitivity for optical interferometers is achieved only when the optical path lengths between the different arms can be equalized without using interference fringes on the research object itself. This is called 'blind operation' of the interferometer. This paper examines different options to achieve this, focusing on the application to the Very Large Telescope Interferometer (VLTI). It is proposed that blind operation should be done using a so-called coherence autoguider, working on an unresolved star of magnitude V = 11-13 within the isoplanatic patch for coherencing, which has a diameter of about 1 deg. Estimates of limiting magnitudes for the VLTI are also derived.

  16. New fiber optics illumination system for application to electronics holography

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.

    1995-08-01

    The practical application of electronic holography requires the use of fiber optics. The need of employing coherent fiber optics imposes restrictions in the efficient use of laser light. This paper proposes a new solution to this problem. The proposed method increases the efficiency in the use of the laser light and simplifies the interface between the laser source and the fiber optics. This paper will present the theory behind the proposed method. A discussion of the effect of the different parameters that influence the formation of interference fringes is presented. Limitations and results that can be achieved are given. An example of application is presented.

  17. Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection

    NASA Astrophysics Data System (ADS)

    Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk

    2010-06-01

    In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.

  18. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  19. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  20. A universal matter-wave interferometer with optical ionization gratings in the time-domain

    PubMed Central

    Haslinger, Philipp; Dörre, Nadine; Geyer, Philipp; Rodewald, Jonas; Nimmrichter, Stefan; Arndt, Markus

    2015-01-01

    Matter-wave interferometry with atoms1 and molecules2 has attracted a rapidly growing interest throughout the last two decades both in demonstrations of fundamental quantum phenomena and in quantum-enhanced precision measurements. Such experiments exploit the non-classical superposition of two or more position and momentum states which are coherently split and rejoined to interfere3-11. Here, we present the experimental realization of a universal near-field interferometer built from three short-pulse single-photon ionization gratings12,13. We observe quantum interference of fast molecular clusters, with a composite de Broglie wavelength as small as 275 fm. Optical ionization gratings are largely independent of the specific internal level structure and are therefore universally applicable to different kinds of nanoparticles, ranging from atoms to clusters, molecules and nanospheres. The interferometer is sensitive to fringe shifts as small as a few nanometers and yet robust against velocity-dependent phase shifts, since the gratings exist only for nanoseconds and form an interferometer in the time-domain. PMID:25983851

  1. Improved multi-beam laser interference lithography system by vibration analysis model

    NASA Astrophysics Data System (ADS)

    Lin, Te Hsun; Yang, Yin-Kuang; Mai, Hsuan-Ying; Fu, Chien-Chung

    2017-03-01

    This paper has developed the multi-beam laser interference lithography (LIL) system for nano/micro pattern sapphire substrate process (PSS/NPSS). However, the multi-beam LIL system is very sensitive to the light source and the vibration. When there is a vibration source in the exposure environment, the standing wave distribution on the substrate will be affected by the vibration and move in a certain angle. As a result, Moiré fringe defects occur on the exposure result. In order to eliminate the effect of the vibration, we use the software ANSYS to analyze the resonant frequencies of our multi-beam LIL system. Therefore, we need to design new multi-beam LIL system to raise the value of resonant frequencies. The new design of the multi-beam LIL system has higher resonant frequencies and successfully eliminates the bending and rotating effect of the resonant frequencies. As a result, the new multi-beam LIL system can fabricate large area and defects free period structures.

  2. Visual resolution in incoherent and coherent light: preliminary investigation

    NASA Astrophysics Data System (ADS)

    Sarnowska-Habrat, Katarzyna; Dubik, Boguslawa; Zajac, Marek

    2001-05-01

    In ophthalmology and optometry a number of measures are used for describing quality of human vision such as resolution, visual acuity, contrast sensitivity function, etc. In this paper we will concentrate on the vision quality understood as a resolution of periodic object being a set of equidistant parallel lines of given spacing and direction. The measurement procedure is based on presenting the test to the investigated person and determining the highest spatial frequency he/she can still resolve. In this paper we describe a number of experiments in which we use test tables illuminated with light both coherent and incoherent of different spectral characteristics. Our experiments suggest that while considering incoherent polychromatic illumination the resolution in blue light is substantially worse than in white light. In coherent illumination speckling effect causes worsening of resolution. While using laser light it is easy to generate a sinusoidal interference pattern which can serve as test object. In the paper we compare the results of resolution measurements with test tables and interference fringes.

  3. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    NASA Astrophysics Data System (ADS)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  4. Investigation on a fiber optic accelerometer based on FBG-FP interferometer

    NASA Astrophysics Data System (ADS)

    Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao

    2014-12-01

    A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.

  5. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.

    PubMed

    Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  6. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices

    NASA Astrophysics Data System (ADS)

    Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  7. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Lee, Kim Fook; Kumar, Prem

    2007-09-15

    By utilizing a fiber-based indistinguishable photon-pair source in the 1.55 {mu}m telecommunications band [J. Chen et al., Opt. Lett. 31, 2798 (2006)], we present the first, to the best of our knowledge, deterministic quantum splitter based on the principle of time-reversed Hong-Ou-Mandel quantum interference. The deterministically separated identical photons' indistinguishability is then verified by using a conventional Hong-Ou-Mandel quantum interference, which exhibits a near-unity dip visibility of 94{+-}1%, making this quantum splitter useful for various quantum information processing applications.

  8. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less

  9. Investigation on the properties of the formation and coherence of intense fringe near nonlinear medium slab

    NASA Astrophysics Data System (ADS)

    Hu, Yonghua; Qiu, Yaqiong; Li, Yang; Shi, Lin

    2018-03-01

    Near medium intense (NMI) fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated.

  10. Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development

    NASA Astrophysics Data System (ADS)

    Warren, Zachary Aron

    Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).

  11. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.

  12. Effects of Irrelevant Colors on Reading of Color Names: A Controlled Replication of the "Reversed-Stroop" Effect. Progress Report.

    ERIC Educational Resources Information Center

    Dyer, Frederick N.; Severance, Laurence J.

    Gumenik and Glass (1970) claimed to have shown a reversed form of Stroop interference in which implicit naming responses to irrelevant colors delay the reading of color words combined with the colors. In their study, a legibility reduction that did not affect color visibility was interpreted as increasing this interference from color-naming to the…

  13. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong

    2012-10-01

    This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.

  14. Temporal dynamics of interference in Simon and Eriksen tasks considered within the context of a dual-process model.

    PubMed

    Mansfield, Karen L; van der Molen, Maurits W; Falkenstein, Michael; van Boxtel, Geert J M

    2013-08-01

    Behavioral and brain potential measures were employed to compare interference in Eriksen and Simon tasks. Assuming a dual-process model of interference elicited in speeded response tasks, we hypothesized that only lateralized stimuli in the Simon task induce fast S-R priming via direct unconditional processes, while Eriksen interference effects are induced later via indirect conditional processes. Delays to responses for incongruent trials were indeed larger in the Eriksen than in the Simon task. Only lateralized stimuli in the Simon task elicited early S-R priming, maximal at parietal areas. Incongruent flankers in the Eriksen task elicited interference later, visible as a lateralized N2. Eriksen interference also elicited an additional component (N350), which accounted for the larger behavioral interference effects in the Eriksen task. The findings suggest that interference and its resolution involve different processes for Simon and Eriksen tasks. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    NASA Astrophysics Data System (ADS)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  16. Endoscopic fringe projection for in-situ inspection of a sheet-bulk metal forming process

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2015-05-01

    Sheet-bulk metal forming is a new production process capable of performing deep-drawing and massive forming steps in a single operation. However, due to the high forming forces of the forming process, continuous process control is required in order to detect wear on the forming tool before production quality is impacted. To be able to measure the geometry of the forming tool in the limited space of forming presses, a new inspection system is being developed within the SFB/TR 73 collaborative research center. In addition to the limited space, the process restricts the amount of time available for inspection. Existing areal optical measurement systems suffer from shadowing when measuring the tool's inner elements, as they cannot be placed in the limited space next to the tool, while tactile measurement systems cannot meet the time restrictions for measuring the areal geometries. The new inspection system uses the fringe projection optical measurement principle to capture areal geometry data from relevant parts of the forming tool in short time. Highresolution image fibers are used to connect the system's compact sensor head to a base unit containing both camera and projector of the fringe projection system, which can be positioned outside of the moving parts of the press. To enable short measurement times, a high intensity laser source is used in the projector in combination with a digital micro-mirror device. Gradient index lenses are featured in the sensor head to allow for a very compact design that can be used in the narrow space above the forming tool inside the press. The sensor head is attached to an extended arm, which also guides the image fibers to the base unit. A rotation stage offers the possibility to capture measurements of different functional elements on the circular forming tool by changing the orientation of the sensor head next to the forming tool. During operation of the press, the arm can be travelled out of the moving parts of the forming press. To further reduce the measurement times of the fringe projection system, the inverse fringe projection principle has been adapted to the system to detect geometry deviations in a single camera image. Challenges arise from vibrations of both the forming machine and the positioning stages, which are transferred via the extended arm to the sensor head. Vibrations interfere with the analysis algorithms of both encoded and inverse fringe projection and thus impair measurement accuracy. To evaluate the impact of vibrations on the endoscopic system, results of measurements of simple geometries under the influence of vibrations are discussed. The effect of vibrations is imitated by displacing the measurement specimen during the measurement with a linear positioning stage. The concept of the new inspection system is presented within the scope of the TR 73 demonstrational sheet-bulk metal forming process. Finally, the capabilities of the endoscopic fringe projection system are shown by measurements of gearing structures on a forming tool compared to a CAD-reference.

  17. Quantum mechanical which-way experiment with an internal degree of freedom

    PubMed Central

    Banaszek, Konrad; Horodecki, Paweł; Karpiński, Michał; Radzewicz, Czesław

    2013-01-01

    For a particle travelling through an interferometer, the trade-off between the available which-way information and the interference visibility provides a lucid manifestation of the quantum mechanical wave–particle duality. Here we analyse this relation for a particle possessing an internal degree of freedom such as spin. We quantify the trade-off with a general inequality that paints an unexpectedly intricate picture of wave–particle duality when internal states are involved. Strikingly, in some instances which-way information becomes erased by introducing classical uncertainty in the internal degree of freedom. Furthermore, even imperfect interference visibility measured for a suitable set of spin preparations can be sufficient to infer absence of which-way information. General results are illustrated with a proof-of-principle single-photon experiment. PMID:24161992

  18. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor

    2018-01-01

    We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.

  19. Advantages of phase retrieval for fast x-ray tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.

    2013-12-01

    In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.

  20. Modeling chromatic instrumental effects for a better model fitting of optical interferometric data

    NASA Astrophysics Data System (ADS)

    Tallon, M.; Tallon-Bosc, I.; Chesneau, O.; Dessart, L.

    2014-07-01

    Current interferometers often collect data simultaneously in many spectral channels by using dispersed fringes. Such polychromatic data provide powerful insights in various physical properties, where the observed objects show particular spectral features. Furthermore, one can measure spectral differential visibilities that do not directly depend on any calibration by a reference star. But such observations may be sensitive to instrumental artifacts that must be taken into account in order to fully exploit the polychromatic information of interferometric data. As a specimen, we consider here an observation of P Cygni with the VEGA visible combiner on CHARA interferometer. Indeed, although P Cygni is particularly well modeled by the radiative transfer code CMFGEN, we observe questionable discrepancies between expected and actual interferometric data. The problem is to determine their origin and disentangle possible instrumental effects from the astrophysical information. By using an expanded model fitting, which includes several instrumental features, we show that the differential visibilities are well explained by instrumental effects that could be otherwise attributed to the object. Although this approach leads to more reliable results, it assumes a fit specific to a particular instrument, and makes it more difficult to develop a generic model fitting independent of any instrument.

  1. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  2. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  3. High resolution group refractive index measurement by broadband supercontinuum interferometry and wavelet-transform analysis

    NASA Astrophysics Data System (ADS)

    Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette

    2006-12-01

    In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.

  4. Transport properties of a quantum dot and a quantum ring in series

    NASA Astrophysics Data System (ADS)

    Seo, Minky; Chung, Yunchul

    2018-01-01

    The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.

  5. Topological study of nanomaterials using surface-enhanced ellipsometric contrast microscopy (SEEC)

    NASA Astrophysics Data System (ADS)

    Muckenhirn, Sylvain

    2016-03-01

    Innovations in nanotechnology are empowering scientists to deepen their understanding of physical, chemical and biological mechanisms. Powerful and precise characterization systems are essential to meet researchers' requirements. SEEC (Surface Enhanced Ellipsometric Contrast) microscopy is an innovative advanced optical technique based on ellipsometric and interference fringes of Fizeau principles. This technique offers live and label-free topographic imaging of organic, inorganic and biological samples with high Z resolution (down to 0.1nm thickness), and enhanced X-Y detection limit (down to 1.5nm width). This technique has been successfully applied to the study of nanometric films and structures, biological layers, and nano-objects. We applied SEEC technology to different applications explored below.

  6. Surface plasmon quantum cascade lasers as terahertz local oscillators.

    PubMed

    Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E

    2008-02-15

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.

  7. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  8. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  9. Nonlinear degradation of a visible-light communication link: A Volterra-series approach

    NASA Astrophysics Data System (ADS)

    Kamalakis, Thomas; Dede, Georgia

    2018-06-01

    Visible light communications can be used to provide illumination and data communication at the same time. In this paper, a reverse-engineering approach is presented for assessing the impact of nonlinear signal distortion in visible light communication links. The approach is based on the Volterra series expansion and has the advantage of accurately accounting for memory effects in contrast to the static nonlinear models that are popular in the literature. Volterra kernels describe the end-to-end system response and can be inferred from measurements. Consequently, this approach does not rely on any particular physical models and assumptions regarding the individual link components. We provide the necessary framework for estimating the nonlinear distortion on the symbol estimates of a discrete multitone modulated link. Various design aspects such as waveform clipping and predistortion are also incorporated in the analysis. Using this framework, the nonlinear signal-to-interference is calculated for the system at hand. It is shown that at high signal amplitudes, the nonlinear signal-to-interference can be less than 25 dB.

  10. IR visible sum-frequency vibrational spectroscopy of Biphenyl-3 methylene thiol monolayer on gold and silver: effect of the visible wavelength on the SFG spectrum

    NASA Astrophysics Data System (ADS)

    Humbert, C.; Dreesen, L.; Mani, A. A.; Caudano, Y.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.

    2002-04-01

    We measured IR-visible sum-frequency generation spectra of CH 3-(C 6H 4) 2-(CH 2) 3-S-H (Biphenyl-3) self-assembled monolayers on a silver and a gold substrate. For the latter substrate, we observed different interference patterns between the resonant signal of the CH vibration and the non-resonant contribution of the substrate as a function of the visible beam wavelength. The non-linear response of the gold substrate is enhanced around 480 nm corresponding to the s-d interband transition. Such effect is not observed for the silver substrate the interband transition of which is located out of the investigated visible spectral range of 450-700 nm.

  11. Generalized spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons

    NASA Astrophysics Data System (ADS)

    Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi

    1998-07-01

    Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.

  12. Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.

  13. Interactive Fringe Analysis System: Applications To Moire Contourogram And Interferogram

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Yamaashi, Y.; Suzuki, M.

    1982-10-01

    A general purpose fringe pattern processing facility was developed in order to analyze moire photographs used for scoliosis diagnoses and interferometric patterns in optical shops. A TV camera reads a fringe profile to be analyzed, and peaks of the fringe are detected by a microcomputer. Fringe peak correction and fringe order determination are performed with the man-machine interactive software developed. A light pen facility and an image digitizer are employed for interaction. In the case of two-dimensional fringe analysis, we analyze independently analysis lines parallel to each other and a reference line perpendicular to the parallel analysis lines. Fringe orders of parallel analysis lines are uniquely determined by using the fringe order of the reference line. Some results of analysis of moire contourograms, interferometric testing of silicon wafers, and holographic measurement of thermal deformation are presented.

  14. Visual optics: an engineering approach

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2010-11-01

    The human eyes' visual system interprets the information from the visible light in order to build a representation of the world surrounding the body. It derives color by comparing the responses to light from the three types of photoreceptor cones in the eyes. These long medium and short cones are sensitive to blue, green and red portions of the visible spectrum. We simulate the color vision for the normal eyes. We see the effects of the dyes, filters, glasses and windows on color perception when the test image is illuminated with the D65 light sources. In addition to colors' perception, the human eyes can suffer from diseases and disorders. The eye can be seen as an optical instrument which has its own eye print. We present aspects of some nowadays methods and technologies which can capture and correct the human eyes' wavefront aberrations. We focus our attention to Siedel aberrations formula, Zenike polynomials, Shack-Hartmann Sensor, LASIK, interferograms fringes aberrations and Talbot effect.

  15. First Images of R Aquarii and Its Asymmetric H2O Shell

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Le Coroller, H.; Pluzhnik, E.; Cotton, W. D.; Danchi, W. C.; Monnier, J. D.; Traub, W. A.; Willson, L. A.; Berger, J.-P.; Lacasse, M. G.

    2008-05-01

    We report imaging observations of the symbiotic long-period Mira variable R Aquarii (R Aqr) at near-infrared and radio wavelengths. The near-infrared observations were made with the IOTA imaging interferometer in three narrowband filters centered at 1.51, 1.64, and 1.78 μm, which sample mainly water, continuum, and water features, respectively. Our near-infrared fringe visibility and closure phase data are analyzed using three models. (1) A uniform disk model with wavelength-dependent sizes fails to fit the visibility data, and is inconsistent with the closure phase data. (2) A three-component model, consisting of a Mira star, water shell, and an off-axis point source, provide a good fit to all data. (3) A model generated by a constrained image reconstruction analysis provides more insight, suggesting that the water shell is highly nonuniform, i.e., clumpy. The VLBA observations of SiO masers in the outer molecular envelope show evidence of turbulence, with jetlike features containing velocity gradients.

  16. 49 CFR 25.525 - Fringe benefits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  17. 49 CFR 25.525 - Fringe benefits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  18. 49 CFR 25.525 - Fringe benefits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  19. 49 CFR 25.525 - Fringe benefits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Fringe benefits. 25.525 Section 25.525... Employment in Education Programs or Activities Prohibited § 25.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  20. Dual-sensitivity profilometry with defocused projection of binary fringes.

    PubMed

    Garnica, G; Padilla, M; Servin, M

    2017-10-01

    A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.

  1. 10 CFR 1042.525 - Fringe benefits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...

  2. 36 CFR 1211.525 - Fringe benefits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...

  3. 22 CFR 146.525 - Fringe benefits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  4. 44 CFR 19.525 - Fringe benefits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...

  5. 22 CFR 146.525 - Fringe benefits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  6. 22 CFR 229.525 - Fringe benefits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  7. 22 CFR 229.525 - Fringe benefits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  8. 44 CFR 19.525 - Fringe benefits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...

  9. 36 CFR 1211.525 - Fringe benefits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...

  10. 44 CFR 19.525 - Fringe benefits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Fringe benefits. 19.525... Programs or Activities Prohibited § 19.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or...

  11. 36 CFR 1211.525 - Fringe benefits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...

  12. 28 CFR 54.525 - Fringe benefits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Fringe benefits. 54.525 Section 54.525... in Employment in Education Programs or Activities Prohibited § 54.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  13. 10 CFR 1042.525 - Fringe benefits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Fringe benefits. 1042.525 Section 1042.525 Energy... Education Programs or Activities Prohibited § 1042.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life...

  14. 32 CFR 196.525 - Fringe benefits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...

  15. 22 CFR 229.525 - Fringe benefits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  16. 22 CFR 229.525 - Fringe benefits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fringe benefits. 229.525 Section 229.525... Employment in Education Programs or Activities Prohibited § 229.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  17. 32 CFR 196.525 - Fringe benefits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Fringe benefits. 196.525 Section 196.525... Prohibited § 196.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...

  18. 36 CFR 1211.525 - Fringe benefits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Fringe benefits. 1211.525... Prohibited § 1211.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital, accident, life insurance, or retirement benefit...

  19. 22 CFR 146.525 - Fringe benefits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fringe benefits. 146.525 Section 146.525... Employment in Education Programs or Activities Prohibited § 146.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

  20. 28 CFR 54.525 - Fringe benefits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Fringe benefits. 54.525 Section 54.525... in Employment in Education Programs or Activities Prohibited § 54.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any medical, hospital...

Top